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A. Data Sources and Construction
Our data sources and basic information on the releases are presented in the table below.

Data Release Source Frequency Release time Surprise St. Dev. Units

Non-farm BLS Monthly 8:30 91.52 Thousands
Init. Claims ETA Weekly 8:30 17.60 Thousands
Durable Census Monthly 8:30 2.71 Percentage change mom
Emp. Cost BLS Monthly 8:30 0.19 Percentage change mom
Retail Census Monthly 8:30 0.54 Percentage change mom
Retail Ex. Auto Census Monthly 8:30 0.41 Percentage change mom
GDP (advance) BEA Quarterly 8:30 0.73 Percentage change qoq, ar
CPI BLS Monthly 8:30 0.12 Percentage change mom
Core CPI BLS Monthly 8:30 0.09 Percentage change mom
PPI BLS Monthly 8:30 0.40 Percentage change mom
Core PPI BLS Monthly 8:30 0.25 Percentage change mom
Hourly Earn. BLS Monthly 8:30 0.15 Dollars per hour
Unemployment BLS Monthly 8:30 0.14 Percent
FOMC Fed 8 per year 14:15∗ 8.42 Basis points

(*) We incorporate some minor deviations of timing to accommodate FOMC announcement times.

Notes: Acronyms for the sources are as follows: BEA (Bureau of Economic Analysis), BLS (Bureau
of Labor Statistics), Census (Bureau of the Census), ETA (Employment and Training Administration),
Fed (Federal Reserve Board of Governors). Acronyms of the units are: mom (month-on-month), qoq
(quarter-on-quarter) and ar (annualized rate). Standard deviations are for the sample 1992-2018. For the
FOMC, the sample is 1992-2007.
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To calculate the macroeconomic data release surprises used in the study we proceed as
follows. Let Rj,t be the released value of a variable j at time t. Let Ej,t be the expectation
(or the survey) of this release. Then the surprise is defined as:

Sj,t = Rj,t − Ej,t

Then we standardize the surprises so that units are comparable across different types of
announcements and coefficients capture per standard deviation effects:

sj,t =
Sj,t
σSj

where σSj is the standard deviation of the surprise for the announcement type j. For
expectations, we use the median prediction from the survey conducted by MMS/Action
Economics on Friday before the release.

Monetary policy surprises are measured using intraday changes of Fed Funds Futures
implied yield changes around FOMC announcements, following the methodology of Kuttner
(2001).

For yields, our high-frequency data consist of 5-minute quotes of first Eurodollar (ED1),
fourth Eurodollar (ED4), 2-year, 5-year, 10-year and 30-year Treasury futures from Chicago
Mercantile Exchange (CME). Eurodollar futures prices are converted to interest rates by
subtracting the price of ED1 and ED4 from 100. We calculate 20-minute changes in future
prices around macroeconomic and FOMC releases:

∆Pj,d = Pj,d,t−5min − Pj,d,t+15min

where Pj,d is the futures price of an asset j ∈{2-year, 5-year, 10-year, 30-year} on the
day d of a specific announcement and t is the time of that announcement (e.g. 8:30am).
For Eurodollar futures, we use implied interest rates to calculate announcement window
changes. For the Treasury futures, we divide the price changes by the approximate duration
of the bonds and flip the sign to convert them to yield changes.
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B. Heteroskedasticity-Based Estimation Applied to OLS Residuals

An event study regression with a latent factor and no measurement error has the form:

yt = βst + γdtft + εt

where st = s∗t . In the usual event study setup, β can be separately identified by OLS run
on data from event days. The population residual of this regression is:

φEt = γft + εt

The counterpart for non-event days is:

φNEt = εt

We then have the following variance-covariance matrix for (φEt , st)
′ on event days:

ΩφE =

(
γ2 + σ2

ε 0
. σ2

s

)
The counterpart for non-event days is:

ΩφNE =

(
σ2
ε 0

0 0

)
Thus, the heteroskedasticity-based estimator for γ is given by

√
Ω̂φE

1,1 − Ω̂φNE
1,1 . Below we

show that this two-step estimation procedure produces similar coefficients to the one step
estimation we employed.

