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Appendix I: Model framework 

A. General formulation 

Consider a class of models in which revenue of firm2 𝑗𝑗 in time 𝑡𝑡 is given by 𝐴𝐴𝑗𝑗𝑗𝑗𝐸𝐸𝑗𝑗𝑗𝑗
𝜙𝜙, where 

𝐴𝐴𝑗𝑗𝑗𝑗 is a composite shock reflecting both technical efficiency and, potentially, demand shocks, 𝐸𝐸𝑗𝑗𝑗𝑗 

is employment, and 𝜙𝜙 < 1 reflects revenue function curvature arising from imperfect 

competition due to, for example, product differentiation (related arguments go through for 

decreasing returns to scale).  Suppose the shock 𝐴𝐴𝑗𝑗𝑗𝑗 follows the process ln𝐴𝐴𝑗𝑗𝑗𝑗 = 𝜌𝜌𝑎𝑎 ln𝐴𝐴𝑗𝑗𝑗𝑗−1 +

𝜂𝜂𝑗𝑗𝑗𝑗.  This setup is common to a wide range of models of firm dynamics and typically gives rise 

to an employment growth policy function given by: 

 𝑔𝑔𝑗𝑗𝑗𝑗 = 𝑓𝑓𝑡𝑡�𝐴𝐴𝑗𝑗𝑗𝑗 ,𝐸𝐸𝑗𝑗𝑗𝑗−1� (A1) 

where 𝑔𝑔𝑗𝑗𝑗𝑗 is employment growth from 𝑡𝑡 − 1 to 𝑡𝑡; this is the same as equation (1) in the main 

text.  It is commonly the case that 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

> 0; that is, for any two firms with the same employment, 

the firm with higher 𝐴𝐴 has higher growth.  For empirical purposes, (A1) leads to the following 

log-linear approximation: 

 𝑔𝑔𝑗𝑗𝑗𝑗 = 𝛽𝛽0 + 𝛽𝛽1𝑎𝑎𝑗𝑗𝑗𝑗 + 𝛽𝛽2𝑒𝑒𝑗𝑗𝑗𝑗−1 + 𝜀𝜀𝑗𝑗𝑗𝑗 (A2) 

While (A1) and its empirical counterpart (A2) are quite general, it is useful to illustrate 

the employment growth function using a special case of a simple model that is free of frictions or 

distortions (which we will add below).  In this case, the firm’s first-order condition, in logs 

(indicated by lowercase), is given by: 

 𝑒𝑒𝑗𝑗𝑗𝑗 =
1

1 − 𝜙𝜙
�ln

𝜙𝜙
𝑊𝑊𝑡𝑡

+ 𝑎𝑎𝑗𝑗𝑗𝑗� (A3) 

 
1 All of the code used to produce the results in the paper can be found at openicpsr-120432. 
2 We use the term “firm” for expositional purposes; in model exercises we do not distinguish between firms and 
establishments.  Our empirical exercises using TFP measures and manufacturing data rely on establishments, while 
our economywide exercises using RLP rely on firms. 
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where 𝑊𝑊𝑡𝑡 is the industry wage.  Taking time differences (indicated by ∆) and sweeping out year 

and industry effects yields the firm-level growth rate (measured as log first differences for 

convenience): 

 ∆𝑒𝑒𝑗𝑗𝑗𝑗 =
1

1 − 𝜙𝜙
∆𝑎𝑎𝑗𝑗𝑗𝑗 (A4) 

Equation (A4) provides an employment growth function that is different from its expression in 

(A1); in particular, (A4) expresses employment growth as a function of the change in 𝑎𝑎𝑗𝑗𝑗𝑗, which 

is intuitive in this frictionless environment (note also the importance of revenue function 

curvature parameter 𝜙𝜙).  However, (A4) can be transformed to express employment growth as a 

function of the productivity level instead.  To see this, we start with (A3), consider it for 𝑡𝑡 − 1, 

and invert it to express productivity in terms of employment: 

 𝑎𝑎𝑗𝑗𝑗𝑗−1 = (1 − 𝜙𝜙)𝑒𝑒𝑗𝑗𝑗𝑗−1 − ln
𝜙𝜙

𝑊𝑊𝑡𝑡−1
 (A5) 

Substituting (A5) into (A4) (and, again, sweeping out industry and year effects) yields: 

 ∆𝑒𝑒𝑗𝑗𝑗𝑗 = 1
1−𝜙𝜙

𝑎𝑎𝑗𝑗𝑗𝑗 − 𝑒𝑒𝑗𝑗𝑗𝑗−1, (A6) 

That is, employment growth can be expressed as a function of the level of 𝑎𝑎𝑗𝑗𝑗𝑗, as well as the level 

of 𝑒𝑒𝑗𝑗𝑗𝑗−1, as in (A1) and (A2).  This is useful for two reasons.  First, as noted in the text, it is 

convenient to specify the growth function in terms of productivity levels for empirical purposes, 

since productivity data in manufacturing are constructed to be representative in the cross section 

but not necessarily longitudinally.  Second, in models with labor adjustment costs (such as the 

one we will describe below), the productivity level is the relevant state variable arising from the 

firm value function. 

We now turn to two illustrative special cases of the general model framework that can 

motivate (A1) and (A2): a model with labor adjustment costs, and a model with static 

distortionary wedges that are correlated with fundamentals.  We explore these models to 

demonstrate how (A1) arises from firm optimization problems and how it is affected by model 

parameters and frictions or distortions on employment demand decisions. 

