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A Proofs

This section of the Online Appendix contains additional proofs. We reference theorems and
lemmas using the numbering of the main paper.

Proof of Lemma 2: i) follows immediately from Lemma 1. To see that ii) holds, observe
that we can rewrite g as

g(w) = β̂ δ

∫ ∞
w

z dF (z) + β̂F (w) δ w + (1− β̂)F (w) δ w

= β̂ δ

∫ ∞
−∞

max{z, w} dF (z) + (1− β̂)F (w) δ w . (5)

Note that both the first and the second summand are non-decreasing for w ≥ 0, and that the
first summand is continuous in w while the second is right-continuous and has only upward
jumps as F is a CDF.

To see that iii) holds, observe that the integral in the first summand of (5) is bounded
from below by w and, thus, for w ≤ 0

g(w) ≥ β̂ δ w + (1− β̂)F (w) δ w ≥ β̂ δ w + (1− β̂)δ w = δw ≥ w .

To see that iv) holds observe that the second inequality is strict whenever w < 0 and
F (0) < 1.

We now show v). Suppose w? <∞. As g(w)−w and is right-continuous for any decreas-
ing, converging sequence wk with g(wk)−wk ≤ 0 we get that g(limk→∞wk)− limk→∞wk ≤ 0
and thus that w? = inf{w ∈ R : g(w) ≤ w} satisfies g(w?) = w?. Furthermore, it follows
immediately from iv) that the set {w ∈ R : g(w) ≤ w} contains only w ≥ 0, and hence that
w? ≥ 0.

To show vi), note that for 0 ≥ w (5) together with w′ ≥ 0 implies that

g(w′)− g(w) =β̂ δ

[∫ w

−∞
(w′ − w)dF (z) +

∫ w′

w

(w′ − z)dF (z)

]
+ (1− β̂)δ [F (w′)w′ − F (w)w] ≥ 0,

where the inequality follows from the facts that w′ ≥ 0 and w ≤ 0.

Lemma 3. Suppose δ < 1 and the agent believes to be time-consistent β̂ = 1.
i) For every distribution F with F (y) > 0 and y < 0, the continuation values are strictly

decreasing v1 > v2 > . . . > vT .
ii) A first-order stochastic dominance increase in the payoff distribution F increases the

vector of perceived continuation values point-wise.

Proof of Lemma 3: i): Suppose towards a contradiction that the continuation values
are not strictly decreasing. Since they are weakly decreasing by Theorem 1, we thus have

1



vt′−1 = vt′ for some t′ ∈ {2, . . . , T}. By Lemma 2 i), we have that vt/β = g(vt+1/β) for all
t ∈ {1, . . . , T − 1}, where, by (5),

g(x) = δ

∫ ∞
−∞

max
{
z, x
}
dF (z) .

Thus, vt = vt′ for all t ≤ t′.
We next prove that vt′+1 = vt′ . Denote by m = min

(
suppF

)
the left end-point of

the support of F . By assumption m ≤ y < 0. As y < 0 and F (y) > 0, we get that
0 < F (y) ≤ F (0). By Lemma 2 iv), any fixed point of g is non-negative, so that v′t ≥ 0. We
have that

g

(
vt′

β

)
=
vt′

β
= g

(
vt′+1

β

)
. (6)

As g is strictly increasing for x ≥ m and
vt′
β
≥ 0 ≥ m, (6) implies that vt′+1 = vt′ . By

induction, vs = vt for all s, t ∈ {1, . . . , T}. As vT = y, this implies that vt = y for all t. This
is a contradiction since we established that vt′ ≥ 0 and y < 0 by assumption.

We now show ii): Let v be the continuation values associated with F and ṽ the con-
tinuation values associated with F̃ ≺FOSD F . We want to show that vt ≥ ṽt for every
t ∈ {1, . . . , T}. We show the result by backward induction over T . The start of the induc-
tion is that vT = ṽT = y. To complete the induction step, we show that vt+1 ≥ ṽt+1 implies
vt ≥ ṽt

vt/β = δ

∫ ∞
−∞

max
{
z, vt+1/β

}
dF (z) ≥ δ

∫ ∞
−∞

max
{
z, ṽt+1/β

}
dF (z)

≥ δ

∫ ∞
−∞

max
{
z, ṽt+1/β

}
dF̃ (z) = ṽt/β .

