1

ONLINE APPENDIX

The Effect of High-Tech Clusters on the Productivity of Top Inventors Enrico Moretti Appendix Table 1—Largest Patent Assignees by Total Number of Patents 1971-2007

INT BUSINESS MACHINES	155790
GEN ELECT	69051
MICROSOFT	43556
INTEL	42085
EASTMAN KODAK	41538
MOTOROLA	40995
XEROX	35034
MICRON TECHNOLOGY	31999
TEXAS INSTRUMENTS	27871
E I DU PONT DE NEMOURS	25250
HEWLETT-PACKARD DEV LP	25030
AT&T	24903
ADV MICRO DEVICES	21253
DOW CHEM	19879
GEN MOTORS	19763
US OF AMER AS REPRESENTED BY SECRETARY OF NAVY	19680
LUCENT TECHNOLOGIES	18862
EXXON RES ENGN	18571
HONEYWELL INT	18180
PROCTER GAMBLE	17751
REGENTS OF UNIV OF CALIFORNIA	16749
APPL MATERIALS	16449
HEWLETT-PACKARD	15979
SUN MICROSYSTEMS	15362
BOEING	14705

3

	Comp. Science	Biol. and Chem.	Semiconductors	Other Engineer.	Other Science
	(1)	(2)	(3)	(4)	(5)
Log Size	0.187	0.145	0.262	0.104	0.0768
	(0.0403)	(0.0208)	(0.0626)	(0.0222)	(0.0299)
N	77208	198905	38230	428029	81003

Appendix Table 2—Field-Specific Elasticities

Notes: Each column is a separate regression. The level of observation in the regressions is inventor-year. The dependent variable is log of number of patents filed in a year. Models include Year, City, Field, Class, City \times Field, City \times Class, Field \times Year, Class \times Year, Inventor, and Firm effects. City \times Year are not included. Standard errors are clustered by city \times research field.

Appendix Table 3—Some Examples of Firm-Specific Productivity Spillovers – 2007	7
--	---

Firm	City	Estimated
		Productivity
		Spillover
(A) Computer Science		
MICROSOFT	Seattle-Tacoma-Olympia, WA	.0806
INT BUSINESS MACHINES	Minneapolis-St. Paul-St. Cloud, MN-WI	.0415
CISCO TECHNOLOGY	San Jose-San Francisco-Oakland, CA	.0020
DELL PROD	Austin-Round Rock, TX	.0061
TEXAS INSTRUMENTS	Dallas-Fort Worth, TX	.0184
CATERPILLAR	Peoria-Canton, IL	.1047
MOTOROLA	Chicago-Naperville-Michigan City, IL-IN-WI	.0088
HEWLETT-PACKARD	San Jose-San Francisco-Oakland, CA	.0007
Average Firm	Average City	.0032
(B) Biology and Chemistry		
E I DU PONT DE NEMOURS	Philadelphia-Camden-Vineland, PA-NJ-DE-MD	.0117
BRISTOL-MYERS SQUIBB	New York-Newark-Bridgeport, NY-NJ-CT-PA	.0054
PROCTER GAMBLE	Cincinnati-Middletown-Wilmington, OH-KY-IN	.0347
AMGEN	Los Angeles-Long Beach-Riverside, CA	.0065
CHEVRON RES	San Jose-San Francisco-Oakland, CA	.0014
3M	Duluth, MN-WI	.0899
PFIZER	Hartford-West Hartford-Willimantic, CT	.0124
EXXON RES ENGN	Washington-Baltimore-Northern Virginia, DC-MD-VA-WV	.0043
Average Firm	Average City	.0024

Notes: Entries reflect the impact that a specific firm is estimated to have on the productivity of scientists in other firms in the same cluster in 2007. For a given firm j, field f and city c, entries are obtained as $\hat{\alpha}\Delta S_{-jfct}$ where $\hat{\alpha} = 0.066$ is the estimated elasticity in Table 3, column 8 and $\Delta \ln S_{-jfct}$ is the difference in log cluster size with and without a given firm. In particular, $\Delta \ln S_{-jfct} = [\ln(N_{fct}/N_{ft}) - \ln(N_{jfct}/N_{ft})]$, where N_{fct} in the number of scientists in cluster fct; N_{ft} is number of scientists in field f and year t; N_{jfct} is number of scientists in firm j in cluster fct; and t = 2007. Appendix Table 4—Models in Differences: Effect of Changes in Cluster Size on Changes in Inventor Productivity – OLS and IV Estimates — Single Location Firms

