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A. Balance as Subjective Expected Utility

In this appendix, we clarify that under an appropriate prior, maximizing sub-
jective performance coincides with a traditional balance objective: minimizing the
Malahanobis distance—defined by sample covariates (xi)i∈{1,...,N} with xi ∈ Rk—
between mean covariates across the treated and control groups (Rubin, 1980;
Cochrane and Rubin, 1973; Rubin, 1979; Morgan and Rubin, 2012). To sim-
plify the analysis, we allow for Gaussian priors, although they do not satisfy the
framework of Section I.1

Prior h0 is generated as follow. Assume the decision-maker believes outcomes
yτi are distributed according to the linear model

yτi = τi∆ + bᵀzi + εi with ∆ ∼ F∆ , b ∼ N (0, Ik)

in which zs are the underlying determinants of outcomes ys, Ik is the k-dimensional
identity matrix, and (εi)i∈{1,...,N} are independent, mean-zero error terms. Al-
though terms zi are unobservable, they are assumed to be a linear transformation
of observables xi, so that xi = Mzi, with M invertible. This implies that

yτi = τi∆ + βᵀxi + εi , with β ∼ N (0, cov(x)−1).

Given a treatment assignment (τi)i∈{1,...,N}, let xτ ≡ 2
N

∑N
i=1 xi1τi=τ ∈ Rk and

φ ≡ 2
N

∑N
i=1(−1)1−τiεi. We make the (asymptotically correct) assumption that

φ is normally distributed with variance σ2
φ. Under the empirical success rule, the

subjective expected utility of the decision-maker under prior h0 is

E[βᵀx0] + E∆[∆× Prob(∆ + βᵀ(x1 − x0) + φ ≥ 0)].

This expression is decreasing in the variance of βᵀ(x1 − x0):

var(βᵀ(x1 − x0)) = (x1 − x0)>cov(x)−1(x1 − x0),

1Our analysis extends to such environments provided the mean and variance of possible outcome
distributions are bounded.
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which is precisely the Mahalanobis distance between the mean of covariates in
the treatment and control groups. Under this prior, the assignment (τi)i∈{1,...N}
that maximizes subjective expected utility minimizes the Mahalanobis distance
between covariate means across the treatment and control groups.

B. Null-Hypothesis Statistical Testing

Decision problem (DP) does not rationalize null-hypothesis statistical testing
(NHST, using t- or z-statistics favoring implementation of the null treatment
a = 0), a mainstay of experimental practice. In that decision problem, the raw
treatment effect—that is, the difference in average outcomes—is sufficient for
near-optimal decision-making. This appendix clarifies that other standard pref-
erences (including risk aversion over treatment effects) do not rationalize NHST,
while the reference-dependent preferences introduced in Section IV do.

Ambiguity aversion does not play a role in this argument, so we consider a

decision-maker with independent Gaussian posteriors N (p̂a, σ
2
a
N ) over the mean

outcomes pa of actions a ∈ {0, 1}.2 A risk-neutral Bayesian decision-maker solving

maxa∈{0,1} E[pa], expectations being taken under the posterior N (p̂a, σ
2
a
N ), will

take action a = 1 if and only if p̂1 − p̂0 > 0. However, the t-statistic for a given
treatment effect p̂1 − p̂0 is given by

t ≡
√
N

p̂1 − p̂0√
σ2

0 + σ2
1

.

Thus, decision rules that choose a = 1 if and only if t > t > 0 (where t is a
fixed-threshold) are suboptimal. Indeed, since t > 0, for any given estimated
treatment effect p̂1− p̂0, there always exists σ0 large enough such that t < t. As a
result the decision-maker sticks with a = 0 regardless of the estimated treatment
effect.