We demonstrate this point by considering FOMC announcements. To make sure that
our results are not influenced by the different number of observations, we drop the days
with at least one missing yield change. Then, we estimate equation (8) around FOMC
announcement days and compare the estimates of γ from the one-step estimation with that
of the two-step estimates:

ED1 ED4 2-year 5-year 10-year 30-year
Kalman Filter 2.10 6.07 4.50 5.17 3.62 2.04
Two-step 3.22 6.84 4.80 5.06 3.61 2.15

Notice that the estimated coefficients are close, implying that Kalman filter and the (two
step) heteroskedasticity-based estimates are similar. But the estimates are not exactly
equal. The Kalman filter takes into account the covariance between yield changes around
announcements, since the filter uses all assets at once. However, the two step estimation
is done asset by asset. Due to this information loss, coefficients are slightly different. The
two estimators would be numerically identical if we used just one asset.

The exercise above clearly shows that there is a need for a latent factor to explain yield
changes around announcements. However, one could directly compare the OLS residual
variances on announcement and non announcement days to see if the variance of residuals
around announcement days are larger than the non-announcement days. Table below shows
the results of this exercise:
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var(φEt ) var(φNEt ) var(φEt )− var(φNEt ) F-test stat

ED1 3.41 0.80 2.61 4.26***
ED4 11.61 1.96 9.65 5.93***
2-year 6.76 1.11 5.65 6.09***
5-year 9.49 1.58 7.91 5.97***
10-year 5.97 1.14 4.83 5.24***
30-year 2.84 0.66 2.18 4.29***

The second and third columns of the table show the variance of OLS residuals on all an-
nouncement and non-announcement days, respectively. The fourth column is the difference
between variances and the last column is the F-test statistic (the ratio between announce-
ment and non-announcement day variances of OLS residuals) testing for equal variances.
The table shows that the announcement day residual variance is larger (statistically sig-
nificant at 1% level) than the non-announcement day residual variance, which allows our
methodology to identify the latent factor. To make this more concrete, we calculate the
difference between announcement and non announcement day residual variance covariance
matrices and show that the estimated γ coefficients given in Table 3 can closely match the
difference in the variance covariance matrices.

Difference in Variance Covariance Matrices:
ED1 ED4 2-year 5-year 10-year 30-year

ED1 2.61
ED4 3.95 9.65
2-year 2.95 7.02 5.65
5-year 3.12 8.08 6.28 7.91
10-year 2.25 6.00 4.65 6.06 4.83
30-year 1.31 3.69 2.84 3.79 3.12 2.18
One factor representation as γγ′:

ED1 ED4 2-year 5-year 10-year 30-year
ED1 1.88
ED4 4.30 9.86
2-year 3.32 7.60 5.86
5-year 4.03 9.23 7.11 8.64
10-year 3.12 7.16 5.52 6.70 5.20
30-year 2.00 4.58 3.53 4.29 3.33 2.13
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C. OLS and Heteroskedasticity-based Estimators

We consider a general model which incorporates both measurement error and an unob-
servable latent factor, nesting both cases. The model is:

yt = βs∗t + γdtft + εt

st = s∗t + ηt

where yt is a log return or yield change (a scalar, without loss of generality), st is the
observed surprise, s∗t is the true headline surprise, dt is a dummy that is 1 on an announce-
ment day and 0 otherwise, ft is an iid N(0, 1) latent variable, and εt and ηt are processes
measuring noise in yields and measurement error of the headline surprise. We assume
that st, εt and ηt are iid, mutually uncorrelated, have mean zero, and variances σ2

∗, σ
2
ε

and σ2
η, respectively. To estimate β, the parameter of interest in event studies, using OLS

and identification through heteroskedasticity, we need the variance-covariance matrices for
event (ΩE) and non-event (ΩNE) windows:

