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B Basic Model Properties

The impact of persuasion for agent j is the expected change in j’s payoff: E[V j(h,m(h)) −
V j(h, d)], where E[·] is taken over the true distribution of histories h, i.e., with respect to the prior
and the true likelihood (µ0, π). We can decompose the impact of persuasion on the receiver as:

E[V R(h,mT )− V R(h, d)]︸ ︷︷ ︸
information component

+E[V R(h,m(h))− V R(h,mT )]︸ ︷︷ ︸
framing component

.

The first term, the information component, is the value to the receiver of operating under the true
model rather than the default model. This component is the one typically emphasized in the eco-
nomics literature, namely that persuasion allows the receiver to make more informed decisions. For
example, when the default renders the data uninformative, the information component is equiva-
lent to the impact of acting on correctly-interpreted information. The second term, the framing
component, is the value to the receiver of operating under the persuader’s proposed model rather
than the true model. This is the more novel feature of our framework and captures the idea that
persuasion also influences how the receiver reacts to publicly available data.

The following are some basic framework properties. (All appendix proofs are in Appendix H.)

Observation A.1 (Model Properties).

1. The information component of persuasion is positive for the receiver: E[V R(h,mT ) −
V R(h, d)] ≥ 0.

2. Assume the persuader can propose the true model,mT ∈M , and Pr(h|mT , µ0) ≥ Pr(h|d, µ0).
The framing component of persuasion is positive for the persuader and negative for the re-
ceiver: E[V j(h,m(h)) − V j(h,mT )] is positive for j = S, negative for j = R, and strictly
positive for j = S if and only if it is strictly negative for j = R.
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The first property is that the information component of persuasion is positive for the receiver:
the receiver clearly cannot be made worse off on average by using the true model instead of the
default model. The second property is that the framing component of persuasion is positive for
the persuader and negative for the receiver whenever the persuader could get the receiver to adopt
the true model. It is positive for the persuader because he always has the option of proposing the
true model and will only propose a different model when it improves his payoff; it is negative for
the receiver because she cannot be better off acting on the wrong model instead of the true model.
The premise that the persuader can get the receiver to adopt the true model is substantive: there are
natural cases where default models fit better than the true model (e.g., receivers overfit the data on
their own).

C Highlighting Strips and Characteristics

C.1 Highlighting Strips of Data

This section analyzes the highlighting strips of data example. Recall that in the example the coin
is flipped t times, where it yields heads with probability θ. While θ is drawn once and for all at
the beginning of time from a density ψ, the persuader can propose models of the form “the last K
periods are relevant for whether the coin comes up heads” for K ≥ 1. We denote the receiver’s
posterior expectation of the probability of heads as θ̂. In our simulations, we pick a value of the true
θ, and draw t = 100 random coin flips where the probability of heads is θ.We then find the optimal
model for the persuader to propose, subject to the “truthteller constraint”: the persuader’s model
must be more compelling than the truth. We use the “tc” superscript as short-hand for truthteller
constrained. Finally, we compute the receiver’s post-persuasion beliefs assuming ψ ∼ U [0, 1]. We
run 5,000 simulations and report statistics aggregating across those simulations.

The left panel of Figure A.1 shows the receiver’s average post-persuasion beliefs as a function
of the true probability of heads θ. It draws a curve depicting the situation where the receiver has an
uninformative default, so that he believes anything the persuader says, as well as a curve depicting
the situation where the receiver’s default is the true model. When the true model is the default, the
receiver’s post-persuasion beliefs are lower. The truthteller constraint prevents the persuader from
proposing models that focus on very short favorable sequences. This reduces the scope for persua-
sion, particularly for low values of the true probability of heads θ. However, the figure shows that
the scope for persuasion remains substantial, particularly for intermediate values of θ. Intuitively,
there is always positive probability of a history with a long string of tails followed by a long string
of heads, i.e., (0 . . . , 0, 1, . . . 1). As an example, a politician can point to their recent “momentum”
and thus limit voters’ attention to a window of recent polls. In expectation, this increases voters’
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Figure A.1: Simulated Impact of Persuasion on Beliefs and Welfare when the Receiver’s Default
Model is the Truth
This figure presents results on the impact of persuasion from simulations of the coin-flipping example for the
case where ψ ∼ U [0, 1] and K ≥ 1. For each of 40 values of θ, we plot the average post-persuasion beliefs
of the receiver over 5, 000 sample paths, each of length 100, comparing results when the default model is the
true model versus when the default model is uninformative. The left panel plots the average post-persuasion
beliefs of the receiver. The right panel plots the average post-persuasion benefit to the receiver.

assessment of the politician’s likelihood of winning. Similarly, a mutual fund company will choose
to advertise with frames such as “be bullish” that emphasize past performance only when that past
performance boosts investors’ beliefs that future returns will be high (Mullainathan, Schwartzstein,
and Shleifer 2008; Phillips, Pukthuanthong, and Rau, 2016; Koehler and Mercer, 2009).

When the data is closer to random, i.e., θ ≈ 0.5, the truthteller is not very helpful, and the
persuader retains significant flexibility. The right panel of the figure shows impact of persuasion
on the receiver’s payoff, defined here as −(θ̂ − θ)2 + (1/2 − θ)2. Adding a truthteller benefits
receivers when θ is low, but has little benefit for intermediate or high values of θ.1

Two other patterns from the left panel of the figure are worth noting. First, persuaders are
constrained in the beliefs they can induce: on average, the receiver’s estimate θ̂ is increasing in
the true θ because it influences the expected number of heads in the history. A politician with a
greater chance of winning will on average be more successful at increasing voters’ assessments

1For sufficiently long histories, model persuasion not only leads to bias, but also to more variable beliefs relative to
when receivers use the true model to interpret data. This arises because persuasion focuses the receiver’s attention on
finite data when infinite data is available. This is consistent with the view of Akerlof and Shiller (2015) in the context
of finance, who argue “Asset prices are highly volatile... sales pitches of investor advisors, investment companies, and
real agents, and narratives of riches from nowhere are largely responsible.” In short histories, however, persuasion can
sometimes reduce variance of beliefs. For instance, if the persuader’s incentive is to inflate estimates of θ and the true
θ is large, the persuader is pulling in the “right” direction, which can reduce volatility.
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Figure A.2: Simulated Impact of the Truthteller Constraint on the Scope for Persuasion
This figure presents results on the impact of persuasion from simulations of the coin-flipping example for
the case where ψ ∼ U [0, 1] and K ≥ 1. For each sample length, we compute the average over θ of the
difference between the receiver’s average post-persuasion beliefs and beliefs under the true model.

of her likelihood of winning. Similarly, a mutual fund with past successes will on average be
more successful at increasing investors’ assessment of future returns. Second, persuasion tends
to attenuate the relationship between people’s beliefs and the truth. For example, by inflating
all political candidates’ perceived chances of winning, persuasion reduces the average reaction of
perceptions to reality.

We next study how the impact of persuasion varies with sample size. Figure A.2 plots the
average difference between the receiver’s post-persuasion beliefs and beliefs under the true model,
Eψ[θ̂] − Eψ[θ], as a function of the length of the sample. Strikingly, we see that additional data
actually benefits the persuader at the expense of the receiver. The intuition is that more data gives
the persuader flexibility to propose compelling models that highlight favorable sequences—that
is, to propose models that are beneficial to the persuader and overfit the historical data.2 For

2On the other hand, the impact of persuasion does not go up with the data if the number of models the receiver
is willing to consider decreases or stays the same as the amount of data increases. For example, the effectiveness of
persuasion weakly decreases if the persuader can only choose between models that throw out the first 1, 2, or 3 flips.
In this case, the impact of persuasion will go away for large t since the impact of the first three flips will become
negligible. Such restrictions seem less plausible than the setting we consider.
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instance, for political candidates, a longer history in the public eye is both a blessing and a curse.
The candidate has a larger set of positives to highlight, but their opponent also has a larger set of
potential negatives to highlight.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure A.3: Simulated Equilibrium with Competition
This figure presents results on the impact of competition in persuasion from simulations of the coin-flipping
example for the case where ψ ∼ U [0, 1] and K ≥ 1. For each of 40 values of θ, we plot the average
equilibrium post-persuasion beliefs of the receiver over 5, 000 sample paths, each of length 100.

Finally, we analyze the effect of competition between persuaders in this setting. We assume
that there are two persuaders, one trying to persuader the receiver that θ is high and one trying to
persuade the receiver that θ is low. Each persuader proposes a model after observing the history.
The receiver then adopts the best-fitting model and updates her beliefs using Bayes rule. In the
simulations, we again pick a value of the true θ, and draw t = 100 random coin flips where the
probability of heads is θ. We then compute the receiver’s equilibrium beliefs after the optimistic
and pessimistic persuaders propose their optimal models. Figure A.3 reports statistics aggregating
across 5,000 simulations. The figure shows that competition pushes equilibrium beliefs towards
the receiver’s prior of 0.5. For low values of θ, competition increases equilibrium beliefs relative
to the single persuader case in Figure A.1. For high values of θ, competition reduces equilibrium
beliefs. However, in contrast to Proposition 4 in the main text where we assumed that receivers
were maximally open to persuasion, in this setting with a limited model space competition does
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not push beliefs fully to the receiver’s prior.

