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A Appendix figures and tables
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Figure A.1: Simulation of Insurance Payouts Based on Historical Data

Notes: The diagram shows what proportion of farmers would have received a positive payout from the insurance in
previous years, and gives a sense of the basis risk of the insurance product. The numbers are based on simulations
using historical administrative data on yields. The total bar height is the proportion of people who would have
received an insurance payout under a single trigger design. It is broken down into those who still receive a payout
when the second, area yield based trigger is added, and those who do not. We do not have historical data for the
years 2006-2011.
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Table A.1: Main Experiment: Heterogeneous Treatment Effect by Required Rates of Return

(1) (2) (3)
Heterogeneity Variable (X): RRR on RRR 0 RRR 0 to 1 week

inputs to 1 week minus RRR 1 to 2 weeks

X *Pay At Harvest -0.124 0.099 0.001
[0.141] [0.114] [0.152]

X 0.073 0.035 0.121
[0.081] [0.065] [0.091]

Pay At Harvest 0.761 0.685 0.716
[0.054] [0.042] [0.029]

Mean dep. var. (Pay Upfront group) 0.052 0.052 0.052
Mean heterogeneity var. (X) 0.324 0.269 -0.043
S.D. heterogeneity var. (X) 0.228 0.278 0.211
Observations 561 563 561

Notes: The table shows heterogeneities of the treatment effect of the pay-at-harvest premium on insurance

take-up in the main experiment, by preferences in Money Earlier or Later experiments. The dependent variable is

a binary indicator equal to one if the farmer took-up the insurance. Upfront Payment and Upfront Payment with

30% discount treatment groups are bundled together as baseline group, as outlined in the registered plan. The

relevant heterogeneity variable is reported in the column title. Mean dep. var. (Pay Upfront group) reports the

mean of the dependent variable in the Pay Upfront group. For each of the heterogeneity variables (X), we report

their mean (Mean heterogeneity var.) and standard deviation (S.D. heterogeneity var.). These variables come from

responses to hypothetical (Becker-DeGroot) choices over earlier or later cash transfers, from which we deduce three

Required Rates of Returns. ‘RRR for inputs’ is the required rate of return which would (hypothetically) make

farmers indifferent between paying for inputs upfront and having them deducted from harvest revenues. ‘RRR 0 to

1 week’ is the required rate of return to delay receipt of a cash transfer by one week. ‘RRR 0 to 1 week - RRR 1 to

2 weeks’ is the difference between the rates of return required to delay receipt of a cash transfer from today to one

week from now, and from one week from now to two weeks from now. All columns include field fixed effects.
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Table A.2: Cash Drop Experiment: Balance Table

Upfront Upfront + Cash Pay at Harvest Pay at Harvest + Cash P-value P-value
[U] [U + Cash] [H] [H + Cash] [H - U] [Cash - No cash] N

Plot Size .301 .290 .283 .282 .18 .967 120
(.107) (.092) (.121) (.088)

Yield 54.3 57.8 61.4 54.1 .758 .745 120
(18.4) (17.9) (14.8) (17.0)

Notes: The table presents baseline balancing for the Cash Drop Experiment. Previous Yield is measured as tons

of cane per hectare harvested in the cycle before the intervention. There are fewer covariates for this experiment as

it did not have an accompanying survey, so we only have covariates from administrative data. P-values are based

on specifications which include field fixed effects (since randomization was stratified at the field level).
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Table A.3: Intertemporal Preferences Experiment: Balance Table

Receive Now Receive in One Month p-value N

Plot Size .328 .290 .085 121
(.109) (.106)

Yield 58.0 57.8 .571 121
(20.1) (21.3)

Man .793 .590 .009 119
(.408) (.495)

Age 48.3 47.7 .573 119
(12.8) (11.9)

Land Cultivated (Acres) 3.81 2.67 .02 118
(3.87) (1.72)

Own Cow(s) .844 .852 .987 119
(.365) (.357)

Portion of Income from Cane 3.62 3.32 .193 119
(1.12) (.943)

Savings for Sh1,000 .327 .295 .526 119
(.473) (.459)

Savings for Sh5,000 .155 .065 .056 119
(.365) (.249)

Expected Yield 77.7 87.5 .47 119
(65.3) (38.4)

Expected Yield in Good Year 95.1 109. .322 119
(70.7) (48.4)

Expected Yield in Bad Year 63.0 69.4 .682 119
(61.7) (32.0)

Good Relationship with Company .310 .316 .622 118
(.466) (.469)

Trust Company Field Assistants 3.10 2.83 .315 119
(1.02) (1.01)

Trust Company Managers 2.15 2.11 .32 119
(1.13) (1.03)

Notes: The table presents baseline balancing for the Intertemporal Preferences Experiment. Plot Size and

Previous Yield are from the administrative data of the partner company and are available for each of the 605

farmers in our sample. The rest of the variables are from the baseline survey. These are missing for 2 farmers

who denied consent to the survey. In addition, a handful of other values for specific variables is missing because of

enumerator mistakes or because the respondent did not know the answer or refused to provide an answer. Previous

Yield is measured as tons of cane per hectare harvested in the cycle before the intervention. Man is a binary

indicator equal to one if the person in charge of the sugarcane plot is male. Own Cow(s) is a binary indicator equal

to one if the household owns any cows. Portion of Income from Cane takes value between 1 (“None”) to 6 (“All”).