Proof of Theorem 3: Throughout the proof fix an arbitrary non-decreasing sequence of
stopping probabilities 0 < p1 ≤ . . . ≤ pT < 1, a discount factor δ < 1, β ∈ (0, 1] and
a continuation payoff y = δβvT+1 < 0 in period T . We will show that there exists a
payoff distribution that leads to the stopping probabilities p for a naive agent with the time
preference (δ, β).

Let Ga,b denote the uniform CDF on [a, b] for a < b

Ga,b(x) =


0 for x < a
x−a
b−a for x ∈ [a, b]

1 for x > b

and a Dirac measure Ga,a(x) = 1a≤x for a = b.
Fix two arbitrary constants c1, c2 > 0. For every non-increasing sequence v1 ≥ . . . ≥ vT−1

with vT−1 ≥ y, define the function F (·; v) as the weighted sum of the CDFs of T + 1 uniform
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distributions on the intervals [πk(v), πk+1(v)] for k ∈ {0, . . . T} as

F (x; v) =
T∑
k=0

fkGπk(v),πk+1(v)(x) . (7)

We set the endpoints of the intervals [πk(v), πk+1(v)]

πk(v) =


y − c1 if k = 0

y if k = 1

vT−k+1 if k ∈ {2, . . . , T}
v1 + c2 if k = T + 1

, (8)

and the probabilities fk assigned to each interval as

fk =


1− pT if k = 0

pT−k+1 − pT−k if k ∈ {1, . . . , T − 1}
p1 if k = T

. (9)

Note that fk ≥ 0, that for k < T

k∑
j=0

fj = 1− pT−k, (10)

and that
∑T

j=0 fj = 1. For every v, the function F (·; v) is non-decreasing and non-negative
as the CDF G is non-decreasing and non-negative. It thus follows that F is a well defined
CDF whose support satisfies suppF (·; v) ⊆ [π0, πT+1] = [y − c1, v1 + c2].

Consider now the continuation values w induced by F (·; v). By Lemma 1, they can be
computed by solving the equation

wt
β

= δ

∫ ∞
−∞

max
{
z,
wt+1

β

}
dF (z; v) for t ∈ {1, . . . , T − 1} , (11)

with wT = y. Denote by L : RT−1 → RT−1 the function mapping (v1, . . . , vT−1) to
(w1, . . . , wT−1) using (11). By Theorem 1, w = L(v) is non-increasing. As w is non-
increasing and wT = y, it follows that (Lv)t ≥ y for all t ∈ {1, . . . , T}. Furthermore,
as suppF (·; v) ⊆ [y − c1, v1 + c2]

w1 = βδ

∫ ∞
−∞

max
{
z,
w2

β

}
dF (z; v) ≤ βδ

∫ ∞
−∞

max
{
v1 + c2,

w1

β

}
dF (z; v)

= δβmax
{

(v1 + c2),
w1

β

}
.
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We distinguish two cases: w1 > 0 and w1 ≤ 0. If w1 > 0 we have that w1 > δw1 and for all
v1 such that v1 ≤ δ

1−δc2 we have in addition

w1 ≤ δβmax
{

(v1 + c2),
w1

β

}
= δβ(v1 + c2) ≤ δ(v1 + c2) ≤

δ

1− δ
c2 .

If w1 ≤ 0 we have that for all v1 ≤ δ
1−δc2

w1 ≤ δβmax
{

(v1 + c2),
w1

β

}
≤ max{δβ(v1 + c2), 0} ≤

δ

1− δ
c2 .

In either case, we have that y ≤ wt ≤ δ
1−δc2 for all t ∈ {1, . . . , T − 1}. Consequently,

L : RT−1 → RT−1 maps M ⊂ RT−1 into itself, where M is the set of non-increasing sequences
contained in [y, δ

1−δc2]
T−1, i.e.

M =

{
m ∈

[
y,

δ

1− δ
c2

]T−1
: m1 ≥ m2 ≥ . . . ≥ mT−1

}
.

We note that M combined with the pointwise order = forms a complete bounded lattice,
as the point-wise maximum and minimum over any set of non-increasing sequences is non-
increasing.

