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A Appendix – Data Filters, Definitions

The main analysis sample is filtered appropriately to reduce measurement error in key

variables and to focus attention on workers with at least some regular paycheck income. In

particular, to observe a sufficiently complete view of spending and income, we limit attention

to app users who link all (or most) of their accounts to the app, generate a long time series of

observations, and have positive income in each month. To study the importance of paycheck

vs non-paycheck income, we also restrict attention to app users who receive regular bi-weekly

paychecks throughout most of the time we observe them in our data. The consequences for

sample size are presented in Table A.1 below.

A.1 Defining Account Linkage

The analysis may be biased if all accounts that are used for receiving income and making

expenditures are not observed. For example, an individual may have a checking account

that is used to pay most bills and a credit card that it used when income is low. If credit

card expenditures are not properly observed the MPC will be biased downwards.

In order to identify linked accounts, we use a method that calculates how many credit

card balance payments are also observed in a checking account. We define the variable

linked as the ratio of the number of credit card balance payments observed in all checking

accounts that matches a particular payment that originated from all credit card accounts.

For example, a typical individual will pay their credit card bill once a month. If they existed

in the data for the whole year, they will have 12 credit card balance payments. If 10 of those

credit card payments can be linked to a checking account the variable linked = 10
12
≈ 0.83.

One drawback to this approach is that it requires individuals to have a credit card

account. To ensure that those without credit cards are still likely to have linked accounts,

we also condition on individuals who have three or more accounts.
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A.2 Defining Regular Paycheck

In order to identify regular paychecks, we start by using keywords that are commonly

associated with these transactions.1 We condition on four statistics to ensure that these

transactions represent regular paychecks.

1. Number of paychecks ≥ 5

2. Median paycheck amount > $200

3. Median absolute deviation of days between paychecks is ≤ 5

4. Coefficient of variation of the paycheck amount ≤ 1

A.3 Defining Stable Paycheck

The ratio of paycheck and non-paycheck income is an essential ingredient in our model.

To ensure we are estimating the ratio correctly, we restrict attention to users who have

received a paycheck at least 2/3 of the time we observe them in the sample.

A.4 Payroll Periodicity

We limit the sample to individuals with bi-weekly payroll. Bi-weekly paychecks are

identified as a series of paychecks with the median number of days between each paycheck

equalling 14 days.

A.5 Sample Size

Table A.1 shows the evolution of the sample size from all users in the sample to those

that survive the selection criteria. The criteria selects users who have a long time series (≥

40 months), a high linked account ratio (≥ 0.8), a reasonable number of accounts linked

([3,15]), and receive a regular bi-weekly paycheck. We choose to drop users that have over

15 accounts linked because these accounts typically represent business users. Table 2 shows

1Keywords used to identify paychecks are “dir dep”,“dirde p”,“salary”,“treas xxx fed”,“fed
sal”,“payroll”,“ayroll”,“payrll”,“payrl”,“payrol”,“pr payment”,“adp”,“dfas-cleveland”,“dfas-in” and DON’T
include the keywords “ing direct”,“refund”,“direct deposit advance”,“dir dep adv.”
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that this final sample compares well with external data for the variables that are important

in our analysis.

Table A.1: Effect of sample filters

Individuals %
Full sample as of December 2012 883,529 100
Long time series (N ≥ 40) 321,092 36
Linked ratio ≥ 0.8 244,282 28
Linked accounts ∈ [3,15] 192,408 22
Has regular bi-weekly paycheck 92,883 11
Has stable paycheck 62,946 7

A.6 2013 Tax Schedule

The tax function is based on 2013 average tax rates (ATR). It is calculated from the

Stata package taxliab for income values over the range $0 to $500,000 in $100 intervals. The

package calculates the ATR from the marginal tax rate schedule. We assume that individuals

are single filers who claim two personal exemptions ($3,900 each) and the standard deduction

($6,100).2 We then approximate the ATR schedule with a 5th degree polynomial. The actual

and smoothed schedule is shown in Figure A.1. Note that while the smoothed function is

negative for very low levels of income, income in the model is never this low.

2These values are taken from IRS publication 501 (https://www.irs.gov/pub/irs-prior/p501–2013.pdf).
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Figure A.1: Actual and smoothed average tax rate function
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Notes: This table plots the actual and smoothed average tax rate function.
The smoothed average tax rate are calculated using a 5th degree polynomial.

The tax liability function is then defined as

τ(Y ) = ATR(Y )× Y

where Y is income and ATR(·) represents the smoothed average tax rate function plotted

above.

