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A Additional Results

Here, we present additional results and illustrations from our empirical exploration using the

data of DellaVigna and Pope (2018).

A Additional Results on the Optimal Adjustments

Figure 6 presents disaggregated data for the optimal adjustments from every homogeneous

A/B test. To be specific, the top panel illustrates, for each homogeneous A/B test and each

status quo treatment C 2 {2, . . . , 7}, the maximum available gains, as well as the realized

gains. The bottom panel illustrates the di↵erence, in percentage terms, between agent’s

expected utility under the test optimal contract, and that under the status quo contract

w
C .30 The ratio uAB(wC)/u(wC) ranges between 0.97 and 1.07, and it is greater than one—as

desired—in 31 out of the 42 cases. Two instance deserve further discussion: When the A/B

test comprises treatments (6, 7), and the status quo contract C = 4 and C = 5, the realized

gains are greater than the maximum available gains. This occurs because in those instances,

the test-optimal contract gives the agent approximately 3% fewer utils in expectation than

the benchmark-optimal contract, as illustrated in the lower panel of the figure.

Figure 7 illustrates the benchmark-optimal contract and the test-optimal contracts using

each of the seven homogeneous A/B tests for C = 3 (in the left panel) and C = 7 (in

the right panel). Observe that these contracts pay the minimum wage up to a cuto↵, and

above that, prescribe similar pay increases. We make two remarks: First, although the test-

optimal contracts sometimes prescribe very large payments for output realizations above say

x = 3000, the probability of these output realizations is very low, and payments can be

capped with virtually no loss in profits. Second, these contracts can be well-approximated

29Kellogg School of Management, Northwestern University, Evanston, IL 60208, U.S.A., g-
georgiadis@kellogg.northwestern.edu and mike-powell@kellogg.northwestern.edu .

30Recall that our objective is to find, given an A/B test and a status quo contract wC , a contract that
maximizes the principal’s profit and gives the agent at least as much utility as wC . This property is not
guaranteed because the principal does not know the production environment when she chooses the test-
optimal contract. To assess the performance on this dimension, we compare the agent’s expected utility
under the test-optimal contract, uAB(wC) =

R
ṽ
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), to that

under the status quo contract wC , u(wC) =
R
ṽ(wC(x))f̃(x|a(wC))dx� c̃(a(wC)).

46



2-3 2-4 2-5 3-4 3-5 4-5 6-7 2-3 2-4 2-5 3-4 3-5 4-5 6-7 2-3 2-4 2-5 3-4 3-5 4-5 6-7 2-3 2-4 2-5 3-4 3-5 4-5 6-7 2-3 2-4 2-5 3-4 3-5 4-5 6-7 2-3 2-4 2-5 3-4 3-5 4-5 6-7

0

10

20

30

40

Realized Gains

Max. Available Gains

0 5 10 15 20 25 30 35 40

-2

0

2

4

6

Figure 6: The top panel illustrates, for each homogeneous A/B test and each status quo
treatment C 2 {2, . . . , 7}, the maximum available gains, as well as the realized gains. The
bottom panel illustrates the di↵erence, in percentage terms, between agent’s expected utility
under the test optimal contract, and that under the status quo contract.

by simple, parametric contracts that comprise a simple piece-rate with a floor and a cap on

wages, or a base wage plus a bonus paid when output exceeds a threshold.

Figure 8 plots, for each of the piece-rate treatments C 2 {2, . . . , 5}, the empirical CDF

FC(x) and the predicted CDF using every homogeneous A/B test, bFAB

C
(x). In brackets, we

report the p-values for the Kolmogorov-Smirnov test, which tests the null hypothesis that

the predicted distribution is identical to the empirical one. A/B tests comprising piece-rate

treatments predict the output distribution quite accurately. Indeed, we cannot reject the null

hypothesis at the 0.05 confidence level in 8 out of 12 cases. In contrast, A/B tests comprising

bonus treatments perform less well, especially when predicting F2(x), which is the farthest

out-of-sample contract in terms of the marginal incentives it induces.

Figure 9 plots for each of the bonus treatments C 2 {6, 7}, the empirical CDF FC(x) and

the predicted CDF using every homogeneous A/B test, bFAB

C
(x). While the predicted CDFs

are closely clustered, they do not predict the output distribution very well, especially the

lack of probability mass around x = 2000. Indeed, using the Kolmogorov-Smirnov test, we

can reject the null hypothesis in all cases.
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Figure 7: This figure illustrates the benchmark-optimal contract, as well as the test-optimal
contracts using each of the seven homogeneous A/B tests. In the left panel, the status quo
contract is treatment C = 3, whereas in the right panel it is C = 7.