ΩE =

(
β2σ2

∗ + γ2 + σ2
ε βσ2

∗

. σ2
∗ + σ2

η

)
, ΩNE =

(
σ2
ε 0

0 0

)
In this general model, the OLS estimate for β is:

β̂OLS =
[Ω̂E]1,2

[Ω̂E]2,2

and the identification through heteroskedasticity estimate of β is:

β̂HET =
[Ω̂E]1,1 − [Ω̂NE]1,1

[Ω̂E]1,2

Below we derive the OLS and heteroskedasticity-based estimates in four possible cases:

1. γ = 0, σ2
η = 0 This is the case where there is neither measurement error nor a latent

factor.

Since st = s∗t , the model simplifies to:

yt = βs∗t + εt

The variance-covariance matrices around event and non-event windows are as follows:

ΩE =

(
β2σ2

∗ + σ2
ε βσ2

∗
. σ2

∗

)
ΩNE =

(
σ2
ε 0

0 0

)
The OLS coefficient is given by:

βσ2
∗

σ2
∗

= β
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The heteroskedasticity-based estimate is given by:

β2σ2
∗ + σ2

ε − σ2
ε

σ2
∗

= β

In this case both estimates are consistent and should produce the same result.

2. γ = 0, σ2
η 6= 0

This case is the classical errors in variables problem for survey-based surprises that
Rigobon and Sack (2006) consider. Now the model takes the following form:

yt = βs∗t + εt

st = s∗t + ηt

Variance-covariance matrices around event and non-event windows are given as fol-
lows:

ΩE =

(
β2σ2

∗ + σ2
ε βσ2

∗
. σ2

s

)
ΩNE =

(
σ2
ε 0

0 0

)
The OLS coefficient is given by:

βσ2
∗

σ2
s

=
βσ2
∗

σ2
∗ + σ2

η

= β

(
1−

σ2
η

σ2
∗ + σ2

η

)
The heteroskedasticity-based estimator is given by:

β2σ2
∗ + σ2

ε − σ2
ε

βσ2
∗

= β

In this case OLS has attenuation bias but heteroskedasticity-based estimate is con-
sistent.

3. γ 6= 0, σ2
η = 0

In this case, since st = s∗t the model takes the following form:

yt = βs∗t + γdtft + εt

The model implied variance-covariance matrices around event and non-event windows
are given by:

ΩE =

(
β2σ2

∗ + γ2 + σ2
ε βσ2

∗
. σ2

∗

)
ΩNE =

(
σ2
ε 0

0 0

)
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The OLS coefficient is given by:
βσ2
∗

σ2
∗

= β

Using the variance-covariance matrices we can derive the heteroskedasticity-based
estimator:

β2σ2
∗ + γ2 + σ2

ε − σ2
ε

βσ2
∗

= β +
γ2

βσ2
∗

= β

(
1 +

γ2

β2σ2
∗

)
This time OLS is consistent and heteroskedasticty-based estimate is increased in
absolute value due to the variance of the latent factor. The paper shows that this is
the relevant case.

4. γ 6= 0, σ2
η 6= 0

Now we are back to the general model:

yt = βs∗t + γdtft + εt

st = s∗t + ηt

Event and non-event window variance-covariance matrices are given as follows:

ΩE =

(
β2σ2

∗ + γ2 + σ2
ε βσ2

∗
. σ2

s

)
ΩNE =

(
σ2
ε 0

0 0

)
Using the event window variance covariance matrix, we derive the OLS coefficient:

βσ2
∗

σ2
s

=
βσ2
∗

σ2
∗ + σ2

η

= β

(
1−

σ2
η

σ2
∗ + σ2

η

)

The heteroskedasticity-based estimate is given as follows:

β2σ2
∗ + γ2 + σ2

ε − σ2
ε

βσ2
∗

= β +
γ2

βσ2
∗

= β

(
1 +

γ2

β2σ2
∗

)
The table below summarizes the four cases and their implications for the coefficients:

Case β̂OLS → β̂HET →
1. γ = 0, σ2

η = 0 β β

2. γ = 0, σ2
η 6= 0 β(1− σ2

η

σ2
∗+σ

2
η
) β

3. γ 6= 0, σ2
η = 0 β β(1 + γ2

β2σ2
∗
)

4. γ 6= 0, σ2
η 6= 0 β(1− σ2

η

σ2
∗+σ

2
η
) β(1 + γ2

β2σ2
∗
)
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In the paper, we rule out cases 1, 2 and 4. Furthermore, if the interpretation offered
by case 3 is correct, the heteroskedasticity-based estimator should provide an estimate
approximately equal to the sum of the OLS event study estimate and the variation caused
due to the unobservable component of the news. We check this in the table below. Here
γ2 is identified following the methodology in Appendix B. The OLS estimates for the
announcements differ from Table 1 because days with multiple releases are dropped. It is
striking that the sum in all cases is about equal to the heteroskedasticity-based estimator.
The difference (for some coefficients) is caused by small sample issues (verified by a Monte
Carlo exercise) and they are economically insignificant. This validates that the extra term
in the heteroskedasticity-based estimator is indeed the unobserved news effect and that this
estimator finds the combined effect of the headline surprise and the latent factor.
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D. Identification and the Kalman Filter

In this section we consider a model with a single latent factor and show how the model
is identified. Consider the model given in equation (7):

yt = β′st + γdtft + εt

where yt is an n× 1 vector of returns or yield changes, st is a K × 1 vector of surprises in
macroeconomic or monetary policy announcements, which are observed without error, dt
is a dummy that is 1 if there is an announcement in that window or 0 otherwise, ft is an
iid N(0, σ2

f ) latent variable that is common to all releases, β is a K × n matrix of loadings
on the observable surprises, γ is an n× 1 vector of loadings on the latent factor, and εt is
iid with mean zero and diagonal variance-covariance matrix of Σε.

As discussed in the text, we uncover ft using Kalman filter, which is estimated via
maximum likelihood. The log-likelihood function for this model can be written as:

l(θ) = −1

2
ΣT
t=11(dt = 1){(yt − β′st)′(Σε + γγ′)−1(yt − β′st) + log(|Σε + γγ′|)}

+ 1(dt = 0){y′tΣ−1ε yt + log(|Σε|)}

where 1(.) is an indicator function and θ is the vector of parameters to be estimated.
Note that, given the number of assets n, the log-likelihood function implies a system of n
equations. With these n equations, one needs to identify the coefficients in β and γ, the
variances in Σε, and σ2

f . However, without further restrictions, we can clearly only identify
γ up to scale. Hence to be able to identify γ we impose the identifying restriction that σ2

f

is unity. We also normalize one element of γ to be positive (say the first, without loss of
generality). We explain this below.

To show identification, the expected log-likelihood has a unique maximum satisfying
the following equations:

1. For β:

E[1(dt = 1)st ⊗ (Σε + γγ′)−1(yt − β′st)] = 0

∴ vec
(
(Σε + γγ′)−1E[1(dt = 1)(yt − β′st)s′t]

)
= 0

∴ E[1(dt = 1)(yt − β′st)s′t] = 0

∴ β = E(1(dt = 1)sts
′
t)
−1E(1(dt = 1)sty

′
t)

where the second line uses vec(ABC) = (C ′⊗A)vec(B). Last condition implies that
the maximum likelihood estimate of β should be the same as OLS estimates that are
estimated from announcement days only.

2. For Σε:
Σε = E(y′tyt1(dt = 0))

3. For γ:
γγ′ = E((yt − β′st)′(yt − β′st)1(dt = 1))− Σε

Here the parameters are identified as long as one can recover γ from γγ′, which
requires the sign of one element of γ is normalized to be positive.
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Note that this identification scheme is valid even if yt is a scalar. In this case, the condition
for γ reduces to:

γ2 = E((yt − β′st)21(dt = 1))− σ2
ε

where σ2
ε is the variance of the noise. For a non-degenerate distribution of dt, one can

recover γ using the Kalman filter as long as the latent factor is heteroskedastic and the
noise is homoskedastic. Importantly, yield covariances are not needed to identify γ.