C.2 Highlighting Characteristics

Here, we show how to formalize the highlighting characteristics example in our framework. Sup-
pose that a person assesses the likelihood that an actor (e.g., a business, investment, worker, politi-
cian) will be successful (y = 1) or not (y = 0), where the actor has characteristics x taken from
finite set X . The true likelihood that the actor is successful is given by probability θ(x), where
θ(x) is drawn from strictly positive density ψ(·) on [0, 1]. In the notation of the general model, the
state space is Θ(x) = [0, 1] and the prior is ψ. We assume the receiver is interested in correctly
assessing the success probability, while the persuader wants to inflate it: UR(a, θ) = −(a−θ(x))2,
while US(a, θ) = a.

Both the persuader and the receiver observe a history h = (yk, xk)
t−1
k=0 of successes and failures

of previous actors with various characteristics. The persuader can influence the probability the
receiver attaches to the actor being successful by proposing models of which characteristics are
relevant to success. Models group together actors with particular characteristics and assert that
these actors all have the same success probability. In effect, the models are partitions of X , where
x and x′ share the same success probability if they are in the same element of the partition.

We write cm(x) to denote the element of the partition that contains x under model m. We as-
sume the persuader can always propose the finest partition, where each x is in its own cell. To illus-
trate, if each x is described as a vector of attributes, x = (x1, x2, . . . , xJ), and m is a model where
only the first three attributes are relevant to success, then cm(x̃) = {x ∈ X : (x1, x2, x3) = (x̃1, x̃2, x̃3)}.
If the receiver adopts model m, the success probability he ascribes to each element of the partition
is based on the number of successes in the data within that element of the partition. Formally, let
km(x, h) denote the number of times an element in cm(x) appears in the history h, and sm(x, h)

denote the number of times an element in cm(x) appears in h as a success rather than a failure. If
ψ = Uniform[0, 1], by the Beta-Binomial updating formula the probability the receiver attaches to
the actor being successful given modelm is θ̂(x) ≡ E[θ(x)|m,h] = (sm(x, h)+1)/(km(x, h)+2).

D When Are Receivers Persuadable? Details

Recall from Section II that there are at least four major factors that influence the scope for persua-
sion:

1. The difficulty receivers have explaining the data under their default interpretation.
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2. The (ex ante) expected difficulty receivers will have explaining the data under their default
interpretation, which in natural cases is increasing in the randomness inherent in the data
given the true process.

3. The degree to which data is open to interpretation.

4. The amount of unambiguous (i.e., closed-to-interpretation) data available to receivers, rela-
tive to the amount of ambiguous (i.e., open-to-interpretation) data available.

We illustrated the fourth point in Section II. To illustrate each of the first three points, we make
use of the following definition: We say persuasion is ineffective at history h given default d when
Pr(h|d, µ0) > Pr(h|m,µ0) for all m ∈M satisfying V S(h,m) > V S(h, d). That is, persuasion is
ineffective when the persuader is unable to convince the receiver of any interpretation of the data
more favorable to the persuader than the receiver’s default interpretation.

The first factor affecting persuadability is how well the receiver’s default model fits the history.
When receivers’ defaults fit the data well, they are hard to persuade. Formally, holding fixed history
h, consider defaults d and d′ such that d′ fits the history better but induces the same posterior:
Pr(h|d′, µ0) > Pr(h|d, µ0) and µ(h, d′) = µ(h, d). If persuasion is ineffective at history h given
default d, then it is also ineffective at h given default d′. When receivers have defaults that overfit
the data, they are hard to persuade. For instance, academics and benevolent financial advisers have
a hard time convincing individual investors that stock returns are unpredictable because individual
investors falsely perceive patterns in stock prices.

The analysis is similar across histories: there is less scope for persuasion under histories that
fit the default better. Under conditions we will make precise below, if persuasion is ineffective at
history h given default d, then it is also ineffective at any history h̃ given default d̃ that induces
the same beliefs and fits better: µ(h̃, d̃) = µ(h, d) and Pr(h̃|d̃, µ0) > Pr(h|d, µ0). For instance,
receivers are more persuadable that an abnormally cold month signals a hiatus in global warming
than that an abnormally warm month signals a hiatus. A cold month poorly fits the default model
that global warming is taking place, creating space for the persuader to propose an alternative.

Proposition A.1. Suppose persuasion is ineffective at history h given default d and prior µ0.

1. Persuasion is also ineffective at history h given default d̃ and prior µ0, assuming (i) d induces

the same posterior belief as d̃: µ(h, d̃) = µ(h, d) and (ii) d̃ fits h better than d fits h:

Pr(h|d̃, µ0) > Pr(h|d, µ0).

2. Persuasion is also ineffective at history h̃ given default d̃ and prior µ0, assuming (i) receivers

are maximally open to persuasion, (ii) h given d induces the same posterior belief as h̃ given

d̃: µ(h̃, d̃) = µ(h, d), and (iii) d̃ fits h̃ better than d fits h: Pr(h̃|d̃, µ0) > Pr(h|d, µ0).
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This proposition formalizes the two ways that increasing the fit of the receivers’ default reduces
how persuadable they are. With a bit more structure, similar intuitions also apply if we modify the
prior to change how well the same default interpretation fits the data. When the data and default
interpretation imply something that the receiver viewed as ex ante unlikely, there is more space
for persuasion. For instance, it is easier to persuade a voter that a bad gaffe by the candidate is
meaningless if the voter ex ante believed the candidate to be competent than if the voter thought
the candidate was incompetent.3

A second factor affecting persuadability is the expected (ex ante, prior to h being realized)
difficulty receivers will have explaining the data under their default interpretation.4 Receivers find
technical analysis compelling in interpreting prices and trading volumes in financial markets; they
would not when explaining patterns in their bank-account balances.

Receivers are also less persuadable when the data is less open to interpretation. If persuasion
is ineffective at history h and default d given model space M , then it is ineffective for any M ′ ⊂
M . The receiver’s openness to different models for interpreting data creates space for misleading
persuasion. When signals have a natural interpretation, the persuader cannot do much to change
minds; vague signals (Olszewski 2018), on the other hand, are ripe to be framed.

E Further Extensions, Robustness, and Examples

E.1 Generalizations and Refinements Capturing Receiver Knowledge

Consider the situations described in Section I.C where we think of the receiver’s utility as being
over actions and outcomes rather than over actions and latent states of the world. As we empha-
size in that section, we assume the persuader cannot propose models that directly alter the prior
distribution over states or the relationship between states and payoff-relevant outcomes.

One way of viewing this restriction is to broaden our conception of a model to be a joint dis-
tribution over outcomes y, histories h, and states ω: that is, a model m indexes a joint distribution
Prm(y, h, ω). With this broader conceptualization, our assumptions are:5

3As an illustration, suppose there are binary states, Ω = {0, 1}, and the persuader’s payoff equals v > 0 if
µ(1) ≥ k > 0 and equals 0 otherwise. If persuasion is ineffective at history h given default d and prior µ0, then it
is also ineffective at history h̃ given default d̃ and prior µ̃0(1) < µ0(1), assuming (i) receivers are maximally open to
persuasion, (ii) h̃ given d̃ and µ̃0 induces the same posterior belief as h given d and µ0: µ̃(h̃, d̃) = µ(h, d), and (iii)
d̃ and µ̃0 fit h̃ better than d and µ0 fit h: Pr(h̃|d̃, µ̃0) ≥ Pr(h|d, µ0). To see this, the only non-trivial case is where
µ(1|h, d) = µ̃(1|h̃, d̃) < k. In this case, persuasion being ineffective at history h given default d and prior µ0 means
that k > µ0(1)/Pr(h|d, µ0) (applying condition (2) of Proposition 1). But this implies that k > µ̃0(1)/Pr(h̃|d̃, µ̃0)
as well since µ̃0(1)/Pr(h̃|d̃, µ̃0) < µ0(1)/Pr(h|d, µ0). So the conclusion follows from Proposition 1.

4In the limiting case that the world is deterministic under the receiver’s default, i.e., (µ0, πd) places probability 1
on a single history so the set of possible histories H is a singleton, then persuasion is completely ineffective.

5For simplicity, this discussion assumes spaces are discrete.
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1. Any model the persuader proposes must be consistent with the prior over states: for all
m ∈M and ω ∈ Ω,

∑
y′,h′ Prm(y′, h′, ω) = µ0(ω).