B. Model with labor adjustment costs 

Consider the following model of firm-level adjustment costs.  A firm maximizes the 

present discounted value of profits.  The firm’s value function and its components are specified 

as follows: 
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 𝑉𝑉�𝐸𝐸𝑗𝑗𝑗𝑗−1,𝐴𝐴𝑗𝑗𝑗𝑗� = max�𝐴𝐴𝑗𝑗𝑗𝑗𝐸𝐸𝑗𝑗𝑗𝑗
𝜙𝜙 −𝑊𝑊𝑡𝑡𝐸𝐸𝑗𝑗𝑗𝑗 − 𝐶𝐶�𝐻𝐻𝑗𝑗𝑗𝑗 ,𝐸𝐸𝑗𝑗𝑗𝑗−1� + 𝛽𝛽𝔼𝔼𝐴𝐴(𝐸𝐸𝑗𝑗𝑗𝑗,𝐴𝐴𝑗𝑗𝑗𝑗+1� (A7) 

with 

 

𝐶𝐶�𝐻𝐻𝑗𝑗𝑗𝑗 ,𝐸𝐸𝑗𝑗𝑗𝑗−1� =

⎩
⎪
⎨

⎪
⎧𝛾𝛾

2
�
𝐻𝐻𝑗𝑗𝑗𝑗
𝐸𝐸𝑗𝑗𝑗𝑗−1

�
2

+ 𝐹𝐹+ max�𝐻𝐻𝑗𝑗𝑗𝑗, 0� + 𝐹𝐹− max�−𝐻𝐻𝑗𝑗𝑗𝑗 , 0� if 𝐻𝐻𝑗𝑗𝑗𝑗 ≠ 0

0 otherwise

 

 

where 𝜙𝜙 < 1 due to product differentiation such that 𝐴𝐴𝑗𝑗𝑗𝑗𝐸𝐸𝑗𝑗𝑗𝑗
𝜙𝜙 is the revenue function for firm 𝑗𝑗, 𝐸𝐸𝑗𝑗𝑗𝑗 

is employment for  time 𝑡𝑡, 𝐻𝐻𝑗𝑗𝑗𝑗 is net hires made at the beginning of time 𝑡𝑡 such that 𝐻𝐻𝑗𝑗𝑗𝑗 = 𝐸𝐸𝑗𝑗𝑗𝑗 −

𝐸𝐸𝑗𝑗𝑗𝑗−1 (this can be positive or negative), 𝑊𝑊𝑡𝑡 is the wage, and 𝐴𝐴𝑗𝑗𝑗𝑗 is a composite shock reflecting 

both technical efficiency and demand shocks.  We interpret the revenue function curvature as 

reflecting product differentiation rather than decreasing returns to help draw out the potential 

relationship between revenue productivity and technical efficiency when prices are endogenous.  

That is, let firm-level price be given by 𝑃𝑃𝑗𝑗𝑗𝑗 = 𝐷𝐷𝑗𝑗𝑗𝑗𝑄𝑄𝑗𝑗𝑗𝑗
𝜙𝜙−1, where 𝑄𝑄𝑗𝑗𝑗𝑗 = 𝐴̃𝐴𝑗𝑗𝑗𝑗𝐸𝐸𝑗𝑗𝑗𝑗 is firm-level output 

subject to a constant returns technology, with 𝐴𝐴𝑗𝑗𝑗𝑗 = 𝐷𝐷𝑗𝑗𝑗𝑗𝐴̃𝐴𝑗𝑗𝑗𝑗
𝜙𝜙 .  That is, 𝐴𝐴𝑗𝑗𝑗𝑗 is what we refer to as 

“TFP” in the main text and reflects both technical efficiency and demand shocks, both in the 

conceptual framework and empirical analysis.  Since labor is the only production factor, TFPR 

and revenue labor productivity (RLP) are both given by 𝑃𝑃𝑗𝑗𝑗𝑗𝐴̃𝐴𝑗𝑗𝑗𝑗.  Note that in the alternative price-

taking version of the model (where 𝜙𝜙 = 1), TFP, TFPR, and RLP are equivalent.  We focus on 

the 𝜙𝜙 < 1 case in our calibration.  We also abstract from demand shocks for clarity of exposition 

(i.e., 𝐷𝐷𝑗𝑗𝑗𝑗 = 1 ∀ 𝑗𝑗, 𝑡𝑡) in the remaining discussion.  Our TFP shocks should be interpreted as 

reflecting the type of composite shocks we consider empirically. 

This simple adjustment cost model is similar to Cooper, Haltiwanger, and Willis (2007, 

2015), Elsby and Michaels (2013), and Bloom et al. (2018) and, in principle, accommodates both 

convex and non-convex adjustment costs.  In particular, given the cost function 𝐶𝐶(𝐻𝐻𝑗𝑗𝑗𝑗), which 

depends upon 𝐸𝐸𝑗𝑗𝑗𝑗−1, the policy rule for hiring depends on the initial state faced by the firm, 

which is summarized as (𝐸𝐸𝑗𝑗𝑗𝑗−1,𝐴𝐴𝑗𝑗𝑗𝑗).     

We view the model as primarily illustrative but seek a reasonable baseline calibration that 

matches key features of the data and the parameters of the existing literature.  Appropriate 

caution is needed since we do not model entry or exit, and we do not have any lifecycle learning 

dynamics or frictions that make young firms different from more mature firms.  We regard the 
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calibration as providing guidance about the qualitative predictions for the key data moments we 

study but within a reasonable range of the parameter space. 

Our main calibration exercise, described in detail below, implements “general 

equilibrium” in the sense that we fix the labor supply then find the wage that clears the labor 

market.  Given a rigid labor supply, this may be thought of as an extreme scenario.  However, in 

unreported exercises we consider the opposite extreme in which labor supply is perfectly elastic 

and the wage is fixed (i.e., partial equilibrium).  A limitation of the partial equilibrium exercise is 

that when the wage is fixed, adjustment frictions can have large effects on average firm size and 

therefore productivity via channels that are unrelated to reallocation.  However, our key results 

on how adjustment costs affect reallocation rates, firm-level productivity responsiveness, and the 

effect of changing responsiveness on aggregate productivity growth do not substantively depend 

on general versus partial equilibrium.   

Our method for solving the model is as follows. We create a state space for employment, 

with 2,400 points (distributed more densely at lower values), and for TFP realizations, with 115 

points.  We specify firm-level TFP to follow an AR(1) process, ln𝐴𝐴𝑗𝑗𝑗𝑗 = 𝜌𝜌𝑎𝑎 ln𝐴𝐴𝑗𝑗𝑗𝑗−1 + 𝜂𝜂𝑗𝑗𝑗𝑗, and in 

practice we use a Tauchen (1986) method for generating TFP draws.  Table A1 reports our 

calibration choices, some of which are standard in the literature and others of which are designed 

to target specific data moments.  We describe two alternative adjustment cost specifications: 

kinked adjustment costs (as described in the main text) and convex adjustment costs.  We start 

with the kinked adjustment cost case.  Empirically determined calibration choices are intended to 

produce a model economy that resembles the U.S. manufacturing sector in the 1980s, the initial 

timing of our empirical exercises, but the qualitative model results in which we are interested are 

not sensitive to these specific calibration choices. 