Savings for Sh 1,000 (Sh 5,000) is a binary indicator that equals one if the respondent says she would be able to

use household savings to deal with an emergency requiring an expense of Sh 1,000 (Sh 5,000). 1 USD= 95 Sh. Good

Relationship with the Company is a binary indicator that equals one if the respondent says she has a “good” or

“very good” relationship with the company (as opposed to “bad” or “very bad”). Trust Company Field Assistants

and Trust Company Managers are defined on a scale 1 (“Not at all”) to 4 (“Completely”). P-values are based on

specifications which include field fixed effects (since randomization was stratified at the field level).
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B Intertemporal model of insurance

In this section we develop formally the dynamic model of insurance that we presented in the
main text. We begin by setting up a background intertemporal model, without insurance, into
which we then introduce the two insurance products - pay-upfront, and pay at harvest.1 We
first consider the case where contracts are perfectly enforceable, and then allow for imperfect
enforcement. The model shows how the channels interact to affect insurance demand (and for
whom) and motivates our mechanism experiments and empirical tests to identify them.

B.1 Background

The background model is a buffer-stock savings model, as in Deaton (1991), with the addition
of present-biased preferences and cyclical income flows (representing agricultural seasonality).

Time and state We use a stochastic discrete-time, infinite horizon model. Each period t, which
we will typically think of as one month, has a set of states St, corresponding to different income
realizations. The probability distribution over states is assumed to be memoryless and cyclical (of
period N). Thus P (st = s) may depend on t but is independent of the history at time t, (si)i<t,
and St = St+N and P (st = s) = P (st+N = s) ∀t, s.
Utility Individuals have time-separable preferences and maximize present-biased expected utility
u(ct) + βΣ∞i=1δ

iE[u(ct+i)] as in Laibson (1997).2 We assume that u(.) satisfies u′ > 0, u′′ < 0,
limc→0 u

′(c) =∞ and u′′′ > 0, and that β ∈ (0, 1] and δ ∈ (0, 1).3

Intertemporal transfers Households have access to a risk-free asset with constant rate of return
R and are subject to a borrowing constraint. As in Deaton (1991), we assume Rδ < 1.
Income and wealth Households have state-dependent income in each period yt. We assume
yt > 0 ∀t ∈ R+.4 We denote cash-on-hand once income is received by xt and wealth at the
beginning of each period by wt, so that xt = wt + yt.

Household’s problem The household faces the following maximization sequence problem in
period t:

max
(ct+i)i≥0

u(ct) + βE[Σ∞i=1δ
iu(ct+i)] (B.1)

s.t. ∀i ≥ 0 xt+i+1 = R(xt+i − ct+i) + yt+i+1

xt+i − ct+i ≥ 0

We assume that households are naive-βδ discounters: they believe that they will be exponential
discounters in future periods (and so may have incorrect beliefs about future consumption). There
is evidence for such naivete in other settings (DellaVigna and Malmendier 2006) and, with the

1An alternative approach is to use observed investment behavior (in particular the potential returns of risk-free
investments which farmers make or forgo) as a sufficient statistic for the cost of the transfer across time. In appendix
section C we report basic quantitative bounds for the effect of the transfer across time on insurance demand using
this approach.

2We note that time-separable preferences equate the elasticity of intertemporal substitution, ψ, and the inverse
of the coefficient of relative risk aversion, 1

γ
. As such they imply a tight link between preferences over risk and

consumption smoothing, both of which are relevant for insurance demand. Recursive preferences allow them to
differ (Epstein and Zin 1989), which would provide an additional channel: if ψ � 1

γ
, then demand for upfront and

at-harvest insurance may differ greatly, since the cost of variation in consumption over time would far exceed that
of variation across state.

3We assume prudence, i.e. u′′′ > 0, as is common in the precautionary savings literature (and as holds for
CRRA utility), to ensure that the value of risk reduction is decreasing in wealth, i.e. Lemma B.2, part 3. Liquidity
constraints strengthen concavity of the value function, and thus the result, but our proof requires prudence.

4As a technical assumption we actually assume that yt is strictly bounded above zero ∀t.
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exception of Proposition 2, all propositions hold with slight modification in the sophisticated-βδ
case.5

Denote time-t self’s value function by Vt.
6 Then Vt is a function of one state variable, cash-

on-hand xt, and is the solution to the following recursive dynamic programming problem:

Vt(xt) = max
ct

u(ct) + βδEs[V c
t+1(xt+1)] (B.2)

subject to, for all i ≥ 0, xt+i+1 = R(xt+i − ct+i) + yt+i+1

xt+i − ct+i ≥ 0

where V c
t (xt), the continuation value function, is the solution to equation B.2, but with β = 1, i.e.

V c
t (xt) = max

ct
u(ct) + δEs[V c

t+1(xt+1)] (B.3)

Because of the cyclicality of the setup, the functions Vt(.) = Vt+N (.) and V c
t (.) = V c

t+N (.) ∀t.

Lemma B.1. ∀t ∈ R+:

1. Vt, V
c
t exist, are unique, and are concave.

2. dct
dxt

< 1, so investments (and wealth in the next period) are increasing in wealth.

Proof. Part (1)
Since V c is the solution to a recursive dynamic programming problem with convex flow payoffs,

concave intertemporal technology, and convex choice space, theorem 9.6 and 9.8 in Stokey and
Lucas (1989) tell us that V c exists and is strictly concave. To expand further, the proofs, which
are similar in method to subsequent proofs below, are as follows.

