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Abstract

In this web appendix, we first discuss whether common trends necessarily implies ho-
mogenous treatment effect. Second, we show that the decomposition in Theorem 1 in
the paper extends to fuzzy designs, to regressions with covariates, to regressions with a
non-binary treatment, and we derive another decomposition under the supplementary as-
sumption that the treatment effect does not change over time. Third, we extend the DIDM

estimator to non-binary treatments. Fourth, we discuss inference. Fifth, we review all the
papers included in our survey of papers published in the AER between 2010 and 2012 (see
Section 5 of the paper). Finally, the last section gathers the proofs of all the additional
results in this Web Appendix.

1 Can common trends hold with heterogeneous treatment effects?

Throughout the paper, we assume that groups experience common trends, but that the effect of
the treatment may be heterogeneous between groups and / or over time. We now discuss two
examples where this may happen. We then argue that the mechanisms behind these examples are
fairly general. Thus treatment effects are often likely to be heterogeneous, even when common
trends are plausible.

First, assume one wants to learn the effect of the minimum wage on the employment levels of
some US counties. For simplicity, let us assume that the minimum wage can only take two
values, a low and a high value. Also, let us assume that there are only two periods, the 90s
and the 2000s. Between these two periods, the amount of competition from China for the US
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industry increased substantially. Thus, for the common trends assumption to hold for counties
A and B, the effect of that increase in competition should be the same on averge in those two
counties, in the counterfactual state of the world where A and B have a low minimum wage at
both dates. For that to be true, the economy of those two counties should be pretty similar.
For instance, if A has a very service-oriented economy, while B has a very industry-oriented
economy, it is unlikely that their employment levels will react similarly to Chinese competition.

Now, if the economies of A and B are similar, they should also have similar effects of the
minimum wage on employment, thus implying that the treatment effect is homogenous between
groups. On the other hand, the treatment effect may vary over time. For instance, the drop in
the employment levels of A and B due to Chinese competition will probably be higher if their
minimum wage is high than if their minimum wage is low. This is equivalent to saying that
the effect of the minimum wage on employment diminishes from the first to the second period:
due to Chinese competition in the second period, the minimum wage may have a more negative
effect on employment then.1

Second, assume one wants to learn the effect of a job training program implemented in some
US counties on participants’ wages. Let us suppose that individuals self-select into the training
according to a Roy model:

Di,g,t = 1{Yi,g,t(1)− Yi,g,t(0) > cg,t}, (4)

where cg,t represents the cost of the training for individuals in county g and period t. We consider
fuzzy designs such as this one in the next section. Here, the common trends condition requires
that average wages without the training follow the same evolution in all counties. As above,
for this to hold counties used in the analysis should have similar economies, so let us assume
that those counties are actually identical copies of each other: at each period, their distribution
of wages without and with the training is the same. Therefore, (g, t) 7→ E(Yg,t(1) − Yg,t(0)) is
constant. However, cg,t may vary across counties and over time: some counties may subsidize
the training more than others, and some counties may change their subsidies over time. Then,
(g, t) 7→ E(Yi,g,t(1) − Yi,g,t(0)|Di,g,t = 1) will not be constant, despite the fact that all counties
in the sample have similar economies and experience similar trends on their wages.

Overall, when the treatment is assigned at the group × period level as in the minimum wage
example, the economic restrictions underlying the common trends assumption may also imply
homogeneous treatment effect between groups. However, those restrictions usually do not imply
that the treatment effect is constant over time. Moreover, when the treatment is assigned at
the individual level, as in the job training example, the economic restrictions underlying the

1 To simplify our discussion, in this example we consider only two counties. But in order to estimate consis-
tently average treatment effects in the presence of county-specific shocks, the number of groups should tend to
infinity, as in Section 5 below.
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common trends assumption neither imply homogeneous treatment effects between groups, nor
homogeneous treatment effects over time.

2 Results in fuzzy designs

In this section, the research design may be fuzzy: the treatment may vary within (g, t) cells.
For instance, Enikolopov et al. (2011) study the effect of having access to an independent TV
channel in Russia, and in each Russian region some people have access to that channel while
other people do not.

2.1 Generalizing the decomposition of βfe to fuzzy designs

For any (g, t) ∈ {1, ..., G} × {1, ..., T}, let

∆TR
g,t =

1

Ng,tDg,t

∑
i:Di,g,t=1

[Yi,g,t(1)− Yi,g,t(0)]

denote the average treatment effect across the treated units of cell cell (g, t). One has

δTR = E

(∑
g,t

Ng,tDg,t

N1

∆TR
g,t

)
,

which generalizes (2) to fuzzy designs.2 Theorem 1 shows that βfe is also equal to the expectation
of a weighted sum of the ∆TR

g,t s. Let

wTRg,t =
εg,t∑

g,t
Ng,tDg,t

N1
εg,t

.

Theorem S1 Suppose that Assumptions 1 and 3-5 hold. Then,

βfe = E

(∑
g,t

Ng,tDg,t

N1

wTRg,t ∆TR
g,t

)
.

Theorem S1 shows that in fuzzy designs, βfe is equal to the expectation of a weighted sum of
the ATTs in each (g, t) cell. Again, some of the weights may be strictly negative. Note that
under Assumption 2, Theorem S1 reduces to Theorem 1 in the paper.

The weights have a simple expression in the following special case.

Assumption S1 (Heterogenous adoption) T = 2 and for all g ∈ {1, ..., G}, Dg,2 > Dg,1 = 0.
2Any equation with a numbering lower than (4) or beginning with an A (e.g., (A1)) refers to an equation in

the main paper.
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Assumption S1 is satisfied in applications with two time periods, and where all groups are fully
untreated at t = 1 and partly treated at t = 2. This type of design often arises in practice, for
instance when an innovation is heterogeneously adopted by various groups.

Proposition S1 If Assumptions 1 and S1 hold and Ng,2/Ng,1 does not vary across g, then3

wTRg,2 =
Dg,2 −D.,2∑G

g=1
Ng,2

N1
(Dg,2 −D.,2)2

.

Proposition S1 shows that in the heterogeneous adoption design, βfe assigns negative weights
to the period-two ATT of groups with a mean treatment lower than the mean treatment in the
full population. The reason why negative weights arise is intuitive. With two periods, the FE
regression is equivalent to a regression of the first difference of the outcome on the period-two
treatment in each group. This regression compares the evolution of the outcome in more- and
less-treated groups. Doing so, it subtracts the treatment effect of the less-treated groups, hence
the negative weights. Negative weights are a concern if the ATTs of the less- and more-treated
groups systematically differ. This could be the case if treatment is determined by a Roy selection
model. Then, the groups with the highest proportion of treated units could also be those where
the ATT is the highest. On the other hand, if the proportion of treated units is randomly
assigned to each group, negative weights are not a concern.4

The DIDM estimator can also be generalized to fuzzy designs, see point 2 of Theorem S1 in the
Web Appendix of de Chaisemartin and D’Haultfœuille (2018) for further details.

2.2 Application to Enikolopov et al. (2011)

Enikolopov et al. (2011) study the effect of NTV, an independent TV channel introduced in
1996 in Russia, on the share of the electorate voting for opposition parties. NTV’s coverage
rate was heterogeneous across subregions: while a large fraction of the population received NTV
in urbanized subregions, a smaller fraction received it in more rural subregions. The authors
estimate the FE regression: they regress the share of votes for opposition parties in the 1995
and 1999 elections in Russian subregions on subregion fixed effects, an indicator for the 1999
election, and on the share of the population having access to NTV in each subregion at the
time of the election. In 1995, the share of the population having access to NTV was equal
to 0 in all subregions, while in 1999 it was strictly greater than 0 everywhere. Therefore,
the authors’ research design corresponds exactly to the heterogenous adoption design discussed
above. Enikolopov et al. (2011) find that β̂fe = 6.65 (s.e.= 1.40). According to this regression,
increasing the share of the population having access to NTV from 0 to 100% increases the share

3Under Assumption S1, Dg,1 = 0, so wTR
g,1 does not enter in the decomposition in Theorem 1.

4Corollaries 1 and 2 extend directly to fuzzy settings.
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of votes for the opposition parties by 6.65 percentage points. Because there are only two time
periods in the data and the regression is not weighted by subregions’ populations, β̂fe = β̂fd.

We use the twowayfeweights Stata package, downloadable with its help file from the SSC
repository, to compute the weights attached to β̂fe. In 1995, all the weights are equal to zero
because NTV does not exist yet. In 1999, 918 weights (47.4%) are strictly positive, while 1,020
(52.6%) are strictly negative. The negative weights sum to -2.26. σ̂fe = 0.91: βfe and δTR may
be of opposite signs if the standard deviation of the effect of NTV across subregions is above
0.91 percentage point. σ̂

fe
= 1.23: βfe may be of a different sign than the treatment effect in

every subregion if the standard deviation of the effect of NTV across subregions is above 1.23
percentage point, a plausible amount of treatment effect heterogeneity.

Therefore, βfe can only receive a causal interpretation if the effect of NTV is constant across
subregions, or if the weights attached to it are uncorrelated with the intensity of that effect
in each subregion (Assumption 7). These assumptions are not warranted. First, we estimate
β̂fe again, weighting the regression by subregions’ populations. We obtain β̂fe = 14.89, more
than twice its value in the unweighted regression, and the difference between the coefficients is
significant (t-stat=2.66). Therefore, we can reject the null that the treatment effect is constant:
if the treatment effect was constant across subregions, the weighting would not matter so both
the unweighted and the weighted regressions would estimate the same parameter. Second, the
weights attached to β̂fe are correlated with variables that are likely to be themselves associated
with the intensity of the effect in each subregion. For instance, the correlation between the
weights and subregions’ populations is equal to 0.35 (t-stat=14.01). The effect of NTV may be
higher in less populated subregions, as those regions are more rural and fewer other sources of
information may be available there. This would lead to a violation of Assumption 7.

