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Abstract

We present proofs and supplementary results for “The Reversal Interest Rate.” Appendix A

provides a definition and characterization of the model’s equilibrium. Appendix B proves all of

the main results. Appendix C provides additional discussion of issues in Section IV of the paper

as well as sources for our benchmark parameters and robustness checks comparing the model’s

behavior to that of a standard New Keynesian model. Appendix D gives micro-foundations for

the formulation of monopolistic competition among banks that we use in the setting of Section

III. Appendix E micro-founds the process followed by bank net worth in the quantitative section.
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A General equilibrium

A.1 Formal treatment of standard model ingredients

We begin by setting up the problems faced by monopolistic retailers and final goods pro-

ducers, which were omitted from the main text. There is a representative final goods producer

that aggregates differentiated varieties supplied by monopolistic retailers k ∈ [0, 1] (at prices P kt )

in order to produce output, which it sells at a competitive price Pt. Its production function is

Yt =

(
1∫
0

Y k
t

ε−1
ε dk

) ε
ε−1

, where ε > 1 is the elasticity of substitution. Thus, the final goods pro-

ducer’s problem is

max
Y k
t

Pt

( 1∫
0

Y k
t

ε−1
ε dk

) ε
ε−1

−
1∫

0

P kt Y
k
t dk. (A.1)

Accordingly, demand for a variety k with price P kt is
(Pk

t
Pt

)−ε
Yt, where Pt is the usual CES price

index.

Retailer k’s production function is Y k
t = Xk

t , where X
k
t denotes the quantity of intermediate

inputs. Retailers set their prices P kt subject to Rotemberg (1982) adjustment costs (parameterized

by θ > 0), taking final goods producers’ demand Y k
t =

(Pk
t
Pt

)−ε
Yt as given. Their problem is

max
Pk
t

∞∑
t=0

βtΛt

((P kt
Pt

)1−ε
Yt − P It

(P kt
Pt

)−ε
Yt −

θ

2

( P kt
P kt−1

− 1)2Yt

)
. (A.2)

A.2 Optimality conditions

We now provide a list of optimality conditions that must hold in equilibrium.

Households: The first-order condition for the household’s consumption decision is the Euler

equation

1 = β
1 + ĩt

1 + πt+1

Λt+1

Λt
, (A.3)

where 1 + πt+1 = Pt+1

Pt
denotes inflation from t to t+ 1, ĩt = max{it, 0} denotes the rate at which

households save, and

Λt = (Ct − hCt−1)
−σ − βh(Ct+1 − hCt)

−σ (A.4)

is the household’s marginal utility of consumption. The household’s labor supply HS
t satisfies

χHS
t
φ
=
Wt

Pt
Λt. (A.5)

The first-order conditions for the household’s deposit and cash holdings are

ζΦ′(Lt)
∂Lt
∂Dt

≤ βΛt+1(1 + iDt )− Λt, (A.6)
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ζΦ′(Lt)
∂Lt
∂Mt

≤ βΛt+1 − Λt, (A.7)

which hold with equality when the household holds a positive quantity of the corresponding asset.

Intermediate goods firms and investment: Here we describe the solution to Problem (3)

as well as the corresponding problem for non-bank-dependent firms. It will be convenient to define

αK ≡ αν, αL ≡ (1 − α)ν in describing intermediate goods firms’ optimality conditions. The user

cost of capital faced by a firm of type z ∈ {b, nb} is defined as

1 + rk,zt =
1 + izt

1 + πt+1
QK,zt − (1− δ)QK,zt+1, (A.8)

where izt ∈ {iLt , it} depending on whether the firm is bank-dependent or non-bank-dependent.

Capital demand for firms of type z is

Kz
t =

(
αK

1− αL

Az
1

1−αLZKt

1 + rk,zt−1

) 1−αL
1−αK−αL

, (A.9)

where ZKt is defined as

ZKt ≡ (1− αL)

(
P It
Pt

) 1
1−αL

(
αL

Wt/Pt

) αL
1−αL

. (A.10)

Labor demand can then be derived as

Hz
t =

(
αLA

zP It /Pt
Wt/Pt

) 1
1−αL

Kz
t

αK
1−αL . (A.11)

From these first-order conditions, it is possible to write firms’ loan demand in terms of the

nominal loan rate as

Lt(i
L
t ) = QK,bt

(
αK

1− αL

Ab
1

1−αLZKt+1

1+iLt
1+πt+1

QK,bt − (1− δ)QK,bt+1

) 1−αL
1−αL−αK

. (A.12)

Banks: Banks’ optimal loan and deposit rates are given by

iLt = it +
1

εLt
+
∂ΨL(Nt, Lt)

∂Lt
− ∂ΨD(QBt B

L
t , Dt)

∂(QBt B
L
t )

, (A.13)

iDt = it −
1

εDt
+
∂ΨD(QBt B

L
t , Dt)

∂(QBt B
L
t )

+
∂ΨD(QBt B

L
t , Dt)

∂Dt
, (A.14)

where again εLt , ε
D
t denote the semi-elasticities of loan and deposit rates with respect to iLt , i

D
t ,

respectively. Banks’ long-term bond demand is pinned down by their balance sheet constraint (4).
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Monopolistic retailers: Retailers set their prices Pt to solve

Λt

(
(1−ε)

(P kt
Pt

)−ε Yt
Pt

−εP
I
t

Pt

(P kt
Pt

)−(ε+1)
Yt−θ

( P kt
P kt−1

−1
) Yt

P kt−1

)
= −βΛt+1θ

(Pk,t+1

P kt
−1
) Yt
P kt

2 . (A.15)

Capital goods producers: The first-order condition for capital producers of type z ∈ {b, nb}
is

ΛtQ
z
t

(
1− Ξ(

Izt+1

Izt
)−

Izt+1

Izt
Ξ′(

Izt+1

Izt
)

)
= Λt − βΛt+1Q

z
t+1

(Izt+1

Izt

)2
Ξ′(

Izt+2

Izt+1

). (A.16)

Asset pricing: The Fisher equation implies that the real rate 1 + rt satisfies

1 + rt =
1 + it

1 + πt+1
. (A.17)

The long-term bonds held by banks are priced according to

1
τ + (1− 1

τ )Pt+1Q
B
t+1

PtQBt
= 1 + it. (A.18)

which can be multiplied by Pt
Pt+1

= 1
1+πt+1

to obtain the no-arbitrage relationship in real terms,

1
τ

1
1+πt+1

+ (1− 1
τ )Q

B
t+1

QBt
= 1 + rt.

A.3 Government policy

The central bank sets the nominal rate it according to (9) and supplies cash elastically. The

government sets transfers TGt to households to satisfy its budget constraint. Apart from taxes,

government revenue comes from short-term and long-term bond issuance as well as seignorage, so

TGt = Bt −
1 + it−1

1 + πt
Bt−1 +QBt (B

L
t − (1− 1

τ
)BL

t−1)−
1

τ

Pt−1

Pt
BL
t−1 +

Mt −Mt−1

Pt
. (A.19)

A.4 Market-clearing, aggregation, and consistency conditions

Below we list market-clearing, aggregation, and consistency conditions.

Goods market: The aggregate resource constraint is

Yt =

( 1∫
0

Xk
t

ϵ−1
ϵ dk

) ϵ
ϵ−1

= Ct + Ibt + Inbt . (A.20)

The costs ΨL(Nt, Lt) and ΨD(QBt B
L
t , Dt) paid by banks and firms’ price adjustment costs are

rebated back to households, so they do not enter in the aggregate resource constraint.
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The aggregate price level Pt satisfies

Pt =

( 1∫
0

P kt
1−ε

dk

) 1
1−ε

. (A.21)

Labor market: The labor market clearing condition is standard:

HS
t = ξHD,b

t + (1− ξ)HD,nb
t . (A.22)

Capital market: Firms’ capital demand must equal the total quantity of capital of each type,

ξKD,b
t = Kb

t , (1− ξ)KD,nb
t = Knb

t . (A.23)

The capital stock of each type z ∈ {b, nb} evolves according to

Kz
t+1 = (1− δ)Kz

t + Izt+1

(
1− Ξ(

Izt+1

Izt
)

)
. (A.24)

Intermediate goods market: The total supply of intermediate goods must equal the demand

by monopolistic retailers:

1∫
0

Xk
t dk = ξAb

((
KD,b
t

)α(
HD,b
t

)1−α)ν
+ (1− ξ)Anb

((
KD,nb
t

)α(
HD,nb
t

)1−α)ν
. (A.25)

Loan and bond markets: The quantity of loans supplied by banks must be equal to bank-

dependent firms’ capital demand:

Lt = Lt(i
L
t ) = QK,bt KD,b

t+1. (A.26)

The central bank supplies short-term and long-term bonds elastically to clear the corresponding

markets.

Deposit market: The quantity of deposits demanded by households is consistent with their

demand function:

DD
t = Dt(i

D
t , it). (A.27)

A.5 Definition of equilibrium

In this section, we define a general equilibrium of the economy in Section I. The equilibrium

for the extension of the model that we use for quantitative analysis, in Section III, is defined

analogously.

Definition A.1. A perfect foresight equilibrium consists of sequences {Ct, HS
t ,Mt, D

D
t , B

H
t },

{HD,b
t , HD,nb

t ,KD,b
t ,KD,nb

t , Ibt , I
nb
t }, {Lt, BL

t , i
D
t , i

L
t , Nt}, {Ibt , Inbt ,Kb

t ,K
nb
t , Yt}, {{P kt }k∈[0,1], {Xk

t }k∈[0,1]},
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{D∗
t (i

D, i), L∗
t (i

L)}, and {Pt,Wt, Q
K
t , P

I
t ,Λt,Π

F
t ,Π

B
t , Tt, Q

B
t , it, T

G
t } such that

� Decisions Ct, H
S
t ,Mt, D

D
t , B

H
t solve the household’s problem, taking Wt, Tt, it, i

D
t as given,

and deposit demand Dt(i
D
t , it) and marginal utility Λt are consistent with the solution to the

household’s problem;

� Decisions HD,b
t ,Kb

t (HD,nb
t ,Knb

t ) solve bank-dependent (non-bank-dependent) intermediate

firms’ problem, taking Wt, i
L
t , it, P

I
t as given, and loan demand Lt(i

L
t ) is consistent with the

solution to intermediate firms’ problem (Equation 3);

� Decisions iDt , i
L
t , B

L
t solve the bank’s problem, taking it, Dt(i

D
t , it), Lt(i

L
t ),Λt, Q

B
t as given, and

bank net worth Nt follows the law of motion (5), and ΠBt is equal to aggregate bank dividends

given these decisions;

� Investment Izt solves the problem of capital goods producers of type z ∈ {b, nb}, taking the

price of capital QK,zt and the stochastic discount factor Λt as given, and the capital stock of

each type evolves according to (A.24);

� Prices {P kt }k∈[0,1] and intermediate goods demand {Xk
t }k∈[0,1] solve monopolistically compet-

itive retailers’ problem, taking prices P It , Pt and the stochastic discount factor Λt as given,

and the price level Pt satisfies (A.21);

� ΠFt is equal to aggregate profits of monopolistic retailers and capital producers given their

decisions, and bank dividends are equal to a fraction γ of net worth, ΠBt = γNt;

� Real rates satisfy the Fisher equation (A.17), and long-term bond prices QBt satisfy the no-

arbitrage condition (A.18);

� Monetary policy is set according to (9) and government transfers TGt are set to satisfy the

government’s intertemporal budget constraint (A.19);

� Total transfers Tt are equal to government transfers TGt plus the costs ΨL(Lt, Nt)+ΨD(QBt B
L
t , Dt)

incurred by banks as well as the price adjustment costs incurred by retailers;

� Banks’ initial net worth N0 satisfies (7);

� All markets clear.

