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A Proofs and Derivations (cont’d)

A.3 Optimal Attention Choice

Proof of Lemma 2: We consider the minimized expected loss at the start of period t:

L?t ≡ E
{

min
ait

E
[

(ait − a?t )
2
∣∣∣Ωit

]}
. (OA1)

The minimizer to this problem is

ait = E [a?t |Ωit] .

Substituting this expression into (OA1) shows that

L?t = E
[
(a?t − E [a?t |Ωit])

2
]

= E
[
E
[
(a?t − E [a?t |Ωit])

2 | Ωit

]]
= E [Var [a?t |Ωit]] = Var [a?t |Ωit].

Now, using the law of total variance, we can decompose L?t into

L?t = Var [a?t | Ωit, θt] + Var [E [a?t | Ωit, θt] | Ωit] . (OA2)

To complete the proof, we need to derive expressions for the two components of (OA2).

To do so, we first note that

xjt|θt ∼ N
(
ajθt, b

2
j

)
.

Agent i’s information set Ωit contains the unbiased signal zijt of xjt, defined in (9), which has

precision q−2
j . All other elements of Ωit are independent of xjt conditional on θt.

We can therefore use Bayes’ law for Gaussian variables to show that

E[xjt|zijt, θt] = E[xjt|θt] +
Cov [xjt, zijt| θt]
Var [zijt| θt]

(zijt − E[xjt|θt])

= ajθt +
b2j

b2j + q2
j︸ ︷︷ ︸

≡mj

(zijt − ajθt) = (1−mj)ajθt +mjzijt

and

Var [xjt | Ωit, θt] = Var [xjt | θt]−
Cov [xjt, zijt| θt]2

Var [zijt | θt]

= b2j −
b4j

b2j + q2
j

= b2j

(
1−

b2j
b2j + q2

j

)
= b2j (1−mj) .

We are now ready to compute the two components of (OA2).
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Computing the first term in (OA2):

Var [a?t | Ωit, θt] = Var

wθθt +
∑
j

wxjxjt

∣∣∣∣∣∣Ωit, θt

 = Var

∑
j

wxjxjt

∣∣∣∣∣∣Ωit, θt


=

∑
j

w2
xjVar [xjt|Ωit, θt] +

∑
j

∑
k 6=j

Cov [xjt, xkt|Ωit, θt]︸ ︷︷ ︸
=0

=
∑
j

w2
xjb

2
j (1−mj). (OA3)

Computing the second term in (OA2):

E [a?t | Ωit, θt] = E

wθθt +
∑
j

wxjxjt | Ωit, θt


= wθθt +

∑
j

wxjE [xjt | Ωit, θt]

= wθθt +
∑
j

wxj ((1−mj)ajθt +mjzijt) ,

so that

Var [E [a?t | Ωit, θt] | Ωit] = Var

wθθt +
∑
j

wxj ((1−mj)ajθt +mjzijt)

∣∣∣∣∣∣Ωit


= Var

wθ +
∑
j

wxj(1−mj)aj

 θt

∣∣∣∣∣∣Ωit


=

wθ +
∑
j

wxj(1−mj)aj

2

Var [θt | Ωit] . (OA4)

Substituting (OA3) and (OA4) into (OA2) then yields the desired expression. �

Proof of Proposition 3: An individual agent i’s attention choice problem can be written as

max
(mj),V,α,τ

−
∑
j

w2
xjb

2
j (1−mj)− V α2 −K(m)

s.t. V ≥ V (τ), α ≥ wθ +
∑
j

wxjaj (1−mj) , τ ≤
∑
j

a2
j

b2j
mj

The Lagrangian for this problem is

L = −
∑
j

w2
xjb

2
j (1−mj)− V α2 −K(m) + µV [V − V (τ)]

+ µα

α− wθ −∑
j

wxjaj (1−mj)

+ µτ

∑
j

a2
j

b2j
mj − τ
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The desired first-order condition is now obtained by rearranging ∂L
∂mj

= 0. �

A.4 Macroeconomic Example

Proof of Proposition 4: We start with a firm’s output choice,1

Yi = argmaxVi = Ei
[

1

PY

(
PY

1
σ Y

1− 1
σ

i −WNi

)]
= Ei

[(
Yi
Y

)1− 1
σ

− W

PY

(
Yi
Ai

) 1
α

]
.

Thus,

Vi = V
(
Yi, Y, Ai,

W

P

)
.

A second-order log-linear approximation of V then results in

v (yi, y, ai, ω) ≈ v1yi +
v11

2
y2
i + v12yiy + v13yiai + v14yiω + t.i.a, (OA5)

where ω = w − p and t.i.a stands for terms independent of the firm’s action yi.

As a result of (OA5), a firm’s optimal, full-information choice of output is

y?i =
v12

| v11 |
y +

v13

| v11 |
ai +

v14

| v11 |
ω, (OA6)

while a firm’s optimal choice under imperfect information is, because of certainty-equivalence,

yi = Ei [y?i ] . (OA7)

It remains to derive the optimal output choice under full information in (OA6). A few simple

but tedious derivations combine to show that

y?i = rai + αr
(
σ−1y − ω

)
≡ xi1 + x2. (OA8)

We note for later use that the equilibrium expression for the real wage is ω = Ehy + un.

Finally, we can use (OA6) and (OA7) to derive the difference between a firm’s valuation of

its profits vi = v (yi, y, ai, ω) and those that would have arisen under full information v?i :

vi − v?i =
v11

2
y2
i −

v11

2
y?2i + (v12y + v13ai + v14ω) (yi − y?i )

=
v11

2
y2
i −

v11

2
y?2i − v11y

?
i (yi − y?i ) =

v11

2
(yi − y?i )

2 , (OA9)

where we have used the first-order condition for optimal output in (OA5). �

Proof of Proposition 5: Follows immediately from (OA7) and (OA9). �

1Since all actions are taken within period, we remove time subscripts to economize on notation.
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B Over- and Underreactions in a General Linear Model

We extend the results from Section 2 to economies in which output is driven by several latent

factors, correlated disturbances, and to where the structural components themselves can depend

on their own history. This allows us to encapsulate most linearized macroeconomic models,

including several with imperfect information.

Setup: We once more consider a discrete-time economy with a continuum of agents i ∈ [0, 1].

Output yt and its components xt are given by

yt = Dθt + Ext + Fut (OA10)

xt = Aθt +Bxt−1 + Cut, (OA11)

where yt is a scalar variable, θt is an nθ × 1 vector of fundamental states, xt is an nx × 1 vector

of structural components, and lastly ut is a nu × 1 vector of i.i.d. standard normal random

variables. Most linear DSGE models can be written in this form ( Fernández-Villaverde et al.,

2007). The vector of fundamentals follows a simple VAR(1),

θt = Mθt−1 +Nut, (OA12)

where M and N are conformable matrices.

Each agent i ∈ [0, 1] observes the vector of signals

zit = xt +Qεit, Q = diag (q) , (OA13)

where εit is an nx × 1 vector of i.i.d. standard normal random variables.

It is useful to re-write the system, comprised of (OA10) to (OA12), as

yt = αθ̄t + βut, (OA14)

where α =
[
D E

]
, θ̄t =

[
θ′t x′t

]′
and β = F . We further have that

θ̄t = M̄ θ̄t−1 + N̄ut, (OA15)

where

M̄ =

[
M 0

AM B

]
, N̄ =

[
N

AN + C

]
.

We can now also re-write (OA13) as

zit = L0θ̄t + L1θ̄t−1 +Rut +Qεit, (OA16)

where L0, L1 and R are implicitly defined.
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General Result: We can now extend Proposition 2 to this more general case.

