
Online Appendix
Synthetic Difference in Differences

Arkhangelsky, Athey, Hirshberg, Imbens, Wager

VI.1 Placebo Study Details

VI.1.1 CPS study

We use the annual CPS data available on the NBER website (https://data.nber.org/morg/

annual). Following Bertrand et al. (2004) we restrict the sample to 25-50-year-old women in

their fourth month of the interview. The complete dataset contains all available years from

1979 to 2018 for 50 states, excluding the District of Columbia. We drop the duplicates on the

unique household number, household id, person line number in household, month in the sample,

month and year of interview, state, and age. Average log wages and hours are computed using

the sample with strictly positive earnings. Unemployment is calculated using the sample of

individuals within the labor force.

We use three indicators Di to estimate the assignment model via logistic regression as de-

scribed in (13). The first is equal to an indicator that state i has a minimum wage that is

higher than the federal minimum wage in the year 2000. This indicator was taken from http:

//www.dol.gov/whd/state/stateMinWageHis.htm; see Barrios et al. (2012) for details. The

second indicator comes from a state having an open-carry gun law. This was taken from https:

//lawcenter.giffords.org/gun-laws/policy-areas/guns-in-public/open-carry/. The

third indicator comes from the state not having a ban on partial birth abortions. This was taken

from https://www.guttmacher.org/state-policy/explore/overview-abortion-laws. Ta-

ble 5 presents the values for these indicators.

VI.1.2 Penn World Table study

We download the data on real annual GDP from the Penn World Table website (https://

www.rug.nl/ggdc/productivity/pwt/). After removing the countries with missing data we

end up with a dataset of 111 countries observed for 48 consecutive years, starting from 1959.

To construct the assignment process we use Penn World Table indicators of democracy and

education available from the same source.
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State Minimum Wage Unrestricted Open Carry Abortion
Alaska 0 1 0
Alabama 0 0 0
Arkansas 0 1 0
Arizona 0 1 0
California 1 0 1
Colorado 0 0 1
Connecticut 0 0 1
Delaware 1 1 1
Florida 0 0 0
Georgia 0 0 0
Hawaii 0 0 1
Idaho 0 1 0
Illinois 0 0 1
Indiana 0 0 0
Iowa 0 0 0
Kansas 0 1 0
Kentucky 0 1 0
Louisiana 0 1 0
Massachusetts 1 0 1
Maine 0 1 1
Maryland 0 0 1
Michigan 0 1 0
Minnesota 0 0 1
Mississippi 0 1 0
Missouri 0 0 0
Montana 0 1 0
Nebraska 0 1 0
Nevada 0 1 1
New Hampshire 0 1 0
New Mexico 0 1 0
North Carolina 0 1 1
North Dakota 0 0 0
New York 0 0 1
New Jersey 0 0 0
Ohio 0 1 0
Oklahoma 0 0 0
Oregon 1 1 1
Pennsylvania 0 0 1
Rhode Island 1 0 0
South Carolina 0 0 0
South Dakota 0 1 0
Tennessee 0 0 0
Texas 0 0 0
Utah 0 0 0
Vermont 1 1 1
Virginia 0 0 0
Washington 1 0 1
West Virginia 0 1 0
Wisconsin 0 1 0
Wyoming 0 1 1

Table 5: State Regulations
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SC SC (reg) DIFP DIFP (reg)
Baseline 0.37 0.78 0.32 0.36
No Correlation 0.38 0.79 0.32 0.36
No M 0.18 0.34 0.16 0.14
No F 0.23 0.25 0.32 0.36
Only noise 0.14 0.11 0.16 0.14
No noise 0.17 0.34 0.11 0.20
Gun Law 0.27 0.34 0.30 0.40
Abortion 0.31 0.65 0.27 0.35
Random 0.25 0.31 0.27 0.35
Hours 2.03 3.28 1.97 1.91
U-rate 2.31 3.31 2.30 3.32
Tpost = 1 0.59 0.65 0.54 0.50
Ntr = 1 0.73 0.85 0.83 0.87
Tpost = Ntr = 1 1.24 1.23 1.16 1.12
Resample, N = 200 0.17 0.16 0.18 0.18
Resample, N = 400 0.14 0.11 0.15 0.12
Democracy 0.38 0.35 0.39 0.31
Education 0.53 0.62 0.39 0.29
Random 0.46 0.47 0.45 0.46

Table 6: Comparison of SC and DIFP estimators without regularization and with the regular-
ization parameter used to compute SDID unit weights. Simulation designs correspond to those
of Table 2 and 3. All results are based on 1000 simulations and multiplied by 10 for readability.
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VI.2 Unit/time weights for California

DID SC SDID
1988 0.053 0.000 0.427
1987 0.053 0.000 0.206
1986 0.053 0.000 0.366
1985 0.053 0.000 0.000
1984 0.053 0.000 0.000
1983 0.053 0.000 0.000
1982 0.053 0.000 0.000
1981 0.053 0.000 0.000
1980 0.053 0.000 0.000
1979 0.053 0.000 0.000
1978 0.053 0.000 0.000
1977 0.053 0.000 0.000
1976 0.053 0.000 0.000
1975 0.053 0.000 0.000
1974 0.053 0.000 0.000
1973 0.053 0.000 0.000
1972 0.053 0.000 0.000
1971 0.053 0.000 0.000
1970 0.053 0.000 0.000
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DID SC SDID
Alabama 0.026 0.000 0.000
Arkansas 0.026 0.000 0.003
Colorado 0.026 0.013 0.058

Connecticut 0.026 0.104 0.078
Delaware 0.026 0.004 0.070

Georgia 0.026 0.000 0.002
Idaho 0.026 0.000 0.031

Illinois 0.026 0.000 0.053
Indiana 0.026 0.000 0.010

Iowa 0.026 0.000 0.026
Kansas 0.026 0.000 0.022

Kentucky 0.026 0.000 0.000
Louisiana 0.026 0.000 0.000

Maine 0.026 0.000 0.028
Minnesota 0.026 0.000 0.039
Mississippi 0.026 0.000 0.000

Missouri 0.026 0.000 0.008
Montana 0.026 0.232 0.045
Nebraska 0.026 0.000 0.048

Nevada 0.026 0.204 0.124
New Hampshire 0.026 0.045 0.105

New Mexico 0.026 0.000 0.041
North Carolina 0.026 0.000 0.033

North Dakota 0.026 0.000 0.000
Ohio 0.026 0.000 0.031

Oklahoma 0.026 0.000 0.000
Pennsylvania 0.026 0.000 0.015
Rhode Island 0.026 0.000 0.001

South Carolina 0.026 0.000 0.000
South Dakota 0.026 0.000 0.004

Tennessee 0.026 0.000 0.000
Texas 0.026 0.000 0.010
Utah 0.026 0.396 0.042

Vermont 0.026 0.000 0.000
Virginia 0.026 0.000 0.000

West Virginia 0.026 0.000 0.034
Wisconsin 0.026 0.000 0.037
Wyoming 0.026 0.000 0.001
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VII Formal Results

In this section, we will outline the proof of Theorem 1. Recall from Section III.2 the decompo-

sition of the SDID estimator’s error into three terms: oracle noise, oracle confounding bias, and

the deviation of the SDID estimator from the oracle. Our main task is bounding the deviation

term. To do this, we prove an abstract high-probability bound, then derive a more concrete

bound using results from a companion paper on penalized high-dimensional least squares with

errors in variable (Hirshberg, 2021), and then show that this bound is o
(
(NtrTpost)

−1/2
)

under

the assumptions of Theorem 1. Detailed proofs for each step are included in the next section.

Notation Throughout, each instance of c will denote a potentially different universal constant;

a . b, a� b, and a ∼ b will mean a ≤ cb, a/b→ 0, and c ≤ a/b ≤ c respectively. ‖v‖ and ‖A‖
will denote the Euclidean norm ‖v‖2 for a vector v and the operator norm sup‖v‖2≤1‖Av‖ for

a matrix A respectively; σ1(A), σ2(A), . . . will denote the singular values of A; Ai· and A·j will

denote the ith row and jth column of A; v′ and A′ will denote the transposes of a vector v and

matrix A; and [v;w] ∈ Rm+n will denote the concatenation of vectors v ∈ Rm and w ∈ Rn.

VII.1 Abstract Setting

We will begin by describing an abstract setting that arises as a condensed form of the setting

considered in our formal results in Section III. We observe an N × T matrix Y , which we will

decompose as the sum Yit = Lit+1(i = N, j = T )τ+ε of a deterministic matrix L and a random

matrix ε. We will refer to four blocks,

Y =

(
Y:: Y:T

YN : YNT

)
,

where Y:: is a submatrix that omits the last row and column, YN : is the last row omitting its last

element, and Y:T is the last column omitting its last element. We will use analogous notation

for the parts of L and ε and let N0 = N − 1 and T0 = T − 1.