A.6 Quantitative extension

In this section, we describe the modifications to the equilibrium equations in the quantitative

model of Section III, which come from choosing specific functional forms and making the modified

assumptions described in the text.
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Households: First, we add the constraintDt+Mt ≤ L to the household’s problem. Households

then discount at the risk-free rate, so the Euler equation reads

1 = β
1 + it

1 + πt+1

Λt+1

Λt
. (A.28)

Deposits and cash are perfect substitutes, and banks never optimally choose to set a deposit

rate less than zero in equilibrium. Without loss of generality, we assume that when households are

indifferent between holding cash and deposits, they choose to invest exclusively in deposits. Their

deposit holdings are therefore chosen according to (A.6), which becomes

DD
t = L∗ − Λt

ζ
max

{
1− 1 + iDt

1 + it
, 0

}
, (A.29)

where the Euler equation (A.28) is used to replace β Λt+1

Λt
= 1+πt+1

1+it
.

Intermediate goods firms: The optimality conditions for intermediate goods firms remain

identical to those described in Section A.2. It is then possible to write the output produced by

firms of type z ∈ {b, nb} as

Y z
t = Az(KD,z

t

α
HD,z
t

1−α
)ν . (A.30)

Total output can then be written simply as

Yt = (1− ξ)Y nb
t + ξY b

t , (A.31)

since, in equilibrium, all monopolistic retailers will set identical prices and produce the same quan-

tity of goods.

Banks: Banks set their loan and deposit rates according to (??) and (??), respectively. Their

net worth evolves according to

Nt+1 = (1− γ)

(
CGt+1 +NIIt +Nt

)
+ N̂ , (A.32)

where

CGt ≡
(
(1− 1

τ )Q
B
t + 1

τ
1

1+πt

QBt−1

− (1 + rt−1)

)
QBt−1B

L
t−1 (A.33)

denotes capital gains at time t,1 and NIIt denotes net interest income at t. Net interest income is

comprised of four components: the risk-free income on bank equity, profits from loan issuance ΠLt ,

profits from deposit issuance ΠDt , and marginal leverage costs ∆t multiplied by lending Lt:

NIIt =
( 1 + it
1 + πt

− 1
)
Nt +ΠLt +ΠDt −∆tLt, (A.34)

1Note that capital gains can be non-zero only at t = 0, when an unanticipated shock arrives.
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where profits are defined by

ΠLt =
iLt − it
1 + πt+1

Lt, (A.35)

and

ΠDt =
it + µD − iDt
1 + πt+1

Dt. (A.36)

The marginal costs of loan issuance are

∆t = κLmax

{
Lt
Nt

− L∗

N∗ , 0

}2

. (A.37)

In the text, we also refer to the dividends paid by banks as well as their returns on accounting

equity. The dividends Divt paid by banks are

Divt = CGt +NIIt−1 +Nt−1 −Nt, (A.38)

and accounting returns ROEt+1 between t and t+ 1 are therefore

ROEt+1 =
Divt+1 +Nt+1

Nt
. (A.39)

Capital goods producers: It is easier to work with the stock of capital and investment

normalized per firm in each sector z ∈ {b, nb},

K̃b
t ≡

Kb
t

ξ
, K̃nb

t ≡ Knb

1− ξ

and

Ĩbt ≡
Ibt
ξ
, Ĩnbt ≡ Inbt

1− ξ
.

With these normalizations, and the specification of adjustment costs Ξz(
Izt+1

Izt
) = κI

2

( Izt+1

Izt
− 1
)2
, the

first-order condition for capital goods producers of type z ∈ {b, nb} becomes

ΛtQ
K,z
t

(
1− κI

2
(
Ĩzt
Ĩzt−1

− 1)2 − κI
Ĩzt
Ĩzt−1

(
Ĩzt
Ĩzt−1

− 1)

)
= Λt − βΛt+1Q

K,z
t+1κ

I
( Ĩzt+1

Ĩzt

)2( Ĩzt+1

Ĩzt
− 1
)
, (A.40)

whereas the capital accumulation equation remains

K̃z
t+1 = (1− δ)K̃z

t + Ĩzt+1

(
1− κI

2

( Ĩzt+1

Ĩzt
− 1
)2)

. (A.41)
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The first-order condition can be re-written as an asset pricing equation,

QK,zt =
Λt − βκIΛt+1Q

K,z
t+1

( Ĩzt+2

Ĩzt+1

)2( Ĩzt+2

Ĩzt+1

− 1
)

Λt

(
1− κI

2

( Ĩzt+1

Ĩzt
− 1
)2 − κI

Ĩzt+1

Ĩzt

( Ĩzt+1

Ĩzt
− 1
)) . (A.42)

Aggregate investment can be written as

It ≡ Ibt + Inbt = ξĨbt + (1− ξ)Ĩnbt . (A.43)

Phillips curve: From monopolistic retailers’ optimal price-setting rule (A.15), it is possible to

derive the New Keynesian Phillips Curve, which (in logs) reads

log(1 + πt) =
ε− 1

θ
log

P It
Pt

+ β log(1 + πt+1). (A.44)

B Proofs

In this section, we prove all of the results stated in the text. We begin with the results related

to the solutions of the household and bank problems and then move on to the results characterizing

the properties of the reversal rate.

B.1 Household and bank optimization

Lemma 1 is the only result about the household’s problem that we must prove.

Proof of Lemma 1. Households’ deposit holdings are chosen by solving Problem 12. For it < 0,

holding cash strictly dominates holding safe bonds (since the function Φ(Lt) is non-decreasing and

Lt is increasing in real balances Mt). Thus, households always set Bt = 0, and the optimization

problem reduces to

max
Mt,Dt

ζΦ(L(Dt,Mt)) + βΛ∗((1 + iDt )Dt +Mt) s.t. Dt +Mt ≤ S∗, Mt, Dt ≥ 0.

Note that the policy rate it appears nowhere in this problem, so deposit demand D∗(iDt , it) must

be independent of it for it < 0.

We now solve the bank’s problem. We begin by proving:

Claim B.1. The solution to banks’ problem (6) coincides with the problem of maximizing net

interest income in each period t.

Proof. Consider a plan (iLt , i
D
t , Bt) that maximizes net interest income each period and another

arbitrary plan (̃iLt , ĩ
D
t , B̃t). Denote by {Nt}, {Ñt} the sequence followed by the bank’s net worth

under these two plans, respectively. Initial net worth in the bank’s problem is taken as given, so
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N0 = Ñ0. We show by induction that Nt ≥ Ñt implies Nt+1 ≥ Ñt+1. It follows that the plan

(iLt , i
D
t , Bt) is optimal, since the bank’s dividends are a fraction γ of its net worth in each period.

Suppose Nt ≥ Ñt. Using the balance sheet constraint (4), the problem of maximizing net

interest income in each period is equivalent to maximizing

(iLt − it)L
∗(iLt ) + (it − iDt )D

∗(iDt , it)−ΨL(Nt, L
∗(iLt ))−ΨD(Nt +D∗(iDt , it)− L∗(iLt ), D

∗(iDt , it)).

with respect to iLt and iDt . Then we have

Nt+1 = (1 + it)Nt + (iLt − it)L
∗(iLt ) + (iDt − it)D(iDt , it)

−ΨL(Nt, L
∗(iLt ))−ΨD(Nt +D(iDt , it)− L∗(iLt ), D

∗(iDt , it))

≥ (1 + it)Nt + (̃iLt − it)L
∗(̃iLt ) + (̃iDt − it)D(̃iDt , it)

−ΨL(Nt, L
∗(̃iLt ))−ΨD(Nt +D∗(̃iDt , it)− L∗(̃iLt ), D

∗(̃iDt , it))

≥ (1 + it)Ñt + (̃iLt − it)L
∗(̃iLt ) + (̃iDt − it)D(̃iDt , it)

−ΨL(Ñt, L
∗(̃iLt ))−ΨD(Ñt +D∗(̃iDt , it)− L∗(̃iLt ), D

∗(̃iDt , it)) = Ñt+1

The first inequality follows from the fact that (iLt , i
D
t , Bt) maximizes net interest income. The

second inequality follows from the facts that Nt ≥ Ñt by assumption and that both ΨL and

ΨD are decreasing in their first arguments. Hence, we have demonstrated that Nt ≥ Ñt implies

Nt+1 ≥ Ñt+1, as desired.

Next, we specialize to the setting of Section II.A. The Lagrangian of (13) can be written as

L = max
iL,iD,BL

iQBBL + iLL∗(iL)− iDD∗(iD, i)− ζ(L∗(iL) +QBBL −N −D∗(iD, i))

− λ(L∗(iL)− ψLN)− µ(ψDD∗(iD, i)−QBBL)

The first-order conditions are

(BL) : i = ζ − µ,

(iL) : iL = ζ +
1

εL
+ λ,

(iD) : iD = ζ − 1

εD
− µψD.

where εL, εD are the semi-elasticities of loan and deposit demand with respect to the loan and

deposit rate, respectively (as defined in the text).

The Lagrange multipliers λ and µ on the net worth and liquidity constraints are equal to

zero if and only if the respective constraints are slack. Otherwise, the multipliers are positive.

Of course, the bank’s balance sheet constraint always binds. The corresponding complementary

slackness conditions are λ(ψLN−L∗(iL)) = 0, µ(ψDD∗(iD, i)−QBBL) = 0. There are four regimes,
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corresponding to each possible configuration of binding constraints. We treat each in turn.

Unconstrained regime: When neither the net worth nor liquidity constraint binds, the solu-

tion to the bank’s problem is simply

iL = i+
1

εL
, iD = i− 1

εD
.

Both iL and iD are increasing in i. Therefore, in this regime, total lending is decreasing in the

policy rate (since loan demand is downward-sloping in iL) and independent of net worth.

Net worth constraint binds: When only the net worth constraint binds, the loan rate is

the solution to L∗(iL) = ψLN , and the deposit rate is set as in the unconstrained regime. Thus,

total lending is fully determined by bank net worth and is independent of the policy rate (holding

the level of net worth fixed). The policy rate affects lending only through its effect on net worth:
dL
di = ψL dNdi .

Liquidity constraint binds: It will be convenient to define the unconstrained optimal mark-

up on loans (mark-down on deposits) as

µL(iL) ≡ 1

εL(iL)
=
L(iL)
∂L(iL)
∂iL

, µD(iD, i) ≡ 1

εD(iD, i)
=
D(iD, i)
∂D(iD,i)
∂iD

,

where the partial derivatives are evaluated at iL and (iD, i), respectively. For the bank’s problem to

be guaranteed to have a unique solution, we require ∂µL

∂iL
< 0, ∂µ

D

∂iD
> 0. The optimization conditions

in this regime are

iD + µD(iD, i) = (1− ψD)(iL − µL(iL)) + ψDi,

L∗(iL) = N + (1− ψD)D∗(iD, i).

These equations imply

diD

di
=

∂L
∂iL

diL

di − dN
di − (1− ψD)∂D∂i

(1− ψD) ∂D
∂iD

,

(
(1− ψD)(1− ∂µL

∂iL
)−

1 + ∂µD

∂iD

(1− ψD) ∂D
∂iD

)
diL

di
= −

1 + ∂µD

∂iD

(1− ψD) ∂D
∂iD

(dN
di

+ (1− ψD)
∂D

∂i
) +

∂µD

∂i
− ψD.