Proposition B.1. If the economy evolves according to (OA10)-(OA13), then the population

coefficients in the regression equations (1) and (2) satisfy:

γ < 0 ⇐⇒ αM̄k
(
GQQ′E′ + Σθθ̄D

′ + Ω
)
< 0 (OA17)

δ > 0 ⇐⇒ ∃qj ∈ (0 ,∞) , (OA18)

where G is the Kalman gain on zit when forming expectations about θ̄t, Σθθ̄, denotes the covari-

ance term Σθθ̄ = Cov
(
θt, θ̄t

)
, and Ω =

[
N̄ −G

(
L0N̄ +R

)]
F ′.

Similar to the results in Proposition 2, expectations are generically underreactive in Propo-

sition B.1; δ > 0 whenever agents pay limited attention to structural components. Furthermore,

limited attention to countercyclical components (that is, those that are assigned a negative weight

in G, or directly have a negative element in E) once more tend to push expectations towards

measured overreactions to recent outcomes (γ < 0). This generalizes the key insight from the

body of this paper. In deriving this proposition, we have in effect adjusted the γ−condition in

Proposition 2 for (i) the direct impact that several, persistent latent factors can have on output

itself (D 6= 0),2 (ii) for any cross-correlation in errors between the signal vector and output

(Ω 6= 0); and lastly (iii) for any effects that lagged components may have on output (see the

expression for M̄). The business cycle model in Section 5 provides an example of a model in

which the second extension is relevant.

Proof of Proposition B.1: The proof proceeds in three steps: First, we derive an expression

for one-period ahead forecast errors and the corresponding one-period ahead forecast revision.

Then, we compute the extrapolation coefficient γ in (1). Finally, we also use our results to

calculate the underreaction coefficient δ in (2).

As a preliminary step, we note that for any random variable Z, the covariance of individual

forecast errors with Z equals the covariance of average forecast errors with Z:

Cov (yt+1 − Eityt+k, Z) = Cov
(
yt+1 − Ētyt+k, Z

)
.

This follows because the right-hand side is the integral of the left-hand side across individuals,

and because the signals in (OA16) have the same steady-state distribution for all i. In the

remainder of the proof, we therefore use individual and average errors interchangeably.

To start, we use the Kalman Filter for systems with lagged states in the measurement equation
2As an unnamed referee has pointed out to us, our central insight about asymmetric attention can also be

seen in a reductionist manner in the case of several, independent latent factors. Suppose θ1t and θ2t follow
independent AR(1) processes with persistence parameters ρj , in which ρ1 > 0 and ρ2 < 0. We further assume
that D = A = I2×2 , E = B = C = F = 02×2, and that agents pay full attention to their first signal but
none to their second (q1 → 0, q2 → ∞), as in Example 1. Then, condition (OA17) shows that γ < 0 because
ρ2Var [θ2t] < 0. Thus, as in the body of this paper, the overreaction to recent output documented in the survey
data can be interpreted as an underreaction to countercyclical components (ρ2 < 0).
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(Nimark, 2015). This directly provides us with

Eit [yt+k] = αEit
[
θ̄t+k

]
= α

{
Eit−1

[
θ̄t+k

]
+Gk (zit − Eit−1 [zit])

}
= Eit−1 [yt+k] + αGk (zit − Eit−1 [zit]) ,

where Gk is equal to

Gk = Cov
(
θ̄t+k − Eit−1θ̄t+k, zit − Eit−1zt

)
V [zit − Eit−1zt]

−1 . (OA19)

We note that

Ēt [yt+k] = Ēt−1 [yt+k] + αGk
(
xt − Ēt−1 [xt]

)
. (OA20)

We can now use (OA20) to show that

Ēt [yt+k]− Ēt−1 [yt+k] = αGk
(
xt − Ēt−1 [xt]

)
(OA21)

yt+k − Ēt [yt+k] = α
(
θ̄t+k − Ēt

[
θ̄t+k

])
+ Fut+k. (OA22)

This completes the first step.

We are now ready to derive the overreaction coefficient γ:

γ ∝ Cov (yt+k − Eit [yt+k] , yt) = Cov (yt+k − Eit [yt+k] , E (zit −Qεit) +Dθt + Fut)

= Cov
(
α
(
θ̄t+k − Eitθ̄t+k

)
, −EQεit +Dθt + Fut

)
= αM̄k

{
Cov

(
θ̄t − Eitθ̄t, −εit

)
Q′E′ + Cov

(
θ̄t − Eitθ̄t, θt

)
D′ + Cov

(
θ̄t − Eitθ̄t, ut

)
F ′
}
,

where the second line used that xt = zit −Qεit. But since

Cov
(
θ̄t − Eitθ̄t, θt

)
= Cov

(
θ̄t − Eitθ̄t, θt − Eitθt

)
= Σθ̄θ

Cov
(
θ̄t − Eitθ̄t, ut

)
= N̄ −G

(
L0N̄ +R

)
Cov

(
θ̄t − Eitθ̄t, −εit

)
= GQ,

where the last two equalities follow from

Eit
[
θ̄t
]

= Eit−1

[
θ̄t
]

+G (zit − Eit−1 [zit]) .

We note that Gk = M̄kG. Thus,

γ ∝ αM̄k
{
GQQ′E′ + Σθθ̄D

′ +
[
N̄ −G

(
L0N̄ +R

)]
F ′
}
.

This completes the second step of the proof..

Lastly, we compute the underreaction coefficient δ. Equation (OA21), (OA22) show that
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δ ∝ Cov
(
yt+k − Ēt [yt+k] , Ēt [yt+k]− Ēt−1 [yt+k]

)
can be rewritten as

δ ∝ αCov
(
θ̄t+k − Ētθ̄t+k, xt − Ēt−1xt

)
G′kα

′

= αCov
(
θ̄t+k − Ēt−1θ̄t+k −Gk

(
xt − Ēt−1 [xt]

)
, xt − Ēt−1xt

)
G′kα

′

= α
{
ḠkV

[
xt − Ēt−1xt

]
−GkV

[
xt − Ēt−1xt

]}
G′kα

′,

where we define

Ḡk ≡ Cov
(
θ̄t+k − Ēt−1θ̄t+k, xt − Ēt−1xt

)
V
[
xt − Ēt−1xt

]−1
.

Notice that Ḡk corresponds to the Kalman gain of a hypothetical agent who at time t has the

prior belief that θ̄t+k ∼ N
(
Ēt−1θ̄t+k, P

)
, where P = V

[
θ̄t+k | zt−1

i

]
, but observes xt perfectly

(i.e. without noise Q = 0). We conclude that

δ ∝ α
(
Ḡk −Gk

)
V
[
xt − Ēt−1xt

]
G′kα

′

=
(
d̄k − dk

)
V
[
xt − Ēt−1xt

]
d′k, (OA23)

where d̄k ≡ αḠk and dk ≡ αGk. We note that the sign of d̄k is the same as that for dk, because

| Ḡj,k |>| Gj,k | (due to the noise in private signals) and sign(Ḡj,k) = sign(Gj,k). We also note

for the same reasons that | d̄k |>| dk |. Combined, it now follows from (OA23) that, because

V
[
xt − Ēt−1xt

]
is positive semi-definite, δ > 0 (Abadir and Magnus, 2005; Chpt.8). �

Alternative Proof of Proposition 2 : The model in Section 3 is a special case of the above general

structure. In particular, we obtain the model in Section 3 by setting:

D = F = B = 0, E = 11×N

A =
[

0N×1 diag (a1, ..., aN )
]
, C =

[
0N×1 diag (b1, ..., bN )