We obtain policy functions using value function iteration then simulate 2,000 firms for 

1,000 periods, jumping off from the stationary distribution of productivity but discarding the first 

100 periods.  Given a fixed (inelastic) labor supply, we check market clearing then adjust the 

wage using simple bisection until the labor market clears.  We estimate responsiveness 

regressions and construct other statistics described in the text by using the simulated data 

generated by the model when in equilibrium. 

We perform several exercises on the model-simulated data with a focus on three key 

outcomes: aggregate job reallocation, the dispersion of revenue productivity (where in the model, 
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revenue productivity is given by 𝐴𝐴𝑗𝑗𝑗𝑗𝐸𝐸𝑗𝑗𝑗𝑗
𝜙𝜙−1), and the responsiveness of growth to productivity as 

measured with the regression in equation (2) of the main text. In other words, we measure the 

standard deviation of labor productivity in the model economy, and we estimate the regression 

from (A2), that is, 

 𝑔𝑔𝑗𝑗𝑗𝑗 = 𝛽𝛽0 + 𝛽𝛽1𝑎𝑎𝑗𝑗𝑗𝑗 + 𝛽𝛽2𝑒𝑒𝑗𝑗𝑗𝑗−1 + 𝜀𝜀𝑗𝑗𝑗𝑗, (A8) 

where, as in the main text, 𝑔𝑔𝑗𝑗𝑗𝑗 is DHS employment growth from year 𝑡𝑡 − 1 to year 𝑡𝑡, 𝑎𝑎𝑗𝑗𝑗𝑗 is 

productivity, and 𝑒𝑒𝑗𝑗𝑗𝑗−1 is (initial) employment.  This is the same as equation (A2) and follows a 

timing convention that is analogous to our empirical work (though we confirm below that this 

timing convention is unimportant for the model’s qualitative results).  “Responsiveness” is 

measured by 𝛽𝛽1. 

We study labor productivity dispersion and responsiveness under two model experiments 

starting from the model’s baseline calibration.  In our first experiment, we study the effects of 

declining responsiveness, in this case resulting from a rise in adjustment costs.  In particular, 

starting with the baseline calibration (where upward adjustment has a cost parameter of 𝐹𝐹+ =

1.03) we raise the cost of downward adjustments (𝐹𝐹−).  Figure 2 in the main text shows the result 

of this experiment.  Rising adjustment costs generate declining reallocation (Figure 2a) due to 

lower responsiveness (2c), with the additional result of wider labor productivity dispersion, each 

of which we observe in our empirical exercises.  This experiment suggests that declining 

responsiveness, as generated by rising labor adjustment costs, can cause declining reallocation, 

with the additional symptom of rising labor productivity dispersion. 

In our second experiment, we reduce the parameter governing TFP dispersion, starting 

from its baseline calibrated value of 𝜎𝜎𝑎𝑎 = 0.46.  This is also reported in Figure 2 in the main 

text.  As TFP dispersion falls, aggregate job reallocation declines (Figure 2b), labor productivity 

dispersion decreases, and responsiveness becomes weaker (Figure 2d; we discuss this more 

below).  This summarizes the “shocks” hypothesis: the declining pace of job reallocation we 

observe empirically could be explained by declining dispersion of TFP realizations if we were to 

also observe declining labor productivity dispersion.  As shown in the main text, however, we 

actually observe rising labor productivity dispersion in our empirical work.   

We must make one side note here:  As noted above and shown in Figure 2c, in the model 

with non-convex adjustment costs, when shock dispersion declines, so too does responsiveness.  

At first glance, this dispersion dependence of responsiveness in the non-convex costs model may 
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complicate the shocks vs. responsiveness hypothesis.  However, three points are important to 

note.  First, this is unique to the model with non-convex costs; as we will discuss below (and 

show in Figures A1 and A2), responsiveness is unaffected by changes in dispersion when 

adjustment costs are convex, or in the correlated wedges model without adjustment costs.  

Second, we can easily conclude that the declining responsiveness we observe in the data is not 

driven by declining shock dispersion because we also empirically find rising shock dispersion 

(apparent in our TFPS and TFPP productivity measures) and rising revenue productivity 

dispersion (apparent in our TFPR and revenue labor productivity measures).  Third, as we show 

in the main text, using industry variation we find no monotonic relationship between changes in 

TFP dispersion and changes in responsiveness. 

The model results are robust to a wide range of conditions.  Figure A3a shows that 

responsiveness regressions using lagged (rather than current) TFP or current RLP make the same 

qualitative predictions as regressions using lag TFP, as do regressions using current TFP 

innovations or differences (in the main text, we also find that our empirical results are robust to 

using innovations or differences).   

Figure A3b reports responsiveness coefficients from instrumental variables regressions 

performed on model-simulated data; these correspond with those we estimated on empirical data 

(described in the main text, Appendix III.B, and Table A2) and are motivated by concerns about 

division bias and measurement error in employment.  Figure A3c addresses the measurement 

error issue more specifically by considering scenarios in which the econometrician observes firm 

employment, firm labor productivity, or both with error.3  Error in employment measurement is 

introduced with a multiplicative disturbance term drawn from an independent normal distribution 

with mean 1 and standard deviation 0.033 (such that employment disturbances of 10 percent map 

to three standard deviations from the mean);4 error in labor productivity measurement is 

generated by applying the employment disturbance term to the denominator in revenue per 

worker.  As shown in Figure A3c, this source of measurement error does not dramatically affect 

responsiveness coefficients, such that the decline in responsiveness we observe empirically is 

unlikely to be caused by rising measurement error over time. That said, the best approach to 

 
3 Recall that in our manufacturing regressions, the employment variable used to measure productivity, which comes 
from the ASM/CM, is independent of the employment variable used to measure employment levels and growth, 
which comes from the LBD. 
4 This choice is arbitrary and does not have qualitative implications. 
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concerns about measurement error is our empirical investigation using cross-industry variation, 

covered in the main text and Table 8.  