2. Any model the persuader proposes must be consistent with the relationship between out-
comes and latent states of the world: for all m ∈M, y ∈ Y , and ω ∈ Ω,∑

h′ Prm(y, h′, ω)∑
y′,h′ Prm(y′, h′, ω)

= f(y|ω).

The default model is Prd(y, h, ω) = Prd(y|h, ω)·Prd(h|ω)·µ0(ω) = f(y|ω)·πd(h|ω)·µ0(ω).Writing
our assumptions this way suggests generalizations and refinements of our approach. We first con-
sider generalizations that relax (1) and (2), and then consider further refinements.

E.1.1 Two Generalizations that Highlight The Role of Prior Knowledge

It is crucial for our results that the receiver has prior knowledge that the persuader cannot in-
fluence without referencing data. Relaxing the first assumption of the previous section, imagine
that the persuader could propose a prior over states in addition to proposing a likelihood function:
under this alternative formulation, a model m indexes a (prior, likelihood function) combination
(µm, πm). In this case the persuader can always implement any beliefs she likes if the receiver is
maximally open to persuasion:

Proposition A.2. Suppose the receiver is maximally open to persuasion and consider the alter-

native formulation where the persuader is able to propose a prior over Ω as well as a likelihood

function, so a modelm ∈M indexes (µm, πm). Fixing d, µ0, and h, the persuader is able to induce

any target belief µ̃ ∈ ∆(Ω) .

The idea behind this result is that, for any desired belief µ̃, the persuader is always able to pro-
pose a model that says: “the true prior belief over states is µ̃ and what you just saw was inevitable”.
This model fits the data perfectly and induces the persuader’s prior belief. Under this alternative
formulation, there is no tradeoff between fit and movement.

This is not what we consider model persuasion to be. With model persuasion, a persuader
influences the receiver’s beliefs by proposing a model to make sense of data. Under this alternative
formulation, the persuader is able to influence the receiver’s beliefs by merely asserting the receiver
should hold those beliefs. In the context of a jury trial, for example, this alternative formulation
would allow the mere claim that the defendant is guilty to be persuasive, even if the prosecutor
does not reference the evidence. Of course, there may be situations described by this alternative
form of persuasion. It may operate in situations where the receiver has not given a problem enough
thought to truly have prior beliefs, for example in the context of certain laboratory experiments.

9



However, in the large number of situations like the ones we focus on in this paper where receivers
do have prior beliefs, we think it is more realistic to assume that the persuader cannot move those
beliefs without referencing data.

In situations where the receiver’s utility is over actions and outcomes, the persuader is similarly
unconstrained if we relax the second assumption of the previous section and imagine the receiver is
willing to entertain any mapping between states and outcomes, f(y|ω). In such situations what the
persuader ultimately cares about is the receiver’s ultimate belief in the distribution over Y because
this is what determines the receiver’s action. Given a target distribution µy, the persuader could
get the receiver to believe in this distribution by proposing a model that implies fm(y|ω) = µy(y)

for all ω ∈ Ω and y ∈ Y . For example, an entrepreneur could argue: “it does not matter how
good I am, all startups will for sure perform well next year”. Under this alternative formulation,
again there is no tradeoff between fit and movement. Again, we believe that this relaxation of our
assumptions would not capture the essence of model persuasion: it abstracts from the idea that
people find models compelling when they help make sense of data. While persuaders sometimes
just assert that something is true, they often point to data to make their case.

E.1.2 Further Refinements

The broader conceptualization of a model above also suggests principled ways of restricting the
model space M to reflect the receiver’s knowledge and/or to require models to be internally con-
sistent. To take some examples:

• Refinements might reflect knowledge about the distribution over observables h. For exam-
ple, the receiver might be certain about the likelihood that an entrepreneur’s first startup will
be successful. At the extreme where the receiver is certain that the distribution over h is
given by q(·), a refinement would be to require that for all m ∈ M (including the default)
and h ∈ H ,

∑
y′,ω′ Prm(y′, h, ω′) = q(h). The fit constraint in this extreme case amounts to

requiring that a receiver adopts the persuader’s model only if it is equally compelling to the
default model.

• Refinements might reflect internal consistency requirements. The receiver might have some
knowledge that aspects of h must be related to the state in the same way. For example, the
receiver might know that if drinking could give a person a heart attack at age 45 it cannot
be good for them at age 47. Letting h1 and h2 be two components of h that the receiver is
certain relates to the outcome in the same way, for example, the persuader might be restricted
to models implying Prm(y|h1, ω) = Prm(y|h2, ω) for all y ∈ Y, ω ∈ Ω.

• Refinements might reflect knowledge about the true model. The receiver might have some
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knowledge of how aspects of h are in fact related to the state. We saw examples of such a
restriction, for example, in Section II where we discussed data that is closed to interpretation.

A single persuader is not constrained by refinements of the first form if receivers are otherwise
maximally open to persuasion:

Proposition A.3. Fix d, µ0, and h and assume the receiver is willing to entertain a model m if and

only if it satisfies Pr(h|m,µ0) = Pr(h|d, µ0) for all h ∈ H . The persuader is able to induce target

belief µ̃ ∈ ∆(Ω) if and only if inequality (2) holds.

This result, which follows immediately from the proof of Proposition 1, shows that a single
persuader is not constrained per se by receiver knowledge about the distribution over observables.
The receiver might know, for example, the likelihood that an entrepreneur’s first startup will be
successful. In the extreme where receivers are certain about this distribution, the persuader is
constrained to propose models that are equally compelling to the default interpretation. While
this restriction abstracts from the crucial psychology that receivers find models compelling when
they better make sense of the data than the default interpretation, the behavioral implications are
the same with a single persuader when receivers are maximally open to persuasion. Intuitively,
needing to explain the data with an equally compelling model is less constraining to the persuader
than needing to explain the data with a more compelling model. With competition, matters are
more complicated because the analysis hinges a lot on how receivers are assumed to break ties
between equally compelling models.

Persuaders, however, are constrained per se by receiver knowledge about the relationship be-
tween observables and payoff-relevant outcomes. For example, the persuader is constrained by
the receiver knowing (or thinking he knows) that the success of an entrepreneur’s first startup is
positively correlated with the success of her second startup.

We leave a fuller analysis of such refinements for future work.

E.2 Receiver Skepticism

In the main text, we assume the receiver does not take persuaders’ incentives into account in
assessing proposed models. Alternatively, the receiver might be more skeptical of a persuader’s
proposed model when she knows that taking an action according to that model is in the persuader’s
interest.

Suppose the receiver is exposed to set of models M̃ , which includes the receiver’s default
model given h. Let mj ∈ M̃ denote the model proposed by persuader j. Say that model mj is

in the persuader’s interest given M̃ when mj ∈ arg maxmj∈M̃ V j(h,mj). That is, mj is in the
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persuader’s interest given M̃ when, among models in M̃ , it is the best one from the persuader’s
perspective.

Imagine that the receiver penalizes the persuader for proposing a model in her interest by
requiring the model to fit the data sufficiently better than the default (or models proposed by other
persuaders that are not in their interest). Specifically, denote the skepticism-adjusted fit of model
mj , SFit, by

SFit(mj|h, µ0, M̃) =

(1− σ) · Pr(h|mj, µ0) if mj is in persuader j’s interest given M̃

Pr(h|mj, µ0) otherwise (including for the default model),

where σ ∈ [0, 1). A σ-skeptical receiver discounts any model she is skeptical of by factor (1− σ).
Higher σ corresponds to more skepticism on the part of the receiver.

A simple generalization of Proposition 1 characterizes beliefs the persuader is able to induce
when the receiver is σ-skeptical and only has access to a default model in addition to the persuader’s
proposed model.

Proposition A.4. Fix d, µ0, and h and suppose the receiver is σ-skeptical. There is an M under

which the persuader is able to induce target belief µ̃ ∈ ∆(Ω) if and only if

µ̃(ω) ≤ µ0(ω)

Pr(h|d, µ0)
∀ω ∈ Ω and V S(m(µ̃), h) < V S(d(h), h) (A.1)

or

µ̃(ω) ≤ µ0(ω)

Pr(h|d, µ0)
· (1− σ) ∀ω ∈ Ω and V S(m(µ̃), h) ≥ V S(d(h), h), (A.2)

recalling that m(µ̃) is a model that induces belief µ̃.

This result collapses to Proposition 1 when the receiver is not skeptical (σ = 0). Greater
receiver skepticism (σ > 0) places restrictions on beliefs the persuader is able to induce. When
receiver skepticism is sufficiently large (σ > 1 − Pr(h|d, µ0)), the receiver will never adopt the
persuader’s proposed model when it is known to be in the persuader’s interest. When receiver
skepticism is slightly smaller (σ ≈ 1 − Pr(h|d, µ0)), the receiver will only adopt a model that is
known to be in the persuader’s interest when it induces beliefs that are close to the receiver’s prior.
Indeed, when σ = 1− Pr(h|d, µ0), then the only beliefs that satisfy (A.2) are µ̃ = µ0.