Table 5 reports the summary statistics for the performance of optimal adjustments using

hybrid A/B tests. In particular, it reports the average and maximum gains, the gains ratio,

the average e↵ort deviation, and the average overpayment for di↵erent values of the coe�cient

of RRA we used in the benchmark model, e⇢, the coe�cient of RRA that the principal

assumed to solve for the test-optimal contract given an A/B test, b⇢, and the principal’s profit

margin, em. In line with our findings in Section A, hybrid tests perform slightly worse than

homogeneous tests, but the gains ratio varies little across the various parametric assumptions.

Finally, a natural question is whether the performance of optimal adjustments would

continue to be insensitive to the assumptions about the agent’s coe�cient of RRA if stakes

were higher. To examine this concern, we scaled the contracts as well as the profit margin,

em, by 100 times, and reconstructed Table 4, which presents the performance of optimal

adjustments and a sensitivity analysis. The new table (with scaled payo↵s) is reported

below.

The pattern is very similar to the one reported in Table 4 except for Column VI. This
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Figure 8: This figure illustrates, for each of the piece-rate treatments, the predicted CDF of
output using every homogeneous A/B test, and compares it to the observed one. In brackets,
we report the p-values for the Kolmogorov-Smirnov test, which tests the hypothesis that the
predicted distribution is identical to the empirical one.

0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9: This figure illustrates, for each of the bonus treatments, the predicted CDF of
output using every homogeneous A/B test, and compares it to the observed one. In brackets,
we report the p-values for the Kolmogorov-Smirnov test, which tests the hypothesis that the
predicted distribution is identical to the empirical one.

column corresponds to the case in which the principal acts as if the agent is close to risk

neutral, whereas in reality he is not. To understand why the gains ratio is abnormally high

in this case, in Figure 10 below, we report disaggregated data for the performance of each

homogeneous A/B test under that column. In the majority of cases, the test-optimal contract
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Table 5: Performance of Optimal Adjustments and Sensitivity Analysis for Hybrid A/B Tests

(I) (II) (III) (IV) (V) (VI) (VII)
Model coe↵. of RRA (e⇢) 0.3 0.3 0.3 0.1 0.5 0.3 0.3
Test coe↵. of RRA (b⇢) 0.3 0.3 0.3 0.3 0.3 0.1 0.5
Profit margin (em) 0.2 0.15 0.25 0.2 0.2 0.2 0.2

Average Gains ($) 6.39 4.48 8.61 6.36 6.52 6.62 5.67
Maximum Gains ($) 10.55 7.62 13.52 10.74 10.59 10.55 10.55
Gains Ratio (%) 60.62 58.80 63.70 59.23 61.58 62.75 53.80
Average E↵ort Deviation -29.12 -32.55 -26.21 -30.76 -27.95 -26.86 -32.19
Average Overpayment ($) 4.36 4.36 4.25 4.19 4.57 1.86 4.69

Table 5: This table reports for di↵erent values of the parameters ⇢̃, ⇢̂, and em, the average and
maximum gains, the gains ratio, the average e↵ort deviation, and the average overpayment,
averaged across C 2 {2, . . . , 7}. Column (I) represents our baseline parameters. In columns
(II) and (III) we vary the profit margin, em. In columns (IV) and (V) we vary the coe�cient
of RRA used in the benchmark model, e⇢. Finally, in columns (VI) and (VII) we vary the
coe�cient of RRA that the principal assumed to solve for the test-optimal contract given an
A/B test, b⇢.

gives the agent less utility than the status quo contract w
C , which in turn leads to large

average realized gains (and hence a large gains ratio). This is because the principal, acting

as if the agent is close to risk neutral, designs contracts that concentrate large payments over

a small range of outputs. As the agent is in reality more risk averse, he does not value those

payments as much as the principal assumes, and his expected utility ends up being smaller

than what the principal predicts. This result suggests that if the principal is uncertain about

the agent’s coe�cient of RRA, it is safer to assume he is at least moderately risk-averse.31

31This issue does not arise in column V, where the agent is again more risk-averse than the principal thinks,
but b⇢ = 0.3 (instead of 0.1). This issue also does not arise if we scale payo↵s by 0.01.
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(I) (II) (III) (IV) (V) (VI) (VII)