Risk aversion over policy outcomes.—A natural hypothesis is that risk aversion
may drive the reliance on hypothesis testing using t-statistics. However, this is
not the case. To show this, we assume (w.l.o.g.) that σ0 < σ1, and consider a
decision-maker who wants to solve maxa∈{0,1} E [Γ(pa)] where Γ is quadratic and

concave. As E [Γ(pa)] = Γ(p̂a) + 1
2Γ
′′ σ2

a
N it follows that

E
[
Γ(p1)

]
≥ E

[
Γ(p0)

]
⇐⇒ 2N

−Γ′′
Γ(p̂1)− Γ(p̂0)

σ2
1 − σ2

0

= γ
p̂1 − p̂0

σ2
1 − σ2

0

> 1

with γ = 2NΓ′(p̃)
−Γ′′ for some value p̃ ∈ [p̂0, p̂1].

This differs significantly from a t-statistic: mean treatment effect p̂1 − p̂0 is

2Parameters p̂a and σ2
a/N could be derived from a standard Gaussian learning model with diffuse

priors. Under such a model p̂a would be equal to the sample average of outcomes y following treatment
τ = a.
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scaled by the difference of variances, rather than the sum of standard deviations.
In particular, risk aversion means that the decision-maker values certainty (a
small variance in outcomes) as well as a higher mean outcome. Greater standard
deviation σ0 makes action a = 0 less attractive, not more.

Reference-dependent preferences.—The asymmetric treatment of the null and
alternative hypotheses suggests that one must resort to reference-dependent pref-
erences to motivate NHST using t-statistics (see Tetenov, 2012). As in Section
IV, consider a decision-maker who seeks to solve

(1) max
a∈{0,1}

E[w(p, a)],

where w(p, a) ≡ ∆a
p × (1 + κa1∆a

p<0) with ∆a
p ≡ pa − p1−a and 0 < κ0 ≤ κ1.

LEMMA 1: Consider a reference-dependent agent solving (1), with κ0 < κ1.
The optimal-decision rule takes the form t > t∗, with t∗ > 0.

Proof of Lemma 1: Let t ≡
√
N p1−p0√

σ2
0+σ2

1

. As p1 − p0 ∼ N
(
p̂1 − p̂0,

σ2
0+σ2

1
N

)
, it

follows that conditional on observing a t-statistic t, t ∼ N (t, 1). Note that w is
positively homogeneous of degree 1. Conditional on realized data, the decision-
maker chooses a = 1 if and only if:

E
[
w(∆1

p, 1)− w(∆0
p, 0)

]
> 0 ⇐⇒ Et

[
w

(
t

√
σ2

0 + σ2
1

N
, 1

)
− w

(
−t
√
σ2

0 + σ2
1

N
, 0

)∣∣∣∣∣ t
]
> 0

⇐⇒ Et
[
w
(
t, 1
)
− w

(
−t, 0

)∣∣ t] > 0

⇒ t > t∗

for some value of t∗. Note that w
(
t, 1
)
− w

(
−t, 0

)
= (2 + κ0)t + (κ1 − κ0)t1t<0.

As κ0 < κ1 it follows that w
(
t, 1
)
− w

(
−t, 0

)
is increasing and concave in t, and

strictly so around 0. As t has expectation equal to zero conditional on t = 0, this
implies that Et

[
w
(
t, 1
)
− w

(
−t, 0

)∣∣ t = 0
]
< w(0, 1)−w(0, 0) = 0, so that t∗ > 0.

�

C. Proofs

Proof of Proposition 1: We begin by showing that deterministic experiments
are always weakly optimal for a Bayesian decision-maker. The decision-maker’s
indirect utility from running experiment E can be written as

max
α∈A

Eh0,E [u(p, α(e, y))] =
∑
e∈E
E(e)v(h0, e),
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where v(h0, e) is the indirect utility from decision-making given realized experi-
ment e:

(1) v(h0, e) ≡
∑
y∈Y

Prob
h0,e

(y) max
a∈{0,1}

Eh0,e [u(p, a)|y] .

Any deterministic experiment e∗ solving maxe∈E v(h0, e) is optimal. More strongly,
E solves (DP) if and only if supp E ⊂ argmax

e∈E
v(h0, e).