We note that v 7→ π(v) is monotone in the pointwise order. Furthermore, Ga,b(x) ≥
Ga′,b′(x) for all (a, b) 5 (a′, b′) and all x ∈ R. By (7) this implies that F (x; v) ≥ F (x, v′) for
all v 5 v′ and all x ∈ R, which means that v 7→ F (·; v) is monotone in first-order stochastic
dominance (FOSD). By Lemma 3 ii), increasing the distribution of payoffs in FOSD will
(weakly) increase the perceived continuation values. This implies that the operator L :
M → M is monotone with respect to the pointwise order. As L is a monotone operator,
i.e. L(v) = L(w) if v = w, it admits at least one fixed point on the complete lattice M by
Tarski’s fixed point theorem. We pick an arbitrary fixed point of L and denote it by ω?. By
construction the fixed point ω? is such that the payoff distribution F (·;ω?) will lead to the
sequence of continuation values ω?.

We next argue that the distribution F (·;w?) induces the stopping probabilities p and
thus solves our problem. First, we note that F (y;ω?) = 1 − pT > 0 and that y < 0 by
assumption. By Lemma 3 i), it follows that the continuation values w? induced by F (·;ω?)
must be strictly decreasing w?1 > w?2 > . . . > w?T−1. As w? is the continuation value associated
with F (·;ω?), the agent stops in period t ∈ {1, . . . , T} if and only if yt ≥ w?t , which happens
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with probability

P[y > w?t ] = 1− F (w?t ;w
?) = 1−

T∑
k=0

fkGπk(w?),πk+1(w?)(w
?
t ) = 1−

T∑
k=0

fk 1πk+1(w?)≤w?t

= 1−
T−1∑
k=1

fk 1w?T−k≤w?t − f01y≤w?t − fT1w?1+c2≤w?t

= 1−
T−t∑
k=0

fk = 1− (1− pt) = pt ;

where we used (10) in the second to last equality. Thus, F (·;ω?) leads to the stopping
probabilities p, which completes the proof.

Lemma 4. Whenever (4) admits a solution for a plausible dataset, there exists a solution
F that consists of exactly T + 1 mass points located at (π0, . . . , πT ) that satisfy

π0 ≤ vT < π1 ≤ vT−1 < . . . ≤ πT−1 ≤ v1 < πT ,

with associated probabilities fk = P[y = πk] given by

fk =


1− pT if k = 0

pT−k+1 − pT−k if k ∈ {1, . . . , T − 1}
p1 if k = T

.

Proof of Lemma 4: Let the pair u,G solve 4. From now one, fix u. Let EG denote
the expectation taken with respect to the cumulative distribution function G, and PG the
probability mass with respect to G.

We now specify a distribution F that has the properties specified in the Lemma. The
T + 1 mass points (π0, . . . , πT ) are located at

πk =


EG[y|y ≤ vT ] if k = 0

EG[y|vT−k+1 < y ≤ vT−k] if k ∈ {1, . . . , T − 1}
EG[y|v1 < y] if k = T

.

and their probability mass is given by fk as specified in the Lemma. Observe that by
construction, we have

π0 ≤ vT < π1 ≤ vT−1 < . . . ≤ πT−1 ≤ v1 < πT .

Since G solves 4 and 1− F (vt) = pt for all t ∈ {1, . . . , T} by construction, one has

1− F (vt) = 1−G(vt) ∀t ∈ {1, . . . , T}.
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Furthermore,∫ ∞
vt+1

z dG(z) =
T−1∑
k=T−t

EG[y|vT−k+1 < y ≤ vT−k]PG[y|vT−k+1 < y ≤ vT−k] + EG[y|v1 < y]PG[y|v1 < y]

=
T∑

k=T−t

fkπk

=

∫ ∞
vt+1

z dF (z) .

Thus, since u,G solve 4 so do u, F .

Proof of Theorem 4: Lemma 4 implies for a plausible dataset that (4) admits a solution
if and only if there exists π ∈ RT+1, f ∈ ∆T+1 and a monotone function u such that

vt = u(mt) ∀t ∈ {1, . . . , T} , (12)

π0 ≤vT < π1 ≤ vT−1 < . . . ≤ πT−1 ≤ v1 < πT , (13)

T∑
k=T−t

πkfk =
δ−1 vt − (1− pt+1) vt+1

β
∀t ∈ {1, . . . , T − 1} , (14)

T∑
k=T−t+1

fk = pt , ∀t ∈ {1, . . . , T} . (15)

Equation 15 is equivalent to fT = p1, f0 = 1− pT and for all t ∈ {2, . . . , T}

pt − pt−1 =
T∑

k=T−t+1

fk −
T∑

k=T−t+2

fk = fT−t+1 ,

and thus completely determines f . From now on we thus consider f as given.
Equation 14 for t = 1 is equivalent to

πT−1fT−1 + πTfT =
δ−1 v1 − (1− p2) v2

β
.