Existence & Uniqueness. Blackwell’s sufficient conditions hold for the Bellman operator
mapping V c

t+1 to V c
t : monotinicity is clear; discounting follows by the assumption that δR < 1 -

taking a ∈ R, V c
t+1 + a is mapped to V c

t+1 + δRa; the flow payoff (u(ct)) is bounded and continous
by assumption; compactness of the state-space is problematic, but given δR < 1 the stock of cash-
on-hand will not amass indefinitely, so we can bound the state space with little concern (Stokey
and Lucas (1989) provide more formal, technical methods to deal with the problem. Since it
is not the focus of the paper, we do not go into more details). Thus, the Bellman operator is
a contraction mapping, and iterating this operator implies the mapping from V c

t+N to V c
t is a

contraction mapping also. V c
t is a fixed point of this mapping, and thus exists and is unique by

the contraction mapping theorem.
Concavity. Assume V c

t+N is concave. Then, V c
t+N−1 is strictly concave, since the utility

function is concave and the state space correspondence in convex, by standard argument (take
xθ = θxa+(1−θ)xb, expand out the definition of V c

t+N−1(xθ) and use the concavity of V c
t+N−1 and

the strict concavity of u(.)). Iterating this argument, we thus have that V c
t is concave. Therefore,

since there is a unique fixed point of the contraction mapping from V c
t+N to V c

t , that fixed point
must be concave (since we will converge to the fixed point by iterating from any starting function;
start from a concave function).

Part (2)

Vt(xt) = maxc u(c) + βδE[V c
t+1(R(xt − c) + yt+1)]

5The required modification is replacing β by a state-specific discount factor, which is a function of the marginal
propensity to consume. Proposition 2 and Lemma B.2 may no longer hold, since concavity and uniqueness of the
continuation value V ct is no longer guaranteed, complicating matters significantly.

6Since preferences are not time-consistent, Vt is different from the continuation value function, denoted V ct , which
is the value function at time t, given time t− 1 self’s intertemporal preferences, i.e. without present bias.
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Since V c
t+1 is concave, this is a convex problem, and the solution satisfies:

u′(ct) = max{βδRE[V c′
t+1(R(xt − ct) + yt+1)], u

′(xt)}

Define a(xt) = xt − c(xt). Take x′t > xt, and suppose a′t(x
′
t) < at(xt). Since a′t ≥ 0, we

must have at > 0. Now, a′t < at implies c′t > ct, so u′(c′t) < u′(ct) = βδRE[V c′(Rat + y)] ≤
βδRE[V c′(Ra′t + y)] ≤ u′(c′t). Contradiction. Thus a′t(xt) ≥ 0. Since V c′(Rat + yt+1) = u′(ct+1),
the concavity of V c also implies that ct+1 is increasing in xt in the sense of first order stochastic
dominance.

Iterated Euler equation To consider the importance of the timing of premium payment, we
will compare the marginal utility of consumption across time periods using the Euler equation:

u′(ct) = max{βδRE[u′(ct+1)], u
′(xt)} (B.4)

= βδRE[u′(ct+1)] + µt (B.5)

where µt(xt) is the Lagrange multiplier on the borrowing constraint, and ct+1 is period t self’s
belief about consumption in period t+ 1. Iterating the Euler equation to span more periods gives:

u′(ct) = β(Rδ)HE[u′(ct+H)] + λt+Ht (B.6)

where λt+Ht (xt) represents distortions in transfers from t to t+H arising from (potential) borrowing
constraints:

λt+Ht := µt + βE[ΣH−1
i=1 (Rδ)iµt+i] (B.7)

The setup provides the following result, which we will use when considering insurance demand.

Lemma B.2. ∀t ∈ R+:

1. d3Vt
dx3t

,
d3V ct
dx3t

> 0, so the value of risk reduction is decreasing in wealth.

2.
dλt+Ht
dxt

< 0, i.e. the distortion arising from liquidity constraints is decreasing in wealth.

The intuition behind part 1 of the lemma is as follows. The value of risk reduction depends
on how much the marginal utility of consumption varies across states of the world. Two things
dictate this. First, how much marginal utility varies for a given change in consumption; this drives
the comparative static through prudence (i.e. u′′′ > 0). Second, how much consumption varies for
a given change in wealth (the marginal propensity to consume). Concavity of the consumption
function, another consequence of prudence (Carroll and Kimball 1996), but further strengthened
by the borrowing constraint (Zeldes 1989; Carroll and Kimball 2005), reinforces the result.7

Proof of Lemma B.2. Part (1)
The intuition for the result is that V c′

t = u′(ct(xt)) (combining the first order condition with the
envelope condition), and u′ and c are convex by prudence (with the convexity of c strenghtened
by the borrowing constraint). The proof relies on showing that the mapping from V c′

t+1 to V c′
t

conserves convexity, ∀t ∈ R+. Then the proof follows as in 1 above: V c
t is the fixed point of a

contraction mapping which conserves convexity of the first derivative, hence V c′
t must be convex.

7Mathematically, the value of a marginal transfer from state x + ∆ to state x, assuming both equally likely,
is (one-half times) V ′(x + ∆) − V ′(x) = u′(c(x + ∆)) − u′(c(x)) ' u′′(c(x))c′(x)∆. Its derivative w.r.t. x is
∆(u′′′(c(x))c′(x)2 + u′′(c(x))c′′(x)), which shows the role of both u′′′ and c′′.
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We show that the mapping preserves convexity as follows, which is based on Deaton and Laroque
(1992):

Suppose V c′
t+1 is convex.

V c′
t (xt) = u′(ct)

= max{δRE[V c′
t+1(R(xt − ct) + yt+1)], u

′(xt)}

Define G by G(q, x) = δRE[V c′
t+1(R(xt − u′−1(q) + yt+1)].

G is convex in q and x : u′ is convex and strictly decreasing, so u′−1 is convex (and so −u′−1 is
concave); V c′

t+1 is convex and decreasing, so V c′
t+1(R(xt − u′−1(q)) + yt+1) convex in q and x (since

f convex decreasing and g concave ⇒ f ◦ g convex); expectation is a linear operator (and hence
preserves convexity).

Now V c′
t = max[G(V c′

t (xt), xt), u
′(xt)], or, defining H(q, x) = max{G(q, x)− q, u′(x)− q}, then

V c′
t is the solution in q of H(q, x) = 0.