We now prove that deterministic experiments are generically strictly optimal
when all data points are valuable. We first consider the case where λ = 1. It is
straightforward to show that the set of priors for which there exists a uniquely
optimal deterministic experiment is open. Suppose e is uniquely optimal under
h0. As E is finite, there exists η > 0 such that v(h0, e) > v(h0, e

′) + η for all
e′ 6= e. As v is continuous in h0, there exists a neighborhood N0 of h0 such that
v(h, e) > v(h, e′) + η/2 for all h ∈ N0 and e′ 6= e. Hence, the set of priors for
which there exists a uniquely optimal deterministic experiment is open.

We now show that the set of priors for which there exists a uniquely optimal ex-
periment is dense in the space of priors for which all data points are valuable. The
proof is by induction on the number of optimal experiments in argmaxe∈E v(h0, e).
Fix a neighborhood N0 of h0 such that all data points are valuable under pri-
ors h ∈ N0. We show that, if there are n such optimal experiments, then there
exists a prior h ∈ N0 such that there are at most n − 1 optimal experiments in
argmaxe∈E v(h, e). The proof consists of two main steps. First, we establish that
the following simplifying assumptions are without loss of generality:

• we can pick N0 such that argmaxe∈E v(h, e) ⊂ argmaxe∈E v(h0, e) for all
priors h ∈ N0;

• we can assume that for any experiment e, a fixed policy rule α(y, e) is
uniquely optimal for all priors h ∈ N0.

Second, given two experiments e, e′ that are optimal at prior h0, we exploit the
fact that one pair (x, τ) must be sampled by e and not by e′ to construct a family
of priors in N0 that garble the information provided by pair (x, τ). Such priors
change the value of experiment e, but not the value of experiment e′, establishing
the induction step.

Step 1: simplifications. The fact that we can pickN0 such that argmaxe∈E v(h, e) ⊂
argmaxe∈E v(h0, e) for all priors h ∈ N0 follows from the fact that E is finite, and
v(h, e) is continuous in h under the statistical distance.

The decision-maker’s indirect utility from running experiment e can be rewrit-
ten as

v(h0, e) = Eh0
[
p0 + α∗h0(e, y)(p1 − p0)

∣∣e] ,
where α∗h0 ∈ A denotes an optimal policy rule under h0. Suppose e 6= e′ are both
optimal under h0. As Y is finite, by breaking indifferences in favor of one policy
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(say a = 1), one can find h1 ∈ N0 and a neighborhood N1 ⊂ N0 of h1 such that for
all h ∈ N1 the optimal policies α∗h(e, y) and α∗h(e′, y) are unique and respectively
equal to α∗h1(e, y) and α∗h1(e′, y). Furthermore, h1 and N1 can be chosen so that
for all h ∈ N1, argmaxẽ∈E v(h, ẽ) ⊂ argmaxẽ∈E v(h0, ẽ), and all data points are
valuable. If e or e′ is not optimal under h1, this concludes the inductive step.

Step 2: targeted garbling. Consider the case where e and e′ are optimal under
h1. The fact that e′ 6= e implies there exists a pair (x, τ) that is sampled by e
but not by e′. For θ ∈ [0, 1] and any state p ∈ P , let fθ(p) ∈ P denote the state
of the world such that

fθ(p)τx = (1− θ)pτx + θEh1 [pτx|(pτ
′
x′)(x′,τ ′)6=(x,τ)]

and fθ(p)τ
′
x′ = pτ

′
x′ for (x′, τ ′) 6= (x, τ). Let hθ1 be the distribution of transformed

state fθ(p) under h1. As θ approaches 0, hθ1 approaches h1 under the statistical
distance. Notice that hθ1 garbles h1 at (x, τ) alone, and does not change the
expected performance of decision rules that depend on assignments (x′, τ ′) 6=
(x, τ). Hence, it does not affect the value of experiment e′. We now show it must
change the value of experiment e.