We note that there exists π satisfying the above equation and (13) if and only if

v2fT−1 + v1fT <
δ−1 v1 − (1− p2) v2

β
. (16)

That this is necessary follows as (13) provides a lower bound on πT−1 and πT . Since, fT =
p1 > 0, this is also sufficient as you can always chose πT arbitrarily large. Rearranging for β
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and plugging in f yields

β <
δ−1 v1 − (1− p2) v2
v2(p2 − p1) + v1p1

. (17)

Next, we consider (14) for t ∈ {2, . . . , T − 1}. Subtracting (14) evaluated at t− 1 from (14)
evaluated at t yields

πT−tfT−t =
T∑

k=T−t

πkfk −
T∑

k=T−t+1

πkfk =
δ−1 vt − (1− pt+1) vt+1

β
− δ−1 vt−1 − (1− pt) vt

β
,

which is equivalent to

πT−t =
vt+1(pt+1 − pt)− δ−1(vt−1 − vt) + (1− pt)(vt − vt+1)

β(pt+1 − pt)
.

The above equation admits a solution satisfying (13) if and only if for all t ∈ {2, . . . , T − 1},
vt+1 < πT−t ≤ vt. Rewriting using the definition of a(δ, t) from the statement of the theorem,
14 admits a solution satisfying (13) if for all t ∈ {2, . . . , T − 1} both vt+1β < vt+1a(δ, t) and
vtβ ≥ vt+1a(δ, t), and in addition

β <
δ−1 v1 − (1− p2) v2
v2(p2 − p1) + v1p1

. (18)

This completes the proof.
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B Simulation Results

This section contains variations of Example 2 in the main body of the paper, which further
illustrate the importance of functional form assumptions for the analyst’s estimates. Ta-
ble SA1 provides the corresponding log-likelihood estimates when the analyst does not know
(and thus estimates) the mean and standard deviation of the payoff distribution. As in the
case with known mean and variance, the analyst misestimates β to be substantially below
1.32 Table SA2 and Table SA3 illustrate that also with 30 or 60 periods, β is incorrectly esti-
mated to be substantially below 1. Table SA4 provides estimates for a variant of Example 2
in which the true distribution is logistic. In this variant, the functional form assumption
determines whether β is over- or underestimated.33 Table SA5 (and SA6) provide estimates
for β analogous to Example 2 if the agent is truly present-biased and naive with β = 0.9,
and the analyst does (or does not) know the mean and variance of the distribution. In
either case, the analyst significantly underestimates β. Furthermore, Figure SA1 illustrates
that eventually as the number of periods the analyst observes increases, her estimates move
further and further away from truth.

Parametric Family β Mean Std. Deviation Log-Likelihood

Uniform Naive 1. -1.86762 5.78115 -1.59186

Uniform Sophisticate 1. -2.04179 1.87369 -1.59186

Normal Naive 0.822972 0.0942045 3.47898 -1.59187

Normal Sophisticate 0.826388 0.0978794 3.10058 -1.59187

Extreme Value Naive 0.807256 -2.05785 2.37227 -1.59186

Extreme Value Sophisticate 0.830535 -1.84762 1.85227 -1.59187

Logistic Naive 0.763135 0.193664 9.44528 -1.59187

Logistic Sophisticate 0.768789 0.105082 4.10288 -1.59188

Laplace Naive 0.640929 0.206991 8.82003 -1.59199

Laplace Sophisticate 0.650699 0.0614326 2.24342 -1.59204

Table SA1: Log-likelihood estimates of β and the mean and standard deviation for Example 2
if the analyst does not know the mean and standard deviation of the payoff distribution.

32If the analyst selects the model with the highest log-likelihood, for example, she concludes that the agent
is naive time-inconsistent with β = 0.807 and that the shocks follow an extreme value distribution.