The Kalman filter gives a recipe for computing the log-likelihood and obtaining an
estimate of the latent factor. It is a non-standard application of the Kalman filter because
equation (7) is the measurement equation, but the transition equation is degenerate as the
latent factor is simply iid.

The updating equations of the Kalman filter specify that the estimate of the factor as
of time t is:

ft|t = γ′F−1t vtdt

with variance:
Pt|t = 1− γ′F−1t γdt

where Ft = (γγ′dt + Σε)
−1 and vt = yt − β′st. The prediction equations are degenerate as

the density of the factor at time t+ 1 conditional on data at time t is simply normal with
mean zero and variance 1. The log-likelihood is then given by:

l(θ) = −T
2

log(2π)− 1

2
ΣT
t=1 log |Ft| −

1

2
ΣT
t=1v

′
tF
−1
t vt.
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E. Response of 10 Industry Sorted Portfolio Returns to Non-farm Payroll
Surprises and the Latent Factor
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Figure A1: Time-varying response of 10 industry sorted portfolio returns to non-farm payroll surprise
obtained from estimating equation (11). Sample is from 1994 to 2018. Return data are from Kenneth
French’s Data Library.
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Figure A2: Time-varying response of 10 industry sorted portfolio returns to the latent factor obtained
from estimating equation (12). Sample is from 1994 to 2018. Return data are from Kenneth French’s Data
Library.
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F. Nonlinear Responses

ED1 ED4 2-year 5-year 10-year 30-year

Core CPI×(Core CPI>0) 0.94∗∗∗ 2.02∗∗∗ 1.47∗∗∗ 1.92∗∗∗ 1.62∗∗∗ 1.04∗∗∗

(0.16) (0.37) (0.28) (0.31) (0.25) (0.19)
Durable× (Durable>0) 0.31∗ 0.54∗ 0.47∗∗ 0.51∗∗ 0.34∗ 0.20

(0.16) (0.29) (0.24) (0.24) (0.20) (0.12)
Emp Cost× (Emp Cost>0) 0.25 1.02∗∗∗ 0.78∗∗ 1.05∗∗∗ 0.83∗∗∗ 0.46∗∗

(0.18) (0.41) (0.39) (0.45) (0.36) (0.22)
GDP×(GDP>0) 0.76∗∗∗ 1.56∗∗∗ 1.25∗∗∗ 1.59∗∗∗ 1.18∗∗∗ 0.62∗∗∗

(0.20) (0.45) (0.24) (0.44) (0.36) (0.25)
Claims×(Claims>0) −0.27∗∗∗ −0.59∗∗∗ −0.50∗∗∗ −0.56∗∗∗ −0.46∗∗∗ −0.29∗∗∗

(0.07) (0.10) (0.08) (0.09) (0.08) (0.05)
Non-farm×(Non-farm>0) 3.38∗∗∗ 6.57∗∗∗ 5.43∗∗∗ 6.30∗∗∗ 4.66∗∗∗ 2.96∗∗∗

(0.47) (0.87) (0.65) (0.71) (0.60) (0.41)
Core PPI×(Core PPI>0) 0.33 0.42 0.40 0.69∗∗ 0.68∗∗∗ 0.49∗∗∗

(0.21) (0.32) (0.29) (0.33) (0.25) (0.19)
Retail×(Retail>0) 0.13 0.56∗∗∗ 0.45∗∗∗ 0.43∗∗ 0.29 0.07

(0.10) (0.19) (0.17) (0.20) (0.18) (0.13)
Unemp×(Unemp>0) −1.27∗∗∗ -2.49∗∗∗ −1.74∗∗∗ −1.84∗∗∗ −1.33∗∗∗ −0.71∗∗