Let vθ(e) ≡ Ehθ1
[
p0 + α∗h1(e, y)(p1 − p0)

∣∣e] denote the value of experiment e for

the fixed policy rule α∗h1 , evaluated at prior hθ1. For θ close to 0, the fact that

the optimal policy does not change for priors in N1 implies that vθ(e) = v(hθ1, e).
Note that vθ(e) is a polynomial in θ. We show it is not constant. As e is opti-
mal and all data points are valuable under h1, sampling the pair (x, τ) is strictly
valuable. Hence, there exists θ close enough to 1 such that vθ(e) < v0(e). As a
non-zero polynomial has finitely many zeros, there exists θ arbitrarily close to 0
such that v(hθ1, e) 6= v(h1, e) = v(h1, e

′) = v(hθ1, e
′). This proves the induction

step.

Finally, to conclude the proof of Proposition 1, we need to show that if a unique
experiment is optimal at h0 for λ = 1, then it is also uniquely optimal for λ below
but close to 1. The result follows immediately from the continuity of objective
(DP) in λ, and the fact that there are finitely many experiments. Any experiment
that is strictly optimal for λ = 1 remains strictly optimal for λ close to 1. �

Proof of Proposition 2: To establish point (i) and Corollary 1, we use the
standard RCT (Erct, αrct). Losses L(p) from first-best, given state of the world
p, are defined as

L(p) ≡ max
a∈{0,1}

pa − p0 − (p1 − p0)× Prob
p,Erct

(y1 − y0 > 0).

We show that for all p ∈ P , L(p) ≤
√

1
N . By symmetry, it suffices to treat the

case where p1 − p0 > 0. In this case, we have L(p) = (p1 − p0)× Probp,Erct(y
1 −
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y0 ≤ 0). We bound the probability of choosing the suboptimal policy using
Hoeffding’s inequality (Hoeffding, 1963). A small difficulty is that assignment

e = (τi)i∈{1,...,N} is exchangeable but not i.i.d. as, by construction,
∑N

i=1 τi = N/2.
For this reason, we decompose the draw of exchangeable assignment e as: (1) a
uniform draw of a pairing Q = {{i, j}}, such that for all i in {1, . . . , N}, there
exists a unique pair {l,m} ∈ Q such that i ∈ {l,m}; (2) independently across
each pair {i, j} ∈ Q, draw an assignment (τi, τj) ∈ {(0, 1), (1, 0)}, with equal
probabilities. Given a pairing Q, we have that

y1 − y0 =
2

N

∑
{i,j}∈Q

τi(y
1
i − y0

j ) + (1− τi)(y1
j − y0

i ).

Conditional on a pairing Q, variables τi(y
1
i −y0

j )+(1−τi)(y1
j−y0

i ) are independent
across pairs and take values within [−1, 1]. Applying Hoeffding’s inequality to this
sum of N/2 independent terms, we obtain that

Prob
p,Erct

(y1 − y0 ≤ 0) = Prob
p,Erct

(
y0 − y1 − (p0 − p1) ≥ (p1 − p0)

)
≤ exp

(
−1

4
N(p1 − p0)2

)
.

For any a > 0, the mapping x 7→ x exp(−ax2) is log-concave and maximized at
x = (2a)−1/2. This implies that

L(p) ≤
√

2 exp(−1)

N
≤
√

1

N
.

An analogous argument holds in the case where p1 − p0 ≤ 0. Hence, given any
h ∈ ∆(P ),

Eh
[

max
a∈{0,1}

u(p, a)

]
− Eh,Erct [u(p, αrct(e, y))] ≤

√
1

N
.