				OCT C	OCT C	OCT C
	OLS	OLS	OLS	2SLS	2SLS	2SLS
	(1)	(2)	(3)	(4)	(5)	(6)
$\Delta \log \text{Size}$	0.000657	0.00105	0.00157	0.0828	0.0778	0.0529
	(0.00662)	(0.00659)	(0.00663)	(0.0364)	(0.0332)	(0.0313)
First Stage				1.264	1.289	1.342
				(0.191)	(0.195)	(0.180)
F stat.				43.9	43.7	55.8
N	53627	53624	51196	53627	53624	51196
Year	У	у	у	у	У	У
Field	у	y	y	у	у	y y
Class	y	y	y	y	y	y
Field \times Year	J	y y	y	J	y	y
$Class \times Year$		J	y y		J	y y

Notes: Each entry is a separate regression. Dependent variable is the change in the log number of patents in a year. The model estimated is equation 3. The instrumental variable for workers in firm j in cluster fct is defined as $IV_{jfct} = \sum_{s \neq j} D_{sfc(t-1)} \frac{\Delta N_{sf(-c)t}}{\Delta N_{ft}}$ where $D_{jcf(t-1)}$ is an indicator equal to 1 if firm j has at least 1 inventor in city cin field f in year t - 1. $N_{jf(-c)t}$ is the number of inventors that firm j has in field f, year t in all the cities excluding city c; and $\Delta N_{jf(-c)t} = N_{jf(-c)t} - N_{jf(-c)(t-1)}$ is the change in $N_{jf(-c)t}$ between time (t - 1) and t. Standard errors are clustered by city.

Appendix 7	Table 5—	CROSS-FIELD	Spillovers
------------	----------	-------------	------------

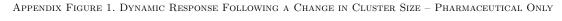
	All	Biology and Chem.	Computer Sc.	Other Eng.	Other Sci.	Semicond.
	(1)	(2)	(3)	(4)	(5)	(6)
Own Field	0.0719					
	(0.0207)					
Mean of Other Fields	0.0126					
	(0.0456)					
Biology and Chem.	. ,	0.173	-0.0602	-0.0145	0.0268	-0.0670
		(0.0395)	(0.0576)	(0.0210)	(0.0478)	(0.0804)
Computer Science		0.0238	0.224	0.0119	0.00122	0.138
		(0.0141)	(0.0417)	(0.00905)	(0.0276)	(0.0650)
Other Eng.		-0.00385	0.0349	0.123	0.0165	-0.185
		(0.0376)	(0.105)	(0.0342)	(0.0710)	(0.206)
Other Sci.		-0.0448	0.00740	-0.0135	0.0806	0.196
		(0.0238)	(0.0682)	(0.0145)	(0.0498)	(0.0585)
Semicond.		0.00754	-0.0376	0.00813	0.00220	0.218
		(0.00677)	(0.0319)	(0.00543)	(0.0167)	(0.0644)
N	822320	37961	174966	74825	367397	74111

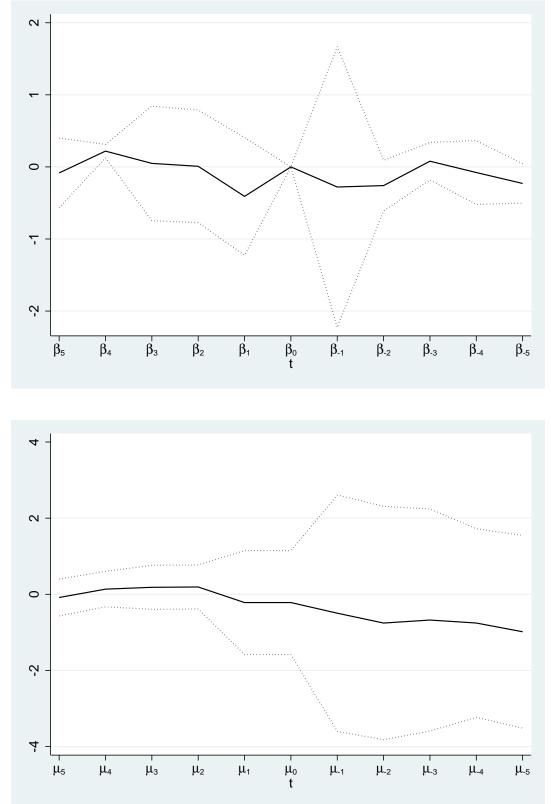
Notes: Each column is a regression. Column 1 includes all inventors. The sample in columns 2 to 6 includes inventors in the field specified at the top. Entries in a given row show the coefficient on the field-specific cluster size. For example, the entry in row 3, column 3 show the effect of the size of the Biology and Chemistry cluster on the productivity of Computer Scientists. Models include Year, City, Field, Class, City \times Field, City \times Class, Field \times Year, Class \times Year, Inventor, and Firm effects.