We assume that rows of ε are independent and subgaussian and that for i ≤ N0 they are

identically distributed with linear post-on-pretreatment autoregression function E[εiT | εi:] =

εi:ψ and covariance Σ = E ε′i·εi· and let ΣN be the covariance matrix of εN ·. We will refer to the

covariance of the subvectors εi: and εN : as Σ:: and ΣN
:: respectively.
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Our abstract results involve a bound K characterizing the concentration of the rows εi·.

(34)

K ≥ max

(
1, ‖ε1:Σ

−1/2
:: ‖ψ2 , ‖εN :(Σ

N
:: )−1/2‖ψ2

‖ε1T − ε1:ψ‖ψ2|ε1:

‖ε1T − ε1:ψ‖L2

)
,

P
(∣∣‖ε1:‖2 − E‖ε1:‖2

∣∣ ≥ u
)
≤ c exp

(
−cmin

(
u2

K4 E‖ε1:‖2
,

u

K2‖Σ::‖

))
for all u ≥ 0.

Here we follow the convention (e.g., Vershynin, 2018) that the subgaussian norm of a random

vector ξ is ‖ξ‖ψ2 := sup‖x‖≤1‖x′ξ‖ψ2 . The conditional subgaussian norm ‖·‖ψ2|Z is defined like

the subgaussian norm the conditional distribution given Z. When the rows of ε are gaussian

vectors, these conditions are satisfied for K equal to a sufficiently large universal constant. In the

gaussian case, ε1T−ε1:ψ is independent of εi:, the squared subgaussian norm of a gaussian random

vector is bounded by a multiple of the operator norm of its covariance, and the concentration

of ‖ε1:‖2 as above is implied by the Hanson-Wright inequality (e.g., Vershynin, 2018, Theorem

6.2.1).

VII.2 Concrete Setting

We map from the setting considered in Section III to our condensed form by averaging within

blocks as follows. (
Y:: Y:T

YN : YNT

)
=

(
Yco,pre Yco,postλpost

ω′trYtr,pre ω′trYtr,postλpost

)
.

Here λpost ∈ RTpost and ωtr ∈ RNtr are vectors with equal weight 1/Tpost and 1/Ntr respectively.

When working with this condensed form, we write ω and λ for what is rendered ωco and λtr in

Section III. We will also use Ω and Λ to denote the sets that would be written {ωco : ω ∈ Ω}
and {λpre : λ ∈ Λ} in the notation used in Equations 4 and 6. Note that these sets Ω and Λ are

the unit simplex in RN0 = RNco and RT0 = RTpre respectively.

In this condensed form, rows εi· are independent gaussian vectors with mean zero and co-

variance matrix Σ for i ≤ N0 and N−1
tr Σ for i = N . This matrix Σ satisfies, with quantities on

the right defined as in Section III,

Σ =

(
Σpre,pre Σpre,postλpost

λ′postΣpost,pre λ′postΣpost,postλpost

)
.

Note that because all rows have the same covariance up to scale, they have the same autore-

7



gression vector, ψ = arg minv∈RT0 E(εi:v− εiT )2. This definition is equivalent to the one given in

Section III. And this characterization of εi:ψ as a least squares projection implies that εi:ψ− εiT
and εi: are uncorrelated and, being jointly normal, therefore independent.

That the eigenvalues of non-condensed-form Σ are bounded and bounded away from zero

implies that the eigenvalues of the submatrix Σ:: = Σpre,pre are bounded and bounded away from

zero. Furthermore, it implies the variance of εi:ψ − εiT is on the order of 1/Tpost.

To show this, we establish an upper and lower bound of that order. We will write σmin(Σ)

and σmax(Σ) for the smallest and largest eigenvalues of Σ. For the lower bound, we calculate

its variance E (εi· · [ψ; −λpost])
2 = [ψ; −λpost] Σ [ψ; −λpost], and observe that this is at least

‖[ψ;−λpost]‖2σmin(Σ). This implies an order 1/Tpost lower bound, as ‖[ψ;−λpost]‖2 ≥ ‖λpost‖2 =

1/Tpost. For the upper bound, observe that because εiT −εi:ψ is the orthogonal projection of εiT

on a subspace, specifically the subspace orthogonal to {εi:v : v ∈ RTpre}, its variance is bounded

by that of εiT . This is [0;λpost] Σ [0;λpost] ≤ σmax(Σ)‖λpost‖2 = σmax(Σ)/Tpost.

VII.3 Theorem 1 in Condensed Form

In the abstract setting we’ve introduced above, we can write a weighted difference-in-differences

treatment effect estimator as the difference between our (aggregate) treated observation YNT and

an estimate ŶNT of the corresponding (aggregate) control potential outcome. In the concrete

setting considered in Section III, this coincides with the estimator defined in (16).

(35) τ̂(λ, ω) = YNT − ŶNT (λ, ω) where ŶNT (λ, ω) := YN :λ+ ω′Y:T − ω′Y::λ.

And the following weights coincide with the definitions used in Section III.

(36)

ω̂0, ω̂ = arg min
ω0,ω∈R×Ω

‖ω0 + ω′Y:: − YN :‖2 + ζ2T0‖ω‖2,

ω̃0, ω̃ = arg min
ω0,ω∈R×Ω

‖ω0 + ω′L:: − LN :‖2 + (ζ2 + σ2)T0‖ω‖2,

λ̂0, λ̂ = arg min
λ0,λ∈R×Λ

‖λ0 + Y::λ− Y:T‖2,

λ̃0, λ̃ = arg min
λ0,λ∈R×Λ

‖λ0 + L::λ− L:T‖2 +N0‖Σ1/2
:: (λ− ψ)‖2.

The following assumptions on the condensed form hold in the setting considered in Theo-
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rem 1. The first summarizes our condensed-form model. The second is implied by Assumption 1

for N1 = Ntr and T1 ∼ Tpost as described above in Section VII.2. And the remaining three are

condensed-form restatements of Assumptions 2-4, differing only in that we substitute T1 ∼ Tpost

for Tpost itself.

Assumption 5 (Model). We observe Yit = Lit + 1(i = N, t = T )τ + εit for deterministic τ ∈ R

and L ∈ RN×T and random ε ∈ RN×T . And we define N0 = N − 1 and T = T0 − 1.

Assumption 6 (Properties of Errors). The rows εi· of the noise matrix are independent gaussian

vectors with mean zero and covariance matrix Σ for i ≤ N0 and N−1
1 Σ for i = N where the

eigenvalues of Σ:: are bounded and bounded away from zero. Here N1 > 0 can be arbitrary and

we define T1 = 1/Var[εi:ψ − εiT ] and ψ = arg minv∈RT0 E(εi:v − εiT )2.

Assumption 7 (Sample Sizes). We consider a sequence of problems where T0/N0 is bounded and

bounded away from zero, T1 and N1 are bounded away from zero, and N0/(N1T1 max(N1, T1) log2(N0))→

∞.

Assumption 8 (Properties of L). For the largest integer K ≤
√

min(T0, N0),

σK(L::)/K � min(N
−1/2
1 log−1/2(N0), T

−1/2
1 log−1/2(T0)).

Assumption 9 (Properties of Oracle Weights). We use weights as in (36) for

ζ � (N1T1)1/4 log1/2(N0) and the oracle weights satisfy

(i) max(‖ω̃‖, ‖λ̃− ψ‖)� (N1T1)−1/2 log−1/2(N0),

(ii.ω) ‖ω̃0 + ω̃′L:: − LN :‖ � N
1/4
0 (N1T1 max(N1, T1))−1/4 log−1/2(N0),

(ii.λ) ‖λ̃0 + L::λ̃− L:T‖ � N
1/4
0 (N1T1)−1/8,

(iii) LNT − ω̃′L:T − LN :λ̃+ ω̃′L::λ̃� (N1T1)−1/2.

The following condensed form asymptotic linearity result implies Theorem 1.

Theorem 3. If Assumptions 5-9 hold, then τ̂(λ̂, ω̂)− τ = εNT − εN :ψ + op((N1T1)−1/2).
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The following lemma reduces its proof to demonstrating the negligibility of the difference

∆oracle := τ̂(ω̂, λ̂)− τ̂(ω̃, λ̃) between the SDID estimator and the corresponding oracle estimator.

Its proof is a straightforward calculation. Note that the bounds it requires on the oracle weights

are looser than what is required by Assumption 9(i); those tighter bounds are used to control

∆oracle.

Lemma 4. If deterministic ω̃, λ̃ satisfy ‖ω̃‖ = o(N
−1/2
1 ) and ‖λ̃− ψ‖ = o(T

−1/2
1 ) and Assump-

tions 5, 6, and 9(iii) hold, then τ̂(ω̃, λ̃)− τ = εNT − εN :ψ + op((N1T1)−1/2).