The term multiplying diL

di on the left-hand side of the above equation is positive, and the term

multiplying dN
di on the right-hand side is negative. Furthermore, when i < 0, deposit demand is

independent of i (Lemma 1), so ∂D
∂i = ∂µD

∂i = 0. Thus, in this regime, dNdi > 0 implies that diL

di < 0.

Both constraints bind: In this regime, it is again the case that L(iL) = ψLN . Therefore,

just as in the regime in which only the net worth constraint is binding, dLdi = ψL dNdi .

B.2 General results

Recall that in our stylized theoretical model, the consequences of interest rate cuts are fully

determined by the loan and deposit demand schedules faced by banks. In this section, we provide

11



proofs of our main analytical results in a more general setting. Then, the next section proves that

the assumptions of the general model are satisfied in the benchmark model of Section II.A.

The general model we consider is as follows. The loan and deposit demand schedules are

exogenous functions L(iL, i) and D(iD, i) satisfying the following assumptions:

� Deposit demand D∗(iD, i) is continuous, differentiable, increasing in its first argument, and

weakly decreasing in its second argument;

� Loan demand L∗(iL, i) is continuous, differentiable, decreasing in its first argument, and

weakly increasing in its second argument. Moreover, L∗(iL, i) → ∞ as iL → −δ and 1
εL

is

bounded.

The central bank first announces an interest rate sequence (10), and banks’ initial net worth is

determined according to (7) and (11), where steady-state net worth N∗ and bond holdings BL∗ are

parameters. In each period, banks solve the problem

NII(Nt, it) = max
BL

t ,i
L
t ,i

D
t

itQ
B
t B

L
t + iLt L(i

L
t , it)− iDt D(iDt , it) (B.1)

s.t. (4), L(iLt , it) ≤ ψLNt, Q
B
t B

L
t ≥ ψDD(iDt , it).

taking the sequence of interest rates (10) as given as well as arbitrary loan and deposit demand

schedules L(iL, i) and D(iD, i) satisfying the basic assumptions laid out at the beginning of Section

II.F. The parameters on banks’ net worth and liquidity constraints are ψL ∈ [0,∞) and ψD ∈ [0, 1].2

It will be convenient to define some notation related to the bank’s problem. First, let

iL∗(i) = argmax
iL

(iL − i)L(iL, i), iD∗(i) = argmax
iD

(i− iD)D(iD, i)

be the bank’s optimal loan and deposit rates when it is unconstrained, respectively. Define δ̂ so

that the bank’s optimal loan rate converges to −δ as i approaches −δ̂ – that is, lim
i→−δ̂

iL∗(i) = −δ.

Under our assumptions, then, the bank’s optimal loan supply diverges as i→ −δ̂.3

Bank net worth accumulates in each period according to

Nt+1 = (1− γ)(Nt +NII(Nt, it)). (B.2)

The other two exogenously given parameters in this problem are banks’ payout rate γ ∈ (i∗, 1) and

the maturity of long-term bonds τ ∈ (0, 1
δ̂
), which enter in the determination of banks’ initial net

worth and in their net worth accumulation equation. We define

N ≡ max
i∈[−δ̂,i∗]

(iL∗(i)− i)L(iL∗(i), i) + (i− iD∗(i))D(iD∗(i), i)

1− (1− γ)(1 + i)
+
(
QB0 −QB∗)BL∗,

2It does not make sense to allow ψL < 0 (since banks would have to borrow from firms) or ψD > 1 (since it would
sometimes be impossible for banks to satisfy their liquidity constraints).

3Note that such a δ̂ always exists when the inverse elasticity 1
εL

is bounded.
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where bond prices are given by (11). It is easy to check that banks cannot reach a level of net

worth greater than N in equilibrium.

We will also sometimes impose Properties 1 and 2 from Section II.F in order to prove our main

results, Propositions 2, 3, and 5. Property 1 guarantees that for sufficiently low interest rates,

profits are increasing in the policy rate, which is necessary for a net worth reversal to be possible.

This is a restriction on all of the parameters of the banks’ problem jointly, which are (N∗, B∗,

L(iL, i), D(iD, i), ψL, ψD, γ, τ). Property 2 imposes that the parameter ψL on banks’ net worth

constraints is a positive real number ψL ∈ (0,∞), but this property imposes no restriction on the

liquidity constraint parameter ψD ∈ [0, 1].

In order to prove Proposition 4, we will need an additional property that guarantees that banks’

liquidity constraint never binds, which in turn implies that all reversals will be triggered by the

net worth constraint.

Property B.1. Deposit demand D∗(iD, i) is large enough that banks’ liquidity constraints never

bind in equilibrium. Formally, for all i ≤ i∗, D∗(iD∗(i), i) > 1
1−ψD min{ψLN,L(iL∗(i), i)}.

We proceed as follows. In this section, we impose the regularity conditions in Section II.F

and prove results in the more general setting, indicating in which cases Properties 1, 2, and B.1

are imposed. Then, in the next section, we prove that the specific model of Section II.A satisfies

the regularity conditions as well as Properties 1-2. We also show that when the liquidity demand

parameter ζ is large enough, the model of Section II.A satisfies Property B.1 as well.

We begin by providing a characterization of the reversal rate in this setting.

Proposition B.1. Suppose Property 2 holds, and that i is the highest interest rate satisfying the

following two properties:

1. The net worth constraint binds (or both constraints bind) at t for all i′ ≤ i;

2. Time-t net worth is increasing in the interest rate, dNt(i)
di > 0, for all i′ < i.

Then i is the time-t reversal rate iRRt .

Proof. If i is the greatest interest rate such that (1) either just the net worth constraint or both

constraints bind, and (2) dNt
di > 0 for all i′ < i, then an analysis analogous to that in Appendix B.1

immediately proves that dLt
di > 0 for all i′ < i. (By inspection of each of the two cases in which

the net worth constraint binds, the analysis in Appendix B.1 shows that if Property 2 holds, then
dLt
di > 0 if and only if dNt

di > 0.) Therefore, i is the time-t reversal rate, since by hypothesis it is the

greatest interest rate satisfying this property.

It is useful to prove two lemmas before presenting our main results. The first is an elementary

result: a bank’s net worth in the next period is increasing in its current net worth.

Lemma B.1. Banks’ net worth plus interest income, N +NII(N, i), is increasing in N for fixed

i.
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Proof. Consider two levels of net worth N ′ > N . If (iL, iD) is a feasible choice for a bank with net

worth N , then (13) implies it must also be feasible for a bank with net worth N ′. Then if a bank

with net worth N sets deposit rates iL∗ and iD∗ at an optimum, a bank with net worth N ′ must

be able to achieve a value of at least

(1 + i)N ′ + (iL∗ − i)L(iL∗, i) + (i− iD∗)D(iD∗, i) > (1 + i)N + (iL∗ − i)L(iL∗, i) + (i− iD∗)D(iD∗, i)

= N +NII(N, i).

The next lemma regards the convergence of Nt over time to a steady-state level.

Lemma B.2. Suppose i < i∗. Then for t ≤ T , bank net worth converges monotonically to a unique

steady state value Ñ(i) characterized as the fixed point of

Ñ(i) =
1− γ

γ
NII(Ñ(i), i). (B.3)

Proof. It is immediately evident from (B.2) that a steady state is characterized by this fixed point

equation. Given i, the sequence Nt is defined by

Nt+1 = f(Nt) = (1− γ)(NII(Nt, i) +Nt).

Lemma B.1 implies NII(N, i) + N is increasing in N , so f is a monotonic function of N . Thus,

the sequence Nt is monotonic.

Now observe that banks’ profits from deposit and loan taking, ΠDt = (i − iDt )Dt and ΠLt =

(iLt − i)Lt, are functions of Nt and it that are bounded in Nt (holding it fixed). This is because

both ΠD(N, i) and ΠL(N, i) are independent of N when banks are unconstrained (i.e., when N is

large enough). Thus, there exists Nmax such that when N ≥ Nmax, we have ΠD(N, i) = ΠDmax(i)

and ΠL(N, i) = ΠLmax(i). However, these profits must remain positive (since the bank can always

set deposit rates below i and invest in bonds that pay i). Therefore, we have

f(0) = (1− γ)(ΠD(0, i) + ΠL(0, i)) > 0,

f(N) = (1− γ)(1 + i)N +ΠDmax(i) + ΠLmax(i) for N ≥ Nmax.

For large enough N , then, f(N) < N , since (1− γ)(1 + i) < (1− γ)(1− i∗) < 1 by assumption.

Now we show that the function NII(N,i)
N is (weakly) monotonically decreasing in N . By doing

so, we finish the proof: if NII(N,i)
N is monotonic in N , then there can be at most one fixed point.

We consider four cases, corresponding to the possible configurations of binding constraints.

Case 1: Bank is unconstrained. In this case, the bank sets its deposit and loan rates to the

14



unconstrained optimal values iD∗(i) and iL∗(i) defined above. Then

NII(N, i)

N
=
iN + (iL∗(i)− i)L(iL∗(i), i) + (i− iD∗(i))D(iD∗(i), i)

N

= i+
(iL∗(i)− i)L(iL∗(i), i) + (i− iD∗(i))D(iD∗(i), i)

N
.

The numerator of the second term is independent of N , so NII(N,i)
N is decreasing in N .

Case 2: Net worth constraint binds. The loan rate is a function îL(N, i) in this regime,

satisfying L(̂iL(N, i), N) = ψLN . Note that the loan rate must then be decreasing in N . On the

other hand, the deposit rate is set to the unconstrained optimal value iD∗(i). Then

NII(N, i)

N
=
iN + (̂iL(N, i)− i)L(̂iL(N, i), i) + (i− iD∗(i))D(iD∗(i), i)

N

= i+ (̂iL(N, i)− i)ψL +
(i− iD∗(i))D(iD∗(i), i)

N
.

The second term is decreasing in N , and the numerator of the third term is independent of N , so

the right-hand side is decreasing in N .

Case 3: Liquidity constraint binds. In this regime, we must have L(iL, i) = N + (1 −
ψD)D(iD, i). The bank’s return on net worth is

NII(N, i)

N
=
iN + (iL − i)L(iL, i)− (iD − i)D(iD, i)

N

= iL +
(
(1− ψD)iL + ψDi− iD)

D(iD, i)

N
.

Thus, the bank’s problem can be re-written as the problem of maximizing returns on net worth:

R(N, i) ≡ max
iL,iD

iL +
(
(1− ψD)iL + ψDi− iD)

D(iD, i)

N
s.t. L(iL, i) = N + (1− ψD)D(iD, i).

By the envelope theorem,

∂R(N, i)

∂R
= −µ−

(
(1− ψD)iL + ψDi− iD)

D(iD, i)

N2
,

where µ is the Lagrange multiplier on the constraint. The multiplier is positive, since a higher net

worth implies a lower value of iL for a given value of iD.4 Hence, NII(N,i)N is decreasing in N in this

regime as well.

Case 4: Both constraints bind. When both constraints bind, we must have L(iL, i) = ψLN

andD(iD, i) = ψL−1
1−ψDN . It follows that iL = îL(N, i) is a decreasing function of N and iD = îD(N, i)

4This statement can be verified from the first-order conditions.
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is an increasing function of N . Then

NII(N, i)

N
= i+ (̂iL(N, i)− i)ψL + (i− îD(N, i))

ψL − 1

1− ψD
.

The right-hand side is decreasing in N , as desired.

We now prove the key lemma. It will be useful to define a function Nt(N0, i) recursively as

follows: N0(N0, i) = N0, and

Nt+1(N0, i) = (1− γ)
(
Nt(N0, i) +NII(Nt(N0, i), i)

)
.