H is convex in q and x, since it is the max of two functions, each of which are convex in q and
x. Take any two x and x′ and λ ∈ (0, 1). Then H(V c′

t (x), x) = H(V c′
t (x′), x′) = 0. Thus, by the

convexity of H, H(λV c′
t (x) + (1− λ)V c′

t (x′), λx+ (1− λ)x′) ≤ 0. Now, since H is decreasing in q,
that means that V c′

t (λx+ (1− λ)x′) < λV c′
t (x) + (1− λ)V c′

t (x′), i.e. V c′
t is convex.

Part (2)
Clearly dµt

dxt
≤ 0. Also, the distribution of xt+1 is increasing in the distribution of xt, is the

sense of first order stochastic dominance, by iterating Lemma A.1 part (2). Hence the result holds
by the law of iterated expectations.

B.2 Insurance with perfect enforcement

We begin with the case where insurance contracts are perfectly enforceable.

Timing The decision to take up insurance is made in period 0. Any insurance payout is made
in period H, the harvest period.
Payouts Farmers can buy one unit of the insurance, which gives state-dependent payout I in
period H, normalized so that E[I] = 1. We assume that yH + I − 1 second-order stochastically
dominates yH .8

Premiums We consider two timings for premium payment: upfront, at time 0, and at harvest,
at time H. If paid at harvest the premium is 1, the expected payout (commonly referred to as the
actuarially-fair price). If paid upfront, the premium is R−H . Thus, at interest rate R, upfront and
at-harvest payment are equivalent in net present value.

Demand for insurance Farmers buy insurance if the expected benefit of the payout is greater
than the expected cost of the premium. Thus, to first order,9 the take-up decisions are:

Take up insurance iff

{
βδHE[u′(cH)] ≤ βδHE[Iu′(cH)] (pay-at-harvest insurance)

R−Hu′(c0) ≤ βδHE[Iu′(cH)] (pay-upfront insurance)
(B.8)

8Historical simulations using administrative data suggest this assumption is reasonable in our setting. While the
second, area-yield based trigger, does lead to basis risk in the insurance product, it only prevents payouts in 26% of
cases receiving payouts under the single trigger, as shown in Figure A.1.

9We use first order approximations at several points. They are reasonable in our setting for several reasons: the
premium is small (3% of average revenues) and the insurance provides low coverage (a maximum payout of 20%
of expected revenue); we care about differential take-up by premium timing, so second order effects which affect
upfront and at-harvest insurance equally do not matter; both the double trigger insurance design, and the provision
of inputs by the company, meant insurance was unlikely to affect input provision, in line with results in Section IV.D
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For pay-at-harvest insurance, the decision is based on a comparison of the marginal utility
of consumption across states (when insurance pays out vs. when it does not). For pay-upfront
insurance, in contrast, the decision in based on a comparison across both states and time (when
insurance pays out in the future vs. today). To relate the two decisions, we use the iterated Euler
equation, Equation 3, which gives the following.

Proposition 1. If farmers face a positive probability of being liquidity constrained before harvest,
they prefer pay-at-harvest insurance to pay-upfront insurance; otherwise they are indifferent.10

To first order, the difference is equivalent to a proportional price cut in the upfront premium of
λH0
u′(c0)

(< 1).

Intuitively, paying the premium upfront, rather than at harvest, is akin to holding a unit of
illiquid assets. The cost of doing so is given by the (shadow) interest rate, which depends on
whether liquidity constraints may bind before harvest - if not, then asset holdings can simply
adjust to offset the difference. As a corollary, intertemporal preferences only matter for the timing
of premium payment indirectly, through their effect on liquidity constraints, reflecting the fact
that preferences are defined over flows of utility rather than over flows of money.

Proof of Proposition 1. In the following, denote by at the assets held at the end of period t, so
that at = xt − ct.

Suppose farmers have zero probability of being liquidity constrained before the next harvest
when they buy pay-upfront insurance. Denote their (state-dependent) path of assets until harvest
by (aUt )t<H , given that they have purchased pay-upfront insurance. By the assumption that the
farmers will not be liquidity constrained before harvest, aUt > 0 ∀t < H and for all histories
(si)i≤t. Now, suppose instead of pay-upfront insurance, they had been offered pay-at-harvest
insurance. If they invest the money they would have spent on pay-upfront insurance in assets
instead, so aHt (s) = aUt (s) + R−H−t, then they can pay the pay-at-harvest premium at harvest
time and have the same consumption path as in the case of pay-upfront, so they must be at least
as well off. Similarly, suppose they optimally hold (aDt )t<H in the pay-at-harvest case. If instead
offered upfront insurance, they can use some of these assets to instead buy insurance, so that
aUt (s) = aDt (s)−R−H−t. Since, by assumption aUt (s) > 0, doing so they can again follow the same
consumption path as in the case of pay-at-harvest insurance, so pay-upfront insurance is at least
as good as at-harvest insurance. Thus the farmer is indifferent between pay-upfront and pay-at-
harvest insurance. As an aside, we note that this holds true even in the sophisticated βδ case,
since so long as the farmer is not liquidity constrained he is passing forward wealth, meaning that
paying the insurance at harvest time doesn’t give him any extra ability to constrain his choices at
harvest time than what he already has.

To first order, at time 0 the net benefit of pay-at-harvest insurance is βδHE(Iu′(cH)) −
βδHE(u′(cH)), and of pay-upfront is βδHE(Iu′(cH)) − βδHE(u′(cH)) − R−HλH0 (note that the
envelope theorem applies because, in the sequence problem, the insurance payout I does not enter
any constraints before time H. This would no longer be the case if borrowing constraints were
endogenous to next period’s income). Thus the difference between the two is R−HλH0 . Consider a

pay-upfront insurance product which had premium (1− λH0
u′(c0)

)R−H . The net benefit would be

βδHE(Iu′(cH))− (1− λH0
u′(c0)

)R−Hu′(c0)

=βδHE(Iu′(cH))− (u′(c0)− λH0 )R−H

=βδHE(Iu′(cH))− βδHE(u′(cH))

10To be precise, being “almost” liquidity constrained is sufficient: the exact condition for preferring pay-at-harvest
is that, upon purchasing pay-at-harvest insurance, xt − ct ≤ R−H+t for some time t < H and for some path.
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This is the net benefit of pay-at-harvest insurance.