Model coe↵. of RRA (e⇢) 0.3 0.3 0.3 0.1 0.5 0.3 0.3

Test coe↵. of RRA (b⇢) 0.3 0.3 0.3 0.3 0.3 0.1 0.5

Profit margin (em) 20 15 25 20 20 20 20

Panel A: Homogeneous A/B Tests

Average Gains ($) 717.20 521.31 925.99 724.80 715.08 813.09 731.02

Maximum Gains ($) 1045.02 757.14 1337.04 1058.02 1049.52 1045.02 1045.02

Gains Ratio (%) 68.63 68.85 69.26 68.51 68.13 77.81 69.95

Average E↵ort Deviation -5.24 -7.29 -4.98 -7.26 -4.88 -9.36 -5.07

Average Overpayment ($) 191.28 146.93 225.64 168.42 188.22 53.06 152.74

Panel B: Hybrid A/B Tests

Average Gains ($) 639.22 447.88 861.10 636.23 652.09 898.66 575.95

Maximum Gains ($) 1045.02 757.14 1337.04 1058.02 1049.52 1045.02 1045.02

Gains Ratio (%) 61.17 59.15 64.40 60.13 62.13 86.00 55.11

Average E↵ort Deviation -27.62 -32.38 -24.88 -30.26 -26.29 -22.07 -30.19

Average Overpayment ($) 439.61 438.71 426.75 426.23 463.70 13.79 475.84

Table 6: This table reports for di↵erent values of the parameters ⇢̃, ⇢̂, and em, the average and
maximum gains, the gains ratio, the average e↵ort deviation, and the average overpayment,
averaged across C 2 {2, . . . , 7} when payo↵s are scaled by 100.
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Figure 10: This figure illustrates disaggregated data for the performance of each homogeneous
test A/B under column (VI) in Table 6; i.e., when payo↵s are scaled by 100 the true coe�cient
of relative risk aversion e⇢ = 0.3 but test-optimal contracts assume that b⇢ = 0.1 instead.
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B External Incentives

A limitation of our model is that both contracts in the A/B test must generate strictly pos-

itive marginal incentives, for otherwise it is impossible to recover the cost parameters � and

✏. Moreover, it predicts zero e↵ort for any contract that generates zero marginal incentives,

which is inconsistent with the fact that in the experiment of DellaVigna and Pope (2018), sub-

jects exert strictly positive e↵ort even when they receive a fixed, performance-independent

payment. This suggests that subjects may be motivated by factors beyond explicit per-

formance pay. Such external incentives can be incorporated into our model by modifying

Condition 2 so that the agent’s cost function satisfies c0(a) = e
��/✏

a
1/✏� I0 for some parame-

ters �, ✏, and I0. The parameter I0 captures the magnitude of the agent’s external incentives.

To recover these parameters, output data for three contracts is needed. To be specific, if the

principal observes the output distribution for three contracts, (wA
, w

B1 , w
B2), she can use

the corresponding output distributions fA, fB1 , and f
B2 to determine the functions g(·) and

h(·), and compute the marginal incentives for any contract. Then she can recover the cost

parameters �, ✏, and I0 by solving the nonlinear system

ln a(w) = � + ✏ ln [I(w) + I0]

for w 2 {wA
, w

B1 , w
B2}.

Table 6 reports summary statistics for predicted performance when the principal has one

versus two test contracts. Column I is identical to column IV of Table 2, and it corresponds

to the case in which the principal has a single test contract and predicts out-of-sample e↵ort

under Conditions 1 and 2. For Column II, the principal has two test contracts, one of

which is the no-incentives treatment w1, and predicts e↵ort using the modified cost function

described above. In both cases, we assume that the agent’s utility exhibits constant RRA

with coe�cient ⇢ = 0.3.

C Multitasking with Distribution Manipulation

One of the premises of our model is that the agent chooses a one-dimensional action that

determines the distribution of his output, and we normalized this action to equal mean

output. Although this model predicts out-of-sample e↵ort reasonably accurately, it appears

that this assumption is sometimes violated. As an example, consider treatments 5 and 7:

mean output is similar, but the output distributions have distinctly di↵erent patterns as

illustrated in the left panel of Figure 11. In particular, for treatment 5, which is a piece-

rate treatment, performance is roughly symmetrically distributed around the average. For
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Table 67: Out-of-Sample E↵ort Predictions with one vs. two test contracts

(I) (II)
# of Test Contracts One (A/B test) Two (A/B1

/B
2 test)

Panel A: Homogeneous A/B Tests
Corr (âC , aC) 0.94 0.95
Mean APE (%) 1.59 1.57
Within-class 0.66 0.68
Across-class: piece-rate predictions 0.99 n/a
Across-class: bonus predictions 2.71 2.46

Worst-case APE (%) 3.34 2.95
Within-class 2.35 2.35
Across-class: piece-rate predictions 2.39 n/a
Across-class: bonus predictions 3.34 2.95

Panel B: Hybrid A/B Tests
Corr (âC , aC) 0.84 0.81
Mean APE (%) 2.16 2.94
Worst-case APE (%) 10.70 10.44

Table 7: This table reports summary statistics for predicted performance when the principal
has one versus two test contracts, and the agent’s utility exhibits constant RRA with coe�-
cient ⇢ = 0.3. To make the comparison meaningful, column (II) considers tests in which one
of the contracts is the no incentives treatment w1.

the bonus treatment 7, however, performance spikes just over x = 2000, the threshold for

receiving the bonus. A similar pattern emerges when we consider the pairs (4, 6) and (5, 6).

We now show how one can enrich the model by allowing the agent to choose his output

distribution in a richer manner if the principal has output data for an additional test contract.