Lemma B.3. Suppose Property 1 holds. Bank net worth Nt(N0, i) is strictly increasing as a

function of i for all i < i (holding T and N0 fixed).

Proof. Assume by way of induction that we have shown Nt(N0, i) is weakly increasing in i for all

s ≤ t. For i′ < i, we then have

Nt+1(N0, i) = (1− γ)
(
Nt(N0, i) +NII(Nt(N0, i), i)

)
≥ (1− γ)

(
Nt(N0, i

′) +NII(Nt(N0, i
′), i))

> (1− γ)
(
Nt(N0, i

′) +NII(Nt(N0, i
′), i′)

)
= Nt+1(N0, i

′)

The second line uses the inductive assumption, Nt(N0, i
′) ≤ Nt(N0, i), and Lemma B.1. The third

line uses the fact that i′ < i as well as the fact that NII(N, i) is strictly increasing in i for i < i

(Property 1).

Next, we can show that after accounting for capital gains, bank net worth is increasing in i

if either (1) banks’ initial bond holdings are sufficiently small, or (2) the horizon t considered is

sufficiently long. In what follows, the following identity is useful:

dNt(N0, i)

di
=
∂Nt

∂N0

dN0

di
+
∂Nt

∂i
. (B.4)

Lemma B.3 shows that ∂Nt
∂i is positive for i < i. Therefore, it will be possible to prove the desired

results by bounding the magnitude of the first term.

Lemma B.4. Fix T , and suppose Property 1 holds. Then given ϵ > 0, there exists a level of initial

bond holdings BL such that whenever BL∗ ≤ BL, dNt
di > 0 for all t > 0 and i ≤ i− ϵ.

Proof. First, note that as T → ∞, N0 remains finite. This is because initial net worth is given by

(7) and (11) and Q0 → 1
τ

∞∑
t=0

(
1− 1

τ
1+i

)t
as T → ∞. We have assumed previously that 1− 1

τ is greater

than 1 − δ̂, the minimum value that 1 + i that we consider, so Q0 is bounded. Thus, for fixed i,

there exists N(i) such that N0 ∈ [0, N(i)] for all values of T . Additionally, observe that dN0
di is
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bounded, since ∣∣∣∣dQ0

di

∣∣∣∣→ ∣∣∣∣− (
1

1 + i
)(
1

τ
)

∞∑
t=0

(
1− 1

τ

1 + i

)t∣∣∣∣ <∞

as T → ∞.

Recall that initial net worth is given by (7) and (11). Then dN0
di = (1− γ)(1− 1

τ )B
L∗ dQ0

di . The

derivative dQ0(i,T )
di is bounded for i ∈ [−δ̂, i∗], so dN0

di can be bounded for i in that range. For a

given N0, as t→ ∞, Nt converges to some long-run value Ñ(i) that is independent of N0 (Lemma

B.2). Therefore, it must be that ∂Nt
∂N0

is bounded for t ∈ [0,∞) and i ∈ [−δ̂, i∗].
The first term in (B.4) can then be taken arbitrarily close to zero for all (i, T ) ∈ (−δ̂, i)× [0,∞)

and t > 0 by choosing BL∗ small enough. As long as i < i, the second term is positive (Property

1). Moreover, it is bounded away from zero: we have

∂Nt+1

∂i
= (1− γ)

((
1 +

∂NII(Nt(N0, i), i)

∂Nt

)∂Nt

∂i
+
∂NII(Nt(N0, i), i)

∂i

)
> (1− γ)

∂NII(Nt(N0, i), i)

∂i
.

The inequality follows from Lemma B.1, and for any ϵ > 0, ∂NII(N,i)
∂i is positive on (N, i) ∈

[0, N ]× [−δ̂, i− ϵ] (Property 1) and therefore bounded away from zero. Hence, for fixed ϵ > 0, BL∗

can be taken small enough that dNt
di > 0 for all t and i ≤ i.

Lemma B.5. Suppose Property 1 holds. Then given ϵ > 0, there exists T such that for all T ≥ T ,
dNt(N0(i,T ),i)

di > 0 for all t ∈ [T , T ] and i ≤ i− ϵ.

Proof. Recall that, from the proof of Lemma B.4, dN0
di can be bounded for i ∈ [−δ̂, i∗]. Lemma

B.2 implies that Nt converges to some long-run value Ñ(i) that is independent of N0, so
∂Nt
∂N0

→ 0

as t → ∞. Moreover, as t → ∞, ∂Nt
∂i converges to 1−γ

γ (∂NII(Ñ(i),i)
∂i + ∂NII(Ñ(i),i)

∂N
dÑ(i)
di ) > 0 (using

Lemma B.1, Lemma B.2, and Property 1).

Define

∆t = max
N̂0∈[0,N(i)]

∣∣∣∣ ∂Nt

∂N0

∣∣
N̂0,i

∣∣∣∣,
Γt = max

N̂0∈[0,N(i)]

∣∣∣∣∂Nt(N0, i)

∂i

∣∣
N̂0,i

− 1− γ

γ

(
∂NII(N, i)

∂i
+
∂NII(N, i)

∂N

dÑ(i)

di

∣∣
Ñ(i),i

)∣∣∣∣.
We have shown that ∆t,Γt → 0 as t → ∞ for i ∈ [−δ̂, i − ϵ]. Then we can fix T such that
∂Nt
∂N0

dN0
di + ∂Nt

∂i is arbitrarily close to 1−γ
γ (∂NII(Ñ(i),i)

∂i + ∂NII(Ñ(i),i)
∂N

dÑ(i)
di ) > 0 for all t ∈ [T , T ] and

i ∈ [−δ̂, i− ϵ] (making use of the fact that dN0
di is bounded).

Observe that, in proving Lemmas B.5 and B.4, we have also proven Lemmas 3 and 4 stated in the

text.

An analogue of Proposition 2 then follows almost immediately.
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Proposition B.2. Suppose Properties 1-2 hold. Then there exists BL such that whenever banks’

steady-state bond holdings are BL∗ ≤ BL, a time-t reversal rate exists for all 0 < t ≤ T .

Proof. Proposition 1 holds regardless of the properties of loan and deposit demand – it simply

comes from the characterization of the solution of the bank’s problem under Property 2. We must

then show that when BL∗ is small enough, we can find ĩt for each t ≤ T such that

� The net worth constraint binds (or both constraints bind) at t for all i ≤ ĩt;

�
dNt
di > 0 for all i < ĩt.

Then, after proving the existence of such an interest rate ĩt for each t ≤ T , Proposition 1 implies

that a time-t reversal rate iRRt exists (since it is the supremum of all interest rates satisfying both

properties).

To see that the first point holds, note that as i → −δ̂, the unconstrained optimal loan supply

L(iL∗(i), i) diverges. For all i sufficiently close to −δ̂, then, loan demand will be large enough that

the net worth constraint must bind (by Property 2). Thus, for each t there exists ît such that the

bank is constrained at t whenever i ≤ ît.

Fix ϵ > 0. Lemma B.4 demonstrates that it is possible to choose BL sufficiently small such that

if BL∗ ≤ BL, then the second property is satisfied for all i ≤ i−ϵ. Then for each t, ĩt = min{̂it, i−ϵ}
satisfies both properties, as desired.

The proof of the analogue of Proposition 3 is almost exactly the same.

Proposition B.3. Suppose Properties 1-2 hold. Then there exists T such that when the length of

the policy shock (10) is T ≥ T , a time-t reversal rate exists for all t ∈ [T , T ].

Proof. By Proposition 1, it suffices to show that we can find T large enough such that whenever

T ≥ T , there exists ĩt for each t ∈ [T , T ] such that

� The net worth constraint binds (or both constraints bind) if i ≤ ĩt;

�
dNt
di > 0 for all i < ĩt.

We can find ît satisfying the first property in the same way as in the proof of Proposition B.2.

Lemma B.5 proves that given ϵ > 0, there exists T such that if T ≥ T , i − ϵ satisfies the second

property for all t ∈ [T , T ],.

Then for each t ∈ [T , T ], we can choose ĩt = min{̂it, ĩ− ϵ} such that banks are constrained at t

whenever the interest rate is below ĩt and
dNt
di > 0 for all i < ĩt, as desired.

So far, we have proven the existence results assuming only Properties 1-2. By assuming Property

B.1, we can prove an analogue of Proposition 4 as well.

Proposition B.4. Suppose Properties 1, 2, and B.1 hold. Then if the time-t reversal rate iRRt is

below i, iRRt+1 exists and is (weakly) greater than iRRt .
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Proof. Property B.1 guarantees that banks’ liquidity constraint will never bind. This comes from

the characterization of the solution to the bank’s problem under Property 2: it is possible for the

liquidity constraint to bind only if, for some i, N +D(iD∗(i), i)−min{ψLN,L(iL∗(i), i)} < ψDD,

but Property B.1 implies this is never the case. Thus, if the time-t reversal rate exists, it is due to

the fact that the net worth constraint binds for all i < iRRt and dNt
di > 0 for all i < iRRt (Proposition

B.1).

Fix i < min{i, iRRt }. We have

dNt+1

di
=

d

di
(1− γ)

(
Nt +NII(Nt, i)

)
= (1− γ)

(
∂NIIt
∂i

+
(
1 +

∂NIIt
∂N

)dNt

di

)
> (1− γ)

dNt

di
> 0.

The inequality comes from an application of Property 1, which implies ∂NIIt
∂i ≥ 0, and Lemma B.1,

which implies 1+ ∂NIIt
∂Nt

≥ 0. Then dNt+1

di > 0, as desired. Furthermore, as t increases, Nt converges

monotonically to a long-run level Ñ(i) (Lemma B.2). Since Property 1 holds, Ñ (defined in (B.3))

must be decreasing in the interest rate, and i < i ≤ i∗, so the path of Nt is in fact monotonically

decreasing. Then if the net worth constraint binds at t, it must bind at t+1 as well. In conjunction

with Proposition B.1, then, i < iRRt+1.

By Lemmas 4 and B.6, Properties 1 and B.1 hold in our benchmark model, so Proposition B.4

implies Proposition 4.

Now we can prove an analogue of the “low-for-long” result (under Property 1).

Proposition B.5. Suppose Properties 1 and 2 hold, and fix i such that (18) holds. Then there

exists T such that if T > T , Lt(i, T ) < L∗ for all t ∈ [T , T ].

Proof. First, we show that banks’ capital gains are bounded as T → ∞. Note that as T → ∞,

bond prices approach

lim
T→∞

Qt =
1

τ

∞∑
s=0

(
1− 1

τ

1 + i

)s
=

1

τ
× 1

1− 1− 1
τ

1+i

which is finite because τ < 1
δ .

When banks’ capital gains are bounded in T , we can consider the equilibrium with T = ∞.

Lemma B.2 implies that there exists Ñ(i) = NII(Ñ(i),i)
γ such that as t→ ∞, Nt converges to Ñ(i).

By the hypothesis of the proposition, ψLÑ(i) is less than steady-state lending L∗. Therefore, banks

eventually become constrained at a level of lending below steady state when T = ∞. Let T be the

first time at which Lt(i, T ) < L∗.

Now observe that for any T ∈ [T ,∞], Lt(i, T ) must also be below L∗ for t ∈ [T , T ]. This is

because net worth Nt(N0, i) is an increasing function of N0 (Lemma B.1), and N0(i, T ) in the case
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of T < ∞ is less than N0(i, T ) in the case T = ∞. Thus, for all T ≥ T , it will be the case that

Lt(i, T ) < L∗ for all t ∈ [T , T ].