B Appendix – Estimating Gross Paycheck Income

In our model, an individual makes withholding and saving decisions based on gross (pre-

withheld) paycheck income and non-withheld income. In our data, we only observe net

(post-withheld) income so we estimate gross paycheck income based on which taxes are

withheld from an individuals’ paycheck income.

The various types of withholding are

1. Federal income tax withholding (based on the yearly withholding schedule published

by the IRS under Publication 15 or “Circular E”)
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2. Social security payroll tax (6.2%)

3. Medicare tax (1.45%)

4. State and local tax (based on yearly average state and local taxes collected)3

The observed net paycheck income is a function of gross paycheck income

p̃i,b,t = f(pi,b,t; s, e, t) (1)

where s represents filing status, e represents the number of exemptions, and t represents

year. We assume single filing status with two exemptions. We then invert this function to

recover gross paycheck income.

Pre-tax benefits such as health insurance premiums and 401(k) contributions also lead

to differences in gross and net paycheck income. We do not adjust for these benefits as we

do the types of withholding listed above. We don’t see this income, but equally we dont

see its consumption. Moreover, these benefits are generally not subject to income taxation

that we are modeling. Hence, that they are excluded from both income and spending in the

data is fortuitously correct. The same argument holds for pension benefits, but with a more

complicated intertemporal accounting.

C Appendix – The Withholding Function

C.1 Measuring Excess Withholding Due to High Frequency Pay-

check Volatility

As noted in section 3, the rules governing paycheck tax withholding schedules, and the

convexity of the tax schedule, may induce a “mechanical” relationship between within-year

paycheck volatility and refunds. To quantify the magnitude of the mechanical effect we

define excess withholding from high frequency paycheck volatility as:

3We take total state and local income tax collected from “U.S. Census Bureau, Quarterly Summary of
State and Local Government Tax Revenue” and divide it by total payroll tax reported in “IRS, Statistics of
Income Division, Publication 1304” to arrive at an average state and local tax rate. The rates are 5.320%,
5.154%, 4.921%, and 5.291% for 2013, 2014, 2015, and 2016 respectively.
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ExcessWi,y =
26∑
b=1

(w(pi,b,t; s, e, t)− w(p̄i,t; s, e, t)) (2)

where w(·; s, e, t) is a periodic withholding function that takes paycheck income as its ar-

gument and is influenced by filing status s, number of exemptions e, and year t.4 pi,b,t is

the bi-weekly pre-withholding paycheck for individual i in bi-week b of year t, and p̄i,t is the

average bi-weekly pre-withholding paycheck for individual i in year t.5 We assume single

filing status and two exemptions in our calculations of excess withholding.

Figure C.1 illustrates the relationship between this measure of potential excess withhold-

ing and within-year paycheck volatility. The example in the figure assumes paychecks are

one standard deviation above average half the time and one standard deviation below av-

erage the other half of the time. As expected, the measure of potential excess withholding,

ExcessWi,t, increases as within year paycheck variation increases. The relationship is not

linear, however, because potential excess withholding is positive only if annualized paycheck

income crosses marginal tax rates. Because the tax schedule is a piece-wise linear function

of income, there are regions where modest within-year variation doesn’t lead to any excess

withholding.

4The withholding function is based on the actual withholding schedule in form IRS publication 15 (aka
circular E) https://www.irs.gov/pub/irs-pdf/p15.pdf.

5We do not observe pre-withholding income pi,b,t directly. Instead we observe post-withholding income
p̃i,b,t = pi,b,t − w(pi,b,t; s, e, y). Therefore, we estimate pi,b,t from p̃i,b,t conditional on s, e, and t. Because
observed post-withholding paycheck income is a function of pre-withholding income and other tax parameters,
p̃i,b,t = f(pi,b,t; s, e, t) and we can simply take the inverse of this function to estimate pi,b,t by p∗i,b,t =

f−1(p̃i,b,t; s, e, t).
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Figure C.1: ExcessWy as a function of within-year paycheck variation
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Notes: ExcessWi,y is calculated based on a single filer with two exemptions.
The paycheck fluctuates one standard deviation above the average half of
time and one standard deviation below the average the rest of time.

C.2 Calibrating the Withholding Function

For purposes of calculating excess withholding, the withholding function is calibrated

using IRS publication 15 (aka circular E).6 Figure C.2 displays an example of a table used

to calibrate the withholding for individuals who receive a bi-weekly paycheck. We calibrate

a withholding function for each year to account for the yearly changes in the schedules.