Figure A4a reports the effects of rising adjustment costs on aggregate productivity in the 

model with non-convex adjustment costs.  The black solid line shows true (model) aggregate 

productivity.  The dashed orange line replicates the productivity index exercise described in 

section IV.B of the main text; in that exercise, we empirically estimate the effects of declining 

responsiveness on aggregate productivity by constructing an aggregate productivity index that 

depends on estimated responsiveness coefficients (see that discussion for more detail).   

The productivity index used in section IV.B is given by ∑ 𝜃𝜃𝑗𝑗𝑗𝑗𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗 , where 𝜃𝜃𝑗𝑗𝑗𝑗 is the 

employment weight of firm 𝑗𝑗 and 𝑎𝑎𝑗𝑗𝑗𝑗 is TFP; we can construct this index and related 

counterfactuals using model-simulated data to study the index’s relationship with true 

productivity.  For every adjustment cost scenario, we use simulated data and corresponding 

regression coefficients to construct ∑ 𝜃𝜃�𝑗𝑗𝑗𝑗𝐻𝐻𝐻𝐻𝑗𝑗 𝑎𝑎𝑗𝑗𝑗𝑗, the aggregate productivity index as predicted by 

the responsiveness regressions under that adjustment cost scenario (where “HC” stands for “high 

cost”).  We then construct a counterfactual index using the same simulated data but applying the 

responsiveness coefficient from the low-cost baseline scenario, ∑ 𝜃𝜃�𝑗𝑗𝑗𝑗𝐵𝐵𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗  (where “B” stands for 

baseline, referring to the use of the responsiveness coefficient from the low-cost baseline 

scenario).  Then ∑ 𝜃𝜃�𝑗𝑗𝑗𝑗𝐻𝐻𝐻𝐻𝑎𝑎𝑗𝑗𝑗𝑗 − ∑ 𝜃𝜃�𝑗𝑗𝑗𝑗𝐵𝐵𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗  is the effect of changing responsiveness on the aggregate 

productivity index, in the model-simulated data.  The dashed orange line in Figure A4a shows 

this counterfactual productivity index, which tracks true aggregate productivity reasonably well, 

lending support to our empirical approach for estimating the effects of changing responsiveness 

on aggregate productivity.  

Our shocks vs. responsiveness approach is also useful if changing responsiveness is 

generated by convex labor adjustment instead of non-convex.  We construct an alternative 

baseline calibration of the model in which non-convex costs are set to zero (𝐹𝐹− = 𝐹𝐹+ = 0), but 

γ=1.75 to again replicate a job reallocation rate of 0.18, leaving all other parameters unchanged 

relative to Table A1.  (Recall from the model description that γ governs quadratic adjustment 

costs on employment).  From this alternative convex cost baseline, we conduct both of our model 

experiments: (1) raise adjustment cost γ above its baseline value, and (2) reduce TFP dispersion 

𝜎𝜎𝑎𝑎.  These results are in Figure A1.  The qualitative results of the experiments for job 
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reallocation, responsiveness, and revenue productivity dispersion are the same as those found in 

our non-convex cost experiments except that, as mentioned above, responsiveness is unaffected 

by changes in shock dispersion (providing an even cleaner shocks vs. responsiveness 

dichotomy).  The productivity results for the convex cost case are reported in Figure A4b.  

Finally, we note that declining responsiveness can also be derived from an increase in the 

curvature of the revenue function (generated by reducing 𝜙𝜙).  This is shown in Figure A3d; 

notably, while increased curvature reduces responsiveness in each of our example model 

frameworks, its implications for revenue productivity dispersion (not shown) are model 

dependent. 

C. Alternative framework: Wedges 

The shocks vs. responsiveness insight is more general than the specific adjustment costs 

models described above.  As an example, here we show how a broader interpretation can be 

adopted, following the seminal work of Hsieh and Klenow (2009). 

Hsieh and Klenow (2009) show how measured revenue productivity dispersion can exist 

in equilibrium if there are static distortions or “wedges” affecting firms’ first-order conditions.  

This framework can be viewed as a reduced form way of capturing not only adjustment frictions 

(under certain specifications of the wedge process) but also a wide variety of other factors that 

distort first-order conditions. 

Consider a simple one-factor (employment) model in the spirit of Hsieh and Klenow 

(2009).  Firms maximize period 𝑡𝑡 profits given by: 

 𝑆𝑆𝑗𝑗𝑗𝑗𝐴𝐴𝑗𝑗𝑗𝑗𝐸𝐸𝑗𝑗𝑗𝑗
𝜙𝜙 −𝑊𝑊𝑡𝑡𝐸𝐸𝑗𝑗𝑗𝑗 (A9) 

where 𝐴𝐴𝑗𝑗𝑗𝑗𝐸𝐸𝑗𝑗𝑗𝑗
𝜙𝜙 is revenue and 𝑆𝑆𝑗𝑗𝑗𝑗 is a firm-specific wedge, which can be thought of as a tax when 

𝑆𝑆𝑗𝑗𝑗𝑗 < 1 or as a subsidy when 𝑆𝑆𝑗𝑗𝑗𝑗 > 1.  Suppose the wedge 𝑆𝑆𝑗𝑗𝑗𝑗 follows the following process: 

 𝑠𝑠𝑗𝑗𝑗𝑗 = −𝜅𝜅𝑎𝑎𝑗𝑗𝑗𝑗 + 𝜈𝜈𝑗𝑗𝑗𝑗, (A10) 

where lowercase indicates logs.  Consistent with much of the recent literature, we assume 𝜅𝜅 ∈

(0,1), and 𝑣𝑣𝑗𝑗𝑗𝑗 is independent of 𝑎𝑎𝑗𝑗𝑗𝑗 with 𝔼𝔼�𝑣𝑣𝑗𝑗𝑗𝑗� = 0.5  Equation (A10) states that firms with 

more favorable fundamentals (e.g., higher TFP) face more substantial wedges (meaning, lower 

 
5 By “consistent with the literature,” we mean a common finding in the literature is that indirect measures of wedges 
(i.e., revenue productivity measures like TFPR) are positively correlated with measures of fundamentals (technical 
efficiency and demand shocks) and have lower variance than fundamentals.  See Foster, Haltiwanger, and Syverson 
(2008) and Blackwood et al. (forthcoming).   
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𝑆𝑆𝑗𝑗𝑗𝑗), but the variance of (log) wedges is lower than the variance of fundamentals.  This 

relationship between 𝑆𝑆𝑗𝑗𝑗𝑗 and 𝐴𝐴𝑗𝑗𝑗𝑗 is critical for producing empirically plausible aggregate 

reallocation rates (under reasonable parameterizations of 𝜙𝜙) in the absence of explicit adjustment 

frictions. 