]
M = ρ, N =

[
σθ, 01×N

]
An application of Proposition B.1, with G evaluated according to the standard expression for

Kalman gains (Anderson and Moore, 2012), then also establishes Proposition 2.
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C Additional Empirical Results

C.1 Robustness of Evidence

Table C.1: Regression of forecast errors on individual forecast revisions

All Observations Excluding Outliers

(1) (2) (3) (4) (5) (6)

Current Realization −0.13 −0.12
(0.06) (0.05)

Average Revision 0.72 0.68
(0.24) (0.19)

Individual Revision −0.19 −0.02
(0.06) (0.08)

Observations 7,343 7,303 5,469 7,104 7,065 5,281
R2 0.02 0.05 0.02 0.02 0.06 0.00

Note: Estimates of regressions (1), (2), and (14) with individual (respondent) fixed effects. Columns (4) to (6)
remove the top and bottom one percent of forecast errors and revisions. Double-clustered robust standard errors
in parentheses. Sample period: 1970Q4-2019Q4.
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Table C.3: Estimates after removing trends in output growth

Panel a: individual forecast error
Benchmark Level detrend Linear detrend

Current Realization -0.12 -0.14 -0.12
(0.05) (0.05) (0.05)

Observations 7,104 7,190 7,190
F 169.2 253.8 185.4
R2 0.02 0.04 0.03

Panel b: average forecast error
Benchmark Level detrend Linear detrend

Constant 0.02 0.10 0.02
(0.19) (0.18) (0.19)

Current Realization -0.10 -0.13 -0.10
(0.05) (0.05) (0.05)

Observations 196 196 196
F 3.29 6.47 3.29
R2 0.02 0.03 0.02

Note: Estimates of regressions (1) using different methods for detrending output growth. Column (1): No
detrending. Column (2): Adjusting for the structural (level) increase in output growth between 1995 and 2000 (e.g.
Jacobson and Occhino, 2012). Column (3): Linear detrending. Panel a: Estimates with individual (respondent)
fixed effects. Panel b: Estimates with average forecast errors yt+k − f̄tyt+k as the left-hand side variable. Robust
standard errors (double clustered in Panel a) in parentheses. The top and bottom one percent of forecast errors
and revisions have been removed in Panel a pre-estimation. Sample: 1970Q4-2019Q4.
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Table C.4: Estimates before and after Great Moderation

Panel a: individual forecast error
Pre-Great Moderation Post-Great Moderation

(1) (2) (1) (2)
Current Realization -0.13 – -0.20 –

(0.06) (–) (0.08) (–)

Average Revision – 0.76 – 0.54
(–) (0.24) (–) (0.32)

Observations 2,284 2,245 4,574 4,574
F 93.1 186.5 161.2 161.7
R2 0.04 0.08 0.04 0.04

Panel b: average forecast error
Pre-Great Moderation Post-Great Moderation

(1) (2) (1) (2)

Current Realization -0.15 – -0.11 –
(0.07) (0.08)

Average Revision – 0.94 – 0.56
(0.37) (0.34)

Observations 60 59 120 120
F 2.83 6.62 1.83 5.72
R2 0.05 0.10 0.02 0.05

Note: Estimates of regressions (1) before and after the Great Moderation. Panel a: Estimates with individual
(respondent) fixed effects. Panel b: Estimates with average forecast errors yt+k − f̄tyt+k as the left-hand side
variable. Robust standard errors (double clustered in Panel a) in parentheses. Sample: 1970Q4-2019Q4 (split into
1970Q4-1985Q1 and 1990Q1-2019Q4; Stock and Watson, 2002; Table I). We adjust for the structural increase in
output between 1995 and 2000 (Jacobson and Occhino, 2012). The top and bottom one percent of forecast errors
and revisions have been removed in Panel a pre-estimation. Constant term is included in Panel b.

13



Table C.5: Estimates of unconstrained version of regression (2)

(1) (2)

Individual errors Average errors

Constant – 0.28
(0.39)

Avr. Forecast from Time t (δ0) 0.70 0.84
(0.20) (0.26)

Avr. Forecast from Time t− 1 (δ1) −0.65 −0.96
(0.28) (0.31)

Observations 7,151 195
F Statistic 249.5 8.959
R2 0.07 0.09

Model Df. χ2 Pr(> χ2)

(1) Individual Forecast Errors 1 0.14 0.71

(2) Average Forecast Errors 1 0.92 0.34

Note: Upper table: Estimates of yt+k − fityt+k = αi + δ0f̄tyt+k + δ1f̄t−1yt+k + εit. Column (1): Estimates with
individual (respondent) fixed effects. Column (2): Estimates with average forecast errors yt+k − f̄tyt+k as the
left-hand side variable. Robust standard errors (double clustered in column (1)) in parentheses. The top and
bottom one percent of forecast errors and revisions have been removed in column (1) pre-estimation. Sample:
1970Q4-2019Q4. Lower table: Hypothesis tests of δ0 + δ1 = 0, which is imposed by regression (2) in the paper.

Table C.6: Estimates of concurrent version of regression (1)

Baseline Level Recent Detrend

(1) (2) (3) (4) (5)

Current Realization -0.12 -0.09 -0.13 -0.25 -0.11
(0.05) (0.05) (0.04) (0.09) (0.05)

Average Revision – – 0.73 – –
(0.17)

Observations 7,104 7.247 7,151 3,276 7,247
R2 0.02 0.01 0.09 0.07 0.02
F 169.2 98.2 326.5 220.5 146.4

Note: Estimates of (1) with individual (respondent) fixed effects. Column (1): baseline specification. Columns
(2-5) use only the BEA’s first release of output growth as the right-hand side variable in regression (1). Column
(4) considers the post-2000 sample. Column (5) adjusts for the structural increase in output growth between 1995
and 2000 (e.g. Jacobson and Occhino, 2012). The top and bottom one percent of forecast errors and revisions have
been removed pre-estimation. Double-clustered robust standard errors in parentheses. Sample: 1970Q4-2019Q4.
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Figure C.1: Alternative version of Figure 3 based on Table C.7b (average errors)
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Note: Estimates of γ and δ from (1) and (2) using average forecast errors yt+k− f̄tyt+k as the dependent
variable. � = GDP forecasts, � = CPI inflation forecasts, ? = GDP deflator inflation forecasts, and ◦ =
MSC inflation forecasts that have been instrumented.

Figure C.2: Alternative version of Figure 3 based on Table C.9 (inflation data after 1992)
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Note: Estimates of γ and δ from (1) and (2) using average forecast errors yt+k− f̄tyt+k as the dependent
variable. � = GDP forecasts, � = CPI inflation forecasts, ? = GDP deflator inflation forecasts, and
◦ = MSC inflation forecasts that have been instrumented. Inflation and deflator estimates use post-1992
forecasts to account for the potential of a structural break in the inflation series; GDP growth estimates
by contrast employ the full sample. The Federal Reserve Bank of Philadelphia also took over ownership
of the SPF and LIV in 1992.
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D Auxiliary Test of Underreactions

Coibion and Gorodnichenko (2012) propose two regressions that can be used to provide an

alternative test for the presence of underreactions to aggregate information (i.e. information

frictions). Consistent with the notation in our paper, let ηt denote a structural shock and yt

output growth. Coibion and Gorodnichenko (2012) propose the following two regressions:

yt = α+
H∑
h=1

βhyt−h +
J∑
j=1

djηt−j + et. (OA24)

yt − f̄t−k [yt] = α+
H∑
h=1

βh
(
yt−h − f̄t−k−h [yt−h]

)
+

J∑
j=1

djηt−j + et. (OA25)

Under the null hypothesis of full information and rational expectations, there should be an im-

mediate and complete adjustment of forecasts to shocks, and therefore zero systematic responses

of forecast errors after any shock. By contrast, under the hypothesis of informational frictions,

the conditional response of forecast errors to a shock should have the same sign as the response

of the variable being forecasted to the shock.