In doing so, we demonstrate how to apply some of the ideas from Section B. To be specific,

suppose the agent chooses an e↵ort a 2 R at cost c(a), which generates a “natural” output

distribution f(x|a). The agent can then engage in manipulation so that his output is drawn

according to ef(x) instead, by incurring additional cost 
��� ef(x)� f(x|a)

���
2
for some parameter

 � 0, which is unknown to the principal. The agent can choose any probability density

function ef(x) subject to the constraint that its mean is no larger than that of f(x|a).32 We

assume that f(x|a) and c(a) satisfies Conditions 1 and 2, respectively.

32This model is inspired by Barron, Georgiadis, and Swinkels (2020). As long as w(·) is non-decreasing,

the agent will optimally choose an ef(x) that has the same mean as f(x|a), which equals a by assumption.
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Faced with a contract w(x), an agent chooses a and ef(x) by solving the following program:

max
a, ef(x)�0

Z
v(w(x)) ef(x)dx� c(a)� 

Z h
ef(x)� g(x)� ah(x)

i2
dx (5)

s.t.

Z
ef(x)dx = 1

Z
x ef(x)dx  a.

Because manipulation is costly, the agent will optimally choose ef(x) ⌘ f(x|a) if v(w(x)) is
a�ne in x, and he will choose an ef(x) that is more (less) dispersed than f(x|a) if v(w(x))

is strictly convex (concave). We can exploit this observation in the following way: Suppose

the principal observes output data for two piece-rate treatments and one bonus treatment,

denoted (fA
, f

B1 , f
B2). Under the assumption that the agent is risk-neutral, using the data

from the two piece rate treatments, the principal can infer the functions g and h, as well

as the cost parameters � and ✏ as described in Section A. We now explain how to use the

bonus treatment, wB2 , to recover the parameter . First, the principal can infer that the

corresponding e↵ort, aB2 , is equal to the mean output. For each , let ef denote the pdf which
solves (5) when the agent faces the bonus contract w

B2 and a = a
B2 . Then the principal

may infer that ⇤ is the minimizer of the L
2-norm distance between ef and f

B2 , that is, ⇤

minimizes
R
[ ef(x)� f

B2(x)]2dx.

Having determined all parameters of the model, the principal can predict the e↵ort and

the output distribution for any contract by solving (5). Let efAB1B2
C

(·;) denote the predicted
output distribution for treatment C given output data for treatments (A,B1, B2) as a function

of the cost parameter . The right panel of Figure 11 illustrates the principal’s prediction

for the bonus treatment C = 7 given output data for treatments (4, 5, 6), and compares it

to the observed distribution and to the predicted distribution using the method described in

Section A. Notice that efAB1B2
C

(x;⇤) is a more accurate prediction of the observed output

distribution bf 7 than efAB1B2
C

(x;1), reflecting the fact that the agent moves mass just above

2,000 points when facing a bonus contract. However, this approach improves the prediction

accuracy for mean output only by about 0.2%: the mean absolute percentage error decreases

from 2.93% (fifth line in Column I of Table 2) to 2.72%, while the worst-case percentage error

decreases from 3.65% to 3.47%.

This extension highlights two points. First, it is important for the principal to take a

stance on the nature and the dimensions of e↵ort a priori. For example, a model where

the agent chooses the mean and the variance of output would not be useful in this setting,

because subjects appear to influence the distribution of output in a richer manner. Second,
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Figure 11: The left panel of this figure illustrates the estimated probability density func-
tions for treatments 5 and 7. The right panel illustrates the principal’s predicted output
distribution for the bonus treatment C = 7 given output data for treatments (4, 5, 6) using
the estimated cost parameter 

⇤, and compares it to the predicted distribution when she
ignores the possibility of manipulation (i.e., assumes  = 1) and to the observed output
distribution.

it highlights that the right kind of contract variation may be needed to learn about di↵erent

dimensions of e↵ort: Recall that we use the data from two treatments that are not contami-

nated by manipulation to infer the functions (g, h) and the cost parameters (�, ✏), and then

we use the data from the bonus treatment to infer the manipulation parameter .

Characterizing an optimal adjustment in this extension is challenging, because the princi-

pal’s problem is not a convex program. Our results allow one, however, to predict the profits

under counterfactual contracts. Because contracts in practice typically consist of a finite set

of parameters (e.g., a base wage, a piece-rate that kicks in for performance above some cuto↵,

and a cap), the principal’s problem can be solved by brute force as long as the number of

parameters is not too large.
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B A Second Empirical Exploration33

In this section, we apply our model to the third version of the Amazon MTurk experiment

conducted by DellaVigna and Pope (2021). That experiment was designed to evaluate the

robustness of experimental findings to a change in the task being performed. Instead of

pressing the ‘a’ and ‘b’ keys in alternating order, subjects were assigned to code the occupation

field of World War II enrollment cards. In this experiment, subjects were paid a fixed $1

fee to complete 40 WWII cards. After they were done, they saw the following message: “If

you are willing, there are 20 additional cards to be coded. Doing this additional work is not

required for your HIT to be approved or for you to receive the $1 promised payment.” In the

treatments we focus on, which are summarized in Table 7, subjects were paid di↵erent piece-

rates for each additional card they completed. For example in the first treatment, subjects

were told that “The number of additional cards you complete will not a↵ect your payment in

any way.” Subjects in the second piece-rate treatment, w3, were informed “as a bonus, you

will be paid an extra 1 cent for every 2 additional cards you complete.”