To show that this difference ∆oracle is small, we use bounds on the difference between the

estimated and oracle weights based on Hirshberg (2021, Theorem 1). We summarize these

bounds in Lemma 5 below.

Lemma 5. If Assumptions 5, 6, and 8 hold; T1 and N1 are bounded away from zero; N0, T0 →∞

with N0 ≥ log2(T0) and T0 ≥ log2(N0); and we choose weights as in (36) for unit sim-

plices Ω ⊆ RN0 and Λ ⊆ RT0, then the following bounds hold on an event of probability

1− c exp(−cmin(N
1/2
0 , T

1/2
0 , N0/‖L::λ̃+ λ̃0 − L:T‖, T0/‖ω̃′L:: + ω̃0 − LN :‖)):

‖λ̂0 − λ̃0 + L::(λ̂− λ̃)‖ ≤ cvrλ, ‖λ̂− λ̃‖ ≤ cvN
−1/2
0 rλ,

‖ω̂0 − ω̃0 + L′::(ω̂ − ω̃)‖ ≤ cvrω, ‖ω̂ − ω̃‖ ≤ cv(η2T0)−1/2rω

for η2 = ζ2 + 1, some universal constant c, and

r2
λ = (N0/Teff )

1/2
√

log(T0) + ‖L::λ̃+ λ̃0 − L:T‖
√

log(T0), T
−1/2
eff = ‖λ̃− ψ‖+ T

−1/2
1

r2
ω = (T0/Neff )

1/2
√

log(N0) + ‖L′::ω̃ + ω̃0 − L′N :‖
√

log(N0), N
−1/2
eff = ‖ω̃‖+N

−1/2
1 .

When Assumptions 7 and 9(i-ii) hold as well, these bounds hold with probability 1 −
c exp(−cN1/2

0 ), as together those assumptions they imply the lemma’s conditions onN0, T0, N1, T1

and that N0/‖L::λ̃+ λ̃0 − L:T‖ � N
3/4
0 and T0/‖ω̃′L:: + ω̃0 − LN :‖ � N

3/4
0 .

We conclude by using bounds of this form, in conjunction with the first order orthogonality

of the weighted difference-in-differences estimator τ̂(λ, ω) to the weights λ and ω, to control

∆oracle. We do this abstractly in Lemma 6, then derive from it a simplified bound from which

it will be clear that ∆oracle = op((N1T1)−1/2) under our assumptions.
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Lemma 6. In the setting described in Section VII.1, let Λ ⊆ RT0 and Ω ⊆ RN0 be sets with

the property that
∑

t≤T0
λt =

∑
i≤N0

ωi = 1 for all λ ∈ Λ and ω ∈ Ω. Let λ̂0, λ̂ ∈ R × Λ and

ω̂0, ω̂ ∈ R × Ω be random and λ̃0, λ̃ ∈ R × Λ and λ̃0, λ̃ ∈ R × Ω be deterministic. On the

intersection of an event of probability 1− c exp(−u2) and one on which

(37)
σ‖ω − ω̃‖ ≤ sλ and ‖ω̂0 − ω̃0 + (ω̂ − ω̃)′L::‖ ≤ rω,

‖Σ1/2
:: (λ̂− λ̃)‖ ≤ sω and ‖λ̂0 − λ̃0 + L::(λ̂− λ̃)‖ ≤ rλ,

the corresponding treatment effect estimators defined in (35) are close in the sense that

|τ̂(λ̂, ω̂)− τ̂(λ̃, ω̃)| ≤ cuK[N
−1/2
eff sλ + T

−1/2
eff sω + σ−1sωsλ]

+ cK[(‖ω̃‖+ σ−1sω) w(Σ1/2
:: Λ?

sλ
) + (‖Σ1/2

:: (ψ − λ̃)‖+ sλ) w(Ω?
sω)]

+ σ−1sω min
λ0∈R
‖S1/2

λ (L::λ̃+ λ0 − L:T )‖+ sλ min
ω0∈R
‖S1/2

ω Σ−1/2
:: (L′::ω̃ + ω0 − L′N :)‖

+ min

(
‖Σ−1/2

:: ‖rωsλ, σ−1sωrλ, min
k∈N

σk(L
c
::)
−1rλrω + σ−1‖Σ−1/2

:: ‖σk+1(Lc::)sλsω

)

Here c is a universal constant, w(S) is the gaussian width of the set S, and

T
−1/2
eff = σ−1(‖Σ1/2

:: (λ̃− ψ)‖+ ‖ε̃iT‖L2), N
−1/2
eff = ‖ω̃‖+ ‖(ΣN

:: )1/2Σ−1/2
:: ‖,

Λ?
s = {λ− λ̃ : λ ∈ Λ?, ‖Σ1/2

:: (λ− λ̃)‖ ≤ s}, Ω?
s = {ω − ω̃ : ω ∈ Ω?, σ‖ω − ω̃‖ ≤ s},

Sλ = I − L::(L
′
::L:: + (σrω/sω)2I)−1L′::, Sω = I − Σ−1/2

:: L′::(L::Σ
−1
:: L

′
:: + (rλ/sλ)

2I)−1L::Σ
−1/2
:: ,

Lc:: = L:: −N−1
0 1N01′N0

L:: − L::T
−1
0 1T01′T0

.

We simplify this using bounds sω, sλ, rω, rλ from Lemma 5 and bounds w(Ω?
sω) .

√
log(N0)

and w(Λ?
sλ

) .
√

log(T0) that hold for the specific sets Ω,Λ used in our concrete setting (Hirsh-

berg, 2021, Example 1).

Corollary 7. Suppose Assumptions 5, 6, and 8 hold with T0 ∼ N0 and that log(N0), T1 and

N1 are bounded away from zero. Let m0 = N0, m1 =
√
N1T1, and m̄1 = max(N1, T1). Consider

the weights defined in (36) with Ω ⊆ RN0 and Λ ⊆ RT0 taken to be the unit simplices and

ζ � m
1/2
1 log1/2(m0). With probability 1−2 exp(−min(T1 log(T0), N1 log(N0)))−c exp(−cN1/2

0 )),
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τ̂(ω̂, λ̂)− τ̂(λ̃, ω̃) = op((N1T1)−1/2) if

max(‖ω̃‖, ‖ψ − λ̃‖)� m−1
1 log−1/2(m0),

‖ω̃0 + ω̃′L:: − LN :‖ � m
1/4
0 m

−1/2
1 m̄

−1/4
1 log−1/2(m0),

‖λ̃0 + L::λ̃− L:T‖ � m
1/4
0 m

−1/4
1 ,

and the latter two bounds go to infinity.

These assumptions are implied by Assumptions 5-9. Assumption 7 states our assumptions

T0 ∼ N0, log(N0), T1, N1 6→ 0, and that the (fourth power of) the second bound above goes to

infinity; when the second bound does go to infinity, so does the third. As Assumption 7 implies

that that T0 ∼ N0 →∞, it implies the probability stated in the lemma above goes to one. And

Assumption 9(i-ii) states that the bound above hold.

As our assumptions imply the conclusions of Lemma 4 and Corollary 7, and those two results

imply the conclusions of Theorem 3, this concludes our proof.

VIII Proof Details

In this section, we complete our proof by proving the lemmas used in the sketch above.

VIII.1 Proof of Lemma 4

First, consider the oracle estimator’s bias,

E τ̂(λ̃, ω̃)− τ = (LNT + τ)− ω̃′L:T − LN :λ̃+ ω̃′L::λ̃− τ.

Assumption 9(iii) is that this is op((N1T1)−1/2).

Now consider the oracle estimator’s variation around its mean,

τ̂(λ̃, ω̃)− E τ̂(λ̃, ω̃) = εNT − εN :λ̃+ ω̃′ε:T + ω̃′ε::λ̃

= (εNT − εN :λ̃)− ω̃′(ε:T − ε::λ̃)

= (εNT − εN :ψ)− ω̃′(ε:T − ε::ψ)− εN :(λ̃− ψ) + ω̃′ε::(λ̃− ψ).
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The conclusion of our lemma holds if all but the first term in the decomposition above are

op((N1T1)−1/2). We do this by showing that each term has o((N1T1)−1) variance.

E(ω̃′(ε:T − ε::ψ))2 = ‖ω̃‖2 E(ε1T − εi:ψ)2 = ‖ω̃‖2/T1,

E(εN :(λ̃− ψ))2 = (λ̃− ψ)′(E ε′N :εN :)(λ̃− ψ) ≤ ‖λ̃− ψ‖2‖Σ::‖/N1,

E(ω̃′ε::(λ̃− ψ))2 = ‖ω̃‖2 E(ε1:(λ̃− ψ))2 ≤ ‖ω̃‖2‖λ̃‖2‖Σ::‖.