B.3 Mapping the model to the general setting

We now must prove that our model’s loan and deposit demand functions satisfy the assumptions

laid out in Section II.F. We must show that loan demand in steady state is continuous, decreasing

in iL, weakly increasing in i, and divergent as iL → −∞. Loan demand in the model is given by

(??), which in steady state reduces to

L∗(iL) = QK,b∗
(
ν(1− α)

(
Ab
( (1−α)ν

W ∗

)(1−α)ν) 1
1−(1−α)ν

(iL − δ)QK,b∗

) 1−(1−α)ν
1−ν

, (B.5)

where W ∗ is the steady-state wage and QK,b∗ is the steady-state price of capital. (Here we assume

that the steady-state nominal price level is equal to one.) Clearly, this function satisfies all the

required properties (since 1− ν(1− α) > 0 and loan demand does not depend on i).

Next, we prove that deposit demand is continuous, increasing in iD, and weakly decreasing in

i. The conditions determining the household’s deposit and cash demand are:

ζ

βΛ∗Φ
′(Lt)

∂Lt
∂Dt

= it − iDt + µt, (B.6)

ζ

βΛ∗Φ
′(Lt)

∂Lt
∂Mt

= it + µt, (B.7)

Differentiating the deposit demand conditions (B.6) and (B.7) by i and rearranging, we have that

D(iD, i) is continuous and differentiable (because Φ and L are assumed to be continuous and

differentiable) and obtain

∂D∗(iD, i)

∂i
=

1

detHL
1

ζΦ′′(L)

(
∂2L
∂M2

− ∂2L
∂D∂M

)
,

∂D∗(iD, i)

∂iD
= − 1

detHL
1

ζΦ′′(L)
∂2L
∂M2

,

where

HL =

(
∂2L
∂D2

∂2L
∂D∂M

∂2L
∂D∂M

∂2L
∂M2

)
is the Hessian of the liquidity aggregator L. Since L is a homothetic, concave aggregator, we have

detHL < 0, ∂2L
∂M2 < 0, and ∂2L

∂D∂M > 0. Since Φ is concave, Φ′′(L) < 0. We then have that ∂D
∂i is

positive and ∂D
∂iD

is negative, as desired.

We then need to show that in our model, Properties 1 and 2 hold, since in the previous section

we showed that those two properties suffice to prove analogues of Propositions 2, 3, and 5. Property
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2 holds in our model simply by assumption: both the net worth constraint parameter ψL and the

liquidity constraint parameter ψD are assumed to be positive real numbers. Lemma 4 is sufficient

to prove that Property 1 holds, so we prove that lemma here. In the previous section, we used

the general properties stated in Section II.F to prove all of the main results. It remains to prove

that these properties are indeed satisfied in our model. Proving that Property 1 holds reduces to

proving Lemma 2.

Proof of Lemma 4. Lemma 1 implies that ∂D∗

∂i = 0 for i ≤ 0. Equation (16) then becomes ∂NII
∂i =

QBBL, which is positive in light of the liquidity constraint QBBL ≥ ψDD. We can therefore choose

i = 0.

We would also like to show that Property B.1 holds when ζ is sufficiently large, so that the

assumption that ζ is sufficiently large suffices to prove Proposition 4.

Lemma B.6. There exists ζ such that when ζ ≥ ζ, Property B.1 is satisfied.

Proof. Note that the first-order conditions for deposit and money demand imply that deposit

demand for all values of ζ can be written as a (continuous) function gD( i
D

ζ ,
i
ζ ). Rewriting in this

form, the unconstrained optimal deposit rate iD∗(i) solves

max
iD

i− iD

ζ
gD(

iD

ζ
,
i

ζ
).

As ζ → ∞, i
ζ → 0 for all i, so we have iD∗(i) → iD∗(0) for all i (due to the continuity of gD).

Hence, for ζ sufficiently large, iD∗(i) can be made arbitrarily close to the optimal deposit rate when

i = 0. Thus, for large ζ, households are arbitrarily close to being satiated in liquid assets (since

they hit their satiation point once i = 0, and money begins to dominate bonds). We have assumed

that ψD is small enough that households are not liquidity constrained when they are satiated in

liquid assets, so D(iD∗(0), 0) ≥ 1
1−ψD min{ψLN,L∗(iL∗(0))}. But then for large enough ζ, banks

are never liquidity constrained, since D(iD∗(i), i) → D(iD∗(0), 0) for all i.

We can then describe how each of the main results in the text are proven. Above, we proved

that Properties 1-2 hold in the model of Section II.A, whereas Property B.1 holds when the deposit

demand parameter ζ is sufficiently large.

� Proposition 1 follows from Proposition B.1 and the analysis in Section II.C;

� Lemma 2 follows from Lemma B.6 and (16);

� Lemma 3 follows from Propositions B.4 and B.5;

� Lemma 4 follows from Lemma B.3;

� Propositions 2 and 3 follow from Propositions B.2 and B.3, respectively;

� Proposition 4 follows from the assumption that ζ is large and Proposition B.4;
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� Proposition 5 follows from Proposition B.5.

C Additional sensitivity analysis and comparison to literature

This section analyzes the sensitivity of our benchmark estimates of the reversal rate to other

parameters that were omitted in our original discussion, compares our model’s behavior to that of

a conventional medium-scale DSGE model, and provides additional results on the effectiveness of

forward guidance relative to a standard model.

C.1 The model and the data

In this section, we provide additional results relating our model to the data that are not reported

in the paper.

The deposit spread. Our modeling of the deposit spread is motivated by a key stylized fact:

once interest rates entered negative territory, deposit rates remained stuck at zero (likely because

banks feared that depositors would switch over to cash if they set negative rates). Heider et al.

(2019) show that the median deposit rate in the Euro area stayed very close to (but above) zero

following June 2014, even as the policy rate went negative. They also document that following 2014,

deposit rates bunched at zero, with no bank setting a negative deposit rate for households (see also

Eisenschmidt and Smets, 2019).5 Since we are mainly concerned with the impact of interest rates

in negative territory, banks’ deposit rate-setting decision is deliberately simple in our benchmark

quantitative model: when deposit rates are in positive territory, the pass-through from the policy

rate is (nearly) one-for-one, whereas once the policy rate goes low enough, deposit rates get stuck

at zero.

In the data, however, the pass-through from the policy rate to deposit rates is imperfect even

when rates are in positive territory. To check whether our model’s deviation from the data af-

fects our main quantitative conclusions, we briefly consider an alternative model in which there is

imperfect pass-through even when deposit rates are positive. Banks set deposit rates according to6

iDt = max{ω(it + µD), 0}, (C.1)

where ω ∈ [0, 1] is a pass-through parameter (and, as before, µD is the non-pecuniary benefit of

issuing deposits). We calibrate the pass-through parameter ω = 0.39 to minimize the (expected)

distance between our modified model’s predicted deposit spread (given the EONIA rate) and the

data on average deposit spreads in the Euro area from 2003 to the present (from the ECB’s Sta-

tistical Data Warehouse, ECB 2021). That is, if iDatat , iD,Datat are the policy rate and the average

5Outside of the Euro area, Bech and Malkhozov (2016) and Basten and Mariathasan (2018) provide evidence that
deposit rates were stuck at zero in Switzerland, whereas Hong and Kandrac (2022) document similar facts in Japan.

6This specification can be micro-founded by assuming that there is imperfect competition among a finite number
of banks in the deposit market (see, e.g., Drechsler, Savov, and Schnabl 2017). However, given the difficulties involved
in introducing such imperfect competition in an infinite-horizon macroeconomic model, we do not formally provide
such foundations here.
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Figure C.1: The deposit spread in the data (dashed black line) is plotted along with the deposit
spread in the benchmark model (red line) and the modified model in which deposit rates are set
according to (C.1) (green line). Model predictions are based on the EONIA rate.

deposit rate in the data, respectively, we predict the deposit spread it − iDt in the model (taking

it = iDatat and using (C.1)), and then we choose ω to minimize

1

T

∑
((iDatat − iD,Datat )− (it − iDt ))

2.

The calibration ω = 0.39 coincides closely with the pass-through estimated by Ulate (2021a) using

micro-level data: that paper finds a pass-through close to zero when it < 50bp and a pass-through

close to 0.5 when it > 50bp.

Figure C.1 displays the deposit spread in the data as well as the predicted deposit spread (given

the policy rate it) in our benchmark model and in the modified model where deposit rates are set

according to (C.1). Our benchmark deposit rate co-moves with the data well in the period of low

rates, but not in the pre-2008 period when rates routinely exceeded 2%. The modified deposit rate,

on the other hand, co-moves closely with the actual spread throughout the sample. Importantly,

this modification of our model does not substantially change the main predictions: in the modified

model, we find a reversal rate for investment of -0.4% and a reversal rate for bank lending of around

-1.1%. Intuitively, these reversal rates are higher because when pass-through is imperfect, interest

rate cuts reduce banks’ interest income even in positive territory via the reduction in the deposit

spread.

Returns on equity. In Section IV.A, we discuss our model’s predictions for the impulse

response of banks’ accounting return on equity. In our model, ROE over a one-year period is

defined as

ROEt,t+4 =
DIVt+1 +DIVt+2 +DIVt+3 +DIVt+4 +Nt+4

Nt
.

Figure C.2 plots the change in ROEt,t+4 at the impact of a -10bp Taylor rule innovation for various

initial levels of the policy rate.
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Figure C.2: The response at the impact of a -10bp Taylor rule innovation of returns on equity
over one year, ROEt,t+4, is plotted for various initial levels of the policy rate.

C.2 Sensitivity results

This section discusses sources for some parameters in the model and the remainder of our

sensitivity analysis.

Our model has a set of standard parameters that were simply calibrated to match values previ-

ously used in the literature (rather than to match some target in the particular data we analyze).

In particular, we calibrate each parameter to the exact value used in the ECB’s New Area-Wide

Model II (Coenen et al. 2019). Sources that use similar values for each of the parameters in Table

1 are listed below in Table C.1.

Figures C.3 illustrates the sensitivity of our results to these parameters, with the exception of

the monetary policy parameters ρmp and ϕπ. Fortunately, our estimate of the reversal rate at the

impact of a monetary shock is not very sensitive to the value of any of them.

Figure C.4 shows how the reversal rate depends on the parameters of the Taylor rule. We plot

results for the persistence ρmp of the nominal rate, the coefficient ϕπ on inflation, and also add

a coefficient ϕy on output (which is equal to zero by assumption in our benchmark calibration).

7Several papers use a value of h ≈ 0.8 instead. See, for example, Christiano, Motto, and Rostagno (2014) or
Gertler and Karadi (2011).

8These authors report a macro Frisch elasticity of 0.5 in Table 1. Smets and Wouters (2007) provide a similar
estimate of 1

1.52
.

9The authors estimate ε using a retail markup estimate of 35%, from Martins, Scarpetta, and Pilat (1996) and
Jean and Nicoletti (2002).

10Most papers in the literature use the Calvo (1983) formulation of price stickiness. A frequency of price adjustment

ω is equivalent to a Rotemberg cost θ if (1−ω)(1−βω)
ω

= ε−1
θ

. The parameter value we use is roughly in line with the
evidence provided by Nakamura and Steinsson (2008), which suggests firms adjust prices once per year.