To establish point (ii), fix a deterministic experiment e ∈ E. By Assumption
1,

max
α

min
h∈H

Eh,e [u(p, α(e, y))] ≤ min
h∈H

Eh,e
[

max
a∈{0,1}

Eh,e [u(p, a)|(pτx)x,τ∈e]

]
≤ min

h∈H
Eh
[

max
a∈{0,1}

u(p, a)

]
− ξ

where the first inequality follows from the fact that experimental outcomes are
a garbling of (pτx)x,τ∈e — i.e. given (pτx)x,τ∈e the decision-maker can simulate
the outcome y of an experiment simply by drawing outcomes yτx independently
according to pτx (see Blackwell, 1951, for a general treatment). This implies that
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for all α ∈ A,

min
h∈H0

Eh [u(p, α)] ≤ min
h∈H0

Eh
[

max
a∈{0,1}

u(p, a)

]
− (1− λ)ξ.

�

Proof of Proposition 3: Consider the set of optimal experiments

E∗ = argmax
e∈E

Eh0 [u(p, αrct(e, y))].

By assumption, its cardinality is bounded above independently of N . The number
of experiments that assign treatment to N/2 participants out of N is necessarily
less than 2N . Hence the probability that a K-rerandomized trial selects e ∈ E∗

is at least ρ ≡ 1−
(
1− 2−N

)K
. For K ≥ 2N ,

ρ ≥ 1− exp
(
2N ln

(
1− 2−N

)) N→∞−−−−→ 1− exp(−1) > 0.

A sequence of strictly positive terms converging to a strictly positive number is
bounded below by a strictly positive number. Hence, there exists ρ′ > 0 such
that, for all N , rerandomized experiment EK selects an experiment e ∈ E∗ with
probability at least ρ′.

For all policy rules α ∈ A, h ∈ H we have that

Eh,EK [u(p, α(e, y))] ≤ (1−ρ′)Eh( max
a∈{0,1}

u(p, a))+
∑
e∈E∗

ρ′

|E∗|
Eh
(

max
a∈{0,1}

Eh(u(p, a)|(pτx)τ,x∈e)

)
.

By Assumption 1, this implies that for all α ∈ A

min
h∈H

Eh,EK [u(p, α(e, y))] ≤ min
h∈H

Eh
[

max
a∈{0,1}

u(p, a)

]
− ρ′

|E∗|
ξ,

which implies Proposition 3. �

Proof of Proposition 4: The proof that follows applies for any procedure used
to pick experiment e∗K among (e1, · · · , eK).

Denote by (y0,k, y1,k) the sample average of outcomes by treatment group for
experiment ek, and by (y∗0, y

∗
1) the sample average of outcomes by treatment group

for the experimental design e∗K selected by rerandomized experiment EK . In the
case where p1 − p0 > 0, regardless of the manner in which e∗K is selected from
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experimental assignments {ek, k ∈ {1, . . . ,K}}, losses L(p) from first-best satisfy

L(p) = (p1 − p0) Prob
p,EK

(y∗1 − y∗0 ≤ 0)

≤ (p1 − p0) Prob
p,EK

(
min

k∈{1,...,K}
y1,k − y0,k ≤ 0

)
≤ (p1 − p0) min

{
1,

K∑
k=1

Prob
p,ek

(y1,k − y0,k ≤ 0)

}
.

The proof of Proposition 2 shows that Probp,ek(y1,k−y0,k ≤ 0) ≤ exp
(
−N(p1 − p0)2/4

)
.

We have that K exp(−N(p1− p0)2/4) ≤ 1 ⇐⇒ p1− p0 ≥ 2
√

lnK
N , which implies

that

(2) L(p) ≤

 p1 − p0 if p1 − p0 < 2
√

lnK
N ,

K(p1 − p0) exp(−N(p1 − p0)2/4) if p1 − p0 ≥ 2
√

lnK
N .

The mapping x 7→ x exp(−Nx2/4) is maximized at x =
√

2
N . As K ≥ 2, we have

2
√

lnK
N >

√
2
N , which implies that both terms on the right-hand side of (2) are

maximized at p1 − p0 = 2
√

lnK
N . This implies that L(p) ≤ 2

√
lnK
N . An identical

reasoning applies in the case where p1 − p0 < 0. �

Proof of Proposition 5: Consider the generalized K-rerandomized experiment
EK such that the selected experiment e∗K is chosen to maximize objective function
B(e) ≡ 1e∈E† . Proposition 4 applies as is.