(0.49) (0.65) (0.52) (0.60) (0.48) (0.28)
Hourly Earn.×(Hourly Earn.>0) 0.47 1.81∗∗∗ 1.71∗∗∗ 1.98∗∗∗ 1.71∗∗∗ 1.04∗∗∗

(0.38) (0.68) (0.53) (0.64) (0.51) (0.35)
PPI×(PPI>0) 0.21 0.49∗ 0.35 0.36 0.33 0.31∗∗

(0.16) (0.29) (0.26) (0.30) (0.22) (0.16)
Ret ex. Auto×(Ret ex. Auto>0) 0.46∗∗∗ 1.05∗∗∗ 0.90∗∗∗ 1.03∗∗∗ 0.83∗∗∗ 0.63∗∗∗

(0.12) (0.31) (0.28) (0.29) (0.24) (0.17)
CPI×(CPI>0) -0.22 -0.42 -0.31 -0.07 -0.03 0.10

(0.16) (0.38) (0.26) (0.36) (0.28) (0.21)
FOMC×(FOMC>0) 0.53∗∗∗ 0.37 0.22 0.17 0.04 -0.03

(0.10) (0.26) (0.16) (0.15) (0.11) (0.06)
Core CPI×(Core CPI<0) 0.53∗∗∗ 1.04∗∗∗ 0.94∗∗∗ 1.25∗∗∗ 0.96∗∗∗ 0.61∗∗∗

(0.21) (0.30) (0.24) (0.31) (0.24) (0.17)
Durable×(Durable<0) 0.48∗∗∗ 0.97∗∗∗ 0.96∗∗∗ 1.21∗∗∗ 0.88∗∗∗ 0.58∗∗∗

(0.14) (0.26) (0.20) (0.22) (0.17) (0.12)
Emp Cost×(Emp Cost<0) 1.03∗∗∗ 2.00∗∗∗ 1.23∗∗∗ 1.85∗∗∗ 1.42∗∗∗ 0.98∗∗∗

(0.28) (0.69) (0.54) (0.64) (0.48) (0.34)
GDP×(GDP<0) 0.51∗∗∗ 1.68∗∗∗ 1.10∗∗∗ 1.57∗∗∗ 1.24∗∗∗ 0.82∗∗∗

(0.16) (0.47) (0.29) (0.35) (0.28) (0.18)
Claims×(Claims<0) −0.35∗∗∗ −0.82∗∗∗ −0.67∗∗∗ −0.76∗∗∗ −0.61∗∗∗ −0.36∗∗∗

(0.06) (0.12) (0.08) (0.09) (0.07) (0.05)
Non-farm×(Non-farm<0) 2.46∗∗∗ 4.98∗∗∗ 3.84∗∗∗ 4.56∗∗∗ 3.50∗∗∗ 2.04∗∗∗

(0.48) (0.74) (0.60) (0.68) (0.50) (0.32)
Core PPI×(Core PPI<0) 0.80∗∗∗ 1.38∗∗∗ 1.11∗∗∗ 1.25∗∗∗ 1.03∗∗∗ 0.82∗∗∗

(0.20) (0.34) (0.20) (0.23) (0.18) (0.14)
Retail×(Retail<0) 0.90∗∗ 1.04∗ 0.88∗ 0.94∗ 0.69 0.39

(0.39) (0.62) (0.49) (0.54) (0.42) (0.29)
Unemp×(Unemp<0) −1.19∗∗∗ −1.60∗∗∗ −1.29∗∗∗ −1.41∗∗∗ −0.94∗∗∗ −0.53∗∗

(0.37) (0.57) (0.42) (0.46) (0.34) (0.24)
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Hourly Earn.×(Hourly Earn.<0) 1.21∗∗∗ 1.81∗∗∗ 1.31∗∗∗ 2.07∗∗∗ 1.54∗∗∗ 0.93∗∗∗