We report the results from estimates of (OA24) and (OA25) in Figure D.1. To operational-

ize (OA24) and (OA25), we use identified productivity shocks, consistent with our quantitative

model, as the structural shock ηt. As in Coibion and Gorodnichenko (2012), we use the identi-

fication approach from Gali (1999). Specifically, we estimate a trivariate VAR(4) on quarterly

data for output, the change in labor productivity, and hours, using the same sample as Coibion

and Gorodnichenko (2012). Technology shocks are identified from the restriction that only tech-

nology shocks have a long-run effect on productivity. In accordance with our baseline estimates,

and as in Coibion and Gorodnichenko (2012), we consider one-year ahead forecasts (k = 4).

Consistent with models of information frictions, the correlation between the conditional re-

sponse of forecast errors and the conditional response of output to identified productivity shocks

is positive in Figure D.1. This lends credence to our estimates based on regression (2).

The estimates in Figure D.1 are in line with models of information frictions, and hence also

our theory. We briefly document this result below for our baseline model.

Proposition D.1. The average forecast error of future output yt+k− Ētyt+k and output yt itself

are positively correlated in response to an innovation ηt to the latent factor θt.

Proof of Proposition D.1: The proof is simple. Notice that we can write the average nowcast

error of the latent factor θt (e.g. productivity) in our model as

θt − Ētθt = ρ

1−
∑
j

gjaj

(θt−1 − Ēt−1θt
)

+

1−
∑
j

gjaj

 ηt −
∑
j

gjbjujt, (OA26)
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Figure D.1: Coibion and Gorodnichenko (2012) test for information frictions
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The left-hand panel depicts the ex-post output growth (measured as the year-over-year growth rate) response to a
one unit identified productivity shock, based upon (OA24). The right-hand panel depicts the mean forecast error
response to the same productivity shock, based upon (OA25), using the identification scheme from Gali (1999).
The shaded area indicates one-standard deviation error bounds. Consistent with the baseline in Section 2.1, we
set k = 4. Furthermore, as in Coibion and Gorodnichenko (2012), lag selection in (OA24) and (OA25) is done
so as to ensure that there is no residual serial correlation, and standard errors are computed using a parametric
bootstrap. We use the entire sample available from the SPF and the productivity shock series to estimate (OA24)
and (OA25). Finally, as in Coibion and Gorodnichenko (2012), because forecasts of output growth are from time
t to t+ k, we drop the first k observations of the impulse response in (OA24) and (OA25).

where we have used that the average expectation of the latent factor equals

Ētθt = ρĒt−1θt−1 +
∑
j

gj
(
xjt − Ēt−1xijt

)
,

with gj characterized in Lemma 1 in the paper. The average forecast error of output is thus

yt+k − Ētyt+k = α
(
θt − Ētθt

)
+ t.n.p, , α = ρk

∑
j

aj > 0 (OA27)

where t.n.p. denotes terms from next period that are uncorrelated with information at time t.

Because the effective Kalman Gain weights gjaj sum to less than one,3 output yt and average

forecast error of the latent factor θt − Ētθt in (OA26) react in the same direction in response to

an innovation to ηt. However, because the average forecast error of future output yt+k − Ētyt+k
is simply proportional to that of the fundamental in (OA27), this also implies that the responses

of the average forecast error of output and output itself are positively correlated. �

E Analysis of Alternative Models

E.1 Expectations of Output in Maćkowiak and Wiederholt (2009)

Maćkowiak and Wiederholt (2009) model nominal log-output (qt in their notation) as an exoge-
3To see this result, first normalize the signals z̃ijt = θt+ bjt/ajujt+ qj/ajεijt, and then use the standard result

that when signals are of the form “latent factor + noise”, then the sum of Kalman Gain coefficients is less than
one (see, for example, Anderson and Moore, 2012 or Lemma 1).
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nous, stationary process. In their second case with an analytical solution, it is an AR(1) process.

Firms rationally allocate attention to acquire information about an economy-wide component

∆t = k0qt, for some coefficients k0, and about idiosyncratic productivity shocks zit, which also

follow an independent AR(1) process. In their paper, Maćkowiak and Wiederholt conjecture and

later verify (see the discussion after their Proposition 4) that it is optimal for firms to acquire

two separate signals that convey “truth plus white noise” for each component:

s1it = ∆t + εit, s2it = zit + ψit. (OA28)

Furthermore, Maćkowiak and Wiederholt (2009) show that the price level pt is a linear function

of qt in equilibrium (see their equation (38)). Using yt = qt − pt, it follows that output yt is also
proportional to qt, and thus that the signal structure in (OA28) is equivalent to

s̃1it = yt + ε̃it, s2it = zit + ψit (OA29)

for some shock ε̃it with a different variance to εit. We note that because output yt is proportional

to an AR(1) process it too follows an AR(1) in reduced form.

The only difference between the information structure in (OA29) and our equations in Section

2.2 is the second signal s2it, which informs firms about idiosyncratic shocks. Notice that these

shocks are uncorrelated with aggregate variables by design. If agents (firms) are asked to forecast

output, these forecasts will be independent of s2it. Thus, forecast errors behave as if they were

determined by the noisy rational expectations case in Section 2.2:

Proposition E.1. Expectations about output in the analytical version of Maćkowiak and Wieder-

holt (2009) underreact to output and average forecast revisions (γ > 0 in (1) and δ > 0 in (2)).

E.2 Expectations of Output in Lucas (1973)

Lucas (1973) considers a continuum of measure one of islands i ∈ [0, 1]. The supply of output

on island i is assumed to follow the supply equation:

ysit = α (pit − E [pt | Ωit]) + λyit−1, α, λ > 0, (OA30)

where pt =
∫ 1

0 pitdi denotes the economy-wide price level, and E [· | Ωit] island inhabitants’

expectations conditional on their information set Ωit (described below).

The price level on island i is exogenous and equal to

pit = pt + εipt, εipt ∼ N
(
0, τ−1

p

)
,

while the central bank directly sets nominal demand mt, so that

mt = ydt + pt = mt−1 + εmt, εmt ∼ N
(
0, τ−1

m

)
.
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Finally, the information structure is as follows: On each island, all agents observe the (infinite)

history of local prices, in addition to mt−1 and yt−1, so that

Ωit = {piτ , pτ−1,mτ−1, yτ−1}τ=t
τ=−∞ .

As is well-known, the equilibrium price level for this economy follows4

pt = π1mt + π2mt−1 + π3yt−1,

where the coefficients πk solve

π1 =
1

1 + γw
, π2 =

γw

1 + γw
(π1 + π2) , π3 =

γw

1 + γw
π3 −

λ

1 + γw
.

and where w denotes the weight on island inhabitants’ prior expectation about pt at time t.

As a result, economy-wide output, our key variable of interest, equals

yt = mt − pt = (1− π1)mt − π2mt−1 − π3yt−1 ≡ k0mt + k1mt−1 + k2yt−1,

where the coefficients kj satisfy k0 > 0, k1 < 0, k2 > 0, and k0 + k1 = 0.