Given (A9) and (A10), the first-order condition, in logs (indicated by lowercase), is given 

by: 

 𝑒𝑒𝑗𝑗𝑗𝑗 = 1
1−𝜙𝜙

�ln � 𝜙𝜙
𝑊𝑊𝑡𝑡
� + (1 − 𝜅𝜅)𝑎𝑎𝑗𝑗𝑗𝑗 + 𝜈𝜈𝑗𝑗𝑗𝑗�. (A11) 

Taking time differences (indicated by ∆), sweeping out year and industry effects, and 

incorporating the transformation described in the first section of this appendix, we obtain an 

employment growth function (expressed in log differences): 

 ∆𝑒𝑒𝑗𝑗𝑗𝑗 = 1
1−𝜙𝜙

�(1 − 𝜅𝜅)𝑎𝑎𝑗𝑗𝑗𝑗 − (1 − 𝜙𝜙)𝑒𝑒𝑗𝑗𝑗𝑗−1 + 𝜈𝜈𝑗𝑗𝑗𝑗�. (A12) 

Employment growth can be expressed as a function of the productivity level and lagged 

employment, along with the shock to the wedge and the model parameters.  Equation (A12) 

shows that the relationship between employment growth and productivity depends not only on 𝜙𝜙 

but also on 𝜅𝜅, which determines the covariance between firm productivity and firm distortions.  

A higher value of 𝜅𝜅 results in weaker responsiveness of growth to productivity because stronger 

𝜅𝜅 means that wedge shocks partially offset productivity shocks.   In the text, we refer to a higher 

𝜅𝜅 as reflecting a more positive correlation between fundamentals and distortions.  By this we 

mean that the implicit tax on firms is increasing in fundamentals.  In this case the implicit tax is 

larger the less positive is 𝑠𝑠𝑗𝑗𝑗𝑗.  Note also that aggregate job reallocation, which in this context can 

be thought of as the dispersion of employment growth rates, is decreasing in 𝜅𝜅. 

This framework also has implications for revenue productivity dispersion.  Log revenue 

per worker is given by ln𝑊𝑊𝑡𝑡
𝜙𝜙

+ 𝜅𝜅𝑎𝑎𝑗𝑗𝑗𝑗 − 𝜈𝜈𝑗𝑗𝑗𝑗, such that the dispersion of revenue labor productivity 

is increasing in 𝜅𝜅. 

This model, albeit highly simplified, thus yields rich empirical predictions, which we 

report in a manner analogous to our simulations from the model with labor adjustment costs.  

That is, we calibrate the “wedges” model, using the wedge correlation parameter 𝜅𝜅 to target the 

empirical reallocation rate of the 1980s, then we conduct experiments varying 𝜅𝜅 and 𝜎𝜎𝐴𝐴 (the 

dispersion of TFP).  These exercises are shown in Figure A2 in a manner comparable to Figures 
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2 and A1.  Figures A2a and A2c report the results of raising 𝜅𝜅 from its baseline value; as 

discussed above, responsiveness and job reallocation fall while revenue labor productivity 

dispersion rises. Declining responsiveness through this mechanism, as in the other models, yields 

a decline in aggregate productivity, as shown in Figure A4c. 

The wedge model also yields similar implications for changes in the variance of shocks, 

shown in Figure A2b.  A decline in the variance of 𝑎𝑎𝑗𝑗𝑗𝑗 yields declining reallocation and revenue 

productivity dispersion but, as in the model with convex adjustment costs, does not affect 

responsiveness (thus, responsiveness depends on TFP dispersion only in the model with non-

convex adjustment costs). 

Finally, as in the models with adjustment costs, in the wedge model a decline in 

responsiveness can be generated through a decline in revenue function curvature, as shown in 

Figure A3d. 
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Appendix II: Data 

A. Longitudinal Business Database 

For longitudinal information we rely on the Longitudinal Business Database (LBD), 

which covers the universe of private nonfarm employer business establishments in the U.S.  The 

LBD records establishment employment, payroll, detailed industry, and location annually (with 

employment corresponding to March 12).  Establishments are linked over time by high-quality 

longitudinal identifiers, and firm identifiers link establishments of multi-establishment firms.  

See Jarmin and Miranda (2002) for a description of the LBD, which is constructed from the 

Census Bureau’s Business Register.  The LBD’s high-quality longitudinal linkages make it ideal 

for studying growth and survival outcomes of businesses. 

In our regression specifications we include several establishment characteristic controls 

derived from the LBD.  Key among them is firm age.  We follow the large LBD-based literature 

in defining firm age as follows.  Upon the first appearance of a firm identifier in the LBD, we 

assign firm age as the age of the firm’s oldest establishment, where an establishment has age 0 

during the year in which it first reports positive payroll.  Thereafter, the firm ages naturally (i.e., 

we add one year to the firm’s age for each calendar year after the firm identifier’s first 

observation).  This allows us to abstract from spurious changes in firm identifiers.  We also use 

firm identifiers to measure firm size, which is the sum of employment across all the firm’s 

establishments.  In our regressions we control for firm size based on four cutoffs: fewer than 250 

employees, 250-499 employees, 500-999 employees, and 1,000 or more employees (these 

cutoffs follow Foster, Grim, and Haltiwanger (2016), hereafter FGH). 

B. Revenue-enhanced LBD (RE-LBD) 

While the LBD does not include revenue data, revenue information is available in the 

Business Register at the employer identification number (EIN) level starting in the mid-1990s.  