Figure C.2: Withholding table example

Source: IRS publication 15 (aka circular E) https://www.irs.gov/pub/irs-pdf/p15.pdf.

6https://www.irs.gov/pub/irs-pdf/p15.pdf
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D Appendix – Predicted Refunds Statistics

This appendix shows summary statistics for the regression reported in Table 9, column

(2).

Table D.1: Summary statistics for each predicted refund quintile ($)

Qj
i Mean p25 p50 p75

1 2,611 2,546 2,623 2,686
2 2,859 2,803 2,859 2,913
3 3,095 3,031 3,092 3,157
4 3,395 3,305 3,389 3,482
5 3,986 3,732 3,908 4,174
Total 3,189 2,803 3,092 3,482
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E Appendix – Correlates of Tax Refunds by Terciles

of Income

Table E.1: Tax refunds and income volatility by income tercile: Log(Refund)it
(1) (2) (3) (4) (5) (6) (7)

Panel A: Top
paysharei -1.182 -0.903 -1.170

(0.0396) (0.0588) (0.0456)

Log(σ2
νNP
i

) 0.0856 0.0902 0.0424 0.0928

(0.00462) (0.00449) (0.00665) (0.00550)

Log(σ2
νPi

) -0.0220

(0.00428)

Log(ExcessWit−1) 0.0143 0.0123
(0.00259) (0.00256)

NxT 46,380 46,380 46,380 29,405 29,405 29,405 29,405
N 26,418 26,418 26,418 21,391 21,391 21,391 21,391
R2 0.051 0.038 0.039 0.015 0.051 0.047 0.038
Panel B: Middle
paysharei -0.829 -0.945 -0.881

(0.0350) (0.0506) (0.0417)

Log(σ2
νNP
i

) 0.0419 0.0433 -0.00708 0.0476

(0.00353) (0.00355) (0.00503) (0.00418)

Log(σ2
νPi

) -0.0165

(0.00394)

Log(ExcessWit−1) 0.00997 0.0173
(0.00286) (0.00287)

NxT 48,566 48,566 48,566 31,061 31,061 31,061 31,061
N 29,335 29,335 29,335 23,250 23,250 23,250 23,250
R2 0.029 0.016 0.017 0.015 0.035 0.034 0.021
Panel C: Bottom
paysharei -0.295 -0.132 -0.341

(0.0374) (0.0542) (0.0423)

Log(σ2
νNP
i

) 0.0469 0.0422 0.0423 0.0524

(0.00375) (0.00375) (0.00541) (0.00426)

Log(σ2
νPi

) 0.0419

(0.00432)

Log(ExcessWit−1) 0.0377 0.0374
(0.00388) (0.00392)

NxT 39,806 39,806 39,806 27,246 27,246 27,246 27,246
N 21,142 21,142 21,142 18,025 18,025 18,025 18,025
R2 0.006 0.010 0.014 0.008 0.016 0.007 0.012

Notes: Dependent variable is Log(Refund)it. Robust standard errors in parenthesis. NxT represents the
number of individual-year observations. N represents the number of individual observations. Columns (4)
and (5) are based on one fewer year’s observations to allow for the lagged variable. Columns (6) and (7)
repeat the estimates of columns (1) and (2) with this sample.
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F Appendix – Solution Method

We use a combination of traditional value function iteration and the endogenous grid

method to solve the maximization problem in three steps.

1. Step 1: Solve for optimal S and Ŵ when both are positive

(a) Assume a grid of values for the control variable St

(b) Conditional on St, use the FOC for Ŵt to solve for Ŵt. u
′(Ct(Ŵt)) = β

∫
ν
u′(Ct+1(Ŵt))Φ̃dν

(c) Calculate (Xt+1 = sR+Nt+Yt+1−W (Yt+1)−Φ̃
[
τ(Nt + Yt)− w(Yt)− Ŵt

]
) using

the optimal Ŵt

(d) Use the current iteration of the consumption function to solve for Ct+1(Xt+1)

(e) Use the EE to back out current period Ct = u
′−1(βR

∫
ν
u′(Ct+1)dν)

(f) Use CoH LOM to calculate Xt = Ct + St + Ŵt

2. Step 2: Solve for Ŵ when S = 0

(a) Specify a grid for Xt from 0 up until the minimum Xt solved in Step 1

(b) Use the FOC for Ŵt to solve for the optimal Ŵt assuming S = 0

(c) Conditional on Xt and Ŵt, back out what Ct will be

3. Step 3: Iterate until the consumption function C(Xt) converges

G Appendix – Estimating the Parameters of the In-

come Process

The following equations derive expressions for each of our income parameters as func-

tions of the theoretical moments. Upper case variables represent annual variables and lower

case variables represent bi-weekly variables. The theoretical moments are then estimated

using sample moments calculated from within-individual variation across time. Lastly, the

model parameters are calculated from the individual-level parameters by averaging across

individuals.
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ᾱi,NP =

∑
t npi,t,b
T

26 (17)
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H Appendix – Machine Learning Algorithm