3 Extensions of the decomposition results

We consider hereafter several extensions of our decompositions of βfe and βfd in the paper. First,
we consider decompositions under the common trends assumption, and under the assumption
that the treatment effect is stable over time. Second, we extend our decompositions to ordered
treatments. Third, we investigate the effect of including covariates in the regression. Fourth,
we study two-way fixed effects 2SLS regressions. Throughout, we focus on sharp designs to ease
the exposition. Nevertheless, all the results generalize to fuzzy designs.
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3.1 βfe and βfd as weighted sums of ATEs of switching groups

We first show that under an additional condition, βfe and βfd can be written as a weighted sum
of the ATEs of switching groups.

Assumption S2 (Stable treatment effect) For all g and t ≥ 2,

E (∆g,t|D)Dg,t−1 = E (∆g,t−1|D)Dg,t−1.

The stable treatment effect assumption requires that the ATE of every group treated in t − 1

does not change from t − 1 to t. By iteration, the ATE of a group treated for instance from
period t0 to T is unrestricted before t0 but should be constant from t0 to T . Assumption S2 rules
out the possibility that the treatment effect changes over time. Therefore, it may be implausible
and should be carefully discussed.

We now show that under the common trend and stable treatment effects assumptions, βfe and
βfd may identify weighted averages of ATEs. Let NS =

∑
(g,t):Dg,t 6=Dg,t−1

Ng,t and, for all g and
t ≥ 2,

wSg,t =
(Dg,t −Dg,t−1)

∑
t′≥t

Ng,t′

Ng,t
εg,t′∑

(g,,t):t≥2

[
Ng,t

NS
(Dg,t −Dg,t−1)

∑
t′≥t

Ng,t′

Ng,t
εg,t′
] ,

wSfd,g,t =
(Dg,t −Dg,t−1)εfd,g,t∑

(g,,t):t≥2
Ng,t

NS
(Dg,t −Dg,t−1)εfd,g,t

.

Theorem S2 Suppose that Assumptions 1-5 and S2 hold. Then,

βfe =E

 ∑
(g,t):Dg,t 6=Dg,t−1,t≥2

Ng,t

NS

wSg,t∆g,t

 ,

βfd =E

 ∑
(g,t):Dg,t 6=Dg,t−1,t≥2

Ng,t

NS

wSfd,g,t∆g,t

 .

Moreover, wSfd,g,t ≥ 0 for all g and t ≥ 2. If Assumption 6 holds and Ng,t/Ng,t−1 does not vary
across g for all t ≥ 2, wSg,t ≥ 0 for all g and t ≥ 2.

Theorem S2 shows that in sharp designs, under the common trends and stable treatment effect
assumptions, βfe and βfd identify weighted sums of ATEs of switching cells. The weights differ
from those in Theorems 1 and 2. Now the weights attached to βfe are all positive in staggered
adoption designs, while the weights attached to βfd are all positive in all sharp designs. Therefore,
in staggered adoption (resp. sharp) designs, βfe (resp. βfd) relies on the assumption that the
treatment effect is stable over time, but it does not require that treatment effects be homogeneous
between groups.
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3.2 Non-binary, ordered treatment

We now consider the case where the treatment takes a finite number of ordered values, Di,g,t ∈
{0, 1, ..., d}, and show that Theorem 1 can easily be extended to this case.5 We need to define
potential outcomes for all the possible treatment values. For instance Yi,g,t(d) is the counter-
factual outcome of observation i in cell (g, t) if she receives treatment value d. We also need
to modify the treatment effect parameters we consider. In lieu of δTR, we consider the average
causal response (ACR) on the treated,

δACR = E

(
1

N1

∑
i,g,t

Yi,g,t(Dg,t)− Yi,g,t(0)

)
.

Similarly, for all (g, t) such that Dg,t 6= 0, we consider, instead of ∆g,t,

∆ACR
g,t =

1

Ng,tDg,t

Ng,t∑
i=1

[Yi,g,t(Dg,t)− Yi,g,t(0)] .

Then, similarly to (2), the following decomposition holds:

δACR = E

 ∑
(g,t):Dg,t 6=0

Ng,tDg,t

N1

∆ACR
g,t

 .

Let wOg,t = εg,t∑
g,t

Ng,tDg,t
N1

εg,t
. Note that if the treatment is binary, wOg,t = wg,t.

Theorem S3 Suppose that Assumptions 1-5 hold and Di,g,t ∈ {0, ..., d}. Then,

βfe = E

 ∑
(g,t):Dg,t 6=0

Ng,tDg,t

N1

wOg,t∆
ACR
g,t

 .

Theorem S3 shows that under Assumption 5, when the treatment is not binary βfe identifies a
weighted sum of the ACRs in all the (g, t) cells that are not untreated. Then, since the proof of
Corollary 1 does not rely on the nature of the treatment, Corollary 1 directly applies to ordered
treatments as well, by just replacing wg,t and Ng,t by wOg,t and Ng,tDg,t, respectively. Corollary 2
extends as well to this set-up, by simply modifying the no-correlation condition appropriately.

5Theorem 2 can also be extended to the case of a non-binary treatment.
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3.3 Including covariates

Often times, researchers also include a vector of covariates Xg,t as control variables in their
regression. In this section, we show that our Theorem 1 can be extended to this case.6 We start
by redefining Regression 1 in this context.

Regression 1X (Fixed-effects regression with covariates)

Let β̂Xfe denote the coefficient of Dg,t in an OLS regression of Yi,g,t on group and period fixed

effects, Dg,t, and Xg,t. Let βXfe = E
(
β̂Xfe

)
.

Then, we need to modify Assumptions 3-5. Hereafter, we let Xg = (Xg,1, ..., Xg,t).

Assumption S3 (Independent groups with covariates) The vectors (Yg,t(0), Yg,t(1), Dg,t, Xg,t)1≤t≤T

are mutually independent.

Assumption S4 (Strong exogeneity and common trends with covariates) There is a vector γ
of same dimension as Xg,t such that

E (Yg,t(0)− Yg,t−1(0)− (Xg,t −Xg,t−1)
′γ|Dg,Xg) = E (Yg,t(0)− Yg,t−1(0)− (Xg,t −Xg,t−1)

′γ)

and E (Yg,t(0)− Yg,t−1(0)− (Xg,t −Xg,t−1)
′γ) does not vary across g.

Rearranging, Assumption S4 requires that

E (Yg,t(0)|Dg,Xg)− E (Yg,t−1(0)|Dg,Xg) = (Xg,t −Xg,t−1)
′γ + λt,

for some constant λt. Then, Assumption S4 allows for the possibility that groups experience
different evolutions of their Yg,t(0) over time, but it requires that those differential evolutions
are fully accounted for by a linear model in Xg,t − Xg,t−1, the change in a group’s covariates.
Assumption S4 is implied by the linear model that is often invoked to justify the use of the
FE regression with covariates. For instance, the use of Regression 1X is often justified by the
following model:

Yg,t(0) = γg + λt +X ′g,tγ + ηg,t, E(ηg,t|Dg,Xg) = 0. (5)

Equation (5) implies Assumption S4, but it does not imply Assumption 5.

An interesting special case is when the control variables are group-specific linear trends. Then,
Assumption S4 requires that for all t ≥ 2,

E (Yg,t(0)|Dg,Xg)− E (Yg,t−1(0)|Dg,Xg) = γg + λt,

6Theorem 2 can also be extended to regressions with covariates.
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for some constants γg and λt. From t− 1 to t, the evolution of Y (0) in group g should deviate
from its group-specific linear trend γg by an amount λt common to all groups. Then, Assumption
S4 is a “common deviation from linear trends” assumption, which may be more plausible than
the standard common trends assumption.

Let εXg,t denote the residual of observations in cell (g, t) in the regression of Dg,t on group and
period fixed effects andXg,t. One can show that if the regressors in Regression 1 are not collinear,
the average value of εXg,t across all treated (g, t) cells differs from 0:

∑
(g,t):Dg,t=1(Ng,t/N1)ε

X
g,t 6= 0.

Then, let

wXg,t =
εXg,t∑

(g,t):Dg,t=1
Ng,t

N1
εXg,t

.

Theorem S4 Suppose that Assumptions 1-2 and S3-S4 hold. Then,

βXfe = E

 ∑
(g,t):Dg,t=1

Ng,t

N1

wXg,t∆g,t

 .

Theorem S4 shows that under a modified version of the common trends assumption accounting
for the covariates, βXfe identifies a weighted sum of the ∆TR

g,t s, as βfe in Theorem 1, with different
but still potentially negative weights.7 Assumption S4 may be more plausible than Assumption
5, but adding covariates may increase the prevalence of negative weights, or the correlation
between the weights and the ∆g,ts, thus making βXfe less robust to heterogeneous effects than
βfe.

3.4 2SLS regressions

Researchers have sometimes estimated 2SLS versions of Regressions 1 and 2. Our main con-
clusions also apply to those regressions. Let β̂2SLS

fe denote the coefficient of Di,g,t in a 2SLS
regression of Yg,t on group and period fixed effects and Di,g,t, using a variable Zg,t constant
within each group × period as the instrument for Di,g,t. Zg,t typically represents an incentive
for treatment allocated at the group × period level. For instance, Duflo (2001) studies the effect
of years of schooling on wages in Indonesia, using a primary school construction program as
an instrument. Specifically, she estimates a 2SLS regression of wages on cohort and district of
birth fixed effects and years of schooling, using the interaction of belonging to a cohort entering
primary school after the program was completed and the number of schools constructed in one’s
district of birth as the instrument for years of schooling.