We conclude that output follows the AR(1) process

yt = k0εmt + k2yt−1. (OA31)

We now turn to agents’ expectations about future output. To start, notice that the expecta-

tion of the nominal demand shock εmt in (OA31) is

Eit [εmt] = E [εmt | pit] = E [εmt | sit] = v

(
εmt +

1

π1
εipt

)
,

where we have defined

sit ≡
1

π1
(pit − π1mt−1 − π2mt−2 − π3yt−1) = εmt +

1

π1
εipt,

and v denotes the associated signal extraction weight.

Thus, agent i’s expectation of next period’s output equals

Eit [yt+1] = k2 (k0Eit [εmt] + k2yt−1) = k2

(
k0vεmt + k2yt−1 + k0v

1

π1
εipt

)
so that her forecast error becomes

yt+1 − Eit [yt+1] = k2k0 (1− v) εmt + k0εmt+1 − k2k0v
1

π1
εipt. (OA32)

4See, for example, Veldkamp (2011) Chapter 6.
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Finally, using (OA31) and (OA32) it immediately follows that

γ ∝ Cov (yt+1 − Eit [yt+1] , yt) = k2k
2
0 (1− v) τ−1

m > 0.

A standard argument based on the dispersion of information (e.g., Coibion and Gorodnichenko,

2015) further implies that δ > 0. We conclude that:

Proposition E.2. Expectations about future output in Lucas (1973) underreact to both current

output and average forecast revisions (i.e. γ > 0 in (1) and δ > 0 in (2)).

Intuitively, sit provides island inhabitants with a noisy signal of the money supply shock, and

hence with a noisy signal of the innovation to output (see equation OA31). In this sense, the

Lucas (1973) island model is closely related to our results from the noisy rational expectations

case in Section 2. In fact, the only differences are that island inhabitants observe a private

signal of the innovation to output today rather than the level of output itself, and that island

inhabitants are assumed to observe the previous period’s output without noise. Despite these

distinctions, the intuitions from the noisy rational expectations case in Section 2 carry over, so

that we find both γ > 0 and δ > 0 for all admissible parameters.

E.3 Expectations of Output in Lorenzoni (2009)

Lorenzoni (2009) considers a continuum of measure one of islands i ∈ [0, 1]. The model can be

log-linearized around a non-stochastic steady state, yielding the following equilibrium conditions

(see e.g. Lorenzoni, 2009; Nimark, 2014; Kohlhas, 2019):

1. An Euler equation determining the intertemporal allocation of consumption:

cit = E [cit+1 | Ωit]− it + E [πB,it+1 | Ωit] , (OA33)

where πB,it+1 is the inflation of the goods basket consumed on island i in period t + 1

(defined below), and Ωit denotes the information set on island i (also defined below).

2. A labor supply condition equating the marginal disutility of labor supply with the marginal

utility of consumption multiplied by the real wage:

wit − pB,it = cit + ψnit, (OA34)

where ψ denotes the inverse Frisch-elasticity of labor supply, and nit labor supplied.

3. A demand schedule for the good produced on island i,

yit =

∫
C,i,t

cmtdm− σ
(
pit −

∫
C,i,t

p̄mtdm

)
, (OA35)

where
∫
C,i,t p̄mtdm is the logarithm of the relevant price subindex for consumers from other

islands buying goods from island i.
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4. An interest rate rule

it = ρmit−1 + φπ̃t, π̃t = πt + επt , επt ∼ N
(
0, σ2

π

)
, (OA36)

where π̃ denotes the publicly observable noisy signal of inflation.

5. Lastly, a Phillips curve relating inflation on each island i to the nominal marginal cost on

island i and expected future inflation on island i,

pit − pit−1 = κ (pB.it + cit − pit − ait) + κψ (yit − ait) + βE [pit+1 − pit | Ωit] , (OA37)

where κ = (1−f)(1−fβ)
β denotes the slope of the Phillips curve and f the Calvo parameter.

Information Structure: As in Nimark (2014), we adopt the information structure from Loren-

zoni (2009) but adjust the mean of the normally distributed shocks so that all signals are con-

ditionally stationary. This does not change any of the economics of what follows, but simplifies

the representation of agents’ filtering problems as all variables (except for the price level) are

stationary. Agents on island i observe the following signals:

1. Their own island-specific productivity

ait = θt + εait, εait ∼ N
(
0, σ2

a

)
θt = ρθt−1 + ηt, ηt ∼ N

(
0, σ2

θ

)
2. The demand for island goods (C is drawn such that the below is true)

yit = yt − σ (pit − pt) + εyit, εyit ∼ N
(
σ (pit−1 − pt−1) , σ2

y

)
.

3. The price index for the goods basket consumed on island i (B is drawn such that)

pB,it = pt + εpit, εpit ∼ N
(
pit−1 − pt−1, σ

2
p

)
.

4. The public signal of inflation

π̃t = πt + επt , επt ∼ N
(
0, σ2

π

)
.

5. The public signal of the common, persistent component of productivity

st = θ + εst , εst ∼ N
(
0, σ2

s

)
.

6. The interest rate it.
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Thus,

Ωit = {ait, yit, pB.it, π̃t, st, it,Ωit−1} .

Model Solution: We solve the model using the truncated state-space solution method proposed

in Nimark (2017). For the details of this method applied to the Lorenzoni (2009) model, see

Nimark (2014) and Kohlhas (2019).

Simulation and Calibration: We simulate the model for one million periods, discarding the

first 100,000 observations. We then estimate regression (1) and (2) from our paper, using one-year

ahead forecasts of output growth.

Table E.1: Empirical Estimates Using Different Calibrations

Lorenzoni 2009 Nimark 2014 Kohlhas 2019 Calibrated

Constant 0.00 0.00 0.00 0.00
Current Realization γ 0.04 0.07 0.02 0.13

The table below shows that we consistently find γ > 0 in regression (1) (including in several

alternative, unreported calibrations). The first three columns consider the baseline parameter-

izations in (i) Lorenzoni (2009),5 (ii) Nimark (2014), and (iii) Kohlhas (2019). While these

columns show γ > 0, we note that the estimates of δ in (2) are an order of magnitude below

our estimates in Table 1. This is because, across all the three calibrations, the public signals

of productivity and inflation are substantially more precise than any of the private signals (see,

for example, Lorenzoni, 2009 and Nimark, 2014). As a result, island inhabitants put very little

weight on private information. The final column in the above table attempts to account for this

feature. Specifically, we directly calibrate the noise in individual-specific productivity to target

a δ−coefficients of 0.70 (see Table I of our paper), and mute all public signals (that is, we let the

standard deviation of the noise tend towards infinity). The rest of the parameters are set as in

Kohlhas (2019). We once more find that γ > 0, which is inconsistent with our empirical results.

E.4 Expectations about Output in Angeletos et al. (2018)

Angeletos et al. (2018) study a simple deviation from rational expectations. In the version of

their model that is solved analytically, output in equilibrium is

Yt = At + Λz z̄t + Λξξt, Λz,Λξ > 0,

where At denotes TFP, z̄t the average signal of TFP, and ξt an exogenous process for agents’

confidence. The true data generating process is that logAt is a random walk, ξt = ρξt−1 + ζt,

and the average signal is z̄t = At. Agents believe wrongly that z̄t = At + ξt.
5Because our solution method requires the model to be stationary, we set the persistence of θt to that in

Kohlhas (2019). Indeed for ρ = 1 the above model is identical to that in Lorenzoni (2009). The only difference is
the adjustment of the mean of the signals.
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Thus, the common forecast errors of next-period output (for concreteness) is

Yt+1 − EtYt+1 = At+1 − EtAt+1 + Λz (At+1 − EtAt+1 − Etξt+1) + Λξ (ξt+1 − Etξt+1)

= −Λzρξt + shocks at date t+ 1.