Our assumption that ‖Σ::‖ is bounded and our assumed bounds on ‖ω̃‖ and ‖λ̃‖ imply that

each of these is o((N1T1)−1) as required.

VIII.2 Proof of Lemma 5

The bounds involving λ follow from the application of Hirshberg (2021, Theorem 1) with η2 = 1,

A = L::, b = L:T , and [ε, ν] = [ε::, ε:T ] with independent rows, using the bound w(Λ?
s) .

√
log(T0)

mentioned in its Example 1. The bounds for ω follow from the application of the same theorem

with η2 = 1 + ζ2/σ2 for σ2 = tr(Σ::)/T0, A = L′::, b = L′N :, and [ε, ν] = ε′::, ε
′
N :] with independent

columns, using the analogous bound w(Ω?
s) .

√
log(N0).

In the first case, Hirshberg (2021, Theorem 1) gives bounds of the claimed form for

r2
λ = [(N0/Teff )

1/2 + ‖L::λ̃+ λ̃0 − L:T‖]
√

log(T0) + 1 holding with probability

1− c exp
(
−cmin(N0 log(T0)/r2

λ, v
2R,N0)

)
if σR+1(L::)/R ≤ cvT

−1/2
1 log−1/2(T0) and

R ≤ min(v2(N0Teff )
1/2, v2N0/ log(T0), cN0).

To see this, ignore constant order factors of φ (≥ 1) and ‖Σ‖ in Hirshberg (2021, Theorem 1)

and substitute s2 = cv2r2
λ/(η

2n) for problem-appropriate parameters η2 = 1, n = N0, n
−1/2
eff =

T
−1/2
eff (≥ T

−1/2
1 ), and w̄(Θs) =

√
log(T0).

In the second case, Hirshberg (2021, Theorem 1) gives bounds of the claimed form for

r2
ω = [(T0/Neff )

1/2 + ‖ω̃′L:: + ω̃0 − LN :‖]
√

log(N0) + log(N0) holding with probability

1− c exp
(
−cmin(η2T0 log(N0)/r2

ω, v
2R, T0)

)
if σR+1(L::)/R ≤ cvN

−1/2
1 log−1/2(N0) and

R ≤ min(v2(T0Neff )
1/2, v2η2T0/ log(N0), cT0).
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To see this, ignore constant order factors of φ (≥ 1) and ‖Σ‖ in Hirshberg (2021, Theorem 1)

and substitute s2 = cv2r2
λ/(η

2n) for problem-appropriate parameters η2 = 1 + ζ2/σ2, n = T0,

n
−1/2
eff = N

−1/2
eff (≥ N

−1/2
1 ), and w̄(Θs) =

√
log(N0).

We will now simplify our conditions on R. As we have assumed that N1 and T1 and

therefore Neff and Teff are bounded away from zero, we can choose v of constant order with

v ≥ max(c/Teff , c/Neff , 1), so our upper bounds on R simplify to

R ≤ min(N
1/2
0 , N0/ log(T0), cN0) and R ≤ min(T

1/2
0 , η2T0/ log(N0), T0)

respectively. Having assumed that that N0, T0 → ∞ with N0 ≥ log2(T0) and T0 ≥ log2(N0),

these conditions simplify to R ≤ N
1/2
0 and R ≤ T

1/2
0 . Thus, it suffices that the largest integer

R ≤ min(N0, T0)1/2 satisfy σR+1(L::)/R ≤ cmin(N
−1/2
1 log−1/2(N0), T

−1/2
1 log−1/2(T0)). This is

implied, for any constant c, by Assumption 8.

We conclude by simplifing our probability statements. As noted above, we take R ∼
min(N0, T0)1/2, so we may make this substitution. Furthermore, again using our assumption

that Neff and Teff are bounded away from zero,

N0 log(T0)

r2
λ

& min

(
N0 log(T0)

(N0/Teff )1/2
√

log(T0)
,

N0 log(T0)

‖L::λ̃+ λ̃0 − L:T‖
√

log(T0)
,
N0 log(T0)

1

)
& min

(√
N0, N0/‖L::λ̃+ λ̃0 − L:T‖

)
,

T0 log(N0)

r2
ω

& min

(
T0 log(N0)

(T0/Neff )1/2
√

log(N0)
,

T0 log(N0)

‖ω̃′L:: + ω̃0 − LN :‖
√

log(N0)
,
T0 log(N0)

log(N0)

)
& min

(√
T0, T0/‖ω̃′L:: + ω̃0 − LN :‖

)
.

Thus, each bound holds with probability at least 1− c exp(−cmin(N
1/2
0 , T

1/2
0 , N0/‖L::λ̃ + λ̃0 −

L:T‖, T0/‖ω̃′L:: + ω̃0 − LN :‖)). And by the union bound, doubling our leading constant c, both

simultaneously with such a probability.
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VIII.3 Proof of Lemma 6

We begin with a decomposition of the difference between the SDID estimator and the oracle.

τ(λ̃, ω̃)− τ̂(λ̂, ω̂)

= ŶNT (λ̂, ω̂)− YNT (λ̃, ω̃)

=
[
YN :λ̂+ ω̂′Y:T − ω̂′Y::λ̂

]
−
[
YN :λ̃+ ω̃′Y:T − ω̃′Y::λ̃

]
= YN :(λ̂− λ̃) + (ω̂ − ω̃)′Y:T −

[
(ω̂ − ω̃)′Y::(λ̂− λ̃) + ω̃′Y::(λ̂− λ̃) + (ω̂ − ω̃)′Y::λ̃

]
= (YN : − ω̃′Y::)(λ̂− λ̃) + (ω̂ − ω̃)′(Y:T − Y::λ̃)− (ω̂ − ω̃)′Y::(λ̂− λ̃).

We bound these terms. As Yit = Lit + 1(i = N, t = T )τ + ε, we can decompose each of these

three terms into two parts, one involving L and the other ε. We will begin by treating the parts

involving ε.

1. The first term is a sum εN :(λ̂ − λ̃) − ω̃′ε::(λ̂ − λ̃). Because λ̂ is independent of εN :,

the first of these is subgaussian conditional on λ̂, with conditional subgaussian norm

‖εN :(λ̂−λ̃)‖ψ2|λ̂ ≤ ‖εN :(Σ
N
:: )−1/2‖ψ2‖(ΣN

:: )1/2Σ
−1/2
:: ‖‖Σ1/2

:: (λ̂−λ̃)‖. It follows that it satisfies

a subgaussian tail bound |εN :(λ̂− λ̃)| ≤ cu‖εN :(Σ
N
:: )−1/2‖ψ2 ‖(ΣN

:: )1/2Σ
−1/2
:: ‖‖Σ1/2

:: (λ̂− λ̃)‖
with conditional probability 1 − 2 exp(−u2). This implies that the same bound holds

unconditionally on an event of probability 1− 2 exp(−u2).

Furthermore, via generic chaining (e.g., Vershynin, 2018, Theorem 8.5.5), on an event of

probability 1−2 exp(−u2), either Σ
1/2
:: (λ̂−λ̃) 6∈ Λ?

sλ
or |ω̃′ε::(λ̂−λ̃)| ≤ c‖ω̃′ε::Σ

−1/2
:: ‖ψ2(w(Σ

1/2
:: Λ?

sλ
)+

u rad(Σ
1/2
:: Λ?

sλ
)) ≤ c‖εi:Σ−1/2

:: ‖ψ2‖ω̃‖(w(Σ
1/2
:: Λ?

sλ
) + usλ). The second comparison here fol-

lows from Hoeffding’s inequality (e.g., Vershynin, 2018, Theorem 2.6.3). Thus, by the

union bound, on the intersection of an event of probability 1 − c exp(−u2) and one on

which (37) holds,

|(εN : − ω̃′ε::)(λ̂− λ̃)|

≤ cu‖εN :(Σ
N
:: )−1/2‖ψ2‖(ΣN

:: )1/2Σ−1/2
:: ‖sλ + c‖ε1:Σ

−1/2‖ψ2‖ω̃‖(w(Σ1/2
:: Λ?

sλ
) + usλ)

≤ cuKN
−1/2
eff sλ + cK‖ω̃‖w(Σ1/2

:: Λ?
sλ

).