Importantly, EINs are not a straightforward firm or establishment identifier in that multiple 

establishments can have the same EIN, and some firms can have multiple EINs (e.g., splitting the 

firm by geography or separating tax functions from payroll functions).  In the case of multi-

establishment firms, in general revenue data are not broken out by establishment.  Haltiwanger et 

al. (2017) deal with these various challenges and create firm-level revenue data by aggregating 
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across EINs of the same firm.6  They then match these revenue figures to the LBD at the firm 

level, finding nominal revenue figures for about 80 percent of LBD firms.  The resulting revenue 

dataset is roughly representative of the overall LBD in terms of observables like firm age, firm 

size, sector, multi- or single-establishment status, and patterns of firm growth.  Nevertheless, 

Haltiwanger et al. (2017) construct propensity scores for the entire LBD using logistic 

regressions with dependent variable equal to 1 for firms with revenue data and 0 otherwise.  

These regressions are run separately for birth, deaths, and continuers, and they rely on 

observables including firm size, firm age, employment growth rate, industry, and multi-

establishment status.  We use the resulting propensity scores (in inverse) as sampling weights in 

all regressions.  We deflate revenue with the GDP deflator, but this is unimportant as all 

empirical exercises will implicitly control for industry-level prices as we deviate firm 

productivity from industry-year means.  More generally, we follow Haltiwanger et al. (2017) 

closely in our measurement approach using the RE-LBD. 

C. Manufacturing data 

We supplement the LBD with manufacturing data from the Census of Manufacturers 

(CM) and the Annual Survey of Manufacturers (ASM), a dataset we obtain from FGH and 

update through 2013.  The CM surveys almost the universe of manufacturing establishments 

every five years (those ending in “2” and “7”); we use CM data from 1982 through 2012.7  The 

ASM, conducted in non-CM years, surveys roughly 50,000-70,000 establishments; we use ASM 

data from 1981 through 2013.  The ASM is a series of five-year panels (starting in years ending 

in “4” and “9”) with probability of panel selection being a function of industry and size.   

We combine the CM and ASM into an annual manufacturing establishment dataset 

covering 1981-2013, and we link the combined ASM-CM with the LBD by establishment and 

year using internal Census Bureau establishment identifiers that are consistent across these 

datasets.  We create a dummy variable equal to 1 for those establishments that appear in both the 

ASM-CM and the LBD and 0 for those establishments that appear only in the LBD.  We then 

create propensity scores using a logistic regression to predict ASM-CM presence based on the 

following variables: whether the establishment is part of a multi-establishment firm, size 

 
6 This is a complicated process involving careful attention to details including industry and legal form of 
organization, which can affect the way in which revenue data are reported and the way EINs map to firms. 
7 Very small establishments (those with fewer than five employees) are not surveyed by the CM; the Census Bureau 
fills in data for these with administrative records.  We do not include these cases. 
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(employment), payroll, detailed industry, and firm age.  We estimate these propensity scores 

separately for each year; we then use them (in inverse) as sampling weights in all regressions. 

As discussed in the main text, we use the LBD to measure employment growth and 

survival for each plant-year observation for which we have the TFP measures.  This implies we 

are using the LBD through 2014 for this purpose.    

D. Output and production factors 

We require measures of revenue and production factors to construct TFPS, TFPP, and 

TFPR.  We calculate real establishment-level revenue (or, under TFPR assumptions, output) as 

𝑅𝑅𝑗𝑗𝑗𝑗 = �𝑇𝑇𝑇𝑇𝑆𝑆𝑗𝑗𝑗𝑗 + 𝐷𝐷𝐹𝐹𝑗𝑗𝑗𝑗 + 𝐷𝐷𝑊𝑊𝑗𝑗𝑗𝑗� 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡⁄ , where 𝑇𝑇𝑇𝑇𝑆𝑆𝑗𝑗𝑗𝑗 is total value of shipments, 𝐷𝐷𝐹𝐹𝑗𝑗𝑗𝑗 is the 

change in (the value of) finished goods inventories, 𝐷𝐷𝑊𝑊𝑗𝑗𝑗𝑗 is the change in (the value of) work-in-

progress inventories, and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 is the industry-level shipments deflator, which varies by 

detailed industry (4-digit SIC prior to 1997 and 6-digit NAICS thereafter) and is taken from the 

NBER-CES Manufacturing Productivity Database.  If the resulting 𝑅𝑅𝑗𝑗𝑗𝑗 is not greater than zero, 

then we simply set 𝑅𝑅𝑗𝑗𝑗𝑗 = 𝑇𝑇𝑇𝑇𝑆𝑆𝑗𝑗𝑗𝑗 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡⁄ .   

For the purposes of TFP estimation, we construct labor from the ASM in terms of total 

hours (𝑇𝑇𝐻𝐻𝑗𝑗𝑗𝑗) as follows: 

 
𝑇𝑇𝐻𝐻𝑗𝑗𝑗𝑗 = �

𝑃𝑃𝐻𝐻𝑗𝑗𝑗𝑗
𝑆𝑆𝑊𝑊𝑗𝑗𝑗𝑗

𝑊𝑊𝑊𝑊𝑗𝑗𝑗𝑗
if 𝑆𝑆𝑊𝑊𝑗𝑗𝑗𝑗 > 0 and 𝑊𝑊𝑊𝑊𝑗𝑗𝑗𝑗 > 0

𝑃𝑃𝐻𝐻𝑗𝑗𝑗𝑗 otherwise
 

(A13) 

where 𝑃𝑃𝐻𝐻𝑗𝑗𝑗𝑗 is production worker hours, 𝑆𝑆𝑊𝑊𝑗𝑗𝑗𝑗 is total payroll, and 𝑊𝑊𝑊𝑊𝑗𝑗𝑗𝑗 is the payroll of 

production workers. 