Table 8: Experimental Treatments in Extra-Work Task in DellaVigna and Pope (2019)

Contract Avg. #Additional Cards Std. Deviation #Subjects
No-Incentives w

1 (x) = 100 8.63 9.37 158
Piece-Rate w

2 (x) = 100 + 0.05x 9.94 9.67 155
w

3 (x) = 100 + 0.5x 12.63 9.24 136
w

4 (x) = 100 + 2x 15.21 8.08 136
w

5 (x) = 100 + 5x 17.39 6.16 154

Table 8: This table describes five experimental treatments from the data-entry task in DellaV-
igna and Pope (2019) that di↵ered in the monetary incentives o↵ered to the subjects. The
second column describes the implied incentive contract, denominated in cents. The remain-
ing columns describe, for each treatment, the average number of additional cards coded, the
standard deviation, and the number of subjects.

We now report the findings from the first exercise described in Section A. That is, we take

each pair of piece-rate treatments in Table 7 to constitute an A/B test, and use our model

to predict the average number of additional cards completed in each of the remaining piece-

rate treatments. We will assume that at the outset of the experiment, each subject observes

the contract he or she is o↵ered and chooses “e↵ort” a. Then the number of additional

cards completed, x 2 {0, . . . , 20}, is drawn from some probability distribution with mean

a. We therefore interpret e↵ort to be the average number of additional cards completed in

a particular treatment. We will assume that Conditions 1 and 2 hold, that is, the output

33We are very grateful to Stefano DellaVigna and Devin Pope for sharing the data used in this section.
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distribution is a�ne in e↵ort and c
0(a) = e

��/✏
a
1/✏ for some parameters � and ✏. We will also

assume that each subject has constant-relative-risk-aversion preferences over money, so that

v
0(!) = !

�⇢, and we will vary the parameter ⇢ 2 [0, 1].

This setting presents a new challenge in that between 85% and 90% of the subjects

in each treatment completed either none or all of the 20 additional cards. Due to those

mass points, the kernel density estimation approach used in Section V is not applicable,

and we must therefore modify our methodology. We do so as follows: Imagine that the

principal has outcome data from two treatments, say A and B. For these treatments, she can

compute the empirical distribution functions bFA(x) and bFB(x). Let d bFA(0) = bFA(0) and

d bFA(x) = bFA(x)� bFA(x� 1) for every integer x � 1, and d bFB(x) be similarly defined. The

counterpart of Condition 1 in this discrete probability space is that dF (x|a) = g(x) + ah(x)

for some functions g(x) and h(x) such that
P20

x=0 g(x) = 1 and
P20

x=0 h(x) = 0. Letting baA

and baB denote the mean output in treatment A and B, respectively, we can construct the

functions

bhAB(x) =
d bFA(x)� d bFB(x)

baA � baB and bgAB(x) = d bFA(x)� baAbhAB(x).

For each triple (A,B,C), we then compute the predicted marginal incentives under contract

C according to

bIAB

C
=

20X

x=0

v(wC(x))bhAB(x).

Using the estimates of the agent’s marginal incentives under contracts A and B, we can

estimate the parameters of the agent’s cost function b�AB and b✏AB. Finally, our prediction

for the average number of additional cards completed in treatment C is lnbaAB

C
= b�AB +

b✏AB ln bIAB

C
.

Figure 12 plots our predictions against the actual performance for each treatment. The

red stars represent predictions using A/B tests and the procedure described above. The blue

triangles represent predictions using two test contracts, one of which is the no-incentives

treatment w
1, and the procedure described in Appendix B adapted to this setting. To be

specific, we assume that each subject’s cost function satisfies c0(a) = e
��/✏

a
1/✏ � I0 for some

parameters �, ✏, and I0, which we estimate using outcome data from three (rather than

two treatments). Recall that I0 represents the agent’s external incentives, which may, for

example, be due to intrinsic motivation.

Table 8 reports summary statistics of the e↵ort predictions for di↵erent values of the

coe�cient of RRA ⇢. In particular, it reports the correlation between actual and predicted

e↵ort, the mean and the worst-case absolute percentage error. Columns (I)-(IV) focus on

57



8 9 10 11 12 13 14 15 16 17 18
8

9

10

11

12

13

14

15

16

17

18

Figure 12: This figure plots our predictions against the actual performance for each treatment.
The horizontal axis, depicts the actual number of additional WWII cards completed, while
the vertical axis plots predicted performance. The red stars represent predictions using A/B
tests and the procedure described above. The blue triangles represent predictions using two
test contracts, one of which is the no-incentives treatment w1, and the procedure described
in Appendix B.