2. The second term is similar to the first. It is a sum (ω̂ − ω̃)′ε̃:T + (ω̂ − ω̃)′ε::(ψ − λ̃) for
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ε̃:T = ε:T − ε::ψ. Because ω̂ is a function of ε::, εN : and ε̃:T is mean zero conditional on

them, the first of these terms is a weighted average of conditionally independent mean-zero

subgaussian random variables. Applying Hoeffding’s inequality conditionally, it follows

that its magnitude is bounded by cu‖ω̂ − ω̃‖maxi<N‖ε̃iT‖ψ2|ε::,εN :
≤ cuK‖ω̂ − ω̃‖‖ε̃1T‖L2

on an event of probability 1 − 2 exp(−u2). In the second comparison, we’ve used the

independence of rows εi·, the identical distribution of rows for i < N , and the assumption

that ‖ε̃1T‖ψ2|ε1: ≤ K‖ε̃1T‖L2 .

Furthermore, via generic chaining, on an event of probability 1− c exp(−u2), either (ω̂ −
ω̃) 6∈ Ω?

sω or |(ω̂ − ω̃)ε::(ψ − λ̃)| ≤ c‖ε::(ψ − λ̃)‖ψ2(w(Ω?
sω) + u rad(Ω?

sω)) ≤ cK‖Σ1/2
:: (ψ −

λ̃)‖(w(Ω?
sω)+u rad(Ω?

sω)). The second comparison here follows from Hoeffding’s inequality.

Thus, by the union bound, on the intersection of an event of probability 1 − c exp(−u2)

and one on which (37) holds,

|(ω̂ − ω̃)′(ε:T − ε::λ̃)|

≤ cuK‖ε̃1T‖L2σ
−1sω + cuK‖Σ1/2

:: (ψ − λ̃)‖σ−1sω + cK‖Σ1/2
:: (ψ − λ̃)‖w(Ω?

sω)

≤ cuKT
−1/2
eff sω + cK‖Σ1/2

:: (ψ − λ̃)‖w(Ω?
sω).

3. Via Chevet’s inequality (Hirshberg, 2021, Lemma 3), on an event of probability 1 −
c exp(−u2), either (ω̂−ω̃) 6∈ Ω?

sω , (λ̂−λ̃) 6∈ Λ?
sλ

, or |(ω̂−ω̃)′ε::(λ̂−λ̃)| ≤ cK[w(Ω?
sω) rad(Σ

1/2
:: Λ?

sλ
)+

rad(Ω?
sω) w(Σ

1/2
:: Λ?

sλ
)+u rad(Ω?

sω) rad(Σ
1/2
:: Λ?

sλ
)] ≤ cK[w(Ω?

sω)sλ+w(Σ
1/2
:: Λ?

sλ
)σ−1sω+uσ−1sωsλ].

On the intersection of this event and one on which (37) holds, the first two possibilities

are ruled out and our bound on |(ω̂ − ω̃)′ε::(λ̂− λ̃)| holds.

By the union bound, these three bounds are satisfied on the intersection of one of probability

1− c exp(−u2) and one on which (37) holds. And by the triangle inequality, adding our bounds

yields a bound on our terms involving ε.

(38)

|(εN : − ω̃′ε::)(λ̂− λ̃) + (ω̂ − ω̃)′(ε:T − ε::λ̃)− (ω̂ − ω̃)′ε::(λ̂− λ̃)|

≤ cuK[N
−1/2
eff sλ + φT

−1/2
eff sω + σ−1sωsλ]

+ cK[(‖ω̃‖+ σ−1sω) w(Σ1/2
:: Λ?

sλ
) + (‖Σ1/2

:: (ψ − λ̃)‖+ sλ) w(Ω?
sω)]

We now turn our attention to the terms involving L. For any ω0, ω ∈ R × RN0 , (LN : −
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ω̃′L::)(λ̂ − λ̃) = (LN : − ω′L:: − ω0)(λ̂ − λ̃) + (ω − ω̃)′L::(λ̂ − λ̃). The value of the constant

ω0 does not affect the expression because the sum of the elements of λ̂ − λ̃ is zero. By the

Cauchy-Schwarz and triangle inequalities, it follows that

|(LN : − ω̃′L::)(λ̂− λ̃)| ≤ ‖(LN : − ω′L:: − ω0)Σ−1/2
:: ‖‖Σ1/2

:: (λ̂− λ̃)‖+ ‖ω − ω̃‖‖L::(λ̂− λ̃)‖

Furthermore, substituting bounds implied by (37) and using the elementary bound x + y ≤
2
√
x2 + y2, we get a quantity that we can minimize explicitly over ω. The following result; for

A = Σ
−1/2
:: L′::, b = Σ

−1/2
:: (L′N : − ω01), α = sλ, and β = rλ satisfying β/α = cN

1/2
0 ; implies the

bound

|(LN : − ω̃′L::)(λ̂− λ̃)| ≤ 2sλ min
ω0

‖S1/2
ω Σ−1/2

:: (L′::ω̃ + ω0 − L′N :)‖

Sω = I − Σ−1/2
:: L′::(L::Σ

−1
:: L

′
:: + (rλ/sλ)

2I)−1L::Σ
−1/2
:: .

Lemma 8. For any real matrix A and appropriately shaped vectors x̃ and b, minx α
2‖Ax−b‖2 +

β2‖x− x̃‖2 = α2‖S1/2(Ax̃− b)‖2 for S = I − A(A′A + (β/α)2I)−1A′. If β = 0, the same holds

for S = I − A(A′A)†A.

Proof. Reparameterizing in terms of y = x− x̃ and defining v = Ax̃− b and λ2 = β2/α2, this is

α2 times miny‖v+Ay‖2 + λ2‖y‖2 = miny‖v‖2 + 2y′A′v+ y′(A′A+ λ2I)y. Setting the derivative

of the expression to zero, we solve for the minimizer y = −(A′A+ λ2I)−1A′v and the minimum

v′[I − A(A′A+ λ2I)−1A′]v, then multiply by α2.

Analogously, for any λ0, λ ∈ R× RT0 ,

|(ω̂ − ω̃)′(L:T − L::λ̃)| ≤ ‖L:T − L::λ− λ0‖‖ω̂ − ω̃‖+ ‖λ− λ̃‖‖(ω̂ − ω̃)′L::‖.

and therefore, when (37) holds,

|(ω̂ − ω̃)′(L:T − L::λ̃)| ≤ 2σ−1sω min
λ0

‖S1/2
λ (L::λ̃− λ0 − L:T )‖

Sλ = I − L::(L
′
::L:: + (σrω/sω)2I)−1L′::.
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Finally, we can take the minimum of two Cauchy-Schwarz bounds on the third term,

|(ω̂ − ω̃)′L::(λ̂− λ̃)| = |[(ω̂0 − ω̃0) + (ω̂ − ω̃)′L::](λ̂− λ̃)|

≤ ‖(ω̂0 − ω̃0) + (ω̂ − ω̃)′L::‖‖Σ−1/2
:: ‖‖Σ1/2

:: (λ̂− λ̃)‖,

|(ω̂ − ω̃)′L::(λ̂− λ̃)| = |(ω̂ − ω̃)′[(λ̂0 − λ̃0) + L::(λ̂− λ̃)]|

≤ ‖ω̂ − ω̃‖‖(λ̂0 − λ̃0) + L::(λ̂− λ̃)‖.

As above, the inclusion of either intercept does not effect the value of the expression because

λ̂− λ̃ and ω̂ − ω̃ sum to one. This implies that on an event on which the bounds (37) hold,

(39)

|(LN : − ω̃′L::)(λ̂− λ̃) + (ω̂ − ω̃)′(L:T − Lλ̃)− (ω̂ − ω̃)′L::(λ̂− λ̃)|

≤ 2sλ min
ω0

‖S1/2
ω Σ−1/2

:: (L′::ω̃ + ω0 − L′N :)‖+ 2σ−1sω min
λ0

‖S1/2
λ (L::λ̃− λ0 − L:T )‖

+ min
(
‖Σ−1/2

:: ‖rωsλ, σ−1sωrλ
)
.

We can include in the minimum in the third term above another bound on |(ω̂− ω̃)′L::(λ̂− λ̃)|.
We will use one that exploits a potential gap in the spectrum of L::, e.g., a bound on the

smallest nonzero singular value of L::. The abstract bound we will use is one on the inner

product x′Ay: given bounds ‖x′A‖ ≤ rx, ‖Ay‖ ≤ ry, ‖x‖ ≤ sx, ‖y‖ ≤ sy, it is no larger than

mink σk(A)−1rxry + σk+1(A)sxsy. To show this, we first observe that without loss of generality,

we can let A be square, diagonal, and nonnegative with decreasing elemnts on the diagonal: in

terms of its singular value decomposition A = USV ′ and xU = U ′x and yV = V ′y, x′Ay = x′USyV

where ‖x′US‖ ≤ rx, ‖SyV ‖ ≤ ry, ‖xU‖ ≤ sx, ‖yV ‖ ≤ sy. In this simplified diagonal case, letting

18



ai := Aii and R = rank(A),

|x′Ay| = |
R∑
i=1

xiyiai|

≤ |
k∑
i=1

xiyiai|+ |
R∑

i=k+1

xiyiai|

≤

√√√√ k∑
i=1

x2
i a

2
i

k∑
i=1

y2
i +

√√√√ R∑
i=k+1

x2
i a

2
i

R∑
i=k+1

y2
i

≤ a−1
k

√√√√ k∑
i=1

x2
i a

2
i

k∑
i=1

y2
i a

2
i + ak+1

√√√√ R∑
i=k+1

x2
i

R∑
i=k+1

y2
i

≤ a−1
k rxry + ak+1sxsy.