Most transactions in the data do not contain direct information on spending category

types. However, category types can be inferred from existing transaction data. In general,

the mapping is not easy to construct. If a transaction is made at “McDonalds,” it’s easy to

surmise that the category is “Fast Food Restaurants.” However, it is much harder to identify

smaller establishments such as “Bob’s store.” “Bob’s store” may not uniquely identify an

establishment in the data and it would take many hours of work to look up exactly what

types of goods these smaller establishments sell. Luckily, the merchant category code (MCC)

is observed for two account providers in the data. MCCs are four digit codes used by credit

card companies to classify spending and are also recognized by the U.S. Internal Revenue

Service for tax reporting purposes. If an individual uses an account provider that provides

MCC information “Bob’s store” will map into a spending category type.

The mapping from transaction data to MCC can be represented as Y = f(X) where
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Y represents a vector of MCC codes and X represents a vector of transactions data. The

data is partitioned into two sets based on whether Y is known or not.7 The sets are also

commonly referred to as training and prediction sets. The strategy is to then estimate the

mapping f̂(·) from (Y1, X1) and predict Ŷ0 = f̂(X0).

One option for the mapping is to use the multinomial logit model since the dependent

variable is a categorical variable with no cardinal meaning. However, this approach is not well

suited to textual data because each word would need its own dummy variable. Furthermore,

interactions may be important for classifying spending categories. For example “jack in the

box” refers to a fast food chain while “jack s surf shop” refers to a retail store. Including

a dummy for each word can lead to about 300,000 variables. Including interaction terms

will cause the number of variables to grow exponentially and will typically be unfeasible to

estimate.

In order to handle the textual nature of the data we use a machine learning algorithm

called random forest. A random forest model is composed of many decision trees that map

transaction data to MCCs. This mapping is created by splitting the sample up into nodes

depending on the features of the data. For example, for transactions that have the keyword

“McDonalds” and transaction amounts less that $20, the majority of the transactions are

associated with a MCC that represents fast food. To better understand how the decision tree

works, Figure H.1 shows an example. The top node represents the state of the data before any

splits have been made. The first row “transaction amount ≤ 19.935” represents the splitting

criteria of the first node. The second row is the Gini measure which is explained below.

The third row shows that there are 866,424 total transactions to be classified in the sample.

The fourth row “value=[4202,34817,. . . ,27158,720]” shows the number of transactions in

each spending category. The last row represents the majority class in this node. Because

“Restaurants” has the highest number of transactions, assigning a random transaction to

this category minimizes the categorization error without knowing any information about the

transaction. At each node in the tree, the sample is split based on a feature. For example,

the first split will be based on whether the transaction amount is ≤ 19.935. The left node

represents all the transactions for which the statement is true and vice versa. Transactions

7Y0 represents the set where Y is not known and Y1 represents the set where Y is known.
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≤ 19.935 are more likely to be “Restaurant” spending while transactions > 19.934 are more

likely to be “Gas and Grocery.” In our example, the sample is split further to the left of the

tree. Transactions with the string “mcdonalds” are virtually guaranteed to be “Restaurant”

spending. A further split shows that the string “amazon” is almost perfectly correlated

with the category “Retail Shopping.” How does the algorithm decide which features to split

the sample on? The basic intuition is that the algorithm should split the sample based on

features that lead to the largest disparities in the different groups. For example, transactions

that have the word “mcdonalds” will tend to split the sample into fast food and non-fast food

transactions so it is a good feature to split on. Conversely, “bob” is not a very good feature

to split on because it can represent a multitude of different types of spending depending on

what the other features are.