This result implies that the impact of model persuasion remains substantial even with signifi-
cant receiver skepticism. A very skeptical receiver is willing to adopt a model known to be in the
persuader’s interest, but only if it implies beliefs that are close to the receiver’s prior. By pushing
persuaders to propose models that say receivers should ignore data, receiver skepticism may then
backfire—a very skeptical receiver is unwilling to consider objectively more accurate models that
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are in the persuader’s interest and would lead him to change his mind.

E.3 Gathering, Revealing and Framing Data

This section extends our model to allow a persuader to gather and reveal evidence, which he can
then frame ex post. We follow the Bayesian Persuasion literature by supposing the persuader must
commit to revealing whatever information he collects. We depart from that literature by allowing
the persuader to frame the evidence after he reveals it.

Suppose the persuader is able to gather and reveal unambiguous evidence that is not open
to interpretation, as well as ambiguous evidence that is open to interpretation. Assume that the
receiver is maximally open to persuasion in the face of any ambiguous evidence, but uses the true
model as a default. Here, denote the ambiguous evidence by h.

To simplify the analysis and limit the number of cases considered, suppose that the state space
is binary, Ω = {0, 1} and the persuader’s objective is an increasing function of the probability
the receiver attaches to the state being 1: US(a, ω) = f(µ(1)), where f ′(·) > 0. As an example,
the states might correspond to whether product 0 or product 1 is better and the persuader might
be selling product 1. It is natural that the receiver’s demand for product 1 is increasing in the
likelihood he attaches to the product being better.

Given these assumptions, Corollary 1 implies that the persuader’s payoff for fixed likelihood
function π, prior µ0, and ambiguous data h is

f

(
µ0(1)

Pr(h|mT , µ0)

)
.

This implies that the persuader’s expected payoff is

Eπ
[
f

(
µ0(1)

Pr(h|mT , µ0)

)]
,

given π.
When f is the linear function f(x) = x, the persuader’s expected payoff reduces to

|H| · µ0(1).

Here, |H| equals the number of elements in the support of π(·|ω) and can be thought of as a
measure of the amount of ambiguous data that the seller reveals. This should be contrasted with
the informativeness of the ambiguous data, which relates to what h reveals about ω under π. The
ambiguous data is completely uninformative, for example, whenever π(h|ω) is independent of ω
for all h.
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When f is concave, the persuader’s expected payoff is at most

f (|H| · µ0(1)) , (A.3)

which is implemented by an ambiguous data process π that features π(h|ω) = 1/|H| for all h, ω.6

So the persuader maximizes his payoff by collecting ambiguous data that is completely uninfor-

mative. Noting that (A.3) is increasing in |H|, we see that the persuader maximizes his payoff

by collecting and reporting as much of this uninformative, ambiguous data as possible. Finally,
noting that (A.3) is decreasing in mean-preserving spreads of µ0(1) since f is concave, we see that
the persuader does not want to collect and reveal any unambiguous information.

The intuition behind why the persuader wants to collect and reveal completely uninformative
ambiguous information is that she is (weakly) risk averse and eliminates the risk of having dif-
ficulty framing the information by making it uninformative.7 This is also the intuition for why
the persuader, who is assumed to have no prior informational advantage over the receiver about
ω, does not want to collect and reveal any unambiguous information. The intuition for why the
persuader wants to collect and reveal as much uninformative ambiguous information as possible is
that this maximizes the wiggle room the persuader has to frame the information.

F Dynamics

This appendix considers three ways to extend our analysis to dynamic environments and establishes
preliminary results. Unless otherwise noted, this appendix analyzes a simple two-period setting:
(1) there is a first signal h1, the persuader proposes a model m1; (2) there is a second signal h2, the
persuader proposes another model m2, and finally the receiver makes a decision. In particular, the
receiver only makes a single decision even in this dynamic setting.

F.1 Three Ways to Extend Our Analysis to Dynamic Environments

There are at least three ways to extend our framework to such a dynamic environment. We start by
giving intuitive descriptions of these three extensions and then provide more formal definitions.

Under prior dynamics, the model the persuader proposes in the first period influences the re-
ceiver’s prior—and thus the models she will find compelling in the second period. If the per-
suader’s model in the first period convinces the receiver that an entrepreneur is likely of high

6This π is not necessarily the unique solution to the maximization problem. But note that this π also minimizes the
expected value of Pr(h|mT , µ0)—creating the most expected space for persuasion—no matter µ0.

7Note the contrast with the Bayesian Persuader, who wants to collect and reveal informative data.
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quality, then in the second period the receiver will favor models that explain why the most recent
data is expected if the entrepreneur is of high quality.

Under consistency dynamics, the model the persuader proposes in the second period has to be
consistent with the model the persuader proposed in the first period. For example, the persuader
cannot propose a first period model suggesting that first-period signal h1 indicates a low quality
entrepreneur and a second period model suggesting that the same signal indicates a high quality
entrepreneur.

Under default dynamics, the model the persuader proposes in the first period becomes the
receiver’s default model going into the second period. If the persuader gets the receiver to believe
in a model that explains the entrepreneur’s initial failure quite well, then the receiver will only find
a future proposed model compelling if it explains the entrepreneur’s initial failure even better.

More formally, in each dynamic specification the receiver adopts the persuader’s first model,
m1, if and only if it fits first-period data h1 as well as the default: Pr(h1|m1, µ0) ≥ Pr(h1|d, µ0).
The three forms of dynamics we consider then differ in how m1 constrains the persuader in the
second period:

1. Prior dynamics. The persuader’s first model, m1, influences the receiver’s prior, so the
receiver’s prior in the second period becomes µ(h1,m1). The receiver then adopts the per-
suader’s second model if and only if Pr(h2|m2, µ(h1,m1)) ≥ Pr(h2|d, µ(h1,m1)). Note
that in this setup a model only specifies how to interpret a single signal and the default is
independent of previous models proposed by the persuader.

2. Consistency dynamics. The persuader always has to propose models that are consistent with
previous statements: model m2 must satisfy

∑
h′2
πm2(h

′
2, h1|ω) = πm1(h1|ω) for all ω ∈ Ω.

The receiver adopts the persuader’s model in the second period only if Pr(h2, h1|m2, µ0) ≥
Pr(h2, h1|d, µ0). Note that, in this setup as in prior dynamics, a model only specifies how to
interpret signals that have arrived so far. Unlike prior dynamics, there are default interpreta-
tions of both single and multiple signals, and the second-period model interprets all previous
signals.8

3. Default dynamics. The persuader’s first model, m1, becomes the receiver’s default inter-
pretation. The receiver adopts the persuader’s second model only if Pr(h2, h1|m2, µ0) ≥
Pr(h2, h1|m1, µ0). Note that in this setup a model specifies how to interpret both the first
and second signals, whether or not it is proposed in the first or second period.

We think there are realistic features of each specification: the lens through which receivers evaluate
models over time is probably influenced by previous models they adopted as in prior dynamics; re-

8Note that prior dynamics also embeds a kind of consistency constraint by updating priors to be consistent with
first-period models and having second-period models only explain second-period data.
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ceivers may penalize persuaders for proposing a model today that is inconsistent with a model they
proposed before as in consistency dynamics; and receivers’ default interpretations are probably
influenced by previous models they found compelling as in default dynamics.

As a first step to analyzing dynamics, we examine each of these three cases. Future work could
more carefully examine combinations of these approaches, or the factors that influence which
approach most realistically describes different situations.

F.2 A Simple Example to Build Intuition

We first show how these three specifications work in a single example: one where an entrepreneur
seeks investment for a third startup before and after information on the success of his second startup
arrives. As in the example throughout the paper, we imagine there is a success probability θ that
governs the success of the entrepreneur’s third startup and receivers have a uniform prior U [0, 1]

over this probability. The default model is the true model. The persuader wants the receiver’s belief
in the success probability to be as large as possible. In the static framework of the main paper, it
was not important that the persuader know the true model in this example. In these dynamic setups,
we assume the persuader understands that the true expected value of θ is increasing in the empirical
success frequency.

Listing the most recent outcome first (i.e., ordering (h2, h1)), we compute the outcome for each
dynamic specification and the static setup in each of four scenarios (i) (failure, failure), (ii) (suc-
cess, failure), (iii) (failure, success), and (iv) (success, success). We present the full calculations
for scenario (i) and then consolidate the rest of the results into a table for brevity.