We measure capital separately for structures and equipment using the perpetual inventory 

method: 𝐾𝐾𝑗𝑗𝑗𝑗+1 = (1 − 𝛿𝛿𝑡𝑡+1)𝐾𝐾𝑗𝑗𝑗𝑗 + 𝐼𝐼𝑗𝑗𝑗𝑗+1 where 𝐾𝐾 is the capital stock, 𝛿𝛿 is a year- (and industry-) 

specific depreciation rate, and 𝐼𝐼 is investment.  At the earliest year possible for a given 

establishment, we initialize the capital stock by multiplying the establishment’s reported book 

value by a ratio of real capital to book value of capital derived from BEA data (where the ratio 

varies by 2-digit SIC or 3-digit NAICS).  Thereafter, we observe annual capital expenditures and 

update the capital stock accordingly, where we deflate capital expenditures using BLS deflators.8 

 
8 See FGH for more detail.  In a small number of cases (less than 0.5 percent) we cannot initialize the capital stock 
as described; in such cases we follow Bloom et al. (2013) using I/K ratios. 
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We calculate materials as 𝑀𝑀𝑗𝑗𝑗𝑗 = �𝐶𝐶𝑃𝑃𝑗𝑗𝑗𝑗 + 𝐶𝐶𝑅𝑅𝑗𝑗𝑗𝑗 + 𝐶𝐶𝑊𝑊𝑗𝑗𝑗𝑗�/𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑡𝑡, where 𝐶𝐶𝐶𝐶 is the cost of 

materials and parts, 𝐶𝐶𝐶𝐶 is the cost of resales, 𝐶𝐶𝐶𝐶 is the cost of work done for the establishment 

(by others) on the establishment’s materials, and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is the industry materials deflator.  We 

calculate energy costs as 𝑁𝑁𝑗𝑗𝑗𝑗 = �𝐸𝐸𝐸𝐸𝑗𝑗𝑗𝑗 + 𝐶𝐶𝐹𝐹𝑗𝑗𝑗𝑗�/𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑡𝑡, where 𝐸𝐸𝐸𝐸 is the cost of purchased 

electricity, 𝐶𝐶𝐶𝐶 is the cost of purchased fuels consumed for heat, power, or electricity generation, 

and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is the industry energy deflator. 

We use the production factor and output measures described above for each of our three 

TFP measures (TFPS, TFPP, and TFPR). 

E. Cost and revenue shares: TFPS and TFPR 

TFPS and TFPR productivity estimates require industry-level factor expenditures as 

shares of revenue (for TFPS) or cost (for TFPR) to construct factor elasticity estimates.  We 

obtain these shares at the detailed industry level (4-digit SIC prior to 1997, 6-digit NAICS 

thereafter) from the NBER-CES Manufacturing Productivity Database, which reports industry-

level figures for expenditures on equipment, structures, materials, energy, and labor.  We average 

these cost shares across all of 1981-2013 to obtain time-invariant elasticities, though our results 

are robust to instead using time-varying elasticities as in FGH.   

F. Proxy method: TFPP 

Our TFPP productivity concept requires us to estimate factor elasticities using proxy 

methods.  Given the challenge of identifying exogenous shocks to fundamentals, a long literature 

(e.g., Olley and Pakes (1996), Levinsohn and Petrin (2003)) proposes using a variable production 

factor as a “proxy” for identification.  Blackwood et al. (forthcoming) compare multiple proxy-

based TFP concepts with other concepts from the literature.  Some literature achieves this using a 

two-step procedure (see Ackerberg, Caves, and Frazer (2015)), but we follow Wooldridge (2009) 

in implementing a single-step GMM approach using lagged values of capital and variable inputs 

as instruments.  We refer the reader to the just-mentioned research for more detail on the general 

approach to proxy estimation of production functions.  For our purposes, we estimate factor 

elasticities separately by 2- and 3-digit industries using energy as the proxy variable.   
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Appendix III: Additional empirical results 

A. Reallocation has declined within firm age bins 

As noted in the text, the aggregate decline in job reallocation is not simply a composition 

effect due to declining young firm activity.  Rather, we also observe declining reallocation within 

firm age bins. To see this, we first create seven firm age groups (ages 0, 1, 2, 3, 4, 5 and 6+).  We 

then study the change in aggregate (weighted average) job reallocation in year 𝑡𝑡 relative to a base 

year 𝑡𝑡0 with the following shift-share decomposition: 

𝑅𝑅𝑡𝑡 − 𝑅𝑅𝑡𝑡0 = �𝜔𝜔𝑎𝑎𝑎𝑎0(𝑅𝑅𝑎𝑎𝑎𝑎 − 𝑅𝑅𝑎𝑎𝑎𝑎0)
𝑎𝑎

+ �𝑅𝑅𝑎𝑎𝑡𝑡0(𝜔𝜔𝑎𝑎𝑎𝑎 − 𝜔𝜔𝑎𝑎𝑎𝑎0)
𝑎𝑎

+ �(𝑅𝑅𝑎𝑎𝑎𝑎 − 𝑅𝑅𝑎𝑎𝑎𝑎0)(𝜔𝜔𝑎𝑎𝑎𝑎 − 𝜔𝜔𝑎𝑎𝑎𝑎0)
𝑎𝑎

 

where 𝑅𝑅𝑡𝑡 is the aggregate (or, as we will specify it below, sector-level) job reallocation rate, 𝑎𝑎 

indexes age bins, 𝜔𝜔𝑎𝑎𝑎𝑎 is the employment share of age group 𝑎𝑎 in time 𝑡𝑡, and 𝑅𝑅𝑎𝑎𝑎𝑎 is the 

reallocation rate for age group 𝑎𝑎 in time 𝑡𝑡.  The first term is a within-age-group component based 

on the change in flows among firms of that age.  The second term is a between-group component 

capturing the change in the age composition.  The third term is a cross term.  We focus on the 

overall component and the within component; the residual coming from composition shifts and 

cross terms reflects the extent to which composition effects account for the aggregate change. 

To abstract from business cycle issues, we construct this counterfactual between the 

business cycle peaks of 1987-1989, 1997-1999, 2004-2006, and 2011-2013.  We study the long 

differences in reallocation rates between these three periods.  Figure A5 illustrates the results, 

showing both the overall change in reallocation for a sector and the change in the within-age-

group term, indicated by the “Holding age constant” bars.  As is evident, the decline in 

reallocation within age groups explains the bulk of the overall decline.  In other words, the 

changing age composition of U.S. firms resulting from changing patterns of firm entry does not 

explain the patterns of reallocation that motivate this paper. 

B. Instrumental variables: Empirical results 

A particular challenge for our empirical approach is that our workhorse regressions given 

by equations (7) and (9) in the main text feature initial employment (𝐸𝐸𝑗𝑗𝑗𝑗) on the right-hand-side 

(as the state variable) and on the left-hand-side (in the DHS growth dependent variable).  