Experiment design EK is equivalent to running experiment EE† (that is, picking

uniformly from E†) with probability 1 − (1 − pE†)K and experiment EE\E† with

probability (1− pE†)K . As u takes values in [0, 1] this implies that for all h, and
K ≥ 2,

Eh,EK [u(p, αrct(e, y))] ≤
(
1− (1− pE†)

K
)
Eh,EE† [u(p, αrct(e, y))] + (1− pE†)

K

⇒Eh,EE† [u(p, αrct(e, y))] ≥ Eh
[

max
a∈{0,1}

u(p, a)

]
− 2

√
lnK

N
− (1− pE†)

K ,

where the last inequality uses Proposition 4. Taking the maximum of the right-
hand side over K ≥ 2 concludes the proof. �

Proof of Proposition 6: Point (i) follows from a reasoning similar to that of
Proposition 1. For λ = 1, given an experiment E , the decision-maker’s indirect
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utility is

max
α,E

Eh0 [w(p, α)] =
∑
e∈E
E(e)W (h0, e),

where W (h0, e) ≡
∑

y∈Y Prob(y|e) maxa∈{0,1} Ep∼h0 [w(p, a)|e, y] . Hence, an ex-

periment E is optimal if and only if supp E ⊂ arg maxe∈EW (h0, e).
We now turn to point (ii). We use Proposition 7—established below—which

implies that there exist randomized experiments leading to optimal decisions up to
a penalty of order O(1/

√
N). This implies that the decision-maker can guarantee

herself a payoff greater than −O(1/
√
N). We show this is not true when the

decision-maker implements a deterministic experiment e. For d ∈ (−1/2, 1/2), let
p(d) denote the state such that

p0
x = 1

2 + d, p1
x = 1

2 if τx = 1;
p0
x = 1

2 , p1
x = 1

2 − d if τx = 0.

Consider the prior he that puts probability 0.5 on p(d = ν) and 0.5 on p(d = −ν)
for ν ∈ (0, 1/2). By construction the information generated by experiment e is
independent of whether d = ν or d = −ν. In addition, ∆1

p = p1−p0 = −d. Hence,
under prior he, regardless of the action a taken by the decision-maker, there is
probability 0.5 that ∆a

p = −ν and probability 0.5 that ∆a
p = +ν. As w(p, a) is

locally strictly concave in ∆a
p around ∆a

p = 0, it follows that expected payoff from
running experiment e under he is bounded below 0. This implies that for N large
enough, randomized experiments are strictly optimal. �

Proof of Proposition 7: The proof is closely related to that of Proposition
4. Consider first the case where ∆1

p ≡ p1 − p0 > 0 so that the first-best action
is a = 1. Given p, the efficiency loss compared to first-best is equal to L(p) =
Eh,EK [w(∆1

p, 1)− w(∆αrct
p , αrct)].

As ∆1
p > 0, we have that L(p) = (2 + κ0) Probh,EK (αrct = 0)∆1

p. The proofs

of Propositions ?? and ?? imply that Probh,EK (αrct = 0)∆1
p is bounded above

by 2

√
ln(K+1)

N . An identical argument holds in the case of ∆1 < 0, which yields

Proposition 7. �

D. Simulations

In this appendix, we use numerical simulations to highlight the tradeoffs of
rerandomization.

D.1. Well Behaved Treatment Effects

We first consider an environment where treatment effects depend smoothly on
covariates. We note that because treatment effects depend smoothly on covari-
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ates x, Assumption 1 does not hold, and the losses from running a deterministic
experiment maximizing balance vanish as the sample size grows large.

Covariates x ∈ R5 are drawn i.i.d. according to
∏5
k=1 U [0, 1], a five-dimensional

uniform distribution. For each treatment status τ ∈ {0, 1}, these are mapped to
outcomes according to a five-dimensional unknown parameter µτ ∈ R5:

Prob(yi = 1|x) =
exp(µτ · x)

1 + exp(µτ · x)
.