Scenario (i) (failure, failure)

Static prediction: We have that Pr(failure, failure|d, µ0) =
∫

(1 − θ)2dθ = 1/3. As a result, the
best the persuader is able to do is to propose the model: “entrepreneurs in the top 1/3 of future
success probability fail the first two times; all other entrepreneurs have an initial success”.9 That
is, the persuader proposes a model with

π(failure, failure|θ) =

1 if θ ≥ 2/3

0 otherwise.

This model yields posterior expectation θ̂static(failure, failure) = 5/6.

9Footnote 25 shows that such a cutoff model is optimal.
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Prior dynamics: In the second period, the persuader must propose a model m2 that satisfies

Pr(failure|m2, µ(failure,m1)) ≥ Pr(failure|d, µ(failure,m1)) =

∫
(1−θ)dµ(failure,m1) ≡ k(failure, failure).

The persuader will propose the following model: “the top k(failure, failure) of entrepreneurs fail
their second startup; all other entrepreneurs succeed with their second startup.” This model yields
posterior expectation

θ̂prior dynamics(failure, failure) = 1− k(failure, failure)/2.

Knowing this, in the first period the persuader proposes a model that maximizes

E[θ|failure] · (1− k(success, failure)/2) + (1− E[θ|failure]) · (1− k(failure, failure)/2) ,

where E[θ|failure] = 1/3 and k(success, failure) = Pr(success|d, µ(failure,m1)) =
∫
θdµ(failure,m1).

That is, the persuader proposes an m1 that solves

max
m1

1/3 · (1− k(success, failure|m1)/2) + 2/3 · (1− k(failure, failure|m1)/2) .

This is equivalent to solving:

min
m1

k(success, failure|m1)+2k(failure, failure|m1) = min
m1

∫
θdµ(failure,m1)+2

∫
(1−θ)dµ(failure,m1),

which in turn is equivalent to maximizing
∫
θdµ(failure,m1). This means that in the first period,

the persuader proposes the model

πm1(failure|θ) =

1 if θ ≥ 1/2

0 otherwise.

In other words, the persuader first proposes model m1 that the top half of entrepreneurs fail in their
first startup and then proposes the model m2 that the top quarter of entrepreneurs fail in their first
two startups. Entrepreneurs and venture capitalists often use these kinds of models, arguing that
lessons from early failures are the key to success.10 So k(failure, failure|m1) = 2

∫ 1

1/2
(1− θ)dθ =

10For instance, Microsoft co-founders Bill Gates and Paul Allen reflect on their career: “Even though [our previous
firm] wasn’t a roaring success, it was seminal in preparing us to make Microsoft’s first product a couple of years later.”
https://archive.fortune.com/magazines/fortune/fortune_archive/1995/10/02/206528/index.htm
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1/4 and k(success, failure|m1) = 2
∫ 1

1/2
θdθ = 3/4. This all means then that

θ̂prior dynamics(failure, failure) = 1− k(failure, failure)/2 = 1− 1/8 = 7/8.

Consistency dynamics: Model m2 must satisfy
∑

h′2
πm2(h

′
2, failure|ω) = πm1(failure|ω) for all

ω ∈ Ω. The receiver adopts the persuader’s model in the second period only if Pr(failure, failure|m2, µ0) ≥
Pr(failure, failure|d, µ0). First note that consistency dynamics adds constraints to the persuader in
the second period, relative to the static setup. Thus, she can at best do as well as she does in the
static setup. The question is thus: can she do exactly as well as in the static problem? We show
that she indeed does as well in this case by constructing models that deliver the same receiver’s
posterior as in the static case:

πm1(failure|θ) =

1 if θ ≥ 1/2

0 otherwise

πm2(failure, failure|θ) =

1 if θ ≥ 2/3

0 otherwise

πm2(success, failure|θ) =

1 if θ ∈ [1/2, 2/3)

0 otherwise.

We have
∑

h′2
πm2(h

′
2, failure|θ) = πm1(failure|θ), and since πm2(failure, failure|θ) is the same as

the static case, the persuader does exactly as well: θ̂consistency dynamics(failure, failure) = 5/6.
Default dynamics: In the second period, the persuader needs to propose a modelm2 that satisfies:11

Pr(failure, failure|m2, µ0) ≥ Pr(failure, failure|m1, µ0) ≡ k(failure, failure).

The persuader then will propose the following model: “the top k(failure, failure) of entrepreneurs
fail their first two startups; all other entrepreneurs succeed with one of their first two startups.”
This model yields posterior expectation

θ̂default dynamics(failure, failure) = 1− k(failure, failure)/2.

Knowing this, in the first period the persuader proposes a model that maximizes

E[θ|failure] · (1− k(success, failure)/2) + (1− E[θ|failure]) · (1− k(failure, failure)/2) ,

11As a preliminary observation, the persuader could always propose d in the first period, so in expectation the
persuader does better by proposing m1 than she would do in the static model.
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Table A.1: Summarizing What the Three Dynamic Specifications Imply in the Example

(f,f) (s,f) (f,s) (s,s)

Bayesian Benchmark 1/4 1/2 1/2 3/4
Static 5/6 11/12 11/12 5/6

Prior Dynamics (m1 influences µ1) 7/8 5/8 5/8 7/8
Consistency Dynamics (m2 consistent with m1) 5/6 11/12 11/12 5/6

Default Dynamics (m1 becomes default) 1 3/4 3/4 1

This table shows the receiver’s posterior expectation of success in the example for each dynamic specification following every history. The table
uses “f” as shorthand for “failure” and “s” as shorthand for “success”.

where E[θ|failure] = 1/3 and k(success, failure) = Pr(success, failure|m1, µ0). That is, the per-
suader proposes an m1 that solves

max
m1

1/3 (1− k(success, failure|m1)/2) + 2/3 · (1− k(failure, failure|m1)/2) ,

which is equivalent to solving:

min
m1

k(success, failure|m1) + 2 · k(failure, failure|m1),

subject to k(success, failure|m1)+k(failure, failure|m1) ≥ 1/2. The solution is k(failure, failure|m1) =

0 and k(success, failure|m1) = 1/2. This all means then that

θ̂default dynamics(failure, failure) = 1− k(failure, failure)/2 = 1.

Summary Table

From the Summary Table (Table A.1), we see the following:

1. No matter the dynamic specification, the persuader does better than under the Bayesian
benchmark in every contingency.

2. If a persuader does worse in some contingency under a dynamic specification than under the
static specification, then there is another contingency where the persuader does better under
the dynamic specification than under the static specification.

(a) The way the persuader is able to do better in some contingencies under prior and default
dynamics is to propose first-period models that will not, in expectation, fit well going
forward; i.e., “opening minds” or “increasing puzzlement”. Following a failure, the
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persuader suggests a model that fits a subsequent failure poorly; following a success,
the persuader proposes a model that fits a subsequent success poorly. In this way, the
persuader relaxes the fit constraint in expectation. This means that, unlike in the static
model, with prior or default dynamics the persuader benefits more from consistent than
inconsistent histories.

3. There is a sense in which needing to be consistent with previous statements does not con-
strain the persuader. The persuader does as well under consistency dynamics as she would
in the static specification. Likewise, needing to propose models that fit even better than
previously suggested models does not constrain the persuader: The persuader does better
on average under default dynamics than under the static specification. On the other hand,
it may be constraining for the persuader to have the model he proposes today influence the
lens through which receivers evaluate models tomorrow: In this example, the persuader does
worse on average under prior dynamics than under the static formulation of the model.

F.3 Some Lessons That Hold More Broadly

Continuing to consider the same dynamic setting, we generalize a sense in which dynamics need
not be constraining to the persuader. When receivers are maximally open to persuasion, the per-
suader is neither constrained by needing to propose models that are consistent with previous mod-
els, nor by earlier proposed models becoming receivers’ default models.

Proposition A.5. Fix d as well as µ0, and suppose the receiver is maximally open to persuasion.

Let µ̃(h2, h1) be a mapping between possible values (h2, h1) and beliefs over Ω that are imple-

mentable in the static formulation of the model—i.e., such beliefs satisfy (2).

1. Under consistency dynamics, for every h1 there exists a first-period model m1(h1) such that

for every h2 the persuader is able to implement µ̃(h2, h1) with a model m2(h2, h1) that

satisfies (i)
∑

h′2
πm2(h

′
2, h1|ω) = πm1(h1|ω) for all ω ∈ Ω and (ii) Pr(h2, h1|m2, µ0) ≥

Pr(h2, h1|d, µ0).

2. Under default dynamics, for every h1 there exists a first-period model m1(h1) such that for

every h2 the persuader is able to implement µ̃(h2, h1) with a model m2(h2, h1) that satisfies

Pr(h2, h1|m2, µ0) ≥ Pr(h2, h1|m1, µ0).