Additionally, in our economywide regressions using labor productivity, initial employment also 
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appears in the denominator of the productivity indicator (which is real revenue per worker).9  In 

Appendix I, we explore this problem by running instrumental variables regressions on model-

simulated data.  Regressions in which an employment lag is used to instrument for initial 

employment (i.e., use 𝐸𝐸𝑗𝑗𝑗𝑗−1 as an instrument for 𝐸𝐸𝑗𝑗𝑗𝑗), and regressions in which we additionally 

instrument for productivity using a lag, find that responsiveness still declines as adjustment costs 

rise.  This suggests that we can evaluate robustness of our main responsiveness results to the 

employment endogeneity issue using similar instrumental variables regressions in our empirical 

exercises. 

For brevity, we focus on the time-trend regression specifications for studying changing 

responsiveness.  Table A2 reports results of instrumental variables regressions.  The first column 

reports establishment-based results for the manufacturing sector using our preferred productivity 

measure, TFPS, and instrumenting for initial employment.  The second column reports 

economywide firm-based results instrumenting for initial employment, and the third column 

reports economywide firm-based results instrumenting for initial employment and for 

productivity.  In each column, and for both young and mature firms, we observe declining 

responsiveness as indicated by the negative (and statistically significant) coefficient on the linear 

trend variables. 

 

  

 
9 Initial employment is also used in TFP estimation in our manufacturing-only exercises; however, the employment 
variable used for TFP is independently constructed from our ASM-CM dataset (see Appendix II). 
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Table A1: Baseline model calibration 
 Description Value Calibration rationale 
𝜙𝜙 Inverse demand elasticity parameter 0.67 Standard in literature 
𝛽𝛽 Discount factor 0.96 Standard in literature 
𝜌𝜌𝑎𝑎 (Log) TFP AR(1) coefficient 0.80 Estimated TFPS AR(1), 1980s average 
𝜎𝜎𝑎𝑎 Standard deviation of (log) TFP 0.46 Estimated TFPS standard deviation, 1980s average 
𝜎𝜎𝜂𝜂 Standard deviation of TFP innovation 0.28 Implied by 𝜌𝜌 and 𝜎𝜎𝑎𝑎 
𝐹𝐹+ Upward kinked adjustment cost 1.03 Target job reallocation rate = 0.18 (1980s average)* 

𝐹𝐹+ = 0 in convex cost model. 
𝐹𝐹− Downward kinked adjustment cost 0.00 (Rely on upward cost for baseline calibration) 
𝛾𝛾 Convex adjustment cost parameter 0.00 No convex cost in non-convex cost model. 

𝛾𝛾 = 1.75 in convex cost model. 
𝜅𝜅 Wedge/productivity correlation parameter 0.83 Wedge model only; target job reallocation rate 0.18* 

With 𝜎𝜎𝜈𝜈 = 0.04. 
Moment targets refer to U.S. manufacturing sector. 
*1980s average reallocation rate among continuing establishments (Business Dynamics Statistics). 
 

 
Table A2: Instrumental variables regressions, employment growth responsiveness 
 TFPS: RLP: RLP: 
 IV for employment IV for employment IV for emp & RLP 
Prod*Young: 𝛽𝛽1

𝑦𝑦 0.4358 0.3170 0.1499 
 (0.0177) (0.0013) (0.0016) 
Prod*Young*trend: 𝛿𝛿𝑦𝑦 -0.0042 -0.0033 -0.0015 
 (0.0009) (0.0001) (0.0001) 
Prod*Mature: 𝛽𝛽1𝑚𝑚 0.3123 0.2581 0.1092 
 (0.0104) (0.0010) (0.0001) 
Prod*Mature*trend: 𝛿𝛿𝑚𝑚 -0.0020 -0.0032 -0.0014 
 (0.0005) (0.0001) (0.0001) 
    
Observations (thousands) 2,179 4,909 4,909 
Note: All coefficients statistically significant with 𝑝𝑝 < 0.01.  All regressions include controls described in 
equation (7) and related text.  RLP regressions use 10 percent random sample of RE-LBD. 
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a. Reallocation and adjustment costs
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b. Reallocation and TFP dispersion
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c. Effects of rising adjustment costs
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d. Effects of changing TFP dispersion

Note: Panels c and d share same legend. Results relative to model baseline calibration (vertical purple line) with downward
adjustment cost γ=1.75 and TFP dispersion σA=0.46 (see Appendix I and Table A1 for model calibration details).
"s.d. RLP" refers to the standard deviation of revenue labor productivity in model-simulated data.

Figure A1: The shocks and responsiveness hypotheses, model results (convex cost)
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a. Reallocation and the wedge/TFP correlation

B
as

el
in

e 
ca

lib
ra

tio
n

.1.12.14.16.18.2

R
es

po
ns

iv
en

es
s c

oe
ff

ic
ie

nt
 β

1

.1

.12

.14

.16

.18

.2

R
ea

llo
ca

tio
n 

ra
te

 (s
ha

re
 o

f e
m

p.
)

.3 .35 .4 .45
TFP dispersion (σA)

b. Reallocation and TFP dispersion
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c. Effects of rising wedge/TFP correlation
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d. Effects of changing TFP dispersion

Note: Panels c and d share same legend. Results relative to model baseline calibration (vertical purple line) with TFP/
wedge correlation parameter κ=0.83 and TFP dispersion σA=0.46 (see Appendix I and Table A1 for model calibration
details). "s.d. RLP" refers to the standard deviation of revenue labor productivity in model-simulated data.

Figure A2: The shocks and responsiveness hypotheses, model results (wedge model)
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c. Measurement error, current RLP regression
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Figure A3: Alternative responsiveness coefficient β1 specifications in model-simulated data
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c. Wedge model

Note: Model simulations. 'Estimated effects' reflect productivity counterfactuals in simulated data mimicking empirical
exercises.

Figure A4: Aggregate productivity and responsiveness
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Figure A5: Most variation in job reallocation is within firm age classes

1987-89 to 1997-99 Holding age constant
1997-99 to 2004-06 Holding age constant
2004-06 to 2011-13 Holding age constant