11Another conventional parametrization for the Taylor rule is ρmp = 0.8;ϕπ = 1.5, and a coefficient on the output
gap ϕy = 0.5

4
. See Del Negro et al. (2017); Gertler and Karadi (2011), or Eggertsson et al. (2019).
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Table C.1: Sources for conventional parameters

Parameter Description Source(s)

σ IES parameter
NAWM II; Christiano, Eichenbaum, and Evans

(2005); Christiano, Motto, and Rostagno (2014);
Del Negro et al. (2017); Gerali et al. (2010)

h Habit formation7 NAWM II; Christiano, Eichenbaum, and Evans

(2005); Smets and Wouters (2007)

φ Frisch elasticity NAWM II; Chetty et al. (2011)8

δ Capital depreciation
NAWM II; Christiano, Eichenbaum, and Evans

(2005); Del Negro et al. (2017); Gerali et al.
(2010); Gertler and Karadi (2011); Justiniano,
Primiceri, and Tambalotti (2010); Smets and
Wouters (2007)

α Capital share
NAWM II; Christiano, Eichenbaum, and Evans

(2005); Del Negro et al. (2017); Gertler and
Karadi (2011)

ε Retail elasticity NAWM II9; Gertler and Karadi (2011)

θ Rotemberg cost10
NAWM II; Christiano, Motto, and Rostagno

(2014); Del Negro et al. (2017); Gertler and
Karadi (2011)

ϕπ Taylor rule inflation coefficient NAWM II

ρmp Taylor rule inertia11 NAWM II
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Figure C.3: Sensitivity of the reversal rate estimate to the parameters calibrated in Table 1, with
the exception of the monetary policy parameters ρmp and ϕπ. The reversal rate of aggregate
investment on impact of a monetary shock is plotted against a range of values for each parameter.
All other parameters are held fixed at their values in our benchmark calibration.

Again, the reversal rate does not seem to depend much on the value of those parameters.

Next, we address the sensitivity of our results to the calibration of parameters in Table 2. Two

of these parameters are uniquely identified by bank balance sheet data: the payout rate γ, which

is identified by banks’ Tier-1 capitalization ratio, the liquid asset demand parameter ζ, which

is identified from the loan-to-bond ratio on bank balance sheets. We plot sensitivity results for

parameters κI , τ , εL, and εD in Figures C.5 and C.6, and Section IV.B plots results for parameters

κL and Ab

Anb .

Figure C.5 illustrates the sensitivity of the reversal rate to two key parameters: the elasticity

of investment to the price of capital κI and the maturity τ of bonds on bank balance sheets. The

reversal rate is decreasing in κI because, when investment is more sensitive to capital prices, a

reduction in investment by bank-dependent firms generates a greater countervailing investment

response by non-bank-dependent firms. As expected, the reversal rate is decreasing in τ as well:

when banks’ bonds have a longer maturity, they experience greater capital gains, so interest rate

cuts are not as detrimental to their net worth. In both cases, however, the reversal rate remains in

negative territory below -40bp.

The composition of banks’ profits also has important implications for the reversal rate. Figure

C.6 depicts the dependence of the reversal rate on the elasticity of loan demand εL and the elasticity

of deposit demand |εD|. Since we re-calibrate the model to keep banks’ capitalization ratio N∗

L∗

constant, these comparative statics should be interpreted as changing the shares of bank profits
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Figure C.4: Sensitivity of the reversal rate estimate (of aggregate investment on impact) to the
parameters of the Taylor rule, (ρmp, ϕπ, ϕy). The reversal rate of aggregate investment on impact
of a monetary shock is plotted against a range of values for each parameter. All other parameters
are held fixed at their values in our benchmark calibration.

Figure C.5: Sensitivity of the reversal rate (of aggregate investment on impact) to the investment
adjustment cost parameter κI (reported as the elasticity of investment to Q, left panel) and the
expected maturity of banks’ bonds (reported in quarters, right panel).
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Figure C.6: Dependence of the reversal rate on the values of the loan demand elasticity parameter
εL (left panel) and the absolute value of the deposit demand elasticity parameter εD (right panel).
In each panel, all other parameter values are set as in our benchmark calibration.

accounted for by loans and deposits, respectively. The reversal rate is increasing in the elasticity of

loan demand but decreasing in the elasticity of deposit demand. The key mechanism underlying this

result is that when loan markets are relatively competitive, or when deposit markets are relatively

uncompetitive, then bank profitability is highly reliant on deposit spreads. Interest rate cuts into

negative territory are then significantly detrimental to bank net worth, leading to a higher reversal

rate. One would expect a relationship between the reversal rate and the share of banks’ profits

attributable to deposit market power, but there is not necessarily a relationship between the overall

concentration of the banking sector and the reversal rate.

Therefore, it remains to analyze the sensitivity of the results to the remaining parameters: (1)

the time rate of preference β (calibrated to the level of interest rates), (2) the returns-to-scale

parameter ν in the production function (calibrated to the consumption/investment ratio), (3) the

fraction of bank-dependent firms ξ (calibrated to SME data), (4) the benefit µD banks receive from

issuing deposits, (5) the satiation point L∗ of liquid asset balances (calibrated to the change in the

deposit/GDP ratio from 2000 to 2014), and (6) the equity injection N̂ banks receive each period

(calibrated to the equity issuance/asset ratio for the banking sector).

Figure C.7 displays the results for these parameters. Again, for most parameters the estimated

reversal rate on impact remains mostly within a reasonable range of our estimate of −0.8%, even

though we consider a wide range for each individual parameter. In no case is the reversal rate

far below our preferred estimate. Two cases in which the reversal rate is somewhat sensitive to

parameter values is when the benefit µD of issuing deposits is implausibly large (on the order of a

percentage point annually) and when the time rate of preference β is far from its calibrated value.

This is not surprising because µD affects the level of deposit rates and β affects the level of both

deposit rates and the policy rate, and of course the reversal rate depends on steady-state interest

rates. The results would not be as sensitive to µD, for instance, if deposit demand elasticity εD

were simultaneously changed to keep the steady-state deposit spread constant.
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Figure C.7: Sensitivity of the reversal rate estimate to selected parameters calibrated in Table
2. The reversal rate on impact of a monetary shock is plotted against a range of values for each
parameter. All other parameters are held fixed at their values in our benchmark calibration.

C.3 Analysis of alternative initial shocks

The goal of our calibration is to estimate the level of interest rates at which additional interest

rate cuts become contractionary for bank lending and investment. In the benchmark model, we

answer this question by first hitting the economy with a large monetary shock that reduces the

policy rate to a low level and then adding an additional small monetary shock that reduces the

policy rate by an additional 10 basis points. We then compute the marginal response of bank

lending and investment to this 10-basis point shock. There is no particular reason that the initial

large shock has to be a monetary shock, however – it suffices to consider any shock that would

reduce interest rates.

Therefore, we examine two additional types of large shocks in this section: a shock to the

discount factor β that makes agents more patient (as in Eggertsson and Woodford, 2003), and a

shock to firm productivity (Abt , A
nb
t ) that reduces the natural rate. For the discount factor shock,

we assume that agents’ subjective discount factor βt = eϵ
β
t β, where ϵβt is the shock to the discount

factor. We assume an “MIT” shock: agents learn ϵβ0 at t = 0, and there are no additional shocks

to the discount factor thereafter, ϵβt = 0 for t > 0. When we consider shocks to productivity, we

impose an exactly analogous process for (Abt , A
nb
t ). In each case, the shock does not persist after the

first period. Nevertheless, since the Taylor rule followed by the central bank has inertia, interest

rates are just as persistent as in our benchmark model.

Figure C.8 plots the response of investment at the impact of the 10-basis point Taylor rule
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Figure C.8: Initial interest rate plotted against the marginal response of investment to a 10-basis
point Taylor rule innovation. The left panel depicts the case in which the level of the initial interest
rate is determined by a discount factor shock occurring at t = 0. The right panel depicts the case
in which the level of the initial interest rate is determined by a productivity shock occurring at
t = 0. In both cases, the model is solved under perfect foresight.

shock against the interest rate after the initial large shock. In both cases, the estimated reversal

rate is reasonably close to our benchmark estimate of −0.8%: in the case of a productivity shock

it is −1.1%, whereas in the case of a discount factor shock it is −0.6%.

It is sensible that in these cases, the reversal rate does not depend too heavily on the source of the

initial interest rate displacement. The theoretical model showed that in partial equilibrium, banks’

initial net worth, the tightness of the leverage constraint, and the dependence of banks’ profits on

the interest rate were the main determinants of the reversal rate. The qualitative dependence of

bank profits and initial capital gains on the sequence of interest rates is relatively unchanged by

the type of shock considered. Therefore, the reversal rate differs across these two cases mostly via

general equilibrium effects that affect loan demand and deposit demand through changes in prices.

Note, however, that the reversal rate would be significantly higher than −0.8% following any

shock that both reduces interest rates and directly decreases bank net worth on impact. For

example, suppose bank net worth were to receive a substantial negative shock at the same time

as a negative shock to demand (captured by a discount factor shock). This situation could be

interpreted as a financial crisis coupled with a demand recession. In this scenario, banks are

initially much more constrained than they would be following a demand shock only. Hence, further

interest rate cuts are particularly detrimental to bank lending in this type of recession, so a reversal

in aggregate investment should be expected to occur at a higher interest rate.

C.4 The accounting treatment of bonds

In this section, we extend the model to incorporate bonds that are held-to-maturity, as discussed

in Section IV.E. We begin with a general setup. Then, we demonstrate that our main theoretical

results continue to hold in this setup. Finally, we solve the model quantitatively and show that the
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reversal rate is not highly sensitive to the fraction of banks’ bonds that are held-to-maturity.

C.4.1 General setup

We extend the model as follows. The asset side of a bank’s balance sheet now consists of

loans Lt, a real quantity of held-to-maturity (H) bonds SHt =
QB∗BH

t
Pt

, and a real quantity of

market-to-market (M) bonds SMt = QBt B
M
t . Just like marked-to-market bonds, held-to-maturity

bonds mature stochastically with probability 1
τ . On the liabilities side, banks have deposits Dt and

regulatory (accounting) capital Nt (the counterpart of net worth in our benchmark model), so the

balance sheet identity is

Lt + SHt + SMt = Nt +Dt. (C.2)

A bank’s regulatory capital evolves according to

Nt+1 =
1− γ

1 + πt+1

(
(1 + it)S

M
t + (1 + i∗)SHt + (1 + iLt )Lt − (1 + iDt )Dt (C.3)

−ΨL(Nt, Lt)−ΨD(SMt , Dt)

)
∀ t ≥ 0.

Note that banks pay out a fraction γ of their regulatory capital each period and that their liquidity

constraints are based on their holdings of trading (marked-to-market) bonds, since held-to-maturity

bonds cannot be traded when the bank needs liquidity. Here, we use the facts that in equilibrium,

the return on marked-to-market bonds must be equal to the risk-free rate after the initial unantic-

ipated shock,
(1− 1

τ )Q
B
t+1 +

1
τ

1
1+πt+1

QBt
=

1 + it
1 + πt+1

,

and that the accounting income from held-to-maturity bonds equals the steady-state risk-free rate

times the accounting value of those bonds,

(1− 1
τ )Q

B∗ + 1
τ

Pt+1
BH
t =

1 + i∗

1 + πt+1

QB∗BH
t

Pt
,

since QB∗ = 1
1+τi∗ .