The first part means that, when the receiver is maximally open to persuasion, the persuader
always does equally well under consistency dynamics as she does under the static formulation
of the model. The reason for this is that, following h1, the persuader is always able to say “h1

was inevitable”. So long as the persuader would be able to induce µ̃(h2, h2) if she didn’t have
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the opportunity to say anything in the first period, she is also able to induce that belief in a way
that’s consistent with the earlier statement. To leave herself maximum flexibility, the persuader
wants to tell the audience there is nothing to learn from the initial signal. Note that this is different
from telling the audience to, e.g., stick with the default interpretation because this could in fact
constrain the persuader under consistency dynamics: the persuader wants to move the audience’s
beliefs away from the default in the first period towards a model that says more data is needed to
learn anything.

The second part means that the persuader on average does weakly better under default dynamics
as she does under the static formulation of the model. The reason is that the persuader is always
able to just supply the default model in the first period, which under default dynamics will make
him as well off as under the static formulation of the model.

Conclusions under prior dynamics are more nuanced. In the example of the previous section,
the persuader does worse on average under prior dynamics than under the static formulation of
the model. However, there are also examples where the persuader does better on average under
prior dynamics than he does under the static formulation of the model. As an illustration, suppose
that the persuader is trying to convince an audience that a coin will come up heads on the third
flip and the coin ex ante is an “always heads” coin with probability .4 and an “always tails” coin
with probability .6. The default interpretation is that the same coin is flipped each time, so a single
flip reveals whether the coin will come up heads. Under the static formulation of the model (as
well as consistency dynamics), by Proposition 1 the persuader is able after two tails to convince
the audience that the likelihood of heads on the third flip is .4/.6 = 2/3. Under prior dynamics,
the persuader is able to do even better (again, invoking Proposition 1): after the first tails, the
persuader is able to get the audience to believe the likelihood of “always heads” is 2/3. This then
means that, in the second period, Pr(tails, tails|d, µ(h1,m1)) = 1/3 and the persuader is able to get
the audience to believe that the likelihood of heads on the third flip is min {1, (2/3)/(1/3)} = 1.

An interesting avenue for future work is to consider what happens when the receiver takes
actions each period. While we will say little here, we establish a basic result for consistency
dynamics: The conclusion that the persuader does as well as under the static formulation of the
model still holds in special cases of the receiver taking actions each period, such as where states
are ordered and the persuader benefits from beliefs that are more positive in the sense of first-order
stochastic dominance. As with the example of the previous section, the persuader could induce as
positive beliefs as possible following h1 in a way that’s consistent with any attempt to induce as
positive beliefs as possible following (h2, h1):

Proposition A.6. Suppose states are ordered Ω = {ω1, . . . , ωN} with ω1 < . . . < ωN . Fix d as

well as µ0, and suppose the receiver is maximally open to persuasion. Let µ̃(h2, h1) be a mapping

between possible values (h2, h1) and beliefs over Ω that are implementable in the static formula-
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tion of the model—i.e., such beliefs satisfy (2)—and first-order stochastically dominate any other

beliefs over Ω that are implementable in the static formulation of the model given (h2, h1). For

every h1 there exists first-period model m1(h1) that (i) implement beliefs that first-order stochas-

tically dominate any other beliefs over Ω that are implementable given h1 and (ii) allow that, for

every h2, the persuader is able to implement µ̃(h2, h1) with a model m2(h2, h1) that satisfies (ii.a)∑
h′2
πm2(h

′
2, h1|ω) = πm1(h1|ω) for all ω ∈ Ω and (ii.b) Pr(h2, h1|m2, µ0) ≥ Pr(h2, h1|d, µ0).

The intuition for why this is true generally follows from the example above: interpreting
(h2, h1) to induce beliefs that are as positive as possible will always be consistent with interpreting
h1 to induce beliefs that are as positive as possible.

F.4 Sequential Competition

This section uses an example to show how sequential competition may look different than static
competition under certain dynamic specifications. In particular, we return to the jury example from
Section VI.C and show that the order in which the defense and prosecution present arguments may
influence jurors’ ultimate decisions under prior dynamics. There is a first mover advantage because
the party that moves first is able to preemptively frame evidence to its advantage.

Suppose evidence h is fixed and maximally open to interpretation, but arguments are sequential.
Further, to limit the number of cases suppose that under the receiver’s default interpretation h

provides evidence neither for guilt nor innocence. To be able to directly port the definitions above
with dynamics, we make the contrived assumption that “half of” h, h1, arrives prior to the first
argument and the other half, h2, arrives prior to the second argument. In keeping with the idea that
h1 and h2 each comprise “half of” h and are uninformative of guilt under the receiver’s default
interpretation, assume Pr(h1|d, µ0) = Pr(h2|d, µ0) and Pr(h1|d, µ) is independent of µ. Under
prior dynamics, the model the first-moving persuader proposes, m1, influences the receiver’s prior,
so the receiver’s prior in the second period becomes µ(h1,m1). The receiver adopts the second-
moving persuader’s model only if Pr(h2|m2, µ(h1,m1)) ≥ Pr(h2|d, µ(h1,m1)).

Imagine the jury’s prior is to acquit the defendant: payoffs are such that the cutoff for acquittal
is 1/2 and priors are such that µ0(g) < 1/2. The prosecution goes first in closing arguments and the
defense goes second. Is there a model the prosecution can propose that induces µ(g|h1,m1) > 1/2

and prevents the defense from framing the data so that the jury acquits?
Under many parameters, the answer is yes. The prosecution will select m1 to induce the maxi-

mum possible belief in guilt, which by Proposition 1 is min {µ0(g)/Pr(h1|d, µ0), 1}. If this equals
1, there is nothing the defense can then do to bring µ(g) back down below 1/2. If it is below 1,
then the defense moves the jury’s belief that the defendant is not guilty, µ(ng), up to the maximum
possible amount µ(ng|h1,m1)/Pr(h2|d, µ(h1,m1)) = 1/Pr(h2|d, µ1) − µ0(g)/(Pr(h1|d, µ0) ×
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Pr(h2|d, µ1)) (again, by Proposition 1). This implies that

µ(g|h,m2) =
Pr(h2|d, µ1)− 1

Pr(h2|d, µ1)
+

µ0(g)

Pr(h1|d, µ0)× Pr(h2|d, µ1)
.

This final belief is above 1/2 if and only if

µ0(g) >
Pr(h1|d, µ0) (2− Pr(h2|d, µ1))

2
=

Pr(h1|d, µ0) (2− Pr(h1|d, µ1))

2
≡ µ̃,

where the equality is a result of the assumption that h is uninformative about guilt under the default
interpretation. Two implications follow. First, µ̃ < 1/2 whenever Pr(h1|d, µ0) = Pr(h2|d, µ1) <

1: the first mover has the advantage of influencing the lens through which the receiver evaluates
the second-mover’s model. Second, µ̃ is increasing in Pr(h1|d, µ0) = Pr(h2|d, µ1): the more
surprising the signals are under the jury’s default, the larger the first mover advantage for the
prosecution.

G Examples: Details

This appendix fleshes out arguments behind claims made in Section VI.

G.1 Persuading an Investor: Technical Analysis

This section shows how our framework predicts that the support resistance model from Figure 5b
is more compelling than a random walk model.

At date t, the state is θt ∈ {0.25, 0.5, 0.75}, where θt is the probability AMZN stock rises at
date t + 1. The persuader frames the history h of returns from 1/8/2019 to 1/28/2019 to influence
the receiver’s posterior on θ1/29. Suppose the receiver’s prior is evenly distributed across the three
possible states: µ0(θ1/29 = 0.25) = µ0(θ1/29 = 0.5) = µ0(θ1/29 = 0.75) = 1/3.

The default model is a history-dependent version of the random walk model—at each date,
AMZN is equally likely to rise or fall:12

πd(h|θ) =

0.5length(h) if θ = 0.5

0 otherwise
.

12This model is history dependent because πd(h|θ = .25) = πd(h|θ = .75) = 0 for the particular h that is realized,
though clearly

∑
h̃ π

d(h̃|θ = .25) = 1 =
∑
h̃ π

d(h̃|θ = .75). The idea is that the investor as a default views the data as
being diagnostic of a random walk. It would not change the conclusions of our analysis to instead specify the default as
saying that returns data is uninformative about θ; i.e., πd(h|θ = .25) = πd(h|θ = .5) = πd(h|θ = .75) = .5length(h).
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The persuader proposes a support-resistance model. The model says that AMZN follows a
random walk (θt = 0.5) until it hits either the support or the resistance. If it hits the resistance,
then it is likely to fall, i.e., θt = 0.25 after hitting the resistance. If it hits the support, then it is
likely to rise, i.e., i.e., θt = 0.75 after hitting the support. The key flexibilities available to the
persuader are in (i) picking the support and resistance levels after seeing the data and (ii) selecting
the window of returns over which the model applies. Formally, let US and DS be the number of
up and down moves respectively after the support has been hit (and the resistance has not since
been hit). Let UR and DR be the number of up and down moves respectively after the resistance
has been hit (and the support has not since been hit). The model implies that the probability of the
history is χ = (0.75)U

S+DR(0.25)U
R+DS(0.5)length(h)−(US+UR+DS+DR): up moves are likely after

hitting the support and down moves are likely after hitting the resistance; conversely, up moves are
unlikely after hitting the resistance and down moves are unlikely after hitting the support.