A/B tests, while columns (V)-(VIII) focus on A/B1/B2 tests in which one of the contracts is

the no-incentives treatment. Notice that the prediction accuracy using A/B tests is somewhat

worse than in the ‘a-b’ typing task reported in Table 2.34 It improves substantially however,

when we have outcome data for an additional test contract and use it to incorporate external

incentives into the model. This finding echoes DellaVigna and Pope’s discussion that the

WWII coding task is “more motivating” than the ‘a-b’ typing task.

Next, we report the findings from the second exercise described in Section B. Table 9

reports summary statistics for the performance of optimal adjustments for di↵erent values

of the coe�cient of RRA we used in the benchmark model, e⇢, the coe�cient of RRA that

the principal assumed to solve for the test-optimal contract given an A/B test, b⇢, and the

34Note also that performance varies substantially more across treatments in this task compared to the
‘a-b’ typing task. To be specific, the average absolute percentage performance di↵erence across treatments
is 31.93%, whereas in the ‘a-b’ typing task, it is 6.4%.
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Table 9: E↵ort Predictions for the Extra-Work task in DellaVigna and Pope (2021)

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)
Coe�cient of RRA ⇢ 0 0.3 0.5 1 0 0.3 0.5 1

Number of test contracts One Two
Corr (âC , aC) 0.98 0.98 0.97 0.96 0.995 0.99 0.99 0.98

Mean APE (%) 4.37 5.14 5.67 7.04 1.81 2.31 2.64 3.44
Worst-case APE (%) 10.68 13.64 15.73 21.37 4.56 5.52 6.14 7.64

Table 9: This table reports, for di↵erent coe�cients of RRA, the correlation between actual
and predicted performance, the mean and the worst-case absolute percentage error. Columns
(I)-(IV) focus on A/B tests, while columns (V)-(VIII) focus on A/B1/B2 tests in which one
of the contracts is the no-incentives treatment.

principal’s profit margin, em. The gains ratio, which is the ratio of the average profit increase

the principal can achieve using just an A/B test to the profit increase she could achieve if

she knew the production environment, varies between 70% and 80%. Moreover, the test-

optimal contract implements an e↵ort level very close to the optimal one; almost the entire

gap between the average gains and the maximum gains is due to the principal implementing

the optimal e↵ort at too high a cost.

Table 10: Performance of Optimal Adjustments and Sensitivity Analysis for the Extra-Work task

(I) (II) (III) (IV) (V) (VI) (VII)
Model coe↵. of RRA (e⇢) 0.3 0.1 0.5 0.3 0.3 0.3 0.3
Test coe↵. of RRA (b⇢) 0.3 0.3 0.3 0.1 0.5 0.3 0.3
Profit margin (em) 5 5 5 5 5 4 6

Average Gains ($) 17.44 17.06 17.77 17.03 17.73 13.29 22.07
Maximum Gains ($) 20.34 19.77 20.93 20.34 20.34 15.53 25.40
Gains Ratio (%) 75.28 76.30 74.15 70.33 79.60 78.47 76.48
Average E↵ort Deviation -0.075 -0.104 -0.104 -0.092 -0.075 -0.021 -0.100
Average Overpayment ($) 2.84 2.66 3.09 3.26 2.55 2.22 3.26

Table 10: This table reports for di↵erent values of the parameters ⇢̃, ⇢̂, and em, the average and
maximum gains, the gains ratio, the average e↵ort deviation, and the average overpayment,
averaged across C 2 {2, . . . , 5}. Column (I) represents our baseline parameters. In columns
(II) and (III) we vary the coe�cient of RRA used in the benchmark model, e⇢. In columns
(IV) and (V) we vary the coe�cient of RRA that the principal assumed to solve for the
test-optimal contract given an A/B test, b⇢. Finally, in columns (VI) and (VII) we vary the
profit margin, em.

Figure 13 presents disaggregated data for the optimal adjustments from every A/B test

when the principal’s profit margin em = 5¢ per additional WWII card and the agent’s coe�-

cient of RRA e⇢ = b⇢ = 0.3. The top panel illustrates, for each A/B test and each status quo
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treatment C 2 {2, . . . , 5}, the maximum available gains, as well as the realized gains. The

bottom panel illustrates the di↵erence, in percentage terms, between agent’s expected utility

under the test-optimal contract, and that under the status quo contract wC . We remark that

when the status quo contract C = 2 or C = 3, under both the benchmark-optimal and the

test-optimal contracts, the agent’s participation constraint is slack. Overall, the test-optimal

contract delivers to the agent strictly more utils in expectation than the contract wC in all

but one case.