7In a previous version of this paper, we had shown that under a different, and arguably less natural, common
trends assumption, βX

fe identifies a weighted sum of the ∆TR
g,t , with the same weights as in Theorem 1. We thank

an anonymous referee for pointing out issues with the common trends assumption we had previously proposed.
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Remark that β̂2SLS
fe = β̂Yfe/β̂

D
fe, where β̂Yfe (resp. β̂Dfe) is the coefficient of Zg,t in the reduced-

form regression of Yg,t (resp. the first-stage regression of Dg,t) on group and period fixed effects
and Zg,t. Then let β2SLS

fe = E[β̂Yfe]/E[β̂Dfe].8 Following Imbens and Angrist (1994), for any
z ∈ Supp(Z) let Di,g,t(z) denote the potential treatment of unit i in (g, t) if Zi,g,t = z. It
follows from Theorem 1 that under a common trends assumption on Di,g,t(0), E[β̂Dfe] is equal to
a weighted sum of the average effects of the instrument on the treatment in each group and time
period, with potentially many negative weights. Similarly, under a common trends assumption
on Yi,g,t(Di,g,t(0)) instead of Yi,g,t(0), E[β̂Yfe] is equal to a weighted sum of the average effects of
the instrument on the outcome, again with potentially many negative weights. For instance, in
Duflo (2001), under a common trends assumption on Di,g,t(0), the number of years of schooling
individuals would complete if zero new schools were constructed in their district, the first stage
coefficient identifies a weighted sum of the effect of one new school on years of schooling in every
district, with many negative weights.9

Hence, it is only if the average effects of Zg,t on Yi,g,t and Di,g,t are constant across groups and
periods, or if the weights are uncorrelated to treatment effects as in Assumption 7, that the
reduced-form and first-stage coefficients respectively identify the average effect of Zi,g,t on Yi,g,t
and Di,g,t. Then, this implies that β2SLS

fe identifies, under the conditions in Imbens and Angrist
(1994), the LATE of Di,g,t on Yi,g,t among units that comply with the instrument.10

4 Extending the DIDM estimator

Theorem 3 can be extended to the case where Di,g,t is not binary but takes values in D =

{0, ..., d}. The causal effect we consider is the switchers’ causal response

δSCR = E

 1

ND,S

∑
(i,g,t):t≥2,Dg,t 6=Dg,t−1

[Yi,g,t (max(Dg,t, Dg,t−1))− Yi,g,t (min(Dg,t, Dg,t−1))]

 ,

where ND,S =
∑

(g,t):t≥2Ng,t|Dg,t −Dg,t−1|. Note that δSCR = δS when Di,g,t is binary.

8We do not consider here E[β̂2SLS
fe ], as the 2SLS estimator may not have an expectation. Moreover, under

conditions similar to those imposed in Section 5 below, β2SLS
fe is the probability limit of β̂2SLS

fe , which makes
β2SLS
fe the proper estimand here.

9New schools were constructed in every district, so this application falls into the heterogeneous adoption case.
10In the special case with two groups and two periods, a binary incentive for treatment, and where only group 1

in period 1 receives the incentive, de Chaisemartin (2010) and Hudson et al. (2015) show that in a 2SLS regression
of Yi,g,t on 1{g = 2} , 1{t = 2} and Di,g,t, using Zg,t = 1{g = 2}1{t = 2} as the instrument, the coefficient
of Di,g,t identifies a LATE under common trends assumptions on Yi,g,t(Di,g,t(0)) and Di,g,t(0). However, the
discussion above shows that this result does not generalize to applications with multiple groups and periods or a
non-binary instrument, as in Duflo (2001) where the number of new schools constructed varies across districts.
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We identify δSCR under the following two conditions, which generalize Assumptions 4-5 and 9-12
to non-binary treatments.

Assumption S5 (Mean independence between a group’s outcome and other groups treatments))
For all (d, g, t) ∈ D × {1, ..., G} × {1, ..., T}, E(Yg,t(d)|D) = E(Yg,t(d)|Dg).

Assumption S6 (Strong exogeneity) For all (d, g, t) ∈ D × {1, ..., G} × {2, ..., T}, E(Yg,t(d) −
Yg,t−1(d)|Dg) = E(Yg,t(d)− Yg,t−1(d)).

Assumption S7 (Common trends) For every d, for all t ≥ 2 and g, E(Yg,t(d)−Yg,t−1(d)) does
not vary across g.

Assumption S8 (Existence of “stable” groups) For all t ∈ {2, ..., T}, for all (d, d′) ∈ D2, d 6= d′,
if there is at least one g ∈ {1, ..., G} such that Dg,t−1 = d and Dg,t = d′, then there exists at least
one g′ 6= g, g′ ∈ {1, ..., G} such that Dg′,t−1 = Dg′,t = d.

When the treatment takes a large number of values, Assumption S8 may be violated. A solution,
then, is to consider a modified treatment variable D̃g,t = h(Dg,t) that groups together several
values of Dg,t, to ensure that Assumption S8 holds for D̃g,t. For instance, if the treatment can
be equal to 0, 1, 2, or 3, and there is a group whose treatment switches from 2 to 3 between
periods 1 and 2, but no group whose treatment remains equal to 2 between those two dates, one
may define D̃g,t = min(Dg,t, 2) if there is a group whose treatment is equal to 3 at periods 1 and
2. Then, Theorem S5 below still holds, after replacing Dg,t by D̃g,t in the DIDd,d′,t estimators
defined below, and if Assumption S7 is replaced by the requirement that E(Yg,t(d) − Yg,t−1(d))

only depends on t and h(d).

In order to define DIDM in this context, let us introduce, for all (d, d′, t) ∈ D2 × {2, ..., T},

DIDd,d′,t = [1{d < d′} − 1{d′ < d}]
[ ∑

(g,t):Dg,t=d′,Dg,t−1=d,t≥2

Ng,t

Nd,d′,t
[Yg,t − Yg,t−1]

−
∑

(g,t):Dg,t=Dg,t−1=d,t≥2

Ng,t

Nd,d,t

[Yg,t − Yg,t−1]
]
,

where Nd,d′,t is defined as in (3) for any (d, d′) ∈ D2. Then

DIDM =
T∑
t=2

∑
(d,d′)∈D2,d 6=d′

Nd,d′,t

ND,S

DIDd,d′,t.

If the treatment is binary, the DIDM estimator defined above is equal to that defined in Section
3 of the paper.

Theorem S5 Suppose that Di,g,t ∈ D and Assumptions 1-2 and S5-S8 hold. Then E [DIDM] =

δSCR.
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Theorem S5 generalizes Theorem 3 to non-binary treatments. We can also extend Theorem 4
in the same way to construct placebo tests of Assumption S7.

Finally, Theorem 3 can also be extended to the case with covariates. Under versions of As-
sumptions 10 and 11 written conditional on X, a conditional version of the DIDM estimator is
consistent for δS under the common support condition Supp(Xd,g,t) = Supp(X). We refer to
de Chaisemartin and D’Haultfœuille (2018) for further details.

5 Statistical properties of DIDM and inference on δS

In this section, we establish the asymptotic properties of DIDM and construct confidence intervals
on δS based on DIDM. We consider an asymptotic framework where the number of groups G
tends to infinity. To define the confidence intervals, let Pd,d′,t = Nd,d′,t/G and

Qd,d′,t =
1

G

∑
g

Ng,t1{Dg,t = d,Dg,t−1 = d′} (Yg,t − Yg,t−1) .

Then, let σ̂2 =
∑

g ψ̂
2
g/G, with

ψ̂g =
G

NS

∑
t>1

Ng,t

[
1{Dg,t 6= Dg,t−1}(Yg,t − Yg,t−1 −DIDM)− ψ̂Bg,t

]
,

ψ̂Bg,t =
1

P0,0,t

[
1{Dg,t > Dg,t−1}Q0,0,t + P1,0,t1{Dg,t = Dg,t−1 = 0}

(
Yg,t − Yg,t−1 −

Q0,0,t

P0,0,t

)]
+

1

P1,1,t

[
1{Dg,t < Dg,t−1}Q1,1,t + P0,1,t1{Dg,t = Dg,t−1 = 1}

(
Yg,t − Yg,t−1 −

Q1,1,t

P1,1,t

)]
.

We consider confidence intervals of the form

CI1−α(δS) =

[
DIDM − z1−α/2

σ̂√
G
,DIDM + z1−α/2

σ̂√
G

]
,

where z1−α/2 denotes the quantile of order 1− α/2 of a standard normal variable.

We now establish the asymptotic properties of DIDM and CI1−α(δS) under the following assump-
tions. Hereafter, we denote U = (P0,0,1, Q0,0,1, ..., P1,1,T , Q1,1,T ).

Assumption S9 (Existence of moments and limits) supg,tNg,t < +∞ and sup(d,g,t)E(Y 4
g,t(d)) <

+∞. limGE[U ] and limGG× V (U) exist.

Assumption S10 (Positive probability of “stable” groups and existence of switchers) For all
(d, g, t) ∈ {0, 1}×(N\{0})×{2, ..., T}, Pr(Dg,t = 1−d,Dg,t−1 = d) > 0 implies limGE[P1−d,d,t] >

0 and limGE[Pd,d,t] > 0. Moreover, limGE[P0,1,t + P1,0,t] > 0 for at least one t.
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Assumption S9 imposes the (uniform) existence of moments of order 4 of Yg,t(d), and that
some non-random averages converge as G tends to infinity. These assumptions ensure that
we can apply law of large numbers and central limit theorems in our set-up where groups are
independent but not necessarily identically distributed. Assumption S10 imposes that when at
least one group switches from d to 1− d with a positive probability on a given period, then on
average over all groups, the limit probabilities of switching from d to 1 − d will be positive as
G→∞. The limit probability of remaining at d will also be positive. This latter condition may
be seen as a weaker version of Assumption 11, as it imposes the existence of “stable” groups only
with probability tending to one as G→∞. The last condition in Assumption S10 simply states
that asymptotically, the proportion of switchers is strictly postive.