The model is formally:13

πRS(h|θ) =



χ if last hit support and θ = 0.75

χ if last hit resistance and θ = 0.25

χ if never hit either and θ = 0.5

0 otherwise

.

Figure A.4 shows a simple example of how the model applies to a stylized price path. The
support is at 2 and the resistance is at 4. The price starts at 3, and neither the support nor the
resistance has yet been hit. Thus, the probability of an up move is 50%. The price then rises
to 4, hitting the resistance. Now the probability of an up move is 25%, and the probability of a
down move is 75%. The next two price moves are down, and the support is hit. At this point,
the probability of an up move is 75%. The last price move is up. Since the support was last hit,
the probability of an up move next is 75%. Thus, according to the support-resistance model the
probability of the history is

Pr(h|RS, µ0) = πRS(h|θ = 0.75)µ0(θ = 0.75) = (0.50)(0.75)3(1/3) = 0.07.

Under the random walk model, the probability of the history is

Pr(h|d, µ0) = πd(h|θ = 0.5)µ0(θ = 0.5) = (0.50)4(1/3) = 0.02.

Performing the analogous calculations on the actual AMZN price path from 1/8/2019 to 1/28/2019,

13Again, this model is history dependent and closed by specifying probabilities for un-realized histories that sum to
1.
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Figure A.4: Applying the Support and Resistance Model to a Stylized Price Path

the support-resistance model implies that AMZN is likely to rise, as AMZN had most recently hit
its support.14 The probability of the history is more than four times higher under the support-
resistance model than the random walk model. Note that this means that even if we modified the
setup so that the prior strongly favored the random walk model (e.g., µ(θ = 0.5) = 2 × µ(θ =

0.75)), the receiver would still find the support-resistance model more compelling.

G.2 Persuading a Client: Expert Advice in Individual Investing

This section provides a somewhat more elaborate formulation of individual investment advice, rel-
ative to the one presented in Section II. Suppose there are N investments with investment j having
characteristics (xj1, . . . , x

j
K). Each investment will either be successful or not. If the investor’s

investment is successful he gets a payoff of s > 0 and he gets a payoff of 0 otherwise. The investor
may pay a cost χ ∈ (0, 1) to make an “active” choice in a particular investment or to pay a cost
χL ∈ [0, χ) to invest “passively” in one of the N investments selected at random—for illustra-
tive purposes, we assume the investor is risk neutral so that there is no diversification motive and

14Calculated based on data from the Daily Stock File c©2020 Center for Research in Security Prices (CRSP),
The University of Chicago Booth School of Business, accessed on June 19, 2019. Wharton Research Data Services
(WRDS) was used in preparing this paper. This service and the data available thereon constitute valuable intellectual
property and trade secrets of WRDS and/or its third-party suppliers.
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randomly selecting one investment has the same expected utility as holding all N . We normalize
χL = 0, so the investor will want to make an active choice of a particular investment if and only
if he thinks he is able to predict which investment will be successful to an extent that justifies the
cost χ. The person’s prior µ0 is that the success probability of each investment is independently
drawn from a uniform distribution over a finite set centered around 1/2.

This prior leaves open the possibility that the successes of previous investments with similar
characteristics help predict which current investment will be successful. The investor has access
to a database of the previous successes and failures of investments with different characteristics.
There are T entries to the database, each of the form (yjt, x

j)Nj=1, where yjt = 1 if investment j
was successful in period t ∈ {1, . . . , T} and 0 otherwise. In reality, this database is not helpful to
predicting which current investment will be successful: the success probability of each investment
is independently drawn each period from the uniform distribution.

But some investment advisors have an incentive for the investor to believe in predictability. In
particular, assume that one advisor (“Active”) gets a payoff of v > 0 if the investor incurs the cost
χ to make an active investment and 0 otherwise, while another advisor (“Passive”) gets a payoff of
v if the investor makes a passive investment and 0 otherwise.

Suppose first that receivers are maximally open to persuasion and Passive acts as a non-strategic
truthteller who always proposes the true model that success is not predictable. In this case, a simple
application of Proposition 1 shows that, when T is sufficiently large, Active will always convince
investors to make an active investment: Active is at an advantage because there is so much room
for overfitting.

Continue to assume that receivers are maximally open to persuasion, but suppose that Passive
acts as a strategic truthteller. In this case, a simple application of Proposition 3 shows that Passive
will always convince investors to make a passive investment because Passive is at an advantage:
she wants investors’ beliefs to stay at the prior. But this is only an advantage if Passive is willing to
propose the wrong model. In addition, Passive’s advantage would disappear if the receiver’s prior
favored Active instead.

G.3 Persuading a Client: Good to Great

This section shows how “Good to Great” advice from Collins (2001) is compelling according to
our framework. The setup is very similar to the entrepreneur problem. The underlying state is the
expected (log) return for the portfolio of 11 good-to-great companies highlighted by Jim Collins.
We assume the receiver’s prior is that expected log returns are distributed ρ ∼ N(ρ̄, σ2

ρ). We
observe realized returns, which are expected returns plus noise: rt = ρ + εit where ε ∼ N(0, σ2

ε).

Let τρ = 1/σ2
ρ and τε = 1/σ2

ε .
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The default model is that ρ is drawn once at the beginning of time. The posterior mean is
τρ

τρ+Tτε
ρ̄ + Tτε

τρ+Tτε
r̄ where r̄ = 1

T

∑
t ρt. Further let s2 = 1

T

∑
t(rt − r̄)2. How compelling is the

default relative to alternatives? According to the default model, the likelihood of a return sequence
rt for a given ρ is

Pr(rt|ρ, d, µ0) =
∏
t

1√
2πσ2

ε

exp

{
−(rit − ρ)2

2σ2
ε

}
.

=
1

(2π)T/2
1

σTε
exp

{
− T

2σ2
ε

s2

}
exp

{
− T

2σ2
ε

(r̄ − ρ)2

}
.

The prior for ρ is given by

Pr(ρ) =
1√

2πσ2
ρ

exp

{
−(ρ− ρ̄)2

2σ2
ρ

}
.

Thus, the probability of return sequence rt is

Pr(rt|d, µ0) =
1

(2π)(T+1)/2

1

σTε

1

σρ
exp

{
− T

2σ2
ε

s2

}∫ [
exp

{
− T

2σ2
ε

(r̄ − ρ)2 − (ρ− ρ̄)2

2σ2
ρ

}]
dρ.

This simplifies to (line 42 of https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf):

Pr(rt|d, µ0) =
σε

(
√

2πσε)T
√
Tσ2

ρ + σ2
ε

exp

(
−
∑

t r
2
t

2σ2
ε

− ρ̄2

2σ2
ρ

)
exp

 σ2
ρT

2r̄2

σ2
ε

+ σ2
ε ρ̄

2

σ2
µ

+ 2T r̄ρ̄

2(Tσ2
ρ + σ2

ε)

 .

(A.4)
The “this time is different” model is that ρ is redrawn at the transition point selected by Jim

Collins. Denote the transition point by L (for “leap”). Further, let r[j,k] ≡ 1
k−j+1

∑k
t=j rt. Then the

likelihood of the data under the “this time is different model” is

σε

(
√

2πσε)L
√
Lσ2

ρ + σ2
ε

exp

(
−
∑L

t=1 r
2
t

2σ2
ε

− ρ̄2

2σ2
ρ

)
exp

 σ2
ρL

2r̄2
[1,L]

σ2
ε

+ σ2
ε ρ̄

2

σ2
ρ

+ 2Lr̄[1,L]ρ̄

2(Lσ2
ρ + σ2

ε)

×
σε

(
√

2πσε)T−L
√

(T − L)σ2
ρ + σ2

ε

exp

(
−
∑T

t=L+1 r
2
t

2σ2
ε

− ρ̄2

2σ2
ρ

)
×

exp

 σ2
ρ(T−L)2r̄2

[L+1,T ]

σ2
ε

+ σ2
ε ρ̄

2

σ2
ρ

+ 2(T − L)r̄[L+1,T ]ρ̄

2((T − L)σ2
ρ + σ2

ε)

 .
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Table A.2: Stock Return Performance of Good-to-Great Firms

Dependent Variable Average Log Returnt
Original Sample Extended Sample

Post[0,15] 16.58** 16.58**
(3.26) (3.25)

Post[0,35] 7.00*
(3.96)

Post[16,35] -1.06
(-5.09)

Constant 6.21** 6.21** 6.21**
(2.77) (2.74) (2.76)

Adj. R2 0.46 0.02 0.24
N 31 50 50

This table regresses the average log stock return of the 11 good-to-great firms in event time on dummy variables selecting different periods. The
variable Post[x,y] is equal to one for years x to y in event time and zero otherwise. Data is annual. In column (1), the sample is the original sample
in the book. In columns (2) and (3) the sample is extended through 2018. Robust standard errors are reported.