As a result, the equivalent of the coefficient in regression (1) in our paper is

γ ∝ Cov(Yt+1 − EtYt+1, Yt) = −ρΛzCov (ξt, Yt) < 0.

The corresponding forecast revision is

EtYt+1 − Et−1Yt+1 = (1 + Λz) (At −At−1) + Λz (ξt − Etξt−1)

= (1 + Λz) (At −At−1) + Λzζt.

Hence, the equivalent of the coefficient in regression (2) in our paper is

δ ∝ Cov (Yt+1 − EtYt+1,EtYt+1 − Et−1Yt+1) = −ρΛ2
zCov (ξt, ζt) < 0

Angeletos et al. (2018) do not view ξt literally as a deviation from rationality, but rather as

a reduced form of higher-order uncertainty akin to that in models of dispersed information.

However, its implication for forecasts is that it generates overreactions across the board.

Proposition E.3. Expectations about output in the analytical version of Angeletos et al. (2018)

overreact to output and average forecast revisions (γ < 0 in (1) and δ < 0 in (2)).

F Extension of the Baseline Model with Overconfidence

We consider our baseline model in Section 3, but assume that instead of the Bayesian Kalman

filter in Lemma 1, agents form their forecasts of the latent factor θt according to

fitθt = Eit−1 [θt] + (1 + ω)
∑
j

gj (zijt − Eit−1 [zijt]) . (OA38)

We assume that the bias parameter ω > 0, so that agents overreact to each signal zijt relative

to the associated Bayesian update. This specification is similar to the model in Bordalo et al.

(2018) and, more broadly, to the literature on overconfidence (e.g., Broer and Kohlhas, 2019).

As long as the bias ω is not too large, the model replicates all of our findings, as well as the

overreactions to individual information documented in Bordalo et al. (2018) and others:

Proposition F.1. Suppose that attention to the components xjt of output is asymmetric, with∑
j aj(1 −mj) < 0. There exists a ω̄ so that for all overconfidence parameters ω ∈ (0, ω̄), the

coefficients of regressions (1), (2), and (14) in the paper satisfy δ > 0, δind < 0, and γ < 0.
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This proposition extends the argument in Bordalo et al. (2018) to the case with asymmetric

attention, showing that agents with bias parameter ω > 0 overreact to individual information,

consistent with δind < 0 in regression (14). We show in the paper that asymmetric attention

explains δ > 0 and γ < 0 simultaneously in a rational model with ω = 0. By continuity, we can

explain all three sets of facts as long as the bias parameter ω is not too large.

Finally, we reiterate that, even in this extended model, asymmetric attention to different

components of output is necessary to generate this result: Our analysis in Section 2 shows

that if agents receive a signal directly of current output yt, then, for for all values of ω > 0, the

coefficients δ and γ in regressions (1) and (2) have the same sign. This underlines the main insight

of our paper: A model with asymmetric attention can be consistent with several properties of

survey expectations, in particular the coexistence of extrapolation and underreactions.

Proof of Proposition F.1: The coefficient in regression (14) is

δind =
Cov [yt+k − fityt+k, fityt+k − fit−1yt+k]

Var [fityt+k − fit−1yt+k]
= d1Cov [θt − fitθt, fitθt − fit−1θt]

where d1 ≡
(
ρk
∑

j aj

)2
Var [fityt+k − fit−1yt+k]

−1 > 0.

Using a parallel argument to Bordalo et al. (2018, Proposition 2), shows that

θt − fitθt = θt − Eitθt − ω (Eitθt − Eit−1θt)

and

fitθt − fit−1θt = (1 + ω) (Eitθt − Eit−1θt)− ρω (Eit−1 [θt−1]− Eit−2 [θt−2]) .

Thus,

δind ∝ −ωCov [Eitθt − Eit−1θt, fitθt − fit−1θt]

= −ω(1 + ω)Var [Eitθt − Eit−1θt] .

We conclude δind < 0 for all ω > 0. Proposition 2 in the paper shows that γ ∝
∑

j aj(1 −mj)

and δ > 0 for ω = 0, so the claim follows because γ and δ are continuous functions of ω. �

G Optimal Attention Choice with Entropy Costs

Suppose that the costs of attention are equal to the reduction in relative entropy:6

I = µ lim
T→∞

1

T

{
H
(
θT , xT

)
−H

(
θT , xT | zTi

)}
. (OA39)

where H(x|y) denotes the conditional entropy of x given y, and xT denotes the history of the

process {xt}Tt=−∞. In this appendix, we first show that I = K(m) for a well-defined cost function

6See, for example, Maćkowiak et al. (2018).
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K(·), so that the reduction in entropy is merely a special case of our analysis in Proposition 3.

We then derive the comparable first-order condition to that in Proposition 3.

We use the following properties of conditional entropy:

Lemma G.1. Let X, Y , and Z be random vectors. Then:

1. Symmetry of mutual information: H(X)−H(X|Y ) = H(Y )−H(Y |X)

2. Chain rule of conditional entropy: H(X,Y ) = H(X) +H(Y |X)

3. Conditional independence: If Y is independent of Z conditional on X, then

H(Y |X,Z) = H(Y |X)

Proof of Lemma G.1: See Cover and Thomas (2012). �

To start, let s = {θ, x}. Symmetry and the chain rule for entropy, then allows us to write

H
(
sT
)
−H

(
sT | zTi

)
= H(zTi )−H(zTi |sT )

=
T∑
t=1

H(zit|zt−1
i )−H(zit|zt−1

i , sT ). (OA40)

Note that conditional on st = {θt, xt}, the vector of signals zit = xt + diag(qj)εit is independent

of st′ for t′ 6= t, since εit is serially uncorrelated. This, in turn, implies that

H(zit|zt−1
i )−H(zit|zt−1

i , sT ) = H(zit|zt−1
i )−H(zit|zt−1

i , st)

= H(st|zt−1
i )−H(st|zti)

= H(θt|zt−1
i )−H(θt|zti) +H(xt|zt−1

i , θt)−H(xt|zti , θt), (OA41)

where the second equality follows from symmetry and the third from the chain rule for entropy.

For the first term in (OA41), since all variables are jointly Gaussian, we have that

H(θt|zt−1
i )−H(θt|zti) =

1

2
log
[
Vart−1 [θt]

Vart [θt]

]
.

Now focus on the steady state where Vart [θt] = Vart−1 [θt−1] = V (τ), with τ defined in (18).

Using the AR(1) dynamics of θt, we have that

Vart−1 [θt] = ρ2V (τ) + σ2
θ ,

which after substituting gives us

H(θt|zt−1
i )−H(θt|zti) =

1

2
log
[
ρ2 +

σ2
θ

V (τ)

]
≡ K(τ), (OA42)

in which K′(τ) > 0 since V ′ (τ) < 0.
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For the second term in (OA41), note that xt is independent of zt−1 conditional on θt, so that

H(xt|zt−1
i , θt)−H(xt|zti , θt) =H(xt|θt)−H(xt|zit, θt)

=
1

2
log
[

det (Var[xt|θt])
det (Var[xt|θt, zit])

]
=

1

2
log
[ ∏m

i=1 b
2
i∏m

i=1 b
2
i (1−mi)

]
=

1

2
log

[
1∏

j(1−mj)

]
= −1

2

m∑
j=1

log(1−mj). (OA43)

Substituting (OA43) and (OA42) into (OA41) then shows that

I = K (τ)− 1

2

m∑
j=1

log(1−mj) ≡ K(m),

which is well-defined since τ is a function of m. Finally, combining (OA40) with (OA39) and

using stationarity, we find that our cost function satisfies K(m) = I.
We can now use Proposition 3 to see that the first-order condition for mj at an interior

optimum satisfies:

w2
j b

2
j + µ̂τ

a2
j

b2j
+ µαwjaj =

1

2

1

1−mj
, (OA44)

where the adjusted multiplier measuring learning spillovers is

µ̂τ = µτ −K′(τ),

with µτ defined as in Proposition 3. The second term in (OA44) is specific to the entropy

cost formulation, because entropy reductions also depend on the sufficient statistic τ . The

comparative statics remain the same as in our version with a generic cost function: It is optimal

to pay attention to important components (high wj), and to volatile components (high bj) as

long as spillovers are not too strong. In addition, we see that an entropy cost function naturally

yields mj < 1 for all j: Attention is always imperfect because the entropy costs of full attention

mj → 1 are infinite. We summarize these results in Proposition G.1.