Liquidity constraints are closely tied to wealth (specifically, to deviations from permanent
income, rather than permanent income itself) in the model. Combining Proposition 1 and Lemma
B.2 gives the following corollary, under the assumption that the product provides just a marginal
unit of insurance (so that we can ignore second order effects).

Proposition 2. The net benefit of pay-at-harvest insurance is decreasing in wealth. So too is the
cost of paying upfront, rather than at harvest. Among farmers sure to be liquidity constrained before
harvest, the latter dominates, so the benefit of pay-upfront insurance is increasing in wealth.11

Thus, while the benefit of risk reduction (pay-at-harvest insurance) is higher among the poor,
they may buy less (pay-upfront) insurance than the rich, because the inherent intertemporal trans-
fer is more costly for them. Liquidity constraints drive both results: the poor are more likely to
face liquidity constraints after harvest, meaning that they are less able to self-insure risks to har-
vest income (shocks in income lead to larger shocks in consumption), but they are also more likely
to face liquidity constraints before harvest, making illiquid investments more costly.

Proof of Proposition 2. The net benefit of the pay-at-harvest insurance is βδHE(V c
H(wH + yH +

I − 1))− βδHE(V c
H(wH + yH)). How this changes wrt x0 is given by:

d

dx0
[βδHE(V c

H(wH + yH + I − 1))− βδHE(V c
H(wH + yH))]

=
dwH
dx0

βδH [E(V c′
H (wH + yH + I − 1))− E(V c′

H (wH + yH))]

Now, dwH
dx0
≥ 0, by iterating lemma 1 back from period H to period 0. Also, yH + I − 1 strictly

second order stochastic dominates yH by assumption, and V c′
H is strictly convex (V c′′′ > 0 by

lemma 1), so E(V c′
H (wH + yH + I − 1))− E(V c′

H (wH + yH)) < 0. Thus, the value of pay-at-harvest
insurance is decreasing with wealth.

The reduction in net utility from insurance arising from upfront premium payment is R−HλH0 ,
by proposition 1. By lemma B.2, this is also decreasing in wealth.

If the farmer is certain to be liquidity constrained before the next harvest, when starting with
x0, then his wealth at the start of the next harvest wH will be the same as if he started with x′0,
for any x′0 < x0. This is because wealth in the next period is decreasing in wealth this period, so
by the time the farmer has exhausted his wealth starting at x0, he will also have exhausted his
wealth starting at x′0. Now, since the income process is memoryless, once the agent has exhausted
his wealth, his distribution of wealth at the next harvest is the same, irrespective of his history.
Thus the farmer has the same value of deductible insurance, regardless of whether he starts with
x0 or x′0, but the extra cost of the intertemporal transfer in the upfront insurance starting from
x′0 means that the farmer has a lower value of upfront insurance.

B.2.1 Delaying premium payment by one month

Consider the same insurance product as above, but with the premium payment delayed by just
one period (corresponding to our experiment in Section IV.C, where the delay is one month).

11The general point that the gap between pay-upfront and pay-at-harvest insurance is decreasing in wealth follows
from the shadow interest rate being decreasing in wealth. In our model that comes from a borrowing constraint (and
wealth is the deviation from permanent income), but it could be motivated in other ways, and models sometimes
take it as an assumption.
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Proposition 3. The gain in the expected net benefit of insurance from delaying premium payment
by one month is, to first order, equivalent to a proportional price cut in the upfront premium of
µ0

u′(c0)
.

Delaying premium payment by one period only increases demand if the farmer is liquidity
constrained. The effect on the expected net benefit of doing so is R−Hµ0, compared to R−H(µ0 +
βE[ΣH−1

i=1 (Rδ)iµ̃i]) from delaying until harvest time. Thus, when H is large, a one month delay
will have a small effect relative to a delay until harvest, unless either liquidity constraints are
particularly strong at time 0, or there is present bias. Present bias closes the gap in two ways:
first, the effect of future liquidity constraints are discounted by β, and second, the individual
naively believes that he will be less likely to be liquidity constrained in the future.

Proof of Proposition 3. The proof is essentially the same as that of the second half of Proposition
1.

B.3 Insurance with imperfect enforcement

If either side breaks the contract before harvest time, then the farmer does not pay the at-
harvest premium, while he would have already paid the upfront premium. Accordingly, imperfect
enforcement has implications both for farmer demand for insurance and for the willingness of
insurance companies to supply it.

Default We assume that both sides may default on the insurance contract. At the beginning
of the harvest period, with probability p (unrelated to yield) the insurer defaults on the contract,
without reimbursing any upfront premiums.12 The farmer then learns his yield and, if the insurer
has not defaulted, can himself strategically default on any at-harvest premium, subject to some
(possibly state dependent) utility cost d and the loss of any insurance payouts due.13Denoting
whether the farmer chooses to pay the at-harvest premium by the (state-dependent) indicator
function DP , then to first order:

DP := I[Iu′(cH) + d ≥ u′(cH)] (B.9)

Demand for insurance Given this defaulting behavior, imperfect contract enforcement drives
an additional first-order difference between upfront and at-harvest insurance:

Difference in net benefit
of at-harvest & upfront

= R−HλH0︸ ︷︷ ︸
liquidity constraint term

+ βδHpE[u′(cH)]︸ ︷︷ ︸
premium saved when insurer defaults before harvest

(B.10)

+ βδH(1− p)E[(1−DP )(u′(cH)− d− Iu′(cH))]︸ ︷︷ ︸
premium saved, minus cost of default and loss in insurance payouts, when farmer defaults

12Such default could represent, for example, the insurer going bankrupt or deciding not to honor contracts. The
assumption that it is unrelated to yield is reasonable in our setting, as strategic default by the insurer would be
highly costly for the farming company, both legally and in terms of reputational costs. We ignore any insurer default
after the farmer’s decision to pay the harvest time premium, since it would not have a differential effect by the
timing of premium payment.