Applying these formulas to the actual annual return path of 11 firms selected by Collins, we
find that the “this time is different model” is over 8 times more likely to explain the data than the
default model.15 If we extend the data to the present day (an additional 20 years of data), then the
“this time is different model” is 23% less likely to explain the data than the default model.

A naive regression approach gives similar results, presented in Table A.2. The constant says the
firms average (log) returns of 6.2% per year before their leap and 6.2%+16.6% = 22.8% after the
leap. The difference between pre- and post-leap is enormously statistically significant. If we extend
the sample to the present day (an additional 20 years of data), after their leap firms average returns
of 6.2%+7.0% = 13.2%, and the difference between pre- and post-leap is only barely statistically
significant at the 10%. The last regression shows that if we split the post-leap period into the part
Collins covered (post1) and the following years (post2), firms did worse in the years Collins did
not cover than they did in the pre-leap period, but the difference is not statistically significant. It is
as if the great firms just went back to being average. In untabulated results, we find similar patterns
when we examine earnings, as opposed to stock returns.

15These calculations assume ρ̄ = 12% per year (the average return across all stocks in CRSP over this period),
σρ = 6% (the standard deviation of expected returns under the assumption the CAPM holds), and σε = 17% (the in-
sample standard deviation of the portfolio of 11 stocks). Our results are robust to perturbing these numbers somewhat.
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H Appendix Proofs

Proof of Observation A.1. Part 1. For each h, a(h,mT ) must yield the receiver a higher payoff
under belief µ(h,mT ) than a(h, d) because the receiver could always choose a(h, d). Averaging
across h, the information component of persuasion must be positive for the receiver.

Part 2. It is obvious that the framing component of persuasion is weakly positive for the
persuader and weakly negative for the receiver. So turn to the “if and only if” statement. Sup-
pose first that the framing component is strictly positive for the persuader. Then m(h) 6= mT

for some h in the support of (µ0, π). At this h, a(h,m(h)) 6= a(h,mT ), which implies that
V R(h,m(h)) < V R(h,mT ). Since V R(h̃,m) ≤ V R(h̃,mT ) for all h̃, the framing component is
strictly negative for the receiver.

For the other direction, suppose the framing component is strictly negative for the receiver.
Then it must be that m(h) 6= mT for some h in the support of (µ0, π). At this h, V S(h,m(h)) >
V S(h,mT ) (otherwise the persuader would have chosen mT ). Since V S(h̃,m(h̃)) ≥ V S(h̃,mT )
for all h̃, the framing component is strictly positive for the persuader.

Proof of Proposition A.1. Since persuasion is ineffective given (h, d, µ0), we have Pr(h|d, µ0) >
Pr(h|m,µ0) for all m such that V S(m,h) > V S(d, h).

1. This means when Pr(h|d̃, µ0) > Pr(h|d, µ0), we also have Pr(h|d̃, µ0) > Pr(h|m,µ0) for
all m such that V S(m,h) > V S(d, h).

2. This means when receivers are maximally open to persuasion that no belief µ′ simultaneously
satisfies (2) and V S(µ′, h) > V S(µ(h, d), h). Given µ(h̃, d̃) = µ(h, d) and Pr(h̃|d̃, µ0) >
Pr(h|d, µ0), this further implies that no belief µ′ simultaneously satisfies (2) (now under h̃,
d̃, µ0) and V S(µ′, h̃) > V S(µ(h̃, d̃), h) = V S(µ(h, d), h). This is because the modification
to h̃, d̃ tightens (2), so any belief that does not satisfy this constraint under h, d also does not
satisfy it under h̃, d̃.

Proof of Proposition A.2. Take target belief µ̃ ∈ ∆(Ω). For this target belief, let µm = µ̃ and
πm(h|ω) = 1 for all ω ∈ Ω. This model will be adopted by the receiver since Pr(h|m,µm) = 1
and it leads to the target belief, since the receiver’s posterior will just equal the persuader-proposed
prior.

Proof of Proposition A.3. The proof of Proposition 1 establishes this result.

Proof of Proposition A.4. Follows the logic of the proof of Proposition 1.

Proof of Proposition A.5. For the first part, fix h1. Let m1(h1) satisfy πm1(h1)(h1|ω) = 1 ∀ω ∈ Ω.
This will be adopted by the receiver in the first period because it perfectly fits the data. Now con-
sider some h2 and belief µ̃(h2, h1) that would be implementable in the static version of the model,
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which means that there is a model m that implements that belief and satisfies Pr(h2, h1|m,µ0) ≥
Pr(h2, h1|d, µ0), i.e., (ii). Consider model m2(h2, h1) that satisfies πm2(h2, h1|ω) = πm(h2, h1|ω)
and

∑
h′2
πm2(h

′
2, h1|ω) = 1 for all ω ∈ Ω. This model implements µ̃(h2, h1) while satisfying (i)

and (ii).
For the second part, just let m1(h1) = d.

Proof of Proposition A.6. For any (h2, h1), let

µ̃(ωi|h2, h1) = min

{
µ0(ωi)

Pr(h2, h1|d, µ0)
, 1−

N∑
j=i+1

µ̃(ωj|h2, h1)

}
.

There is a cutoff ĩ(h2, h1) satisfying µ̃(ωi|h2, h1) > 0 if and only if i > ĩ(h2, h1), with µ̃(ωi|h2, h1) =
µ0(ωi)/Pr(h2, h1|d) for all i ≥ ĩ(h2, h1)+1 and µ̃(ωĩ(h2,h1)|h2, h1) = 1−

∑N
j=ĩ(h2,h1)+1 µ̃(ωj|h2, h1).

This mapping µ̃(h2, h1) is implementable in the static formulation of the model—i.e., such beliefs
satisfy (2)—and first-order stochastically dominate any other beliefs over Ω that are implementable
in the static formulation of the model given (h2, h1). A model that implements these beliefs satis-
fies

πm2(h2, h1|ωi) =


1 if i ≥ ĩ(h2, h1) + 1(

1−
∑N
j=ĩ(h2,h1)+1

µ̃(ωj |h2,h1)
)

Pr(h2,h1|d)

µ0(ωĩ(h2,h1)
)

if i = ĩ(h2, h1)

0 if i ≤ ĩ(h2, h1)− 1.

Similarly, for any h1, let

µ̃(ωi|h1) = min

{
µ0(ωi)

Pr(h1|d)
, 1−

N∑
j=i+1

µ̃(ωj|h1)

}
.

There is a cutoff ĩ(h1) satisfying µ̃(ωi|h1) > 0 if and only if i > ĩ(h1), with µ̃(ωi|h1) =
µ0(ωi)/Pr(h1|d, µ0) for all i ≥ ĩ(h1) + 1 and µ̃(ωĩ(h1)|h1) = 1 −

∑N
j=ĩ(h1)+1 µ̃(ωj|h1). This

mapping µ̃(h1) is implementable given h1 and first-order stochastically dominate any other beliefs
over Ω that are implementable given h1. A model that implements these beliefs satisfies

πm1(h1|ωi) =


1 if i ≥ ĩ(h1) + 1(

1−
∑N
j=ĩ(h1)+1

µ̃(ωj |h1)
)

Pr(h1|d,µ0)

µ0(ωĩ(h1)
)

if i = ĩ(h1)

0 if i ≤ ĩ(h1)− 1.

It remains to show that
∑

h′2
πm2(h

′
2, h1|ω) = πm1(h1|ω) for all ω ∈ Ω. Note that ĩ(h2, h1) ≥

ĩ(h1) since Pr(h2, h1|d, µ0) ≤ Pr(h1|d, µ0). This means that, for i ≥ ĩ(h2, h1)+1,
∑

h′2
πm2(h

′
2, h1|ωi) =

πm1(h1|ωi) = 1. Similarly, for i ≤ ĩ(h1)− 1,
∑

h′2
πm2(h

′
2, h1|ωi) = πm1(h1|ωi) = 0. The remain-

ing states are for i ∈
{
ĩ(h1), . . . , ĩ(h2, h1)

}
. For all such i, πm2(h2, h1|ωi) ≤ πm2(h1|ωi) so it’s

possible to fill in πm2(·, h1|ωi) to satisfy
∑

h′2
πm2(h

′
2, h1|ωi) = πm1(h1|ωi).
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