The following result shows that under these conditions, DIDM is asymptotically normal, and
that CI1−α(δS) is asymptotically conservative.

Theorem S6 Suppose that Assumptions 1-5, 9-10 and S9-S10 hold. Then, as G→∞,
√
G
(
DIDM − δS

) d−→ N (0, σ2),

with σ2 defined in (19) below. Moreover,

lim sup
G→∞

Pr
(
δS ∈ CI1−α(δS)

)
≥ 1− α.

Theorem S6 shows that DIDM is an asymptotically normal estimator of δS when the number of
groups tends to infinity, provided the outcomes and treatments are independent across groups.
As is usually the case for estimators constructed using independent but not identically distributed
random variables (see e.g. Liu and Singh, 1995), the asymptotic variance of DIDM can only be
conservatively estimated. As a result, the confidence interval we propose is asymptotically
conservative.

6 Detailed literature review

We now review the 33 papers that use two-way fixed effects or closely related regressions that
we found in our literature review. For each paper, we use the following presentation:
Authors (year), Title. Where the two-way fixed effects estimator is used in the paper.
Description of the two-way fixed effects estimator used in the paper, and how it relates to
Regression 1 or 2. Assessment of whether the stable groups assumption holds in this paper.
Assessment of whether the research design is sharp or fuzzy.

1. Chandra et al. (2010), Patient Cost-Sharing and Hospitalization Offsets in the
Elderly. First line of Tables 2 and 3.
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In the regressions in the first line of Tables 2 and 3, the outcomes (e.g. a measure of
utilization for plan p in month t) are regressed on plan fixed effects, month fixed effects,
and an indicator of whether plan p had increased copayments in month t (see regression
equation at the bottom of page 198). This regression corresponds to Regression 1. The
period analyzed runs from January 2000 to September 2003. The stable groups assumption
is satisfied until January 2002, when the HMO plans also become treated. This is a sharp
design.

2. Duggan and Morton (2010), The Effect of Medicare Part D on Pharmaceutical
Prices and Utilization. Tables 2 and 3.
In regression Equation (1), the dependent variable is the change in the price of drug j
between 2003 and 2006, the explanatory variables are the Medicare market share for drug
j in 2003, and some control variables. This regression corresponds to Regression 2, with
some control variables. The stable groups assumption is presumably not satisfied: it seems
unlikely that there are drugs whose Medicare market share in 2003 is equal to 0. This is
a sharp design.

3. Aizer (2010), The Gender Wage Gap and Domestic Violence. Table 2.
In regression Equation (2), the dependent variable is the log of female assaults among
females of race r in county c and year t, and the explanatory variables are race, year,
county, race × year, race × county, and county × year fixed effects, as well as the gender
wage gap in county c, year t, and race r, and some control variables. This regression
is a “three-way fixed effects” version of Regression 1, with some control variables. The
stable groups assumption is presumably satisfied: it seems likely that between each pair
of consecutive years, there are counties where the gender wage gap does not change. This
is a fuzzy design: the treatment of interest is the gender wage gap in a couple (see the
bargaining model in Appendix 1), which varies within (year,county) cells.

4. Algan and Cahuc (2010), Inherited Trust and Growth. Figure 4.
Figure 4 presents a regression of changes in income per capita from 1935 to 2000 on changes
in inherited trust over the same period and a constant. This regression corresponds to
Regression 2. The stable groups assumption is satisfied: there are countries where inherited
trust does not change from 1935 to 2000. This is a sharp design.

5. Ellul et al. (2010), Inheritance Law and Investment in Family Firms. Table 7.
In the regressions presented in Table 7, the dependent variable is the capital expenditure
of firm j in year t, and the explanatory variables are firm fixed effects, an indicator for
whether year t is a succession period for firm j, some controls, and three treatment variables:
the interaction of the succession indicator with the level of investor protection in the
country where firm j is located, the interaction of the succession indicator with the level of

14



inheritance laws permissiveness in the country where firm j is located, and the interaction
of the succession indicator with the level of inheritance laws permissiveness and the level
of investor protection in the country where firm j is located. This regression is similar
to Regression 1 with controls, except that it has three treatment variables. The stable
groups assumption is presumably not satisfied: for instance, it seems unlikely that there
are countries with no investor protection at all. This is a sharp design.

6. Bustos (2011), Trade Liberalization, Exports, and Technology Upgrading: Ev-
idence on the Impact of MERCOSUR on Argentinean Firms. Tables 3 to 12.
In regression Equation (11), the dependent variable is the change in exporting status of
firm i in sector j between 1992 and 1996, and the explanatory variables are the change
in trade tariffs in Brasil for products in sector j over the same period, and some control
variables. This regression corresponds to Regression 2, with some controls. The stable
groups assumption is presumably satisfied: it seems likely that there are sectors where
trade tariffs in Brasil did not change between 1992 and 1996. This is a sharp design.

7. Anderson and Sallee (2011), Using Loopholes to Reveal the Marginal Cost of
Regulation: The Case of Fuel-Economy Standards. Table 5 Column 2.
In the regression in Table 5 Column (2), the dependent variable is an indicator for whether
a car sold is a flexible fuel vehicle, and the explanatory variables are state and month fixed
effects, the percent of gas stations that have ethanol fuel in each month × state, and some
controls. This regression corresponds to Regression 1. The stable groups assumption is
presumably satisfied: it seems likely that between each pair of consecutive months, there
are states where the percent ethanol availability does not change. This a fuzzy design: the
treatment of interest is whether a car buyer has access to ethanol fuel, which varies within
(month,state) cells.

8. Bagwell and Staiger (2011), What Do Trade Negotiators Negotiate About?
Empirical Evidence from the World Trade Organization. Table 3, OLS columns.
In regression equations (15a) and (15b), the dependent variable is the ad valorem tariff
level bound by country c on product g, while the explanatory variables are country and
product fixed effects, and two treatment variables which vary at the country × product
level. These regressions are similar to Regression 1, except that they have two treatment
variables. The stable groups assumption is not applicable here, as none of the two sets of
fixed effects included in the regression correspond to an ordered variable. This is a sharp
design.

9. Zhang and Zhu (2011), Group Size and Incentives to Contribute: A Natural
Experiment at Chinese Wikipedia. Tables 3 and 4, Columns 4-6.
In the regression in, say, Table 3 Column (4), the dependent variable is the total number
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of contributions to Wikipedia by individual i at period t, regressed on individual fixed
effects, an indicator for whether period t is after the Wikipedia block, the interaction of
this indicator and a measure of social participation by individual i, and some controls. This
regression corresponds to Regression 1 with some controls. The stable groups assumption
is satisfied: there are individuals with a social participation measure equal to 0. This is a
sharp design.

10. Hotz and Xiao (2011), The Impact of Regulations on the Supply and Quality
of Care in Child Care Markets. Table 7, Columns 4 and 5.
In Regression Equation (1), the dependent variable is the outcome for market m in state s
and year t, and the explanatory variables are state and year fixed effects, various measures
of regulations in state s in year t, and some controls. This regression corresponds to
Regression 1 with several treatment variables and with some controls. The stable groups
assumption is presumably satisfied: between each pair of consecutive years, it is likely that
there are states whose regulations do not change. This is a sharp design.

11. Mian and Sufi (2011), House Prices, Home Equity-Based Borrowing, and the
US Household Leverage Crisis. Tables 2 and 3.
In Regression Equation (1), the dependent variable is the change in homeowner leverage
from 2002 to 2006 for individual i living in zip code z in MSA m, and the dependent
variable is the change in the house price for that individual, instrumented by MSA-level
housing supply elasticity. This regression is the 2SLS version of Regression 2, with some
controls. The stable groups assumption is presumably not satisfied: it is unlikely that
some MSAs have an housing supply elasticity equal to 0. This is a sharp design.

12. Wang (2011), State Misallocation and Housing Prices: Theory and Evidence
from China. Table 5, Panel A.
In regression Equation (15), the dependent variable is the quantity of housing services
in household i’s residence in year t, while the explanatory variables are an indicator for
period t being after the reform, a measure of mismatch in household i, the interaction of
the measure of mismatch and the time indicator, and some controls. This regression is
similar to Regression 1 with some controls, except that it has a measure of mismatch in
household i instead of household fixed effects. The stable groups assumption is presumably
satisfied: it is likely that some households have a mismatch equal to 0. This is a sharp
design.

13. Duranton and Turner (2011), The Fundamental Law of Road Congestion: Ev-
idence from US Cities. Table 5.
In the regressions presented in, say, the first column of Table 5, the dependent variable
is the change in vehicle kilometers traveled in MSA s between decades t and t-1, and the

16



explanatory variables are the change in kilometers of roads in MSA s between decades
t and t-1, and decade effects. This regression corresponds to Regression 2. The stable
groups assumption is presumably satisfied: it is likely that between each pair of consecu-
tive decades, there are some MSAs where the kilometers of roads do not change. This is a
sharp design.

14. Acemoglu et al. (2011), The Consequences of Radical Reform: The French
Revolution. Table 3.
In regression Equation (1), the dependent variable is urbanization in polity j at time t,
while the explanatory variables are time and polity fixed effects, and the number of years
of French presence in polity j interacted with the time effects. This regression corresponds
to Regression 1. The stable groups assumption is satisfied as there are several polities that
did not experience any year of French presence. This is a sharp design.