We apply this with x = ω̂ − ω̃, y = λ̂− λ̃, and A = L:: −N−1
0 1N01′N0

L:: − L::T
−1
0 1T01′T0

; because

(ω̂ − ω̃)′1N0 = 0 and 1′T0
(λ̂− λ̃) = 0, (ω̂ − ω̃)′L::(λ̂− λ̃) = (ω̂ − ω̃)′A(λ̂− λ̃) = x′Ay. When the

bounds in (37) hold, ‖x′A‖ ≤ rω and ‖Ay‖ ≤ rλ, as

‖(ω̂ − ω̃)′A‖2 =

T0∑
t=1

[
(ω̂ − ω̃)′L:t − T−1

0

T0∑
t=1

(ω̂ − ω̃)′L:t

]2

= min
δ∈R
‖(ω̂ − ω̃)′L:: − δ‖2 ≤ r2

ω.

These bounds also imply ‖x‖ ≤ σ−1sω and ‖y‖ ≤ ‖Σ−1/2
:: ‖sλ, so our third term is bounded by

|(ω̂ − ω̃)′L::(λ̂− λ̃)| ≤ min
k
σk(A)−1rλrω + σ−1‖Σ−1/2

:: ‖σk+1(A)sλsω

Adding together (38) and (39), including this additional bound in the minimum in the third

term of (39), we get the claimed bound on |τ(λ̃, ω̃)− τ̂(λ̂, ω̂)|.

VIII.4 Proof of Corollary 7

We begin with the bound from Lemma 6. As the claimed bound is stated up to an unspecified

universal constant, we can ignore universal constants throughout. We can ignore K as well; as

discussed in Section VII.1, as in the gaussian case we consider, it can be taken to be a universal
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constant. Furthermore, we can ignore all appearances of powers of σ, Σ::, and Sθ for θ ∈ {λ, ω},
using bounds w(Σk

::·) ≤ ‖Σk
::‖w(·), ‖Σk

::·‖ ≤ ‖Σk‖‖·‖, and ‖S1/2
θ ·‖ ≤ ‖S

1/2
θ ‖‖·‖ and observing

that ‖Sθ‖ ≤ 1 by construction and, under Assumption 6, ‖Σ::‖ and ‖Σ−1
:: ‖ are bounded by

universal constants. And we bound minima over ω0 and λ̃0 by substituting ω̃0 and λ̃0. Then, as

w(Λ?
sλ

) .
√

log(T0) and w(Ω?
sω) .

√
log(N0), Lemma 5 and Lemma 6 together (taking σ = 1 in

the latter), imply that on an event of probability 1−c exp(−u2)−c exp(−v) for v as in Lemma 5,

the following bound holds for η2 = 1 + ζ2.

|τ̂(λ̂, ω̂)− τ̂(λ̃, ω̃)| . u[N
−1/2
eff N

−1/2
0 rλ + T

−1/2
eff (η2T0)−1/2rω + (η2N0T0)1/2rωrλ]

+ (‖ω̃‖+ (η2T0)−1/2rω) log1/2(T0) + (‖ψ − λ̃‖+N
−1/2
0 rλ) log1/2(N0)

+ (η2T0)−1/2rωEλ +N
−1/2
0 rλEω + rωrλM for any

M ≥ min

(
N
−1/2
0 , (η2T0)−1/2, min

k∈N
σk(L

c
::)
−1 + σk+1(Lc::)(η

2N0T0)−1/2

)
and

rλ = log1/4(T0)[(N0/Teff )
1/4 + E

1/2
λ ], Eλ = ‖L::λ̃+ λ̃0 − L:T‖, T−1/2

eff = ‖λ̃− ψ‖+ T
−1/2
1 ,

rω = log1/4(N0)[(T0/Neff )
1/4 + E1/2

ω ], Eω = ‖L′::ω̃ + ω̃0 − L′N :‖, N
−1/2
eff = ‖ω̃‖+N

−1/2
1 .

Taking u = min(T
1/2
eff log1/2(T0), N

1/2
eff log1/2(N0), (η2N0T0)1/2M), we can ignore the first line in

the bound above, as its three terms are bounded by the second term in the second line, the first

term in the second line, and the final term respectively. Grouping terms with common powers

of rω, rλ; redefining Eλ = max(Eλ, 1) and Eω = max(Eω, 1), and expanding rω, rλ yields the

following bound.

(40)

‖ω̃‖ log1/2(T0) + ‖ψ − λ̃‖ log1/2(N0)

+ (η2T0)−1/2[(T0/Neff )
1/4 + E1/2

ω ]Eλ log1/2(N0)

+N
−1/2
0 [(N0/Teff )

1/4 + E
1/2
λ ]Eω log1/2(T0)

+M [(N0T0/NeffTeff )
1/4 + (N0/Teff )

1/4E1/2
ω + (T0/Neff )

1/4E
1/2
λ + (EωEλ)

1/2] log1/4(N0) log1/4(T0).

Each term is multiplied by either log1/2(T0), log1/2(N0), or their geometric mean. For simplicity,

we will substitute a common upper bound of `1/2 for ` = log(max(N0, T0)). To establish our
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claim, we must show that each term is o((N1T1)−1/2).

The first line of our bound is small enough, Neff ∼ N1, and Teff ∼ T1, if

(41) max(‖ω̃‖, ‖λ̃− ψ‖)� (N1T1)−1`−1/2, min(N1, T1) & 1,

If the following bound holds, the remaining terms that do no involve M are small enough.

(42)

Eω � N
1/4
0 N

−1/2
1 T

−1/4
1 `−1/2,

Eλ � ηT
1/4
0 N

−1/4
1 T

−1/2
1 `−1/2,

(EωEλ)
1/2 � min(N

3/8
0 T

−3/8
1 N

−1/4
1 , η1/2T

3/8
0 N

−3/8
1 T

−1/4
1 )`−1/4.

To see this, multiply the square root of the first bound by the first part of the third when

bounding the term involving E
1/2
λ Eω and the square root of the second by the second part of the

third when bounding the term involving E
1/2
ω Eλ. Note that because our ‘redefinition’ of Eω, Eλ

requires that they be no smaller than one, these upper bounds must go to infinity, and so long

as they do we can interpret them as bounds on ‖L′::ω̃ + ω̃0 − L′N :‖, ‖L::λ̃+ λ̃0 − L:T‖, and their

geometric mean respectively.

By substituting the bounds (42) into the term with a factor of M in (40), we can derive a

sufficent condition for it to be small enough. To see that it is sufficient, we bound first multiple

of M in (40) using the first bound on M below, the second using the second in combination

with our bound on Eω, the third using the third in combination with our bound on Eλ, and the

fourth using the second in combination with our first bound on (EωEλ)
1/2.

(43) M � min
(

(N0T0N1T1`)
−1/4, N

−3/8
0 N

−1/4
1 T

−1/8
1 , η−1/2T

−3/8
0 T

−1/4
1 N

−1/8
1

)
`−1/4.

Equations 41, 42, and 43, so long as the bounds in (42) all go to infinity, are sufficient to imply

our claim. Note that because every vector ω in the unit simplex in RN0 satisfies ‖ω‖ ≥ N
−1/2
0 ,

(41) implies an additional constraint on the dimensions of the problem, N0 � N1T1`.

Having established these bounds on Eω and Eλ, we are now in a position to characterize

the probability that our result holds by lower bounding the ratios N0/Eλ and T0/Eω that ap-

pear in the probability statement of Lemma 5. As N0/Eλ � N
3/4
0 and T0/Eω � T

3/4
0 , the

claims of Lemma 5 hold with probability 1− c exp(−v) for v = cmin(N0, T0)1/2. Thus, recalling

21



from above that we are working on an event of probability 1− c exp(−u2)− c exp(−v) for u =

min(T
1/2
eff log1/2(T0), N

1/2
eff log1/2(N0), (η2N0T0)1/2M) and that Neff ∼ N1 and Teff ∼ T1, this is

probability at least 1−2 exp(−min(T1 log(T0), N1 log(N0), η2N0T0M
2))−c exp(−cmin(N

1/2
0 , T

1/2
0 )).