13In practice the farmer may face considerable uncertainty about both yields and insurance payouts when deciding
to default, which shrinks the difference between pay-upfront and pay-at-harvest. In our setting, for example, the
company harvests the crop, at which point its weight is unknown to the farmer, and the area yield trigger further
increases uncertainty.
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The size of the difference caused by imperfect enforcement is clearly decreasing in the cost of
default, d. If the cost of default is high enough, d > maxs u

′(cH(s)), the farmer never strategically
defaults.

Supply of insurance While the farmer is better off with the pay-at-harvest insurance, the
possibility for strategic default means that the insurer may be worse off, which is the most likely
reason why pay-upfront insurance is the norm. Whether there exists prices at which either of the
two insurance products could be traded in a given setting depends on both d and p, as well as
liquidity constraints and preferences as discussed earlier.14

Proposition B.1. If the cost of defaulting for the farmer, d, is too low, pay-at-harvest insurance
will not be traded. If the probability of insurer default, p, is too high, pay-upfront insurance will
not be traded.

Proof of Proposition B.1. If the cost of farmer default is low enough, then the farmer effectively
defaults whenever the net payout of pay-at-harvest insurance is negative, hence the insurer makes
a loss regardless of the price. If the probability of insurer default is too high, then the market for
pay-upfront insurance unravels: in a pooled equilibrium, the risk of insurer default means farmers
are only willing to buy pay-upfront insurance at a significantly reduced price; but the only insurers
willing to offer significantly reduced premiums are those who are certain to default.

B.3.1 Interlinked insurance

Interlinking the insurance contract with the production contract has implications for contrac-
tual risk, as it means that default on one entails default on the other.

Outside option o(sH , wH)

If the farmer chooses to sell to the company he receives profits y(s) (comprising revenues minus
a deduction for inputs provided on credit) plus any insurance payout I(s), minus the insurance
premium in the case of pay-at-harvest insurance. He also receives continuation value rC(s) from
the relationship with the company, which is possibly state dependent. If he chooses to side sell,
he receives outside option o(s) 15, and saves the deductions for inputs provided on credit and for
the deductible insurance premium, but loses the continuation value and any insurance payout.
We abstract from any impact of insurance on the choice of input supply, since, as argued before,
the choice set is limited, the double trigger design of the insurance was chosen to minimize moral
hazard, and, as reported below, we see no evidence of moral hazard in the experimental data.

Default Now the farmer has one default decision to make: whether to default on both the
insurance and production contracts. We will solve the farmer’s problem backwards, starting with
the decision of whether to side-sell conditional on the company not having defaulted on the farming
contract. All decisions are as anticipated at time 0. To translate this into the above framework, we

14The cost of strategic default is also key in another type of purely cross-state insurance: risk sharing (Ligon,
Thomas and Worrall 2002; Kocherlakota 1996). Related to the discussion here, Gauthier, Poitevin and Gonzalez
(1997) show that enlarging the risk-sharing contracting space so as to allow for ex-ante transfers makes the first-best
outcome easier to achieve.

15We don’t have detailed information on payments under side selling, but anecdotal evidence suggests that side
sellers pay significantly less than the contract company, so a natural assumption would be that o(s) = αy(s), where
α < 1
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define the (now endogenous) cost of farmer default, d, to be the value of the production relationship
to the farmer relative to his outside option of selling to another buyer (side-selling):

d = E[V c
H(wH + o(wH))]− E[V c

H(wH + yH)] (B.11)

This cost will typically be positive, in which case interlinking helps to enforce the pay-at-harvest
premium (this is why credit is often interlinked). However, if the farmer wishes to side-sell for
some other reason, for example if the company defaults on aspects of the production contract, then
d will be negative, in which case interlinking encourages default on the premium. Importantly,
selective default by the farmer in order to avoid the pay-at-harvest premium is unlikely with under
the interlinked contract, since the premium is only marginal if d is close to zero, and so expected
default can be priced into the premium.

While unlikely, if pay-at-harvest insurance does affect side-selling, then the following (simple)
proposition tells us how. Intuitively, for those with low yields, insurance payouts increase income
from the contract, and so decrease the incentive to side-sell, whereas for those with high yields,
pay-at-harvest premiums decrease income, and so increase the incentive to side-sell.

Proposition 4. If pay-at-harvest insurance affects side-selling, it makes those with high yields
more likely to side-sell, and those with low yields less likely to side-sell.

Proof of Proposition 4. Consider the decisions to sell to the company (i.e. not to side-sell). Denote
the indicator functions for these decisions by D, with a subscript representing whether or not the
insurer has already defaulted on the insurance contract, and a supercript denoting whether the
farmer holds insurance, and if so the type of the insurace.

If the insurer has not already defaulted, they are:

DI =I[d ≥ 0] without insurance

DU
I =I[Iu′(cH) + d ≥ 0] with pay-upfront insurance

DD
I =I[Iu′(cH) + d ≥ u′(cH)] with pay-at-harvest insurance

If the insurer has already defaulted, they are:

DD =I[d ≥ 0] without insurance

DU
D =I[d ≥ 0] with pay-upfront insurance

DD
D =I[d ≥ u′(cH)] with pay-at-harvest insurance

Since I(s)u′(cH(s)) and u′(cH(s)) are non-negative, and Iu′(cH) and (I − 1)u′(cH) are larger
when yields are low, the results follow.