 $\tilde{7}$

		Interp	Interpolation			
	Baseline Sample	1 Year	2 Years			
	(1)	(2)	(3)			
(A): Inverse Hyperbolic Sine			. ,			
	0.0543	0.0664	0.0685			
	(0.00860)	(0.00822)	(0.00813)			
(B): $\log(\text{patents}+1)$						
	0.0409	0.0507	0.0525			
	(0.00647)	(0.00619)	(0.00612)			

	1 Month	2 Months	3 Months	6 Months	1 Year	2 Years	3 Years
					(Baseline)		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
(A) All							
Log Size	-0.0248	-0.0120	0.000149	0.0297	0.0676	0.134	0.171
	(0.00841)	(0.00927)	(0.00970)	(0.0106)	(0.0139)	(0.0148)	(0.0193)
N	1321719	1234635	1165648	1013458	823375	610136	500822
(B) Top 1% Inventors							
Log Size	0.0176	0.0456	0.0640	0.134	0.249	0.341	0.399
	(0.0165)	(0.0204)	(0.0224)	(0.0272)	(0.0405)	(0.0513)	(0.0675)
N	345063	304488	274684	216476	155240	100759	77551


Appendix Table 7—Alternative Units of Time


Notes: Dependent variable is log number of patents in unit of time. Baseline in Panel A is the entry in Col 8 of Table 3. Models include Year, City, Field, Class, City × Field, City × Class, Field × Year, Class × Year, Inventor, City × Year and Firm effects. Standard errors are clustered by city × research field.

Appendix Table 8—Cluster Quality and Teams

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
log Size	0.124	0.133	0.115	0.134	0.117	0.237	0.229	0.0886
	(0.0461)	(0.0552)	(0.0372)	(0.0570)	(0.0113)	(0.0446)	(0.0452)	(0.0138)
log Size X 1(Team	. ,	. ,	× ,	. ,	. ,	. ,	0.00546	. ,
size \geq Median)							(0.00370)	
$\log \text{Size } X$ (Solo							· · · ·	-0.0194
Inventor)								(0.00404)
,								````

N823434 823536 823199 823505 823375 822892 822747 823375 Notes: Each entry is a separate regression. Dependent variable is log number of patents in a year. In column 1, cluster size is measured as the weighted sum of inventors in a given city-field-year cell, with weights reflecting the lifetime number of patents of each inventor. In column 2, cluster size is measured as the number of inventors with a lifetime patent count above 3. In column 3, cluster size is measured as the weighted sum of inventors in a given city-field-year cell, with weights reflecting the lifetime number of patent citations. In column 4, cluster size is measured as the number of inventors with a lifetime patent citation count above 5. Column 5 controls for a quadratic in team size. In column 6, cluster size is defined excluding all members of the focal inventor's team. In column 7, cluster size is interacted with a dummy equal to 1 if the focal inventor team has size above median. In column 8, cluster size is interacted with a dummy equal to 1 if the focal inventor share of patents where he is the only inventor is above .9. Models include Year, City, Field, Class, City \times Field, City \times Class, Field \times Year, Class \times Year, Inventor, City \times Year and Firm effects. Standard errors are clustered by city \times research field.

Notes: This figure is based on equation 2 in the text. In the top panel I plot the estimated β coefficients in equation 2 on the lag and lead terms. For example, β_5 is the coefficient on the fifth lead term. In the bottom panel, I plot the cumulative response, where the μ 's are defined as: $\mu_n = \beta_5 + \beta_4 + \ldots + \beta_n$ for n = -5 through 5. Standard errors are clustered by city \times research field.