2-3 2-4 2-5 3-4 3-5 4-5 2-3 2-4 2-5 3-4 3-5 4-5 2-3 2-4 2-5 3-4 3-5 4-5 2-3 2-4 2-5 3-4 3-5 4-5
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Figure 13: The top panel illustrates, for each A/B test and each status quo treatment C 2
{2, . . . , 5}, the maximum available gains, as well as the realized gains. The bottom panel
illustrates the di↵erence, in percentage terms, between agent’s expected utility under the test
optimal contract, and that under the status quo contract.

We conclude this section with a brief discussion of the shape of the test-optimal contracts.

When the status quo contract C 2 {2, 3}, each test-optimal contract pays the minimum wage,

which is set to $1, plus a lump-sum bonus if the agent completes all 20 additional WWII

cards. When C 2 {4, 5}, the test-optimal contracts feature trinary wages: they pay a base

wage when x = 0, a slightly higher wage for any x 2 {1, . . . , 19}, and an even higher wage

when x = 20.
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C Proofs

Proof of Lemma 1. Fix arbitrary upper semi-continuous functions w and t (to ensure that

the desired Gateaux derivatives are well-defined), and consider the contract w + ✓t for some

✓ > 0. The agent’s e↵ort satisfies the first-order condition

Z
v(w(x) + ✓t(x))fa(x|a(w + ✓t))dx = c

0(a(w + ✓t)).

Di↵erentiating this equation with respect to ✓ and taking the limit as ✓ ! 0 yields

Z
t(x)v0(w(x))fa(x|a(w)) =


c
00(a(w))�

Z
v(w(x))faa(x|a(w))

�
Da(w, t) ,

and using the definition DI(w, t) :=
R
t(x)v0(w(x))fa(x|a(w)), we obtain the desired expres-

sion for Da(w, t).

Next, consider the agent’s expected utility. Faced with contract w + ✓t, the agent’s

expected utility is

u(w + ✓t) =

Z
v(w(x) + ✓t(x))f(x|a(w + ✓t))dx� c(a(w + ✓t)) .

Di↵erentiating with respect to ✓ and taking the limit as ✓ ! 0 yields

Du(w, t) =

Z
t(x)v0(w(x))f(x|a(w)) dx+

Z
v(w(x))fa(x|a(w))� c

0(a(w))

�
Da(w, t)

=

Z
t(x)v0(w(x))f(x|a(w)) dx ,

where the second equality follows because the term in brackets is equal to 0 by the agent’s

first-order condition.

Proof of Lemma 2. This lemma follows immediately from the fact that for any t, D⇡(wA
, t)

and Du(wA
, t) depend only on f

A(·), fA

a
(·), and Da(wA

, t), and no other parameters of the

production environment.

Proof of Proposition 1. Note that

LAB
�
w

A
, w

B
��P

�
=

�
f
A
, f

A

a
,Da

�
w

A
, w

B
��P

��

LAB

⇣
w

A
, w

B
�� P̃

⌘
=

⇣
f̃
A
, f̃

A

a
,Da

⇣
w

A
, w

B
�� P̃

⌘⌘
.
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If the first statement is true, then the second is obviously true. Next, suppose LAB
�
w

A
, w

B
��P

�
=

LAB

⇣
w

A
, w

B
�� P̃

⌘
. It is immediate that fA = f̃

A and f
A

a
= f̃

A

a
. Next, note that for all t,

DI
�
w

A
, t
��P

�
=

Z
tv

0 �
w

A
�
fa =

Z
tv

0 �
w

A
�
f̃a = DI

⇣
w

A
, t
�� P̃

⌘
,

and by Lemma 1,

Da
�
w

A
, t|P

�
=

Da
�
w

A
, w

B|P
�

DI (wA, wB|P )
DI

�
w

A
, t|P

�

Da

⇣
w

A
, t|P̃

⌘
=

Da

⇣
w

A
, w

B|P̃
⌘

DI

⇣
wA, wB|P̃

⌘DI

⇣
w

A
, t|P̃

⌘
,

so Da
�
w

A
, t
��P

�
= Da

⇣
w

A
, t
�� P̃

⌘
for all t if and only if Da

�
w

A
, w

B
��P

�
= Da

⇣
w

A
, w

B
�� P̃

⌘
,

which is true by supposition.

Proof of Proposition 2. The optimization program given in (Adjlocal) can be rewritten as

max
t

µ
⇤
Z

tv
0(wA)fA

a
dx�

Z
tf

A
dx

s.t.