As for the effect on imperfect enforcement on insurance demand, we have the following result,
which enables us to relate the impact of ex-ante expectations of default to the impact of a price
cut in the upfront premium, a point we return to in Section IV.D:

Proposition 5. The option to side-sell in the interlinked contract drives a wedge between pay-at-
harvest and pay-upfront insurance, bound above by a price cut in the upfront premium of:

P(side-sell with pay-at-harvest)
E[u′(cH)|side-sell with pay-at-harvest]

E[u′(cH)]

Further, in so far as default is non-selective (i.e. independent of yield), it does not affect
demand for pay-at-harvest insurance (to first order).
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Proof of Proposition 5. The basic intuition is that the extra loss from paying upfront is at most
the premium when the farmer side-sells - if insurance did not change the decision to side-sell, then
it is exactly the premium, if it did change the decision to side-sell, then by revealed preference the
farmer loses at most the premium.

Formally, consider the net benefit of insurance, which is the benefit of the payout minus the
cost of the premium payment. With perfect enforcement, we know that pay-at-harvest insurance is

equivalent to upfront insurance with a percentage price cut of
λH0
u′(c0)

. With imperfect enforcement,
denote the net benefit of pay-upfront insurance product by SU , and the net benefit of pay-at-
harvest insurance by SD. Then:

E[SD − SU ] =(1− p)(ΣdD,dU∈{0,1}P[DU
I = dU , DD

I = dD]E[SD − SU |DU
I = dU , DD

I = dD])

+ p(ΣdD,dU∈{0,1}P[DU
D = dU , DD

D = dD]E[SD − SU |DU
D = dU , DD

D = dD])

Now, DU
D ≥ DD

D and DU
I ≥ DD

I . Also

E[SD − SU |DU
I = 1, DD

I = 1] = E[SD − SU |DU
D = 1, DD

D = 1] = 0

This leaves the cases where both default, or where pay-at-harvest defaults and pay-upfront doesn’t.
Conditional on DU

I = 0, DD
I = 0, or DU

D = 0, DD
D = 0, we have

SD − SU = βδHu′(cH)

When DU
I = 1, DD

I = 0, then

SD − SU = βδH(u′(cH)− (1− p)Iu′(cH)− d) ≤ βδHu′(cH)

Thus:

E[SD − SU ] ≤(1− p)(P[DU
I = DD

I = 0] + P [DU
I = 1, DD

I = 0])βδHE[u′(cH)|DD
I = 0]

+ p(P[DU
D = DD

D = 0] + P[DU
D = 1, DD

D = 0])βδHE[u′(cH)|DD
D = 0]

with strict inequality iff P[DU
I = 1, DD

I = 0] > 0. The right hand side can be rewritten to give:

⇔ E[SD − SU ] ≤(1− p)P[DD
I = 0]βδHE[u′(cH)|DD

I = 0]

+ pP[DD
D = 0]βδHE[u′(cH)|DD

D = 0]

⇔ E[SD − SU ] ≤P(side-sell with at-harvest)βδHE(u′(cH)|side-sell with at-harvest)

We compare this to the surplus effect on the net benefit of upfront insurance of a further

proportional price reduction of P(side-sell with at-harvest)E(u
′(cH)|side-sell with at-harvest)

E(u′(cH)) , which is:

P(side-sell with at-harvest)
E(u′(cH)|side-sell with at-harvest)

E(u′(cH))
E(u′(cH))

=P(side-sell with at-harvest)E(u′(cH)|side-sell with at-harvest)
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C Bounding the effect of the transfer across time

Households are both consumers and producers. The implications of this dual role have long
been considered in development economics. In particular, in the presence of market frictions,
separation may no longer hold, so that production and consumption decisions can no longer be
considered separately (Rosenzweig and Wolpin 1993; Fafchamps, Udry and Czukas 1998). Above
we considered the household’s full dynamic problem, which incorporates discount factors and
stochastic consumption paths. Often, however, we can apply a sufficient-statistic style approach,
where we rely on observed behavior to tell us what we need to know, without having to estimate
all of the parameters of the full optimization problem. In the case of intertemporal decisions, an
individual’s investment behavior, and in particular the interest rates of investments they do and
do not make, can serve this role.

In this section we consider what observed investment behavior can tell us about hypothetical
insurance take-up decisions, given the intertemporal transfer in insurance. Empirically, invest-
ment decisions may be easier to observe than discount factors and beliefs about consumption
distributions (which are needed if we consider the full dynamic problem), and other studies pro-
vide evidence on interest rates in similar settings - both for investments made and for investments
forgone. Using a simplified version of the model developed above, we consider under which condi-
tions farmers would and would not take up insurance, given information on their other investment
behavior.

To simplify, we now assume that at harvest time there are just two states of the world, the
standard state h and the low state l, with the low state happening with probability p.16 We
assume that insurance is perfect - it only pays out in the low state (at time H), and that it is
again actuarially fair. To simplify notation, in this section we denote by R the interest rate on the
insurance covering the whole period from the purchase decision until harvest time. We also assume
CRRA utility, so that u(c) = c1−γ/(1− γ).