33Independently of whether she supposes the agent is naive or sophisticated, (when not imposing β ≤ 1 a
priori) she estimates β to be 0.96 for the Laplace distribution and 1.19 for the extreme value distribution.
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Parametric Family β Log-Likelihood

Uniform Naive 1. -3.29153

Uniform Sophisticate 1. -3.29153

Normal Naive 0.871612 -3.29198

Normal Sophisticate 0.88423 -3.29228

Extreme Value Naive 0.765061 -3.29383

Extreme Value Sophisticate 0.792468 -3.29483

Logistic Naive 0.814908 -3.29203

Logistic Sophisticate 0.836259 -3.29254

Laplace Naive 0.758422 -3.29317

Laplace Sophisticate 0.787311 -3.29418

Table SA2: Log-likelihood estimates of β for the payoff distribution and parameters specified
in Example 2 if the analyst knows the mean and standard deviation of the payoff distribution
with T = 30 periods.
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Parametric Family β Log-Likelihood

Uniform Naive 1. -3.95505

Uniform Sophisticate 1. -3.95505

Normal Naive 0.889306 -3.95576

Normal Sophisticate 0.903474 -3.95624

Extreme Value Naive 0.801094 -3.95715

Extreme Value Sophisticate 0.8301 -3.95833

Logistic Naive 0.835118 -3.95584

Logistic Sophisticate 0.85936 -3.9566

Laplace Naive 0.794377 -3.95701

Laplace Sophisticate 0.824827 -3.95823

Table SA3: Log-likelihood estimates of β for the payoff distribution and parameters specified
in Example 2 if the analyst knows the mean and standard deviation of the payoff distribution
with T = 30 periods.
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Parametric Family β Log-Likelihood

Uniform Naive 1.1051 -1.61023

Uniform Sophisticate 1.10823 -1.61029

Normal Naive 1.02514 -1.60953

Normal Sophisticate 1.0253 -1.60953

Extreme Value Naive 1.1942 -1.61034

Extreme Value Sophisticate 1.19231 -1.61008

Logistic Naive 1. -1.60944

Logistic Sophisticate 1. -1.60944

Laplace Naive 0.959755 -1.61017

Laplace Sophisticate 0.960106 -1.61016

Table SA4: Log-likelihood estimates of β if the true distribution is Logistic and has the same
mean and standard deviation as in Example 2. We suppose the analyst knows the mean and
standard deviation of the payoff distribution, and that T = 5 periods.
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Parametric Family β Log-Likelihood

Uniform Naive 0.9 -1.57692

Uniform Sophisticate 0.900684 -1.57692

Normal Naive 0.725994 -1.57692

Normal Sophisticate 0.730595 -1.57693

Extreme Value Naive 0.467228 -1.58092

Extreme Value Sophisticate 0.477292 -1.58106

Logistic Naive 0.670309 -1.57692

Logistic Sophisticate 0.676695 -1.57693

Laplace Naive 0.545986 -1.57699

Laplace Sophisticate 0.555965 -1.57705

Table SA5: Log-likelihood estimates of β for the mean and standard deviation from Exam-
ple 2 if the agent is naive and β = 0.9, the true distribution is Uniform, and the analyst
knows the mean and standard deviation of the payoff distribution with T = 5 periods.
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Parametric Family β Mean Std. Deviation Log-Likelihood

Uniform Naive 0.899999 -0.0000121032 3.08835 -1.57692

Uniform Sophisticate 0.901039 0.00221368 0.838862 -1.57692

Normal Naive 0.729808 0.0281063 2.91605 -1.57692

Normal Sophisticate 0.736594 0.0731089 4.76987 -1.57692

Extreme Value Naive 0.706168 -0.347689 0.621169 -1.57692

Extreme Value Sophisticate 0.633785 0.144273 0.652626 -1.60398

Logistic Naive 0.6741 0.0166023 2.176 -1.57692

Logistic Sophisticate 0.683439 0.0773394 5.63958 -1.57693

Laplace Naive 0.55626 0.017136 1.21714 -1.57698

Laplace Sophisticate 0.569426 0.0941048 5.09827 -1.57703

Table SA6: Log-likelihood estimates of β, the mean, and standard deviation if the agent is
naive and β = 0.9, the true distribution is Uniform with parameters as in Example 2, and
the analyst does not know the mean and standard deviation of the payoff distribution with
T = 5 periods.
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Figure SA1: Estimates of β in Example 2 when the agent is naive and time-inconsistent
with β = 0.9, β̂ = 1, δ = 1 for different number of periods T under different parametric
assumptions. The analyst knows that δ = 1, β̂ = 1, as well as the mean and standard
deviation of the shock distribution, and estimates β. As the analyst observes the behavior
in more and more periods, the estimated value of β eventually moves further away from the
true value of 0.9.

14