15. Baum-Snow and Lutz (2011), School Desegregation, School Choice, and Changes
in Residential Location Patterns by Race. Tables 2 to 6.
In regression Equation (1), the dependent variable is, say, whites public school enrolment
in MSA j in year t, while the explanatory variables are MSA and region × time fixed ef-
fects, and an indicator for whether MSA j is desegregated. This regression corresponds to
Regression 1 with controls. The stable groups assumption is satisfied: between each pair
of consecutive years, there are MSAs whose desegregation status does not change. This is
a sharp design.

16. Dinkelman (2011), The Effects of Rural Electrification on Employment: New
Evidence from South Africa. Tables 4 and 5 Columns 5-8, Table 8 Columns 3-4, Table
9 Column 2, and Table 10 Columns 2, 4, and 6.
In regression Equation (3), the dependent variable is, say, the first difference of the female
employment rate for community j between periods 1 and 2, and the explanatory variables
are district fixed effects, the change of electrification status of community j between periods
1 and 2, and some statistical controls. The land gradient in community j is used as an
instrument for the change in electrification. This regression corresponds to the 2SLS version
of Regression 2 with some controls. The stable groups assumption is presumably satisfied:
it is likely that there are communities whose land gradient is 0. This is a sharp design.

17. Enikolopov et al. (2011), Media and Political Persuasion: Evidence from Rus-
sia. Table 3.
In regression Equation (5), the dependent variable is the share of votes for party j in
election-year t and subregion s, and the explanatory variables are subregion and election
fixed effects, and the share of people having access to NTV in subregion s in election-year t.
This regression corresponds to Regression 1. The stable groups assumption is not satisfied:
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the share of people having access to NTV strictly increases in all regions between 1995 and
1999, the two elections used in the analysis. This a fuzzy design: the treatment of interest
is whether a person has access to NTV, which varies within (subregion,year) cells.

18. Fang and Gavazza (2011), Dynamic Inefficiencies in an Employment-Based
Health Insurance System: Theory and Evidence. Tables 2, 3, 5, and 6, Column 3.
In regression Equation (7), the dependent variable is the health expenditures of individual
j working in industry i in period t and region r, and the explanatory variables are individual
effects, region specific time effects, and the job tenure of individual j. The death rate of
establishments in industry i in period t and region r is used as an instrument for the job
tenure of individual j. This regression is the 2SLS version of Regression 2 with controls. The
stable groups assumption is presumably satisfied: between each pair of consecutive years, it
is likely that there are some industry × region pairs where the death rate of establishments
does not change. This a fuzzy design: the instrument of interest is whether a person’s
former employee closed down over the current year, which varies within (industry,year)
cells.

19. Gentzkow et al. (2011), The Effect of Newspaper Entry and Exit on Electoral
Politics. Tables 2 and 3.
In regression Equation (2), the dependent variable is the change in voter turnout in county c
between elections year t and t-1, and the explanatory variables are state × year effects, and
the change in the number of newspapers in county c between t and t-1. This regression
corresponds to Regression 2 with controls. The stable groups assumption is satisfied:
between each pair of consecutive years, there are some counties where the number of
newspapers does not change. This is a sharp design.

20. Bloom et al. (2012), Americans Do IT Better: US Multinationals and the
Productivity Miracle. Table 2, Columns 6-8.
In the regression in, say, Column 6 of Table 2, the dependent variable is the log of output
per worker in firm i in period t, while the explanatory variables are firms and time fixed
effects, the log of the amount of IT capital per employee ln(C/L), the interaction of ln(C/L)

and an indicator for whether the firm is owned by a US multinational, the interaction of
ln(C/L) and an indicator for whether the firm is owned by a non-US multinational, and
some controls. This regression is similar to Regression 1 with some controls, except that
it has three treatment variables. The stable groups assumption is presumably satisfied:
between each pair of consecutive years, it is likely that there are some firms where the
amount of IT capital per employee ln(C/L) does not change. This is a sharp design.

21. Simcoe (2012), Standard Setting Committees: Consensus Governance for Shared
Technology Platforms. Table 4, Columns 1-3.
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In regression Equation (5), the dependent variable is a measure of time to consensus for
project i submitted to committee j, while the explanatory variables are an indicator for
projects submitted to the standards track, a measure of distributional conflict, the inter-
action of the standards track and distributional conflict, and some controls variables. This
regression is similar to Regression 1 with some controls, except that it has a measure of
distributional conflict instead of committee fixed effects. The stable groups assumption is
presumably not satisfied: it is unlikely that there is any committee where the measure of
distributional conflict is equal to 0. This is a sharp design.

22. Moser and Voena (2012), Compulsory Licensing: Evidence from the Trading
with the Enemy Act. Table 2.
In the regression equation in the beginning of Section III, the dependent variable is the
number of patents by US inventors in patent class c at period t, and the explanatory
variables are patent class and time fixed effects, the interaction of period t being after
the trading with the enemy act and the number of licensed patents in class c, and some
control variables. This regression corresponds to Regression 1 with some controls. The
stable groups assumption is satisfied: there are patent classes where no patent was licensed.
This is a sharp design.

23. Forman et al. (2012), The Internet and Local Wages: A Puzzle. Tables 2 and 4.
In regression Equation (1), the dependent variable is the difference between log wages in
2000 and 1995 in county i, and the explanatory variables are the proportion of businesses
using Internet in county i in 2000, and control variables. This regression corresponds
to Regression 2 with some controls. The stable groups assumption is satisfied: there are
counties with no Internet investment in 2000. This a fuzzy design: the treatment of interest
is whether a business uses Internet, which varies within (county,year) cells.

24. Besley and Mueller (2012), Estimating the Peace Dividend: The Impact of
Violence on House Prices in Northern Ireland. Table 1, Columns 3 and 5-7.
In regression Equation (1), the dependent variable is the price of houses in region r at time
t, while the explanatory variables are region and time fixed effects, and the number of
people killed because of the civil war in region r at time t-1. This regression corresponds
to Regression 1. The stable groups assumption is presumably satisfied: between each pair
of consecutive years, it is likely that there are some regions where the number of people
killed because of the civil war does not change. This is a sharp design.

25. Dafny et al. (2012), Paying a Premium on Your Premium? Consolidation in
the US Health Insurance Industry. Table 3.
In regression Equation (3), the dependent variable is the the concentration of the hospital
industry in market m and year t, and explanatory variables are time fixed effects, market
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fixed effects, and the change in concentration in market m induced by a merger interacted
with an indicator for t being after the merger. This regression corresponds to Regression
1. The stable groups assumption is satisfied: there are many markets where the merger
did not change concentration. This is a sharp design.

26. Hornbeck (2012), The Enduring Impact of the American Dust Bowl: Short-
and Long-Run Adjustments to Environmental Catastrophe. Table 2. In regression
Equation (1), the dependent variable is, say, the change in log land value in county c
between period t and 1930, and the explanatory variables are state × year fixed effects, the
share of county c in high erosion regions, the share of county c in medium erosion regions,
and some control variables. This regression is similar to Regression 1 with controls, except
that it has two treatment variables. The stable groups assumption is satisfied: many
counties have 0% of their land situated in medium or high erosion regions. This a fuzzy
design: the treatments of interest are whether a piece of land is in high or in medium
erosion regions, which varies within (county,year) cells.

27. Bajari et al. (2012), A Rational Expectations Approach to Hedonic Price Re-
gressions with Time-Varying Unobserved Product Attributes: The Price of
Pollution. Table 5.
In, say, the first regression equation in the bottom of page 1915, the dependent variable
is the change in the price of house j between sales 2 and 3, and the explanatory variables
are the change in various pollutants in the area around house j between sales 2 and 3,
and some controls. This regression is similar to Regression 2 with controls, except that it
has several treatment variables. The stable groups assumption is presumably satisfied: it
is likely that for each pair of consecutive sales, there are houses where the level of each
pollutant does not change. This is a sharp design.

28. Dahl and Lochner (2012), The Impact of Family Income on Child Achievement:
Evidence from the Earned Income Tax Credit. Table 3.
In regression Equation (4), the dependent variable is the change in test scores for child
i between years a and a-1, while the explanatory variables are the change in the EITC
income of her family and some controls, and the change in the expected EITC income
of her family based on her family income in year a-1 is used to instrument for the actual
change of her family’s EITC income. This regression is a 2SLS version of Regression 2 with
controls, except that it does not have years fixed effects. The stable groups assumption is
presumably satisfied: it is likely that for each pair of consecutive years, there are children
whose family’s expected EITC income does not change. This is a sharp design.

29. Imberman et al. (2012), Katrina’s Children: Evidence on the Structure of Peer
Effects from Hurricane Evacuees. Tables 3-6.

20



In regression Equation (1), the dependent variable is the test score of student i in school
j in grade g and year t, and the explanatory variables are school and grade × year fixed
effects, the fraction of Katrina evacuee students received by school j in grade g and year t,
and some controls. This regression is a three-way fixed effects version of Regression 1. The
stable groups assumption is satisfied: there are schools that did not receive any Katrina
evacuee. This a fuzzy design: the treatment of interest is the proportion of evacuees in
one’s class, which varies within (school,grade,year) cells.

30. Chaney et al. (2012), The Collateral Channel: How Real Estate Shocks Affect
Corporate Investment. Table 5.
In regression Equation (1), the dependent variable is the value of investment in firm i and
year t divided by the lagged book value of properties, plants, and equipments (PPE), and
the explanatory variables are firm and time fixed effects and the market value of firm i
in year t divided by its lagged PPE, and some controls. This regression corresponds to
Regression 1, with some controls. The stable groups assumption is presumably satisfied:
it is likely that between each pair of consecutive years, there are firms whose market value
divided by their lagged PPE does not change. This is a sharp design.