We will now derive simplfied sufficient conditions under the assumption that N0 ∼ T0. Let

m0 = N0, m1 = (N1T1)1/2, and m̄1 = max(N1, T1). Then (43) holds if

M � min(m
−1/2
0 m

−1/2
1 `−1/2, η−1/2m

−3/8
0 m

−1/4
1 m̄

−1/4
1 `−1/4).

This is not satisfiable with M = N
−1/2
0 ∼ m

1/2
0 . But with M = (ηT0)−1/2 ∼ η−1m

−1/2
0 , it is

satisfied for η � max(1, m
−1/4
0 m̄

1/2
1 )m

1/2
1 `1/2. For such η, (42) hold when

Eω � m
1/4
0 m

−1/2
1 m̄

−1/4
1 `−1/2,

Eλ � max(m
1/4
0 m̄

−1/4
1 , m̄

1/4
1 )

(EωEλ)
1/2 � m

3/8
0 m

−1/2
1 m̄

−1/8
1 `−1/4.

To keep the statement of our lemma simple, we use the simplified bound Eλ � m
1/4
0 m̄

−1/4
1 .

Then the geometric mean of our bounds on Eω and Eλ bounds their geometric mean, and it is

m
1/4
0 m

−1/4
1 m̄

−1/4
1 `−1/4. Thus, our explicit bound on the geometric mean above is redundant as

long as the ratio of these two bounds, m
1/4
0 m

−1/4
1 m̄

−1/4
1 `−1/4/m

3/8
0 m

−1/2
1 m̄

−1/8
1 `−1/4, is bounded.

As this ratio simplifies to m
−1/8
0 m

1/4
1 m̄

−1/8
1 ≤ (m1/m0)1/8 and m0 � m1, it is redundant. And

taking M ∼ η−1m
−1/2
0 in our probability statement above, our claims hold with probability

1− 2 exp(−min(T1 log(T0), N1 log(N0)))− c exp(−cm1/2
0 )).

To avoid complicating the statement of our result, we will not explore refinements made

possible by a nontrivially large gap in the spectrum of Lc::, i.e., the case thatM = mink σk(L
c
::)
−1+

σk+1(Lc::)(η
2N0T0)−1/2. However, in models with no weak factors, this quantity will be very small,

and as a result, Equations 41 and 42 will essentially be sufficient to imply our claim. As we

make η large only to control M when it is equal to (ηT0)−1/2, this provides some justification for

the use of weak regularization (ζ small) or no regularization (ζ = 0) when fitting the synthetic

control ω̂.

We conclude by observing that the lower bound on ζ above simplifies to ζ � m
1/2
1 `1/2 under

our stated assumptions. We begin with the assumption that the above upper bound on Eω

goes to infinity. Observing that the other lower bound on ζ as stated above is m̄
1/4
1 times
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the reciprocal of the this infinity-tending bound on Eω, it follows that it must be o(m̄
1/4
1 ).

As m
1/2
1 = m̄

1/4
1 min(N1, T1)1/4 and the latter factor and `1/2 are bounded away from zero by

assumption, m̄
1/4
1 = O(m

1/2
1 `1/2), so this other lower bound is indeed smaller than the (other)

one that we retain.

IX Proof of Theorem 2

Throughout this proof, we will assume constant treatment effects τij = τ . When treatment

effects are not constant, the jackknife variance estimate will include an additional nonnegative

term that depends on the amount of treatment heterogeneity, making the inference conservative.

We will write a ∼p b meaning a/b →p 1, a .p b meaning a = Op(b), a �p b meaning

a = op(b), σmin(Σ) and σmax(Σ) for the smallest and largest eigenvalues of a matrix Σ, and

1n ∈ Rn for a vector of ones. And we write λ̂? to denote the concatenation of λ̂pre and −λ̂post.

Now recall that, as discussed in Section III.1,

τ̂ = ω̂′trYtr,postλ̂post − ω̂′coYco,postλ̂post − ω̂′trYtr,preλ̂pre + ω̂′coYco,preλ̂pre

= µ̂tr − µ̂co where

µ̂co =
Nco∑
i=1

ω̂i∆̂i, µ̂tr =
N∑

i=Nco+1

ω̂i∆̂i, ∆̂i = Yi,·λ̂
?.

(44)

In the jackknife variance estimate defined in Algorithm 3,

(45) τ̂ (−i) =

µ̂tr −
∑
k≤Nco,k 6=i ω̂k∆k

1−ω̂i = µ̂tr −
(
µ̂co − ω̂i(∆i−µ̂co)

1−ω̂i

)
for i ≤ Nco∑

k≥Nco,k 6=1 ω̂k∆k

1−ω̂i − µ̂co =
(
µ̂tr − ω̂i(∆i−µ̂tr)

1−ω̂i

)
− µ̂co for i > Nco.

Thus, the jackknife variance estimate defined in Algorithm 3 is

(46) V̂ jack
τ =

N − 1

N

Nco∑
i=1

 ω̂i
(

∆̂i − µ̂co

)
1− ω̂i

2

+
N∑

i=Nco+1

 ω̂i
(

∆̂i − µ̂tr

)
1− ω̂i

2
 .

A few simplifications are now in order. We use the bound ‖ω̂co‖2 � (NtrTpost log(Nco))−1

derived in Section IX.0.1 below. This bound implies that the denominators 1− ω̂i appearing in
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the expression above all lie in the interval [1 − max(‖ω̂co‖, N−1
tr ), 1] = [1 − op(1), 1]. As each

term in that expression is nonnegative, it follows that the ratio between it and the expression

below, derived by replacing these denominators with 1, is in this interval and therefore converges

to one.

(47) V̂ jack
τ ∼p

Nco∑
i=1

ω̂2
i

(
∆̂i − µ̂co

)2

+
N∑

i=Nco+1

ω̂2
i

(
∆̂i − µ̂tr

)2

.

We will simplify this further by showing that the first term is negligible relative to the second.

We’ll start by lower bounding the second term. This is straightforward because for i > Nco, the

unit weights ω̂i are equal to the constant 1/Ntr and the time weights λ̂ are independent of Yi,·.

E
N∑

i=Nco+1

ω̂2
i

(
∆̂i − µ̂tr

)2

= N−2
tr

N∑
i=Nco+1

E((Yi,· − ω̂′trYtr,·)λ̂
?)2

≥ N−2
tr

N∑
i=Nco+1

E((εi,· − ω̂′trεtr,·)λ̂
?)2

= N−1
tr E λ̂′? (1−N−1

tr )Σ λ̂? as Cov [εi,· − ω̂′trεtr,·] = (1−N−1
tr )Σ

≥ N−1
tr ‖λ̂?‖2(1−N−1

tr )σmin(Σ)

≥ (NtrTpost)
−1(1−N−1

tr )σmin(Σ) as ‖λ̂?‖2 ≥ ‖λ̂tr‖2 = T−1
post.

As σmin(Σ) is bounded away from zero, it follows that the mean of the second term in (47) is on

the order of (NtrTpost)
−1 or larger. We’ll now show that the first term in (47) is op((NtrTpost)

−1),

so (47) is equivalent to a variant in which we have dropped its first term.

By Hölder’s inequality and the bound ‖ω̂co‖2 � (NtrTpost log(Nco))−1 derived in Section IX.0.1,

Nco∑
i=1

ω̂2
i

(
∆̂i − µ̂co

)2

≤ ‖ω̂co‖2 max
i≤Nco

(
∆̂i − µ̂co

)2

� (NtrTpost log(Nco))−1 max
i≤Nco

(
∆̂i − µ̂co

)2

.

Thus, it suffices to show that maxi≤Nco(∆̂i − µ̂co)2 � log(Nco). And it suffices to show that

maxi≤Nco ∆̂2
i � log(Nco), as (∆̂i − µ̂co)2 ≤ 2∆̂2

i + 2µ̂2
co and µ̂co is a convex combination of

∆̂1 . . . ∆̂co. This bound holds because, by Hölder’s inequality,

max
i≤Nco

∣∣∣∆̂i

∣∣∣ = max
i≤Nco

∣∣∣Yi,·λ̂?∣∣∣ ≤ ∥∥∥λ̂?∥∥∥
1
· max
i≤Nco, j≤T

|Yij| .p

√
log(Nco).
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In our last comparison above, we use the properties that ‖λ̂?‖1 = ‖λ̂pre‖1 + ‖λ̂post‖1 = 2, that

the elements of L are bounded, and that the maximum of K = NcoT gaussian random variables

εit is Op(
√

log(K)), as well as Assumption 2, which implies that T ∼ Nco so log(K) . log(Nco).

Summarizing,

(48) V̂ jack
τ ∼p

1

N2
tr

N∑
i=Nco+1

(
∆̂i − µ̂tr

)2

.