Under this setup, the expected net benefit of a marginal unit of standard, upfront insurance is:

βδHRE[cH(yl)
−γ ]− c−γ0

Consider first the case that the farmer forgoes a risk-free investment over the same time period
which has rate of return R′. Then, first we know that paying upfront is at least as costly as a price
increase in pay-at-harvest insurance of R′

R , and second we know that:

βδHR′(pE[cH(yl)
−γ ] + (1− p)E[cH(yh)−γ ])− c−γ0 < 0

Substituting this into the expected benefit of upfront insurance, we can deduce that farmers will
not purchase standard insurance if:

RE[cH(yl)
−γ ] < R′(pE[cH(yl)

−γ ] + (1− p)E[cH(yh)−γ ])

⇔ E[cH(yl)
−γ ]

E[cH(yh)−γ ]
<

1− p
R
R′ − p

So, the farmer will not purchase insurance if under all consumption paths:

cH(yh) < AcH(yl)

with A given by:

A =

(
1− p
R
R′ − p

) 1
γ

16Note that the following can be easily generalized so that these two states represent average outcomes when
insurance does not and does pay out respectively.
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Unsurprisingly, A is increasing in the (relative) forgone interest rate R/R′, and decreasing in
the CRRA γ. Also, A is increasing in the probability of the low state, p, suggesting that the
intertemporal transfer is less of a constraint on insuring rarer events.

Similarly, we can consider the case where the farmer makes an investment over the period with
risk-free interest rate R′. Under the same logic, we first know that a price raise of pay-at-harvest
insurance of R′

R is at least as costly as paying upfront, and second we also know the farmer will
purchase insurance if, for all consumption paths:

cH(yh) > AcH(yl)

The following tables report A for various values of R′/R, p, and γ. The tables thus reports
how much consumption must vary between good and bad harvests in order to be sure about
farmers’ decisions to buy perfect insurance, given their investment decisions. In the case of forgone
investments, it tells us the largest variation in consumption for which we can be sure that the farmer
will still not buy perfect insurance; in the case of made investments, it tells us the smallest variation
in consumption for which we can be sure that the farmer will buy perfect insurance. We note that
A represents variation in consumption between states at harvest time - not variation in income,
which is likely to be significantly larger. The effect can be sizeable. For example, for a risk which
has a 20% chance of occurring, if the forgone investment has risk-free rate of return 50% higher
than the interest rate charged on the insurance, then farmers with CRRA of 1 will forgo a perfect
insurance product even when the consumption in the good state is 71.4% higher than consumption
in the bad state.

γ = 1
p

0.01 0.05 0.1 0.2 0.4

R′

R

1 1 1 1 1 1
1.1 1.101 1.106 1.112 1.128 1.179
1.2 1.202 1.213 1.227 1.263 1.385
1.5 1.508 1.541 1.588 1.714 2.250
2 2.020 2.111 2.250 2.667 6.000
3 3.062 3.353 3.857 6.000 ∞

γ = 2
p

0.01 0.05 0.1 0.2 0.4

R′

R

1 1 1 1 1 1
1.1 1.049 1.052 1.055 1.062 1.086
1.2 1.097 1.101 1.108 1.124 1.177
1.5 1.228 1.241 1.260 1.309 1.500
2 1.421 1.453 1.500 1.633 2.449
3 1.750 1.831 1.964 2.449 ∞

γ = 5
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p
0.01 0.05 0.1 0.2 0.4

R′

R

1 1 1 1 1 1
1.1 1.019 1.020 1.022 1.024 1.033
1.2 1.038 1.039 1.042 1.048 1.067
1.5 1.086 1.090 1.097 1.114 1.176
2 1.151 1.161 1.176 1.217 1.431
3 1.251 1.274 1.310 1.431 ∞
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D Other channels

In this section we briefly discuss several additional potential channels, several of which are
interesting and warrant future work.

The at-harvest premium is a deduction, while the upfront premium is a payment; this difference
suggests several (behavioral) channels which are not directly about timing. First, according to
prospect theory (Kahneman and Tversky 1979; Kőszegi and Rabin 2007), farmers may be more
sensitive to losses than gains. While a thorough application of the theory is beyond the scope of this
paper (and would require detailing how reference points are set), intuitively upfront payments may
fall in the loss domain, while at-harvest payments, being deductions, may be perceived as lower
gains. Second, according to relative thinking (Tversky and Kahneman 1981, Azar 2007), farmers
may make choices based on relative quantities, rather than absolute quantities. Being small relative
to harvest revenues, the at-harvest premium could appear smaller than the upfront premium (we
thank Nathan Nunn for pointing out this explanation). Salience Theory offers a similar argument:
under a multiple time period interpretation of Bordalo, Gennaioli and Shleifer (2012), diminishing
sensitivity means that the upfront period may be more salient than harvest period, since income
will be higher in the latter. Finally, inputs were already charged as deductions from harvest
revenues in our setting, so pay-at-harvest could have seemed like the default (although we note
that the high take-up of pay-at-harvest insurance, not the low take-up of pay-upfront insurance,
is the outlier in our results compared to other studies).

The large effect of just a one month delay in premium payment, however, does point to the
direct importance of timing, which could arise in several ways beyond those captured in our
model. First, numerous empirical studies find a jump in demand at zero prices (Cohen and
Dupas 2010); a similar, zero-price today effect could help explain our results. Such an effect
would be an alternative explanation for the finding in Tarozzi et al. (2014) that offering anti-
malarial bednets through loans has results in a large increase in take-up, and would also explain
the prevalence of zero down-payment financing options for many consumer purchases, such as
cars and furniture. Second, Andreoni and Sprenger (2012) report expected utility violations when
certain and uncertain outcomes are combined pay-upfront insurance combines a certain payment
with an uncertain payout, whereas both are uncertain in pay-at-harvest insurance. Third, at-
harvest and upfront payments may have different implications for bargaining in other interactions
within the household or within informal risk sharing networks (Jakiela and Ozier 2016; Kinnan
2017). Finally, while unlikely in our setting, allowing farmers to pay at harvest rather than upfront
for insurance may provide a positive signal of the quality of the insurance.
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