A fraction ϕ of banks’ steady-state bond holdings are marked as held-to-maturity, so

BH
0 = ϕB∗, (C.4)

and a fraction 1
τ mature each period, meaning the real value of these bonds evolves according to

QB∗BH
t

Pt
=

1− 1
τ

1 + πt

QB∗BH
t−1

Pt−1
∀ t ≥ 1. (C.5)

Banks’ initial regulatory capital in period 0 is equal to its steady-state value plus the capital gains
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on marked-to-market bonds,

N0 = N∗ + (1− γ)(1− 1

τ
)(1− ξ)(QB0 −QB∗)B∗. (C.6)

Banks maximize the present value of their dividends γNt,

max
iLt ,i

D
t ,S

M
t

∞∑
t=0

βΛtγNt s.t. (C.2), (C.3). (C.7)

C.4.2 Theoretical results

Now we specialize the model to demonstrate that analogues of our theoretical results hold. As

before, we consider the bank’s problem in partial equilibrium with no inflation. The bank faces

deposit and loan demand schedules D(iD, i) and L(iL), and its net worth and liquidity constraints

are specified by constraints
Lt
Nt

≤ ψL,
SMt
Dt

≥ ψD (C.8)

as in the theoretical section of the paper.

In each period, banks maximize their net worth in the next period, which as before reduces to

solving the problem

NIIt(Nt, it) = max
iLt ,i

D
t ,S

M
t

itS
M
t + i∗SHt + iLt Lt − iDt Dt s.t. (C.2), (C.8). (C.9)

Here the net interest income function can be written as a function of t because SHt is a function of

t only, per (C.5). We can write the evolution of regulatory capital concisely as

Nt+1 = (1− γ)(Nt +NIIt(Nt, it)). (C.10)

Hence, we have reduced this problem to a more general version of the bank’s problem in our

benchmark theoretical model: the only difference is that now the net interest income function

depends on t directly as well as the state variables N and i. Applying the envelope theorem to

(C.9), we have
∂NIIt
∂i

= SMt + (it − iDt )
∂D(iDt , it)

∂it
. (C.11)

As before, the partial derivative in the second term is equal to zero when it < 0, since households do

not hold bonds when rates are negative. Furthermore, SMt must be positive in light of the liquidity

constraint. Therefore, net interest income is increasing in it for all sufficiently low it. Moreover,

we have assumed a non-trivial lending constraint (ψL < ∞), and net interest income must be an

increasing function of Nt (since it is the objective function in an optimization problem). These

are the properties required for Lemma B.3, our key lemma. A final point is that NIIt(N, i) is

decreasing in t, since the interest payments of held-to-maturity bonds decay geometrically. Thus,

for i < i, the analogue of Lemma B.2 will imply that Nt decreases monotonically to some long-run
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Figure C.9: The reversal rate for investment (left panel) and bank lending (right panel) in the
extended model with bonds held-to-maturity (HTM) is plotted against the fraction ϕ of bonds on
banks’ balance sheet that are marked as HTM.

level Ñ(i). Then it is easy to check that our theoretical results continue to hold in this extended

model. They can be proved in an exactly analogous way to our benchmark results.

C.4.3 Quantitative results

We now briefly describe the quantitative results that we obtain in this extension of the model.

We use the equations derived at the beginning of this section to replace the corresponding equations

in the benchmark model. We solve the model for various values of the new parameter ϕ and find

the reversal rate (for both investment and bank lending) for each value. Specifically, in Dynare we

introduce bonds that are held-to-maturity as an exogenous unanticipated shock at t = 0, with ϕ

modulating the value of that shock.

Figure C.9 plots the reversal rate for investment (left panel) and bank lending (right panel) as

a function of ϕ. Clearly, the reversal rate does not vary much with this parameter. The benchmark

model has ϕ = 0 (i.e., no bonds are held to maturity). We use the range ξ ∈ [0, 0.5] because it

seems plausible given the data – at least in the US, banks tend to mark 15-30% of their bonds as

held-to-maturity. Intuitively, this result arises because quantitatively, the two countervailing effects

of held-to-maturity bonds approximately offset one another: banks do not benefit from capital gains

on bonds that are held-to-maturity, but the interest payments generated by those bonds are also

shielded from the decrease in interest rates.

C.5 Comparison to a standard DSGE model

In addition to this sensitivity analysis, we perform checks to make sure our model behaves

reasonably near its steady state. We compare its performance to that of a workhorse medium-scale

DSGE model. Our model, in fact, embeds all of the elements present in Christiano, Eichenbaum,

and Evans (2005, henceforth referred to as CEE) with the exception of variable capital utilization

and wage stickiness. Hence, we can compare our results to those of a version of CEE with fixed
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Table C.2: CEE (2005) parameters

Parameter Description Value
β Time rate of preference 0.9925
σ IES parameter 1.0
h Habit formation 0.62
α Capital share 0.36
ν Scale parameter 1.0
Ab

Anb Relative prod. bank-dependent firms 1.0

κI Capital adjustment cost 2.48
ε Retail elasticity 6.0
θ Rotemberg cost 18.512

ρmp Taylor rule persistence 0.8
ϕπ Taylor rule inflation coefficient 1.5
ϕy Taylor rule output coefficient 0.125

capital utilization and flexible wages. To do so, we shut down all of the financial frictions in our

model: the loan market is competitive (εL → ∞), banks do not face leverage costs in lending

(κL = 0), and bank-dependent firms are just as productive as non-bank-dependent firms ( A
b

Anb = 1).

Hence, both types of firms are identical and issue debt at the policy rate. Then, we set the remaining

(relevant) parameters to the values reported by CEE. Those authors include a coefficient ϕy on

output in the Taylor rule, so for the purposes of this experiment, we include one as well. The

relevant parameter values are listed in Table C.2.

We then compute two impulse response functions. First, we compute the impulse response of

our benchmark model to a 10-basis point Taylor rule innovation near the steady state. Next, we

compute the impulse response to the same shock in an economy where (1) financial frictions have

been shut down, and (2) the remaining relevant parameters are set to the values in Table C.2, as

in CEE. Figure C.10 plots the impulse response of macroeconomic aggregates.

Our model produces responses that are largely similar to those in the CEE model without

variable capital utilization or wage stickiness. In particular, the impulse responses for the policy

rate i, output Y , consumption C, hours H, and investment I are almost identical. Inflation is

somewhat less responsive in our model than in CEE. The reason is straightforward: in CEE, prices

are more flexible, θ = 18.5 in CEE versus θ = 70.7 in our model.

As a final check, we also compare our model’s impulse responses to a “frictionless” model in

which all parameters are set to their benchmark values except for the leverage cost parameter κL,

which is set to zero. In this frictionless model, there are no net worth constraints on lending, so

the transmission of monetary policy should be similar to that in a standard New Keynesian model.

Figure C.11 confirms that this is indeed the case.

12CEE (2005) use Calvo pricing, but in their log-linear solution, Calvo and Rotemberg frictions are equivalent.
Here, we report the equivalent value of the Rotemberg cost parameter for consistency with our model.
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Figure C.10: A comparison of impulse responses in our model (blue lines) to those in a version of
Christiano, Eichenbaum, and Evans (2005) without wage stickiness or variable capital utilization
(dashed red lines). Both economies are hit with a ten-basis point Taylor rule innovation at their
steady states. The parameters used in the CEE model are listed in Table C.2. All financial frictions
are shut down, and loan markets are assumed to be perfectly competitive.
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Figure C.11: A comparison of impulse responses in our model (blue lines) to those in a frictionless
version of the model with κL set to zero (dashed red lines). All other parameters in the frictionless
model are set to their values in Tables 1 and 2. Both economies are hit with a ten-basis point
Taylor rule innovation at their steady states.
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Figure C.12: Responses of bank lending (left panel), inflation (center panel), and aggregate
consumption (right panel) to a forward guidance shock in two economies: our benchmark economy
(blue lines) and a frictionless economy in which the cost of leverage κL is set to zero (dashed red
lines), with all other parameters held fixed at their original values. At t = 0, the central bank
announces that it will hold the interest rate at -1% for eight periods and then return to a Taylor
rule.

C.6 Additional forward guidance results

Finally, we report additional results on the effectiveness of forward guidance in our model versus

a “frictionless” model in which banks’ cost of leverage, parameterized by κL, is set to zero (as in

Section III.E). Previously, we showed that in our model aggregate investment and output do not

respond nearly as strongly to a forward guidance shock as they would in the frictionless model.

Here, we report analogous results for inflation, consumption, and bank lending.

Figure C.12 illustrates the results. As with aggregate investment and output, the responses of

bank lending, inflation, and consumption in our model are roughly half as large as in the benchmark

model. The intuition is similar: given that agents foresee a future decline in investment, demand

and asset prices do not initially respond as strongly as they would in a frictionless model, where

there is no eventual decline in investment. Hence, inflation does not increase nearly as much either.

Importantly, our model also produces conventional responses to forward guidance when the

initial shock to interest rates is small, i.e., when rates are kept below the natural rate but they

remain in positive territory. Figure C.13 illustrates the results of a forward guidance policy in our

model and in the “frictionless” model when interest rates are held at 1.5% (rather than -1%) for

eight quarters. The variables plotted are the same as those in Figure C.12. Given that the model’s

response to forward guidance in positive territory is largely the same as that of a standard model,

it is clear that our results are driven by the reversal rate mechanism. When interest rates are not

cut low enough, banks’ net interest income does not decline much, so their net worth constraints

play essentially no role. On the other hand, when net worth constraints are expected to be costly

for banks in the future, households anticipate a future recession, so demand and inflation do not

respond as strongly to monetary stimulus in the present.
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Figure C.13: Responses of bank lending (left panel), inflation (center panel), and aggregate
consumption (right panel) to a forward guidance shock in two economies: our benchmark economy
(blue lines) and a frictionless economy in which the cost of leverage κL is set to zero (dashed red
lines), with all other parameters held fixed at their original values. At t = 0, the central bank
announces that it will hold the interest rate at 1.5% for eight periods and then return to a Taylor
rule.

D Monopolistic competition in loan and deposit markets

In this section, we elaborate on the monopolistic loan and deposit market competition intro-

duced in Section III.B. Our treatment follows that originally developed by Gerali et al. (2010).

We begin by providing a formulation in which households (firms) have CES preferences over the

deposits (loans) issued by different banks and describe agents’ optimization problems. Then, we

examine the case of symmetric equilibrium in which banks choose to issue deposits, which is the

relevant one for our calibration. Finally, for completeness, we discuss the case in which banks shut

down deposit issuance, despite the fact that in our calibration this never occurs in equilibrium. At

the end of this section, we additionally show how the CES form of loan demand can be derived

from a discrete choice problem, leaving the corresponding derivation for deposit demand to Ulate

(2021b).

D.1 Firm optimization problem

A bank-dependent firm can borrow from each bank j ∈ [0, 1], and loans offered by different

banks are imperfect substitutes. The total quantity of resources raised by a bank that takes loans

Kjt from each bank j is Kt =

(
1∫
0

K
εL−1

εL

jt dj

) εL

εL−1

. Thus, the firm’s problem is

max
Kjt,Ht

P It A
b(Kα

t H
1−α
t )ν+(1−δ)PtQtKt−Pt−1Qt−1

1∫
0

(1+iLj,t−1)Kjtdj−WtHt s.t. Kt =

( 1∫
0

K
εL−1

εL

jt dj

) εL

εL−1

.
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Conditional on the firm’s total demand for capital Kt, the first-order condition implies that the

firm’s loan demand from bank j is

Kjt =

(
1 + iLj,t−1

1 + iLt−1

)−εL

Kt,

where the aggregate loan rate is

1 + iLt−1 =

( 1∫
0

(1 + iLj,t−1)
1−εLdj

) 1

1−εL

.