(0.43) (0.62) (0.47) (0.57) (0.46) (0.32)
PPI×(PPI<0) 0.05 -0.05 -0.05 0.06 0.16 0.04

(0.18) (0.27) (0.22) (0.24) (0.20) (0.14)
Ret ex. Auto×(Ret ex. Auto<0) 0.05 0.46 0.65∗ 1.05∗∗∗ 0.82∗∗∗ 0.64∗∗∗

(0.27) (0.44) (0.38) (0.42) (0.34) (0.23)
CPI×(CPI<0) 0.20 0.24 0.13 0.27 0.32 0.29∗∗

(0.16) (0.31) (0.22) (0.25) (0.21) (0.15)
FOMC×(FOMC<0) 0.58∗∗∗ 0.45∗∗∗ 0.29∗∗∗ 0.14∗ 0.03 -0.02

(0.09) (0.11) (0.10) (0.08) (0.05) (0.02)
R2 0.41 0.37 0.37 0.36 0.35 0.31

Table A2: Coefficient estimates from OLS regressions of yield changes onto positive headline surprises

and negative headline surprises. Standard errors in parentheses (∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01).

Macroeconomic surprises are normalized by their respective standard deviations. Monetary policy surprises

are in basis points. The sample is 1992-2018 for macroeconomic announcements, 1992-2007 for monetary

policy surprises.
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ED1 ED4 2-year 5-year 10-year 30-year

Core CPI 0.73∗∗∗ 1.51∗∗∗ 1.19∗∗∗ 1.58∗∗∗ 1.29∗∗∗ 0.82∗∗∗

(0.11) (0.22) (0.17) (0.21) (0.16) (0.12)
Durable 0.43∗∗∗ 0.81∗∗∗ 0.79∗∗∗ 0.94∗∗∗ 0.67∗∗∗ 0.43∗∗∗

(0.10) (0.19) (0.15) (0.16) (0.13) (0.09)
Emp Cost 0.70∗∗∗ 1.58∗∗∗ 1.04∗∗∗ 1.51∗∗∗ 1.17∗∗∗ 0.76∗∗∗

(0.18) (0.43) (0.35) (0.41) (0.31) (0.22)
GDP 0.60∗∗∗ 1.57∗∗∗ 1.15∗∗∗ 1.55∗∗∗ 1.19∗∗∗ 0.70∗∗∗

(0.12) (0.33) (0.22) (0.29) (0.23) (0.16)
Claims −0.30∗∗∗ −0.70∗∗∗ −0.59∗∗∗ −0.66∗∗∗ −0.53∗∗∗ −0.32∗∗∗

(0.04) (0.08) (0.06) (0.06) (0.05) (0.04)
Non-farm 2.90∗∗∗ 5.77∗∗∗ 4.62∗∗∗ 5.40∗∗∗ 4.06∗∗∗ 2.49∗∗∗

(0.27) (0.47) (0.36) (0.42) (0.34) (0.22)
Core PPI 0.52∗∗∗ 0.89∗∗∗ 0.71∗∗∗ 0.95∗∗∗ 0.85∗∗∗ 0.65∗∗∗

(0.11) (0.20) (0.16) (0.18) (0.14) (0.11)
Retail 0.65∗∗∗ 0.96∗∗∗ 0.78∗∗∗ 0.86∗∗∗ 0.67∗∗∗ 0.37∗∗∗

(0.21) (0.37) (0.29) (0.31) (0.24) (0.16)
Unemp −1.27∗∗∗ −2.05∗∗∗ −1.51∗∗∗ −1.61∗∗∗ −1.10∗∗∗ −0.60∗∗∗

(0.23) (0.37) (0.28) (0.33) (0.27) (0.17)
Hourly Earn. 0.83∗∗∗ 1.80∗∗∗ 1.49∗∗∗ 2.02∗∗∗ 1.62∗∗∗ 0.98∗∗∗