Under correct belief h0, each parameter µτ is independently drawn according
to a five-dimensional truncated normal: µτ ∼

∏5
k=1N (0, 1)|[−3,3]. The set of

adversarial priors H consists of all doctrinaire priors corresponding to fixed values
µτ ∈ [−3, 3]5. We denote by α∗ the Bayes optimal policy rule under this model.

We consider E = ERCT or E = EK , the rerandomized experiment following the
rule of thumb K = min{N, 100}. We report balance—captured by the negative of
the L2 norm between mean characteristics across treatment and control—as well
as losses compared to first-best under various priors and experimental treatment
assignments.

• Bayes loss given Bayes optimal policy rule:

(1) Eh0,x,E
[

max
a∈{0,1}

u(p, a)− u(p, α∗)

]
.

• Loss under worst prior given Bayes optimal policy rule:

(2) max
µ0, µ1

Ex,E
[

max
a∈{0,1}

u(p, a)− u(p, α∗)

]
.

• Loss under worst prior, and worst assignment τ , given Bayes optimal policy
rule:

(3) max
µ0, µ1

Ex max
τ

E
[

max
a∈{0,1}

u(p, a)− u(p, α∗)

]
.

As Figure D1 shows, the ex ante Bayes expected loss (1) is essentially iden-
tical under randomization and rerandomization. Loss measure (2) chooses the
prior that maximizes first-best losses given the experimental strategy E of the
experimenter. While this is substantially higher than the Bayes expected loss—
as one might anticipate—it is not substantially different between randomization
and rerandomization. Finally, loss measure (3) stacks the deck against the exper-
imenter, and assumes that the experimenter has an “evil RA” who chooses the
experimental assignment τ from eK that maximizes the expected loss. This has
no application in the case of randomization, but in the case of rerandomization it
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Figure D1. Rerandomization substantially increases balance with no cost to robustness.

substantially increases expected losses. However, it is important to note even un-
der this highly unrealistic scenario—the evil RA must know the data-generating
process—losses are under one-tenth of 1% for N ≥ 300.

We also evaluate losses for N fixed at 100 while varying the number of reran-
domizations K. Figure D2 shows that balance improves substantially with K,
especially for the first 20 rerandomizations, while worst-prior expected losses re-
main essentially flat.
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D.2. Poorly Behaved Treatment Effects

We now consider the impact of rerandomization in a specific state of the world
p such that a natural balance objective fails to improve the quality of decision-
making.

Specifically, the environment is as follows. Covariates are on the real line x ∈
X ⊂ R and the balance objective is to minimize the distance between the mean
of each treatment group: B(e) = −|x1−x0|. The difficulty here is that treatment
effects are very jagged as a function of x, so that balance with respect to x1 and
x0 does not help identify treatment effects. Natural, deterministic assignments
achieving a high balance objective will result in non-vanishing efficiency losses.

Specifically, we set X = {1, 2, . . . , 104} and

p0
x =

{
1
5 if x is odd,
1
2 if x is even,

p1
x =

{
4
5 if x is odd,
1
4 if x is even.

Even covariates are twice as likely as odd covariates so that, on aggregate, u(p, 1) =
13
30 >

2
5 = u(p, 0), and treatment (a = 1) is beneficial.

For this specific state, the aspect of covariates that balance seeks to improve is
unrelated to treatment effects. In fact, a natural matching algorithm systemati-
cally assigning consecutive xs to treatment and control (starting with treatment)
results in an experimental assignment that does not lead to the efficient decision.
Figure D3 examines the error rates and balance of randomization and rerandom-
ization. Both schemes yield the same error rate. However, once again, rerandom-
ization substantially improves the balance of the samples. This is particularly
true for small and moderate sample sizes. This is not useful for this particular
state of the world, but may be valuable at states where treatment effects are
better behaved as a function of x.
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