Proposition G.1. With the entropy attention costs in (OA39), the first-order condition for

agents’ optimal attention choice mj at an interior optimum satisfies:

w2
j b

2
j + µ̂τ

a2
j

b2j
+ µαwjaj =

1

2

1

1−mj
, (OA45)

where µ̂τ = µτ − K′(τ) and µτ is defined in Proposition 3. We note that attention is always

imperfect because the entropy costs of full attention mj → 1 are infinite.
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H Flexible Information Design

We show how to apply the dynamic rational inattention results in Maćkowiak et al. (2018) to

our environment with flexible information choice (Section 4.3).

To do so, first notice that an agent’s optimal action can be written as follows:

a?t =
(
wθ +

∑
wxjaj

)
︸ ︷︷ ︸

≡w̄θ

θt +
∑

wxjbj︸ ︷︷ ︸
≡w̄xj

ujt = ρa?t−1 + w̄θηt + w̄′xut − ρw̄′xut−1.

≡ ρa?t−1 + c′0vt + c′1vt−1. (OA46)

We conclude that a?t is an ARMA(1,1) process with a vector of white noise innovations vt ≡
[ηt ut]

′. Define the weighted sum of innovations in this expression as the scalar process

ωt ≡ c′0vt + c′1vt−1.

Since the innovation vector vt is independently and identically distributed across time, ωt is a

stationary process. The auto-covariance structure of this process is

Var [ωt] = c′0Σvc0 + c′1Σvc1, Cov (ωt, ωt−1) = c′0Σvc1, Cov (ωt, ωt−j) = 0, j ≥ 2,

where Σv≡ Var [vt]. By Wold’s Representation Theorem, ωt has an MA(1) representation:

ωt = d0ξt + d1ξt−1,

where ξt is a Gaussian white noise sequence, and dj ∈ R, j = {1, 2}.
We conclude that we can write a?t as the ARMA(1,1) process:

a?t = ρa?t−1 + d0ξt + d1ξt−1. (OA47)

We are now ready to state an agent’s flexible information design problem. Following Maćkowiak

et al. (2018), we can specify this problem as follows:

min
K,A,B,Σψ

E
[
(a?t − E [a?t | Ωit])

2
]

(OA48)

subject to

lim
T→∞

1

T

{
H
(
a?,T | ā?0

)
−H

(
a?,T | ā?0, sK,T

)}
≤ κ, (OA49)

where ā?0 denotes the vector of initial conditions, and the signal vector observed by agent i follows

sKit = Aa?,Mt +BξNt + εKit , (OA50)

with a?,Mt ≡
[
a?t a?t−1 . . . a?t−M+1

]′
, ξNt ≡

[
ξt ξt−1 . . . ξt−N+1

]′
, and εKit ∼ N (0,Σε).
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Proposition H.1 now follows from the characterizations of optimal signals derived in Maćkowiak

et al. (2018), who consider the same problem as (OA47) - (OA50), but in a model in which the

optimal action follows a general ARMA(p,q) process.

Proposition H.1 (Maćkowiak et al., 2018 ). The optimal signal vector sKit has the properties:

(i) Any optimal signal vector sKit is a noisy signal of a linear combination of a?t and ξt only.

(ii) An agent can attain the optimum with a one-dimensional signal (K = 1), which satisfies

s?it = a?t + hξt + q?εit, h 6= 0, εit ∼ N (0, 1) . (OA51)

(iii) Suppose κ→∞. Then, h→ 0, so that s?it is a signal only of a?t .

(iv) Suppose wθ > 0 and wxj = 0. Then, s?it satisfies s
?
it = θt + q?εit.

Proof of Proposition H.1: We refer to the corresponding proofs in Maćkowiak et al. (2018).

(i) See the proof of Proposition 1 in Maćkowiak et al. (2018).

(ii) See the proof of Proposition 2 and 5 in Maćkowiak et al. (2018).

(iii) See the proof of Proposition 6 in Maćkowiak et al. (2018).

(iv) See the proof of Proposition 2 and 3 in Maćkowiak et al. (2018).

I Macroeconomic Example and Angeletos et al. (2016)

Our macroeconomic example in Section 5 considers a model similar to those considered in An-

geletos and La’O (2010, 2012) and Angeletos et al. (2016). To demonstrate why we view strategic

substitutability as a natural assumption, we generalize our baseline model to encompass both

our model from Section 5 as well as the features that determine the strategic considerations of

firms in Angeletos et al. (2016).7 Consider our model in Section 5. Assume that firm productiv-

ity follows a common process with εit = 0 (as in our baseline calibration). Replace households’

utility with u(C,N) = C1−ψ−1
1−ψ − 1

1+ηN
1+η
t . Relative to this overarching model, our analysis

in Section 5 restricts attention to log consumption utility (ψ → 1) and linear disutility of labor

(η = 0).8 Angeletos et al. (2016) allow for general values for ψ and η, but set α = 1 in firms’

production function, so that it has constant returns to scale in labor. We below abstract from

any labor supply shocks, which do not affect firms’ strategic behavior, without loss of generality.

We solve for the full-information equilibrium of this model:
7In addition to the features mentioned, Angeletos et al. (2016) include one additional layer of CES aggregation.
8We choose this parametrization for standard reasons. First, the calibration of ψ → 1 is the only value within

the iso-elastic utility class that is consistent with balanced growth (i.e. is within the well-known KPR-class).
Second, the calibration of η → 0 allows flex-price models to generate sufficient volatility in hours worked (e.g.
Prescott and Wallenius, 2012). As shown by Hansen (1985) and Rogerson (1988), linear disutility of labor can
arise from the iso-elastic framework (considered in Angeletos et al., 2016) when one accounts for the fact that
most of the variation in hours worked are due to changes in the extensive (rather than the intensive) margin. It
thus allows our model to have a higher Frisch elasticity, without simultaneously being subject to the criticism
that the labor supply elasticity is inconsistent with micro-evidence.
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Proposition I.1. Let u(C,N) = C1−ψ−1
1−ψ − 1

1+ηN
1+η
t . Under full information, firm i’s optimal

output choice satisfies the best response function

yit = k0at + k1yt, (OA52)

where k0 > 0 and the coefficient of strategic complementarity k1 is

k1 =
α(1− σψ)

α(1− σ) + σ(1 + η)
. (OA53)

We note that, because of certainty equivalence, we can use the full-information solution of

the generalized model in (OA52) and (OA53) to determine whether output choices are strategic

substitutes or complements even under imperfect information.