(0.24) (0.34) (0.27) (0.34) (0.27) (0.18)
PPI 0.13 0.21 0.15 0.20 0.24∗ 0.16∗

(0.10) (0.17) (0.14) (0.16) (0.13) (0.09)
Ret. Ex Auto 0.19 0.66∗∗ 0.72∗∗∗ 0.95∗∗∗ 0.74∗∗∗ 0.57∗∗∗

(0.14) (0.27) (0.22) (0.24) (0.19) (0.13)
CPI 0.01 -0.08 -0.08 0.10 0.14 0.19

(0.10) (0.22) (0.15) (0.19) (0.15) (0.11)
FOMC 0.58∗∗∗ 0.54∗∗∗ 0.32∗∗∗ 0.23∗∗ 0.09 0.00

(0.07) (0.15) (0.10) (0.09) (0.07) (0.04)
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(Core CPI)2 0.11 0.22∗ 0.10 0.18 0.18 0.11
(0.08) (0.13) (0.12) (0.14) (0.11) (0.08)

(Durable)2 −0.06∗ −0.09∗ −0.11∗∗ −0.14∗∗∗ −0.11∗∗∗ −0.07∗∗∗

(0.03) (0.05) (0.05) (0.05) (0.04) (0.02)
(Emp Cost)2 −0.18∗∗∗ -0.23 -0.08 -0.20 -0.15 -0.13

(0.07) (0.17) (0.16) (0.17) (0.13) (0.09)
(GDP)2 0.13∗ 0.07 0.10 0.07 0.03 -0.02

(0.07) (0.19) (0.13) (0.16) (0.12) (0.08)
(Claims)2 0.01 0.03 0.02 0.02 0.02 0.01

(0.02) (0.03) (0.02) (0.03) (0.02) (0.01)
(Non-farm)2 0.23∗ 0.40∗∗ 0.38∗∗ 0.37∗ 0.23 0.18

(0.13) (0.20) (0.17) (0.21) (0.18) (0.11)
(Core PPI)2 −0.11∗ -0.14 −0.14∗∗ -0.09 -0.05 -0.05

(0.06) (0.09) (0.05) (0.06) (0.05) (0.04)
(Retail)2 −0.07∗∗∗ -0.06 -0.04 −0.07∗∗ −0.06∗∗ −0.05∗∗∗

(0.02) (0.04) (0.03) (0.03) (0.02) (0.02)
(Unemp)2 -0.04 -0.15 -0.01 0.02 0.02 0.02

(0.16) (0.21) (0.16) (0.17) (0.13) (0.08)
(Hourly Earn.)2 -0.21 -0.04 0.05 -0.06 0.03 0.04

(0.18) (0.25) (0.20) (0.24) (0.19) (0.14)
(PPI)2 0.06 0.10 0.10 0.08 0.03 0.04

(0.04) (0.08) (0.07) (0.08) (0.06) (0.04)
(CPI)2 0.05 0.11 0.05 0.01 0.02 0.02

(0.06) (0.10) (0.09) (0.09) (0.07) (0.04)
(Ret Ex Auto)2 -0.06 -0.07 -0.07 -0.03 -0.05 -0.01

(0.05) (0.11) (0.07) (0.11) (0.08) (0.06)
(FOMC)2 0.00 0.00 0.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

R2 0.41 0.37 0.38 0.37 0.35 0.31

Table A3: Coefficient estimates from OLS regressions of yield changes onto headline surprises and squared

headline surprises. Standard errors in parentheses (∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01). Macroeconomic sur-

prises are normalized by their respective standard deviations. Monetary policy surprises are in basis points.

The sample is 1992-2018 for macroeconomic announcements, 1992-2007 for monetary policy surprises.
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G. Forward Rate Decomposition
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Figure A3: Response of the instantaneous forward rates and their components to the non-farm payroll
headline surprise and the latent employment factor. The sample is 1992-2018. These are obtained by
regression of changes in forward rates and their components onto the headline surprise (top panel) and
latent employment factor (bottom panel). Dashed lines represent 95% confidence intervals. This represents
the same Figure as Figure 5 of the paper, except for the inclusion of confidence intervals.
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