This simplification is as we would hope given that, under the conditions of Theorem 1, we found

that all the noise in τ̂ comes from the exposed units. Now, focusing further on (48) we note

that, when treatment effects are constant across units, we can verify that they do not contribute

to V̂ jack
τ and so

1

N2
tr

N∑
i=Nco+1

(
∆̂i − µ̂tr

)2

=
1

N2
tr

N∑
i=Nco+1

(
∆̂i(L)− µ̂tr(L) + ∆̂i(ε)− µ̂tr(ε)

)2

,

∆̂i(L) = Li,·λ̂
? ∆̂i(ε) = εi,·λ̂

?,

(49)

where µ̂tr(L) and µ̂tr(ε) are averages of ∆̂i(L) and ∆̂i(ε) respectively over the exposed units.

Now, by construction, λ̂ is only a function of the unexposed units and so, given that there is

no cross-unit correlation, λ̂ is independent of εi,. for all i > Nco. Thus, the cross terms between

∆̂i(L)− µ̂tr(L) and ∆̂i(ε)− µ̂tr(ε) in (49) are mean-zero and concentrate out, and so

(50) V̂ jack
τ ∼p

1

N2
tr

N∑
i=Nco+1

(
∆̂i(L)− µ̂tr(L)

)2

+
1

N2
tr

N∑
i=Nco+1

(
∆̂i(ε)− µ̂tr(ε)

)2

.

We will now show that the second term is equivalent to a variant in which λ̃ replaces λ̂. We

denote by ∆̃ and µ̃tr the corresponding variants of ∆̂ and µ̂tr. First consider the second term in
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(50). ∆̂i(ε) = ∆̃i(ε) + εi,pre(λ̂pre − λ̃pre), so

(
∆̂i(ε)− µ̂tr(ε)

)2

=
(

[∆̃i(ε)− µ̃tr(ε)] + (εi,pre − ω̂′trεtr,pre)(λ̂pre − λ̃pre)
)2

=
(

∆̃i(ε)− µ̃tr(ε)
)2

+ 2[∆̃i(ε)− µ̃tr(ε)](εi,pre − ω̂′trεtr,pre)(λ̂pre − λ̃pre)

+ ((εi,pre − ω̂′trεtr,pre)(λ̂pre − λ̃pre))
2.

By the Cauchy-Schwarz inequality, the second and third terms in this decomposition are negli-

gible relative to the first if Etr((εi,pre− ω̂′trεtr,pre)(λ̂pre− λ̃pre))
2 �p Etr(∆̃i(ε)− µ̃tr(ε))

2 where Etr

denotes expectation conditional on εco,·. We calculate both quantities and compare.

Etr((εi,pre − ω̃′trεtr,pre)(λ̂pre − λ̃pre))
2 = (λ̂pre − λ̃pre)

′(1−N−1
tr )Σ(λ̂pre − λ̃pre).

Etr(∆̃i(ε)− µ̃tr(ε))
2 = Etr((εi,· − ω̃′trεtr,pre)

′λ̃?)2 = λ̃′ (1−N−1
tr )Σ λ̃.

In Section IX.0.2, we show that the first is .p N
−1/2
co T

−1/2
post log1/2(Nco), and the second is &

‖λ̃?‖2 ≥ T−1
post because σmin(Σ) is bounded away from zero. Thus, becauseN

−1/2
co � T

−1/2
post log−1/2(Nco)

under Assumption 2, the first quantity is negligible relative to the second. As discussed, it follows

that

(51)
1

N2
tr

N∑
i=Nco+1

(
∆̂i(ε)− µ̂tr(ε)

)2

∼p
1

N2
tr

N∑
i=Nco+1

(
∆̃i(ε)− µ̃tr(ε)

)2

.

By the law of large numbers, the right side is equivalent (∼p) to its mean N−1
tr λ̃

′ (1−N−1
tr )Σ λ̃

and therefore to N−1
tr λ̃

′Σλ̃. It is shown that N−1
tr λ̃

′Σλ̃ ∼p Vτ in the proof of Lemma 4, so

(52) V̂ jack
τ ∼p

1

N2
tr

N∑
i=Nco+1

(
∆̂i(L)− µ̂tr(L)

)2

+ Vτ .

Because the first term is nonnegative, our variance estimate is asymptotically either unbiased

or upwardly biased, so our confidence intervals are conservative as claimed. In the remainder,

we derive a sufficient condition for the first term to be asymptotically negligible relative to Vτ ,

so our confidence intervals have asymptotically nominal coverage.
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We bound this term using the expansion µ̂tr(L) = N−1
tr 1′Ntr

(Ltr,postλ̂post − Ltr,preλ̂pre).

N−2
tr

N∑
i=Nco+1

(
∆̂i(L)− µ̂tr(L)

)2

= N−2
tr ‖(I −N−1

tr 1Ntr1
′
Ntr

)(Ltr,preλ̂pre + λ̂01Ntr − Ltr,postλ̂post)‖2

≤ N−2
tr ‖Ltr,preλ̂pre + λ̂0 − Ltr,postλ̂post‖2.

This comparison holds because ‖I − N−1
tr 1Ntr1Ntr‖ ≤ 1. By Assumption (31), this bound is

oP ((NtrTpost)
−1) and therefore negligible relative to Vτ . We conclude by proving our claims

about ‖ω̂co‖ and ‖Σ1/2
pre (λ̂co − λ̃co)‖.

IX.0.1 Bounding ‖ω̂co‖

Here we will show that ‖ω̂co‖2 � (NtrTpost log(Nco))−1 under the assumptions of Theorem 1.

‖ω̂co − ω̃co‖2 .p ζ−2N−1
co [N1/2

co N
−1/2
tr + ‖ω̃′coLco,pre + ω̃0 − ω̃′trLtr,pre‖] log1/2(Nco)

� [N
1/2
tr T

1/2
post log(Nco)]−1N−1/2

co N
−1/2
tr log1/2(Nco)

+ [N
1/2
tr T

1/2
post max(Ntr, Tpost)

1/2N−1/4
co log(Nco)]−1N−3/4

co N
−1/4
tr T

−1/4
post max(Ntr, Tpost)

−1/4

� N−1/2
co N−1

tr T
−1/2
post

� (NtrTpost log(Nco))−1.

Our first bound follows from Lemma 5, in which we can take N
−1/2
eff ∼ N

−1/2
tr because ‖ω̃co‖ .

N
−1/2
tr under Assumption 4. To derive our second, we substitute the upper bound N

1/4
co N

−1/4
tr

T
−1/4
post max(Ntr, Tpost)

−1/4 log−1/2(Nco)� ‖ω̃′coLco,pre + ω̃0 − Ltr,pre‖ from Assumption 4 and sub-

stitute (in brackets) two lower bounds on ζ2 chosen as in Theorem 1: the first is implied by

squaring the lower bound ζ � (NtrTpost)
1/4 log1/2(Nco) and the second by multiplying this lower

bound by an alternative lower bound, ζ � (NtrTpost)
1/4 max(Ntr, Tpost)

1/2N
−1/4
0 log1/2(Nco). The

third is a simplification, and the fourth follows because Tpost log2(Nco) � Nco under Assump-

tion 2. Furthermore, as ‖ω̃co‖2 � (NtrTpost log(Nco))−1 under Assumption 4, by the triangle

inequality, ‖ω̂co‖2 � (NtrTpost log(Nco))−1 as claimed.
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IX.0.2 Bounding ‖Σpre,pre(λ̂co − λ̃co)‖

Here we will show that ‖Σpre,pre(λ̂co − λ̃co)‖2 .p N
−1/2
co T

−1/2
post log1/2(Nco). Because Assumption 1

implies that ‖Σpre,pre‖ is bounded, it suffices to bound ‖λ̂co − λ̃co‖.

‖λ̂co − λ̃co‖2 .p N
−1
co [N1/2

co T
−1/2
post + ‖Lco,preλ̃pre + λ̃0 − Lco,postλ̃post‖] log1/2(Nco)

. N−1/2
co T

−1/2
post log1/2(Nco) +N−3/4

co N
−1/8
tr T

−1/8
post log1/2(Nco)

. N−1/2
co T

−1/2
post log1/2(Nco).

Our first bound follows from Lemma 5, in which we can take T
−1/2
eff ∼ T

−1/2
post because ‖λ̃pre −

ψ‖ . T
−1/2
post under Assumption 4. To derive our second, we substitute the upper bound

N
1/4
co N

−1/8
tr T

−1/8
post � ‖Lco,preλ̃pre + λ̃0 − Lco,postλpost‖ from Assumption 4. The third follows

because N
−1/4
co � N

−1/4
tr T

−1/4
post max(Ntr, Tpost)

−1/4 ≤ N
−3/8
tr T

−3/8
post under Assumption 2.
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