Equation (OA53) implies that firms’ output choices are strategic substitutes (k1 < 0) if and

only if σψ > 1. Standard parameter choices in macroeconomics (see, for example, Gali, 2008,

Chapter 3 p. 56) have σ ∈ [4, 10] and ψ ∈ [1, 4], so that σψ ≥ 4 and k1 < 0. Thus, we conclude

that strategic substitutes are pervasive for most popular parameterizations.

J Numerical Solution of Model with Imperfect Attention

We solve the model by repeated iteration of the two steps described in the main text. Below,

we detail these steps in reverse order. First, we solve for the imperfect information equilibrium

given a set of attention choices. Then, we solve for the optimal attention choices.

Step 2: Equilibrium Given Attention Choices:9 Consider the equation for aggregate

output that arises under imperfect attention:

yt =

∫ 1

0
yitdi = Ēt [x1t + x2t] , (OA54)

where x1t =
∫ 1

0 xi1tdi and

x1t = rθt + ruxt , x2t = αrσ−1y − αr
(
Eht [yt] + unt

)
.

Now let xt =
[
x̄′t−1 x̄′t−2 . . .

]′
where x̄t =

[
x1t x2t θt

]′
. We look for linear equilibria

where the law of motion for the unobserved components and the fundamental takes the form of

the infinite dimensional vector

xt = Axt−1 +But, ut =
[
uθt uxt unt

]′
, (OA55)

9The steps used to find this equilibrium are analogous to those described in Lorenzoni (2009).
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where

A =


0 0 rρθ 0

Ap

0 0 ρθ 0

I

 , B =


r r 0

Bp

1 0 0

0

 . (OA56)

To solve for the rational expectations equilibrium, we conjecture and verify below that

yt = ψxt, x2t = c0xt + c1ut, (OA57)

where ψ, c0, and c1 are vectors of coefficients.

Coefficients and Conjectures: It follows from (OA54) that

yt =
[

1 1 0
]
Ēt [xt] =̊ψxt, (OA58)

where =̊ denotes “should equal”. We conclude from (OA58) that to verify our conjecture we need

to find a matrix Ξ such that

Ēt [xt] = Ξxt. (OA59)

Now since

Eht [yt] = ψ

Axt−1 +B


1 0 0

0 0 0

0 0 1

ut
 = ψxt − ψB


0 0 0

0 1 0

0 0 0

ut,
it also follows that

x2t = αrσ−1ψxt − αr

ψxt − ψB


0 0 0

0 1 0

0 0 0

ut + e3ut

 =̊ c0xt + c1ut, (OA60)

where el denotes a row vector with a one in the l’s position but zeros elsewhere.

Individual and Average Inference: An individual firm’s signal vector is

sit =

[
e1

e2

]
xt +Qεit, Q = diag

[
q1 q2

]
(OA61)

≡ Lxt +Qεit.

Thus,

Eit [xt] = AEit−1 [xt] +K (sit − LAEit−1 [zt−1]) , (OA62)

where the Kalman Gain K is given by the standard expression (Anderson and Moore, 2012).
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Then, from (OA59) and (OA62) it has to hold for all t that

Ξxt = (I −KL)AΞxt−1 +KLxt. (OA63)

Fixed Point: We have from (OA58) and (OA60) that

ψ =
[

1 1 0
]

Ξ, c0 = αr
(
σ−1 − 1

)
ψ, c1 = αr

ψB


0 0 0

0 1 0

0 0 0

+ e3

 . (OA64)

Equilibrium and Computation: An equilibrium is characterized by (i) a set of coefficients that

describe aggregate dynamics {Ap, Bp, ψ, c0, c1}, and (ii) a set of coefficients that detail the learn-

ing dynamics {K,Ξ}. Computing the equilibrium requires truncating the infinite-dimensional

vector xt. Specifically, we instead consider the vector x[T ]
t =

[
x̄′t−1 x̄′t−2 . . . x̄′t−T

]′
.

To find the equilibrium, we apply the following algorithm: We start with some initial values

for Ap and Bp (for simplicity, we use those from the corresponding full-information solution).

We then use these values to compute K from (OA61) and (OA62). This, in turn, allows us to

find an expression for Ξ from (OA63) since

Ξx
[T ]
t = (I −KL)AΞMx

[T ]
t +KLx

[T ]
t ,

where

M =

[
0 I

0 0

]
,

which gives us the following relationship that we solve for Ξ:

Ξ = (I −KL)AΞM +KL. (OA65)

We can now use (OA64) to find an expression for ψ, c0, and c1.

Finally, we use these expressions to compute new values of Ap and Bp from (OA56), and then

repeat these steps until convergence is achieved. The criterion used is the maximum absolute

difference between the new and old elements of Ap and Bp.

Step 1: Attention Choices Given Equilibrium: Given the above aggregate equilibrium, we

solve a firm’s ex-ante attention choice problem. That is, we solve

min
m1,m2

Eit [yit − y?it]
2 +K (m) , K(m) = µ

(
q−2

1 + q−2
2

)
, (OA66)

where qj = V (xjt | θt) [mj − V (xjt | θt)]−1 for j = {1, 2} and we have that

y?it = xi1t + x2t,
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in which

xi1t = rθt + ruxt + rεait = re′3x
[T ]
t + re′2σxut ≡ a1x

[T ]
t + b1ut + εait

x2t ≡ a2x
[T ]
t + b2ut,

and where a1 and b1 are implicitly defined, while a2 = c0 and b2 = c1.

To minimize (OA66), we first derive an expression for the quadratic component

E [y?it − Eit [y?it]]
2 = 1′V

[
xit | zti

]
1, xit =

[
xi1t x2t

]′
where

V
[
xit | zti

]
= V

[
xit | zti ,x

[T ]
t

]
+ V

[
E
[
xit | zti ,x

[T ]
t

]
| zti
]

(OA67)

by the Law of Total Variance.

It now follows that the first component in (OA67) is

V
[
xit | zti ,x

[T ]
t

]
= V

[
xit | zit,x[T ]

t

]
= bb′ + r̄r̄′ −

(
bb′ + r̄r̄′

) [
bb′ +QQ′ + r̄r̄′

]−1 (
bb′ + r̄r̄′

)′
= bb′ + r̄r̄′ − m̃

(
bb′ + r̄r̄′

)′
,

where b =
[
b1 b2

]′
, r̄ =

[
rσa 0

]′
, and m̃ = (bb′ + r̄r̄′) [bb′ +QQ′ + r̄r̄′]−1 .

To derive the second component in (OA67), notice that

E
[
xit | zti ,x

[T ]
t

]
= E

[
xit | zit,x[T ]

t

]
= E

[
xit | x[T ]

t

]
+ m̃

(
zit − E

[
zit | x[T ]

t

])
= (I − m̃) ax

[T ]
t + m̃zit,

where a =
[
a1 a2

]′
. Thus,

V
[
E
[
xit | zti ,x

[T ]
t

]
| zti
]

= (I − m̃) aV
[
x

[T ]
t | zti

]
a′ (I − m̃)′ ,

in which V
[
x

[T ]
t | zti

]
can be found from the Kalman Filter run in (OA62).

In sum, we have that the quadratic term (OA66) becomes

E [y?it − Eit [y?it]]
2 = 1′

[
bb′ + r̄r̄′ − m̃

(
bb′ + r̄r̄′

)′]
1

+ 1′ (I − m̃) aV
[
x

[T ]
t | zti

]
a′ (I − m̃)′ 1,

which allows us to solve the problem in (OA66).

Equilibrium: We iterate on two steps described in Step 1 and Step 2 until convergence. As a

convergence criteria, we use the maximum absolute difference in attention coefficients. We use

the full information case in which m1 = m2 = 1 as the initial values.
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