31. Aaronson et al. (2012), The Spending and Debt Response to Minimum Wage
Hikes. Tables 1, 2, and 5.
In regression Equation (1), the outcome variable is, say, income of household i at period t,
and the explanatory variables are household and time fixed effects, and the minimum wage
in the state where household i lives in period t. This regression corresponds to Regression
1. The stable groups assumption is satisfied: between each pair of consecutive periods,
there are states where the minimum wage does not change. This is a sharp design.

32. Brambilla et al. (2012), Exports, Export Destinations, and Skills. Table 5.
In the regression in, say, the first column of Table 2, the dependent variable is a measure
of skills in the labor force employed by firm i in industry j at period t, and the explanatory
variables are firm and industry × period fixed effects, the ratio of exports to sales in firm
i at period t, and some controls. This regression corresponds to Regression 1, with some
controls. The stable groups assumption is presumably satisfied: it is likely that between
each pair of consecutive periods, there are firms whose ratio of exports to sales does not
change. This is a sharp design.

33. Faye and Niehaus (2012), Political Aid Cycles. Table 3, Columns 4 and 5, and
Tables 4 and 5.
In regression Equation (2), the dependent variable is the amount of donations received by
receiver r from donor d in year t, and the explanatory variables are donor × receiver fixed
effects, an indicator for whether there is an election in country r in year t, a measure of
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alignment between the ruling political parties in countries r and d at t, and the interaction
of the election indicator and the measure of alignment. This regression corresponds to
Regression 1. The stable groups assumption is presumably not satisfied: it is unlikely that
there are donor-receiver pairs that are perfectly unaligned. This is a sharp design.

7 Proofs

Theorem S1 relies on the following lemma.

Lemma S1 If Assumptions 1 and 3-5 hold, for all (g, g′, t, t′) ∈ {1, ..., G}2 × {1, ..., T}2,

E(Yg,t|D)− E(Yg,t′ |D)− (E(Yg′,t|D)− E(Yg′,t′|D))

=Dg,tE
(
∆TR
g,t

∣∣D)−Dg,t′E
(
∆TR
g,t′

∣∣D)− (Dg′,tE
(
∆TR
g′,t

∣∣D)−Dg′,t′E
(
∆TR
g′,t′

∣∣D)) .
Proof of Lemma S1

For all (g, t) ∈ {1, ..., G} × {1, ..., T},

E(Yg,t|D) =E

(
1

Ng,t

Ng,t∑
i=1

(Yi,g,t(0) +Di,g,t(Yi,g,t(1)− Yi,g,t(0)))

∣∣∣∣∣D
)

=E (Yg,t(0)|D) +Dg,tE
(
∆TR
g,t

∣∣D) .
The end of the proof is the same as that of Lemma 1.
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Proof of Theorem S1

The proof of that result is very similar to the proof of Theorem 1.

βfe = E

(∑
g,tNg,tεg,tYg,t∑
g,tNg,tεg,tDg,t

)

= E

(∑
g,tNg,tεg,tE(Yg,t|D)∑

g,tNg,tεg,tDg,t

)

= E

(∑
g,tNg,tεg,t (E(Yg,t|D)− E(Yg,1|D)− E(Y1,t|D) + E(Y1,1|D))∑

g,tNg,tεg,tDg,t

)

= E

(∑
g,tNg,tεg,t

(
Dg,tE

(
∆TR
g,t

∣∣D)−Dg,1E
(
∆TR
g,1

∣∣D)−D1,tE
(
∆TR

1,t

∣∣D)+D1,1E
(
∆TR

1,1

∣∣D))∑
g,tNg,tεg,tDg,t

)

= E

(∑
g,tNg,tεg,tDg,tE

(
∆TR
g,t

∣∣D)∑
g,tNg,tεg,tDg,t

)

= E

(∑
g,tNg,tεg,tDg,t∆

TR
g,t∑

g,tNg,tεg,tDg,t

)
.

The second equality follows from the law of iterated expectations. The third and fifth equalities
follow from Equations (A2) and (A3). The fourth equality follows from Lemma S1. The last
equality follows from the law of iterated expectations.

Proof of Proposition S1

Assuming that Ng,2/Ng,1 does not vary across g ensures that there exists a strictly positive real
number φ such that Ng,2/Ng,1 = φ. Then,

εg,2 =Dg,2 −Dg,. −D.,2 +D.,.

=Dg,2 −
(
Ng,1

Ng,.

Dg,1 +
Ng,2

Ng,.

Dg,2

)
−D.,2 +

(
N.,1

N
D.,1 +

N.,2

N
D.,2

)
=Dg,2 −

(
1

1 + φ
Dg,1 +

φ

1 + φ
Dg,2

)
−D.,2 +

(
1

1 + φ
D.,1 +

φ

1 + φ
D.,2

)
=

1

1 + φ
(Dg,2 −Dg,1 −D.,2 +D.,1) , (6)

where the first and third equalities follow from the fact Ng,2/Ng,1 does not vary across g.
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Then, the definition of wTRg,2 , Equation (6) and Assumption 1 imply that

wTRg,2 =
(Dg,2 −D.,2)∑G

g=1
Ng,2

N1
(Dg,2 −D.,2)Dg,2

=
(Dg,2 −D.,2)∑G

g=1
Ng,2

N1
(Dg,2 −D.,2)2

.

Proof of Theorem S2

The proof relies on the lemma below, which we start by proving, before proving the theorem.

Lemma S2 If Assumptions 1-5 and S2 hold,

E (Yg,t|D)− E (Yg,t−1|D)− (E (Yg′,t|D)− E (Yg′,t−1|D))

=(Dg,t −Dg,t−1)E (∆g,t|D)− (Dg′,t −Dg′,t−1)E (∆g′,t|D) .

Proof of Lemma S2

By Lemma 1 and Assumption S2,

E (Yg,t|D)− E (Yg,t−1|D)− (E (Yg′,t|D)− E (Yg′,t−1|D))

=Dg,tE (∆g,t|D)−Dg,t−1E (∆g,t−1|D)−Dg′,tE (∆g′,t|D) +Dg′,t−1E (∆g′,t−1|D)

=(Dg,t −Dg,t−1)E (∆g,t|D)− (Dg′,t −Dg′,t−1)E (∆g′,t|D) .

Proof of the decomposition for the fixed-effect regression

First, we have∑
g,t

Ng,tεg,tE (Yg,t|D)

=
∑
g,t

Ng,tεg,t[E (Yg,t|D)− E (Y1,t|D)]

=
∑
g

T∑
t=2

[∑
t′≥t

Ng,t′εg,t′

]
[E (Yg,t|D)− E (Yg,t−1|D)− (E (Y1,t|D)− E (Y1,t−1|D))]

=
∑
g

T∑
t=2

[∑
t′≥t

Ng,t′εg,t′

]
[(Dg,t −Dg,t−1)E (∆g,t|D)− (D1,t −D1,t−1)E (∆1,t|D)]

=
∑

(g,t):Dg,t 6=Dg,t−1,t≥2

[
Ng,t(Dg,t −Dg,t−1)

∑
t′≥t

Ng,t′

Ng,t

εg,t′

]
E (∆g,t|D) . (7)

The first equality follows by (A3). The second equality follows from summation by part and
(A3). The third equality follows from Lemma S2. The fourth equality stems from the fact that
by (A3), the terms with g = 1 vanish.
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Similarly,

∑
g,t

Ng,tεg,tDg,t =
∑
g

T∑
t=2

[∑
t′≥t

Ng,t′εg,t′

]
[Dg,t −Dg,t−1]

=
∑

(g,t):Dg,t 6=Dg,t−1,t≥2

Ng,t(Dg,t −Dg,t−1)
∑
t′≥t

Ng,t′

Ng,t

εg,t′ . (8)

The result follows by combining (A1), (7), (8), and the law of iterated expectations.

Proof of the decomposition for the first-difference regression

First, we have∑
(g,t):t≥2

Ng,tεfd,g,t (E (Yg,t|D)− E (Yg,t−1|D))

=
∑

(g,t):t≥2

Ng,tεfd,g,t (E (Yg,t|D)− E (Yg,t−1|D)− (E (Y1,t|D)− E (Y1,t−1|D)))

=
∑

(g,t):t≥2

Ng,tεfd,g,t [(Dg,t −Dg,t−1)E (∆g,t|D)− (D1,t −D1,t−1)E (∆1,t|D)]

=
∑

(g,t):t≥2

Ng,tεfd,g,t(Dg,t −Dg,t−1)E (∆g,t|D) .

The first equality follows from (A11). The second equality follows from Lemma S2. The third
equality follows from (A11) again. The result follows by combining (A10) with the last display,
and using the law of iterated expectations.

Proof that wSg,t ≥ 0 under Assumption 6 and if Ng,t/Ng,t−1 does not depend on g

Under Assumption 6, one has that Dg,t = 1{t ≥ ag}, with ag ∈ {1, ..., T + 1}. Therefore, given
the form of wSg,t, we just have to prove that for all g,∑

t≥ag

Ng,tεg,t ≥ 0. (9)

Because Ng,t/Ng,t−1 does not vary across g for all t ≥ 2, we have Ng,t = Ng,0γt for some γt ≥ 0.
Moreover, εg,t = Dg,t − Dg,. − D.,t + D.,.. Let γ̃t = γt/

∑
t≥0 γt, then Dg,. =

∑
t≥ag γ̃t, and

D.,. =
∑

t≥0 γ̃tD.,t. Hence,

1

Ng,0

∑
t γt

∑
t≥ag

Ng,tεg,t = Dg,. (1−Dg,. +D.,.)−
∑
t≥ag

γ̃tD.,t

= Dg,.