Figure H.1: Decision tree example

transaction_amount ≤ 19.935
gini = 0.7937

samples = 866424
value = [4202, 34817, 19656, 198096, 24857, 10180, 29834, 887, 18074

51461, 290413, 156069, 27158, 720]
class = Restaurants

mcdonalds ≤ 0.5
gini = 0.7119

samples = 444407
value = [1259, 17899, 9809, 86867, 7595, 1928, 13651, 115, 6478, 16220

211343, 59847, 11272, 124]
class = Restaurants

True

gini = 0.8286
samples = 422017

value = [2943, 16918, 9847, 111229, 17262, 8252, 16183, 772, 11596
35241, 79070, 96222, 15886, 596]

class = Gas and Grocery

False

amazon ≤ 0.5
gini = 0.7375

samples = 414151
value = [1259, 17899, 9809, 86866, 7595, 1928, 13651, 115, 6478, 16220

181091, 59844, 11272, 124]
class = Restaurants

gini = 0.0003
samples = 30256

value = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 30252, 3, 0, 0]
class = Restaurants

gini = 0.7312
samples = 404286

value = [1259, 17899, 9809, 86862, 7595, 1928, 13602, 115, 6478, 16199
181091, 50053, 11272, 124]

class = Restaurants

gini = 0.0149
samples = 9865

value = [0, 0, 0, 4, 0, 0, 49, 0, 0, 21, 0, 9791, 0, 0]
class = Retail Shopping

We state the procedure more formally by adapting the notation used in (Pedregosa et al.,

2011). Define the possible features as vectors Xi ∈ Rn and the spending categories as vector

y ∈ Rl. Let the data at node m be presented by Q. For each candidate split θ = (j, tm)

consisting of a feature j and threshold tm, partition the data into Qleft(θ) and Qright(θ)

subsets so that
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Qleft(θ) = (X, y)|xj ≤ tm (27)

Qright(θ) = (X, y)|xj > tm (28)

The goal is then to split the data at each node in the starkest way possible. A popular

quantitative measure of this idea is called the Gini criteria and is represented by

H(Xm) =
∑
k

pmk(1− pmk) (29)

where pmk = 1/Nm

∑
xi∈Rm I(yi = k) represents the proportion of category k observations in

node m.

If there are only two categories, the function is is minimized at 0 when the transactions

are perfectly split into the two categories8 and maximized when the transactions are evenly

split between the two categories.9

Therefore, the algorithm should choose the feature to split on that minimizes the Gini

measure at node m

θ∗ = argminθ
nleft
Nm

H(Qleft(θ)) +
nright
Nm

H(Qright(θ)) (30)

The algorithm acts recursively so the same procedure is performed on Qleft(θ
∗) and

Qright(θ
∗) until a user-provided stopping criteria is reached. The final outcome is a decision

rule f̂(·) that maps features in the transaction data to spending categories.

This example shows that decision trees are much more effective in mapping high dimen-

sional data that includes text to spending categories. However, fitting just one tree might

lead to over-fitting. Therefore, a random forest fits many trees by bootstrapping the samples

of the original data and also randomly selecting the features used in the decision tree. With

the proliferation of processing power, each tree can be fit in parallel and the final decision

rule is based on all the decision trees. The most common rule is take the majority decision

of all the trees that are fit.

Table H.1 shows our goodness of fit measures when we train the model on 70% of the

8because 0*1 + 1*0 = 0.
9because 0.5*0.5 + 0.5*0.5 = 0.5.
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data and use the remaining 30% as the testing data set. We calculate the measures at

the category level as well as our aggregated measure. The aggregate measure has higher

precision and recall because a transaction is still coded as correct as long as it is identified

as one of the four non-durable consumption categories. Accuracy can only be calculated for

the aggregate measure.

Table H.1: Goodness of fit measures

Precision Recall Accuracy Share
Restaurants 0.92 0.94 - 0.51
Gas and Grocery 0.92 0.94 - 0.38
Entertainment 0.90 0.78 - 0.06
Misc. Services 0.92 0.77 - 0.05
Aggregate 0.96 0.96 0.95 1.00

Notes: Precision measures the fraction of predicted consumption transactions
that are correctly predicted. Recall measures the fraction of actual consump-
tion transactions that are correctly predicted. Accuracy calculates the fraction
of total observations that are correctly predicted. The last column shows the
share of transactions in each category.

I Appendix – Alternate parameter values

Table I.1: Average tax refund under different
parameter values (θ = 4)

β
0.975 0.980 0.985 0.990 0.995

γ

0.30 1,267 1,292 1,318 1,343 1,366
0.40 1,935 1,973 2,043 2,128 2,203
0.50 2,722 2,761 2,811 2,884 2,947
0.57 3,196 3,233 3,293 3,373 3,451
0.60 3,490 3,531 3,591 3,676 3,764
0.70 4,223 4,268 4,330 4,420 4,530
0.80 5,118 5,154 5,194 5,312 5,437

Notes: This table calculates the average tax refund for 100,000
simulated observations under different parameter values.
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