D.2 Household optimization problem

A household is permitted to deposit at any bank j ∈ [0, 1], and its total deposit holdings satisfy

Dt =

( 1∫
0

D
εD−1

εD

jt dj

) εD

εD−1

,

where Djt is the quantity of deposits held at bank j. The household then solves

max
Ct,Ht,Bt,Djt,Mt

∞∑
t=0

βt
(
logCt + ζΦ(Dt +Mt)

)
s.t. Ct +Bt +

1∫
0

Djtdj +Mt ≤
Wt

Pt
Ht

1 + it−1

1 + πt
Bt−1 +

1∫
0

1 + iDj,t−1

1 + πt
Dj,t−1dj +

Mt−1

1 + πt
+Πt + Tt,

Dt =

( 1∫
0

D
εD−1

εD

jt dj

) εD

εD−1

, Bt, Dt,Mt ≥ 0.

If the household demands a positive quantity of deposits, its demand for deposits satisfies

Djt =

(
1+iDjt
1+iDt

)−εD

Dt for all j, except for possibly a set of measure zero.13 The aggregate deposit

rate 1 + iDt is given by

1 + iDt =

( 1∫
0

(1 + iDjt)
1−εDdj

) 1

1−εD

.

The household always demands a positive quantity of deposits if iDt is positive. If iDt is negative,

it does not demand deposits from any bank. Households are indifferent between deposits and cash

when iDt = 0, but we assume the household breaks the tie by investing only in deposits.

We additionally make an assumption to rule out the possibility that individual banks set nega-

tive deposit rates in equilibrium, so that the aggregate deposit rate remains at zero even when the

13The household can arbitrarily change its demand for some measure-zero set of banks’ deposits without changing
the value it achieves in its objective function.
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policy rate goes negative. Namely, we assume that when a measure-zero set of banks set negative

deposit rates iDjt < 0, then the household invests nothing in those banks. However, if a positive

measure set negative deposit rates, the household’s deposit demand satisfies Djt =

(
1+iDjt
1+iDt

)−εD

Dt

for all j.

Therefore, the deposit demand faced by a bank takes the form

Djt =


(

1+iDjt
1+iDt

)−εD

Dt iDjt ≥ 0 or {j′ : iDj′t < 0} has positive measure

0 iDjt < 0 and {j′ : iDj′t < 0} has measure zero

. (D.1)

D.3 Symmetric equilibrium

Then, the problem of bank j is

NII(Njt, it) = max
iLjt,i

D
jt,B

L
jt

itB
L
jt + iLjt

(
1 + iLjt

1 + iLt

)−εL

Lt − (iDjt − µD)

(
1 + iDjt

1 + iDt

)−εD

1{iDjt ≥ 0}Dt −ΨL(Njt, Ljt)

s.t. Ljt +BL
jt = Njt +Djt.

As long as it is optimal for the bank to issue deposits and deposit demand is large enough, the

first-order conditions imply

1 + iLjt =
εL

εL − 1

(
1 + it +

∂ΨL

∂Lt

)
,

1 + iDjt =

{
εD

εD−1
(1 + it + µD) it ≥ − 1

εD
− µD

0 it < − 1
εD

− µD
.

The loan rate is set as a constant markup εL

εL−1
over the bank’s opportunity cost of lending, which

is i (the payoff of instead investing in a bond) plus ∂ΨL

∂L (the marginal cost of taking additional

leverage). Similarly, the deposit rate is a mark-down below the nominal rate it plus the additional

marginal benefit µD of issuing deposits.

D.4 Bank shutdown

In this section, we describe the conditions under which banks may voluntarily decide to stop

issuing deposits. If a bank does not issue deposits, it simply lends out its net worth. It must set

an interest rate of

1 + ĩL =

(
L

N

) 1

εL

× εL

εL − 1
(1 + i), (D.2)

which is also its (nominal) return on net equity.

On the other hand, a bank that issues deposits sets a loan rate of

1 + iL∗ =
εL

εL − 1
(1 + i+

∂ΨL

∂L
). (D.3)
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The return on equity of a bank that follows this strategy is

ROE∗ =
1 + iL∗

1 + π

L

N
+

1 + i

1 + π

N +D − L

N
− 1− µD

1 + π

D

N
−ΨL

=
1 + i

1 + π

(
εL

εL − 1

L

N
+
N +D − L

N

)
− 1− µD

1 + π

D

N
+

εL

εL − 1

L

N

∂ΨL

∂L
− ΨL

N

=
1 + i

1 + π

(
1 +

1

εL − 1

L

N

)
+
i− µD

1 + π

D

N
+

εL

εL − 1

L

N

∂ΨL

∂L
− ΨL

N

=
1

1 + π

(
1 +

1

εL − 1

L

N

)
+

i

1 + π

(
1 +

1

εL − 1

L

N
+
D

N

)
+

µD

1 + π

D

N

+
εL

εL − 1

L

N

∂ΨL

∂L
− ΨL

N

If banks prefer not to shut down, it must be that ROE∗ ≥ 1+ĩL

1+π , or

i ≥ î ≡

(
L
N

) 1

εL
εL

εL−1
− 1

εL−1
L
N − 1− µD D

N + (1 + π)(Ψ
L

N − εL

εL−1
L
N
∂ΨL

∂L )

1 + 1
εL−1

L
N + D

N −
(
L
N

) 1

εL
εL

εL−1

. (D.4)

In our benchmark calibration, we find î ≈ −1.5% in steady state, so this inequality is verified for

the interest rate cuts we consider.

If (D.4) does not hold, however, the equilibrium conditions differ from those stated in the main

analysis. In this regime, a fraction µ of banks will shut down deposit issuance. Those banks set

their loan rates according to (D.2), issuing an aggregate quantity of loans L̃ = µN . The remaining

banks set their loan rates according to (D.3), issuing an aggregate quantity of loans L∗. Total

lending L satisfies

L =

(
µL̃

εL−1

εL + (1− µ)L
∗ εL−1

εL

) εL

εL−1

.

The final equilibrium condition is that the returns on equity of both types of banks must be equal

so that banks are indifferent between issuing deposits and not issuing, ROE∗ = 1 + ĩL.

E Micro-founding banks’ net worth process

In this section, we outline how to micro-found the process followed by bank net worth in our

calibrated model. Recall that in the model, banks pay out a fraction γ of net worth each period

and receive an additional equity injection of N̂ .

As in the benchmark model, there is a continuum of households. We index households by

j ∈ [0, 1]. Each household owns the corresponding bank j. A household is comprised of two types

of members: a fraction ω of “workers” and a complementary fraction 1 − ω of “bankers.” In each

period, each worker is given an equal share of the household’s financial wealth. Workers then choose
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how much labor to supply and how much to save in bonds, deposits, and cash. At the end of the

period, any resources not saved by workers are consumed by the household jointly, and its members

enjoy utility u(Ct, Ct−1, Ht), where Ht denotes aggregate hours supplied by workers.

The household’s bankers enter a period with net worth Njt and jointly solve (6). They choose

a deposit rate, a loan rate, and bond holdings for bank j in order to maximize net interest income

each period. Importantly, no worker in household j is matched with bank j, so the bankers borrow

only from other households.

At the end of a period, a fraction γ of bankers return to the household and become workers.

When a banker dies, she returns to the household with a fraction γ of the bank’s net worth Njt. In

order to keep the fraction of bankers in the household constant, a fraction 1−ω
ω γ of workers become

bankers in each period as well, bringing with them an amount of startup capital Ñ .

We can now write down the net worth accumulation processes for the household and for the

bank. The household’s net worth NH
t evolves according to

NH
t+1 = (1 + it)Bt + (1 + iDt )Dt +Mt +WtHt − PtCt +Πt + Tt + γNt+1 −

1− ω

ω
γÑ.

(We drop the j subscripts because all households behave identically in equilibrium.) The last two

terms reflect the dividends brought home by bankers and the net worth injected into the bank in

each period, which is just the net bank dividend term ΠDt in the budget constraint (2). The bank’s

net worth follows

Nt+1 =
1 + it

1 + πt+1
QBt B

L
t +

1 + iLt
1 + πt+1

Lt −
1 + iDt
1 + πt+1

Dt

−ΨL(Nt, Lt)−ΨD(QBt B
L
t , Dt)− γNt+1 +

1− ω

ω
γÑ,

where the last two terms reflect net worth paid out by returning bankers and net worth brought in

by entrant bankers. Note that the net worth 1−ω
ω γÑ brought into the bank is independent of time

(as well as household and bank net worth), so it can be written simply as N̂ .

For completeness, we state workers’ problem, which is:

max
Ct,Ht,Bt,Dt,Mt

ΛtCt − ΛHt Ht + ΛL
t

(
Dt +Mt

)
+ βΛt+1

((1 + it)Bt + (1 + iDt )Dt +Mt

1 + πt+1

)
subject to

Ct +Bt +Dt +Mt ≤
Wt

Pt
Ht +

1 + it−1

1 + πt
Bt−1 +

1 + iDt−1

1 + πt
Dt−1 +

1

1 + πt
Mt−1 +Πt + Tt + γNt − N̂ ,

where Λt = u1(Ct, Ct−1, Ht) is the household’s marginal utility of consumption at t, ΛHt = u3(Ct, Ct−1, Ht)

is the household’s marginal disutility of labor, and ΛL
t = ζΦ′(Lt) is the household’s marginal utility

of liquidity.
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Jean, Sébastien and Giuseppe Nicoletti, “Product Market Differentiation and Wage Pre-

mia in Europe and North-America: An Empirical Investigation,” 2002. OECD Economics

Department Working Paper No. 318.

Justiniano, Alejandro, Giorgio Primiceri, and Andrea Tambalotti, “Investment Shocks

and Business Cycles,” Journal of Monetary Economics, 2010, 57 (2), 132–145.

Martins, Joaquim Oliveira, Stefano Scarpetta, and Dirk Pilat, “Mark-up Ratios in Manu-

facturing Industries: Estimates for 14 OECD Countries,” 1996. OECD Economics Department

Working Paper No. 162.

Nakamura, Emi and Jón Steinsson, “Five Facts About Prices: A Reevaluation of Menu Cost

Models,” Quarterly Journal of Economics, 2008, 123 (4), 1415–1454.

Negro, Marco Del, Gauti Eggertsson, Andrea Ferrero, and Nobuhiro Kiyotaki, “The

Great Escape? An Evaluation of the Fed’s Liquidity Facilities,” American Economic Review,

2017, 107 (3), 824–857.

Rotemberg, Julio, “Sticky Prices in the United States,” Journal of Political Economy, 1982, 90

(6), 1187–1211.

Smets, Frank and Rafael Wouters, “An Estimated Dynamic Stochastic General Equilibrium

Model of the Euro Area,” Journal of the European Economic Association, 2003, 1 (5), 1123–

1175.

and , “Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach,”

American Economic Review, 2007, 97 (3), 586–606.

Ulate, Mauricio, “Alternative Models of Interest Rate Pass-through in Negative Territory,” In-

ternational Journal of Central Banking, March 2021, pp. 3–34.

, “Going Negative at the Zero Lower Bound: The Effects of Negative Nominal Interest Rates,”

American Economic Review, 2021, 111 (1), 1–40.

44


	General equilibrium
	Formal treatment of standard model ingredients
	Optimality conditions
	Government policy
	Market-clearing, aggregation, and consistency conditions
	Definition of equilibrium
	Quantitative extension

	Proofs
	Household and bank optimization
	General results
	Mapping the model to the general setting

	Additional sensitivity analysis and comparison to literature
	The model and the data
	Sensitivity results
	Analysis of alternative initial shocks
	The accounting treatment of bonds
	General setup
	Theoretical results
	Quantitative results

	Comparison to a standard DSGE model
	Additional forward guidance results

	Monopolistic competition in loan and deposit markets
	Firm optimization problem
	Household optimization problem
	Symmetric equilibrium
	Bank shutdown

	Micro-founding banks' net worth process