1−Dg,. +
∑
t<ag

γ̃tD.,t

−
∑
t≥ag

γ̃tD.,t

 (1−Dg,.). (10)
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Now, because D.,t ≤ 1, ∑
t≥ag

γ̃tD.,t ≤
∑
t≥ag

γ̃t = Dg,..

Hence, in view of (10),
1

Ng,0

∑
t γt

∑
t≥ag

Ng,tεg,t ≥ Dg,.

∑
t<ag

γ̃tD.,t ≥ 0.

Therefore, (9) and the result follows.

Proof that wSfd,g,t ≥ 0

We just have to focus on the cases where Dg,t 6= Dg,t−1. Note that εfd,g,t = Dg,t − Dg,t−1 −
(D.,t − D.,t−1). Then, if Dg,t − Dg,t−1 = 1, the numerator of wSfd,g,t has the same sign as
1− (D.,t−D.,t−1), which is positive. If Dg,t−Dg,t−1 = −1, the numerator of wSfd,g,t has the same
sign as 1 + (D.,t −D.,t−1), which is also positive. Because the denominator sums terms that are
always positive, it is positive as well. The result follows.

Proof of Theorem S3

The reasoning is exactly the same as in Theorem 1, except that we rely on Lemma S3 below,
instead of Lemma 1. We thus only prove Lemma S3.

Lemma S3 If Assumptions 1-5 hold and Di,g,t ∈ {0, , ..., d}.

E (Yg,t|D)− E (Yg,t′ |D)− (E (Yg′,t|D)− E (Yg′,t′|D))

=Dg,tE
(
∆ACR
g,t

∣∣D)−Dg,t′E
(
∆ACR
g,t′

∣∣D)− (Dg′,tE
(
∆ACR
g′,t

∣∣D)−Dg′,t′E
(
∆ACR
g′,t′

∣∣D)) .
Proof of Lemma S3

Under Assumption 2, we have E (Yg,t|D) = E (Yg,t(0)|D)+E (Yg,t(Dg,t)− Yg,t(0)|D). The result
follows by decomposing similarly the three other terms E (Yg,t′|D), E (Yg′,t|D), and E (Yg′,t′|D),
using Assumptions 3-5, and finally using the definition of ∆ACR

g,t .

Proof of Theorem S4

The proof relies on the following lemma, that resembles Lemma 1 and that we do not prove.

Lemma S4 If Assumptions 1, 2, and S3-S4 hold, for all (g, g′, t, t′) ∈ {1, ..., G}2 × {1, ..., T}2,

E
(
Yg,t −X ′g,tγ

∣∣X,D
)
− E

(
Yg,t′ −X ′g,t′γ

∣∣X,D
)

−
(
E
(
Yg′,t −X ′g′,tγ

∣∣X,D
)
− E

(
Yg′,t′ −X ′g′,t′γ

∣∣X,D
))

=Dg,tE (∆g,t|X,D)−Dg,t′E (∆g,t′|X,D)− (Dg′,tE (∆g′,t|X,D)−Dg′,t′E (∆g′,t′|X,D)) .
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It follows from the Frisch-Waugh theorem and the definition of εXg,t that

E
(
β̂fe

∣∣∣X,D
)

=

∑
g,tNg,tε

X
g,tE (Yg,t|X,D)∑

g,tNg,tεXg,tDg,t

. (11)

Now, by definition of εXg,t again,

T∑
t=1

Ng,tε
X
g,t = 0 for all g ∈ {1, ..., G}, (12)

G∑
g=1

Ng,tε
X
g,t = 0 for all t ∈ {1, ..., T}, (13)∑

g,t

Ng,tε
X
g,tXg,t = 0. (14)

Then, ∑
g,t

Ng,tε
X
g,tE (Yg,t|X,D))

=
∑
g,t

Ng,tε
X
g,tE

(
Yg,t −X ′g,tλ

∣∣X,D
)
)

=
∑
g,t

Ng,tε
X
g,t

(
E
(
Yg,t −X ′g,tλ

∣∣X,D
)
− E

(
Yg,1 −X ′g,1λ

∣∣X,D
)

−E
(
Y1,t −X ′1,tλ

∣∣X,D
)

+ E
(
Y1,1 −X ′1,1λ

∣∣X,D
))

The first equality follows from (14). The second follows from Equations (12) and (13). Hence,∑
g,t

Ng,tε
X
g,tE (Yg,t|X,D)) =

∑
g,t

Ng,tε
X
g,t (Dg,tE (∆g,t|X,D)−Dg,1E (∆g,1|X,D)

−D1,tE (∆1,t|X,D) +D1,1E (∆1,1|X,D))

=
∑
g,t

Ng,tε
X
g,tDg,tE (∆g,t|X,D)

=
∑

(g,t):Dg,t=1

Ng,tε
X
g,tE (∆g,t|X,D) . (15)

The first equality follows from Lemma 4. The second follows from Equations (12) and (13). The
third follows from Assumption 2. Finally, Assumption 2 implies that∑

g,t

Ng,tε
X
g,tDg,t =

∑
(g,t):Dg,t=1

Ng,tε
X
g,t. (16)

Combining (11), (15), (16), and the law of iterated expectations yields the result.
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Proof of Theorem S5

Reasoning as in the proof of Theorem 3, we get that for all t ≥ 2,

Nd,d′,tE (DIDd,d′,t|D) =
∑

g:Dg,t=d′,Dg,t−1=d

Ng,tE (Yg,t(max(d, d′))− Yg,t(min(d, d′))|D)

=
∑

(i,g):Dg,t=d′,Dg,t−1=d

E (Yi,g,t(max(Dg,t, Dg,t−1))− Yi,g,t(min(Dg,t, Dg,t−1))|D) .

For all (g, t), there exists one (d, d′) ∈ D2 such that Dg,t = d′ and Dg,t−1 = d. Hence,

T∑
t=2

∑
(d,d′)∈D2:d 6=d′

Nd,d′,tE (DIDd,d′,t|D)

=
T∑
t=2

∑
(d,d′)∈D2

Nd,d′,tE (DIDd,d′,t|D)

=
∑

(i,g,t):t≥2

E (Yi,g,t(max(Dg,t, Dg,t−1))− Yi,g,t(min(Dg,t, Dg,t−1))|D) .

The result follows by definition of DIDM and δSCR, and the law of iterated expectations.

Proof of Theorem S6

1. Asymptotic normality

Let us define P S = NS/G and

T S =
1

G

∑
(g,t):t≥2

Ng,t1{Dg,t 6= Dg,t−1} [Yg,t(1)− Yg,t(0)] .

We prove the result in two steps. First, we prove that
√
G
(
DIDM − E(T S)/E(P S)

)
is asymp-

totically normal. Second, we show that the difference between E(T S)/E(P S) and δS is asymp-
totically negligible.

Convergence of
√
G
(
DIDM − E(T S)/E(P S)

)
By Assumption S9,

sup
g,t

N4
g,tE[1{Dg,t = d,Dg,t−1 = d′} (Yg,t − Yg,t−1)4] < +∞.

Thus, Lyapunov’s condition for the central limit theorem holds, and because Σ = limg G×V (U)

exists, √
G (U − E[U ])

d−→ N (0,Σ) ,
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By Assumption S9, P∞d,d′,t = limG→∞E(Pd,d′,t) exists. Then for d ∈ {0, 1}, define Td = {t :

P∞1−d,d,t > 0} and the event D = {NS > 0} ∩ D0 ∩ D1, with

Dd = {t ∈ Td ⇐⇒ min(Nd,d,t, N1−d,d,t) > 0} .

By the law of large numbers and Assumption S10, NS > 0 with probability approaching one.
Next, fix d ∈ {0, 1}. If t ∈ Td, then, by the law of large numbers, N1−d,d,t > 0 with probability
approaching one. Moreover, for such a t, there exists g such that Pr(Dg,t = 1−d,Dg,t−1 = d) > 0

and thus, by Assumption S10, P∞d,d,t > 0. Then, by the law of large numbers again, Nd,d,t > 0

with probability approaching one. Conversely, if min(Nd,d,t, N1−d,d,t) > 0, then there exists g
such that Pr(Dg,t = 1− d,Dg,t−1 = d) > 0. Hence, by Assumption S10 again, P∞1−d,d,t > 0. This
shows that Dd, and thus D, holds with probability approaching one.

Now, by definition of DIDM, under D we have DIDM = f(U), with

f (p0,0,1, q0,0,1, ..., p1,1,T , q1,1,T ) =

∑1
d=0(−1)d

∑
t∈Td q1−d,d,t − (p1−d,d,t/pd,d,t)qd,d,t∑T

t=1 p1,0,t + p0,1,t
, (17)

for all (pd,d′,t)(d,d′,t) such that all denominators are strictly positive. By Assumption S9 again,
E[U ] converges to U∞. Furthermore, f is continuously differentiable in a neighborhood of U∞.
Thus, by the uniform delta method (see, e.g. van der Vaart, 2000, Theorem 3.8),

√
G (DIDM − f(E[U ])) = Jf (U

∞)×
√
G (U − E[U ]) + oP (1). (18)

Finally, f(E(U)) = fN/fD, with

fN =
1

G

1∑
d=0

(−1)d
∑
t∈Td

∑
g

Ng,t

[
E (1{Dg,t = 1− d,Dg,t−1 = d}(Yg,t − Yg,t−1))

−E(P1−d,d,t)

E(Pd,d,t)
E (1{Dg,t = Dg,t−1 = d}(Yg,t − Yg,t−1))

]
fD =

∑
t≥2

E[P1,0,t + P0,1,t].

Reasoning as in the proof of Theorem 3 (see in particular Equations (A17)-(A18)) and noting
that if t 6∈ Td, then, by Assumption S10 Pr(Dg,t = 1 − d,Dg,t−1 = d) = 0, we get fN = E(T S).
Moreover, fD = E(P S). Hence,

√
G

(
DIDM −

E(T S)

E(P S)

)
d−→ N

(
0, σ2

)
, with σ2 = Jf (U

∞)ΣJf (U
∞)′. (19)

Convergence to 0 of
√
G
(
E(T S)/E(P S)− δS

)
Let us define DG = (Dg,t)(g,t):g≤G,t=1...T , T̃ = E[T S|DG] and I = 1{|P S − E(P S)| < εG},
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where εG > 0 will be specified below. By Assumption S10, limG→∞E(P S) > 0. Thus, it suffices
to prove that

√
G
(
E(P S)δS − E(T S)

)
→ 0 . Because δS = E[T S/P S], we have

E(P S)δS − E(T S) =E
[
T̃ (E(P S)− P S)/P S

]
=E

[
T̃ I(E(P S)− P S)/P S

]
+ E

[
T̃ (1− I)(E(P S)− P S)/P S

]
. (20)

First, consider the second term on the right-hand side. By applying twice the Cauchy-Schwarz
inequality, we get

√
G|E[T̃ (1− I)(E(P S)− P S)/P S]| ≤

√
GV (P S)1/2

[
E[(T̃ /P S)4] Pr(I = 0)

]1/4
By Assumption S9,

√
GV (P S)1/2 converges towards a finite limit. Thus, it suffices to show that

the term into brackets tends to 0. To this end, note first that

E[T S|DG] =
1

G

∑
(g,t):t≥2

Ng,t1{Dg,t 6= Dg,t−1}E[Yg,t(1)− Yg,t(0)|DG].

Now, let Ag,t = Ng,t1{Dg,t 6= Dg,t−1} and Bg,t = E[Yg,t(1)−Yg,t(0)|DG]. By Assumption S9 and
Jensen’s inequality, sup(g,G,t):g≤GE[|Bg,t|4] < +∞. Then(

T̃

P S

)4

≤

(∑
g,tAg,t|Bg,t|∑

g,tAg,t

)4

≤
(

max
g,t
|Bg,t|4

)
≤
∑
g,t

|Bg,t|4.

Hence, E[(T̃ /P S)4] Pr(I = 0) ≤ K1GPr(I = 0) for some constant K1 > 0. Moreover, by
Hoeffding’s inequality,

Pr(I = 0) ≤ 2 exp

(
−2G2ε2G∑

gN
2
g,.

)
.

By Assumption S9, there exists c > 0 such that for all G, 1/G
∑G

g=1N
2
g,. < 2c. Then,

−2G2ε2G∑
gN

2
g,.

≤ −Gε
2
G

c
.

Let εG = (C ln(G)/G)1/2, for some C > c. Then, by what precedes, GPr(I = 0) → 0 and the
second term of the right-hand side of (20) tends to zero.
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Now, let us move to the first term of the right-hand side of (20). We have

|E[T̃ I(E(P S)− P S)/P S]|

=
∣∣∣E[I(T̃ − E(T̃ ))(E(P S)− P S)/P S] + E(T̃ )

(
E(P S)E(I/P S)− E(I)

)∣∣∣
≤E(P S)V (T̃ )1/2

(
E[I

(
1/P S − 1/E(P S)

)2
]
)1/2

+ |E(T̃ )|E(P S)|E(I/P S)− E(I)/E(P S)|. (21)

We now prove that both terms on the right-hand side tend to zero. First, by Taylor expansions
of x 7→ 1/x around E(P S), there exist (P S

1 , P
S
2 ) in the interval between P S and E(P S) such that

1

P S
=

1

E(P S)
− P S − E(P S)

P S2
1

, (22)

1

P S
=

1

E(P S)
− P S − E(P S)

E(P S)2
+

(P S − E(P S))2

P S3
2

. (23)

When I = 1, |P S
1 −E(P S)| < εG and |P S

2 −E(P S)| < εG. Recall also that limGE(P S) > 0 and
εG → 0. Then, in view of (22) and by Assumption S9,

E[I
(
1/P S − 1/E(P S)

)2
] ≤ V (P S)

(E(P S)− εG)4
→ 0.

Moreover, by definition of T̃ , GV (T̃ ) ≤ GV (T S), and the latter is bounded by Assumption S9.
Therefore, the first term of the right-hand side of (21) tends to 0.

Now, multiplying (23) by I and taking the expectation on both sides, we obtain:

√
G|E(I/P S)− E(I)/E(P S)| ≤

√
G

∣∣∣∣E[I(P S − E(P S))]

E(P S)2

∣∣∣∣+

√
GV (P S)

(E(P S)− εG)3

≤

∣∣∣∣∣
[
GPr(I = 0)V (P S)

]1/2
E(P S)2

∣∣∣∣∣+

√
GV (P S)

(E(P S)− εG)3

→ 0.

2. Validity of the confidence intervals

There exists σ2
G such that

∑
g ψ̂

2
g/G− σ2

G
P−→ 0, with lim infG σ

2
G ≥ σ2.

Let Q∞d,d′,t = limG→∞E[Qd,d′,t] and λg be the column vector such that U =
∑G

g=1 λg/G. Some
tedious algebra show that Jf (U∞)× λg = ψg, with

ψg =
1

P∞S

∑
t>1

Ng,t

[
1{Dg,t 6= Dg,t−1}(Yg,t − Yg,t−1 − f(U∞))− ψBg,t

]
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and

ψBg,t =
1

P∞0,0,t

[
1{Dg,t > Dg,t−1}Q∞0,0,t + P∞1,0,t1{Dg,t = Dg,t−1 = 0}

(
Yg,t − Yg,t−1 −

Q∞0,0,t
P∞0,0,t

)]
+

1

P∞1,1,t

[
1{Dg,t < Dg,t−1}Q∞1,1,t + P∞0,1,t1{Dg,t = Dg,t−1 = 1}

(
Yg,t − Yg,t−1 −

Q∞1,1,t
P∞1,1,t

)]
.

Hence, in view of (18)-(19), σ2 = limG

∑
g V (ψg)/G. Next, we show that

∑
g ψ̂

2
g/G is asymptoti-

cally larger than σ2. For that purpose, let σ2
G =

∑
g E(ψ2

g)/G and remark that ψ̂g = Jf (U)×λg.
Then

1

G

∑
g

ψ̂2
g − σ2

G =
1

G

∑
g

[
ψ̂2
g − ψ2

g

]
+

[
1

G

∑
g

ψ2
g − σ2

G

]
. (24)

Let λk,g denote the kth coordinate of λg. Assumption S9 ensures that

sup
k,g

E
[
λ4k,g
]
< +∞. (25)

Thus, we also have supg E(ψ2
g) < +∞. Therefore, by the weak law of large numbers, the second

term on the right-hand side of (24) converges to 0. Next,

1

G

∑
g

[
ψ̂2
g − ψ2

g

]
= (Jf (U)− Jf (U∞))

[
1

G

∑
g

λgλ
′
g

]
(Jf (U) + Jf (U

∞))′ . (26)

By (25) again and the weak law of large numbers, U P−→ U∞. Moreover, f is continuously differ-
entiable in a vicinity of U∞, Thus, by the continuous mapping theorem, Jf (U)−Jf (U∞)

P−→ 0.
By (25) once again and the weak law of large numbers,

1

G

∑
g

(
λgλ

′
g − E[λgλ

′
g]
) P−→ 0.

Moreover, by the Cauchy-Schwarz inequality and (25), we have, for all k, `,∣∣∣∣∣ 1

G

∑
g

E[λk,gλ`,g]

∣∣∣∣∣ ≤ sup
k,`,g

E[|λk,gλ`,g|] ≤ sup
k,`,g

E
[
|λk,g|2

]
< +∞.

As a result,
∑

g λgλ
′
g/G = OP (1). Finally, because Jf (U) converges in probability, Jf (U) +

Jf (U
∞) = OP (1). Thus, in view of (26), the first term on the right-hand side of (24) converges

in probability to 0. Hence, we have proven that
∑

g ψ̂
2
g/G− σ2

G
P−→ 0. Finally, E(ψ2

g) ≥ V (ψg)

and thus σ2
G −

∑
g V (ψg)/G ≥ 0. Therefore, lim infG σ

2
G ≥ σ2.

CI1−α(δS) is asymptotically conservative.
By (19), the convergence to 0 of

√
G
(
E(T S)/E(P S)− δS

)
, (18), and since ψg = Jf (U

∞)×λg,

√
G
DIDM − δS

σ̂
=

σ

σG

[
σG
σ̂

1√
G

∑
g ψg

σ
+ oP (1)

]
.
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Let ZG denote the term into brackets. By the first step above and Slutsky’s lemma ZG
d−→

N (0, 1). Fix η > 0. Because lim infG σ
2
G ≥ σ2, there exists G0 such that for every G ≥ G0,

√
G

∣∣∣∣DIDM − δS

σ̂

∣∣∣∣ ≤ (1 + η)|ZG|.

Then, letting Φ denote the cdf of the standard normal distribution, we get

lim sup
G

Pr
(
δS ∈ CI1−α

)
≥ Φ

(
z1−α/2
1 + η

)
− Φ

(
zα/2

1 + η

)
.

The result follows by letting η tend to zero.
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