Z
tv

0(wA)fA
dx � 0

Z
t
2
dx  1

where

µ
⇤ :=

�
m�

R
wAf

A

a
dx

�
Da(wA

, w
B)R

wBv0(wA)fA
a
dx

,

and we have used that for any t, Da(wA
, t) = Da(wA

, w
B)

R
tv

0(wA)fA

a
dx/

R
w

B
v
0(wA)fA

a
dx

by Lemma 1. Letting � � 0 and ⌫ � 0 denote the dual multipliers associated with the first

and the second constraint, we have the Lagrangian

L(�, ⌫) = max
t

⇢
⌫ +

Z ⇥
t
�
�v

0(wA)fA + µ
⇤
v
0(wA)fA

a
� f

A
�
� ⌫t

2
⇤
dx

�
. (6)

For any � � 0 and ⌫ > 0, we can optimize the integrand with respect to t pointwise. Noting

that the integrand is di↵erentiable with respect to t, the corresponding first-order condition

implies that

t�,⌫ =

�
�f

A + µ
⇤
f
A

a

�
v
0(wA)� f

A

2⌫
,
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where t, fA, fA

a
, and w

A are functions of x.35

Next, we pin down the optimal � and ⌫, by solving the following dual problem:

min
��0 , ⌫�0

L(�, ⌫) .

This problem is convex, and using t�,⌫ , the corresponding first-order conditions yield

�
⇤ = max

(
0,

R ⇥
f
A � µ

⇤
v
0(wA)fA

a

⇤
v
0(wA)fA

dx
R
[v0(wA)fA]2 dx

)
(7)

and

⌫
⇤ =

1

2

sZ
[(�⇤fA + µ⇤fA

a
) v0(wA)� fA]2 dx . (8)

Thus, the optimal adjustment direction,

t
⇤ = t�⇤,⌫⇤ =

⇥
�
⇤
f
A(x) + µ

⇤
f
A

a
(x)

⇤
v
0(wA(x))� f

A(x)
qR

[(�⇤fA(x) + µ⇤fA
a
(x)) v0(wA(x))� fA(x)]2 dx

/ T (x,�⇤
, µ

⇤) .

Insofar, we have shown than t
⇤ solves the dual problem. To show that t⇤ solves the primal

problem given in (Adjlocal), we will now establish that strong duality holds. Towards this

goal, let ⇧⇤ denote the optimal value of the primal. Weak duality implies that L(�⇤
, ⌫

⇤) � ⇧⇤.

Moreover, it is straightforward to verify that t (�⇤
, ⌫

⇤) is feasible for (Adjlocal), and �
⇤ and ⌫

⇤ is

strictly positive if and only if the respective (primal) constraint binds; i.e., the complementary

slackness conditions are satisfied: �⇤ R
t
⇤
v
0(wA)fA

dx = 0 and ⌫
⇤(
R
t
2
dx�1) = 0. This implies

that the objective of (Adjlocal) evaluated at t (�⇤
, ⌫

⇤) is equal to L(�⇤
, ⌫

⇤), and feasibility

implies that L(�⇤
, ⌫

⇤)  ⇧⇤. Therefore, we conclude that L(�⇤
, ⌫

⇤) = ⇧⇤, which proves that

strong duality holds, and t (�⇤
, ⌫

⇤) solves (Adjlocal). Finally, if wA is locally optimal, then it

must be the case that t⇤(x) = 0 and hence T (x,�⇤
, µ

⇤) = 0 for all x.

Proof of Lemma 3. We can write the agent’s maximized utility given contract w as:

u (w) = max
a

Z
v (w (x)) [g (x) + ah (x)] dx� c (a)

=

Z
v (w (x)) g (x) dx+max

a

⇢
a

Z
v (w (x))h (x) dx� c (a)

�

=

Z
v (w (x)) g (x) dx+max

a

{aI (w)� c (a)} .

35If ⌫ = 0, then the integrand of (6) is linear in t, and so L(�, 0) = 1.
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Next, define the function

V (I) = max
a

aI � c (a) .

Since ã (I) is everywhere continuous, by the envelope theorem, V is continuously di↵eren-

tiable, and we have

V
0 (I) = ã (I) .

By the fundamental theorem of calculus, for any I and Ĩ,

V (I)� V

⇣
Ĩ

⌘
=

Z
I

Ĩ

ã (i) di.

We therefore have

u (w)� u (w̃) =

Z
v (w (x)) g (x) dx+ V (I (w))�

Z
v (w̃ (x)) g (x) dx� V (I (w̃))

=

Z
[v (w (x))� v (w̃ (x))] g (x) dx+

Z
I(w)

I(w̃)

ã (i) di,

which establishes the first claim. The second claim is immediate.

Proof of Proposition 3. Recall that by definition

AB
�
w

A
, w

B|P
�
=

�
f
A
, f

B
,
�

, AB

⇣
w

A
, w

B|P̃
⌘
=

⇣
f̃
A
, f̃

B

⌘
, and

Z
xf(x|a)dx = a.

First, suppose that statement (i) is true. Noting that I(w) =
R
v(w(x))h(x)dx =

R
v(w(x))h̃(x)dx =

Ĩ(w), it follows from Condition 2 that a(wi) = ã(wi) for each i 2 {A,B}, where we abuse

notation and use (no) tildes to denote quantities under environment P̃ (P ). Then, by Con-

dition 1, for each i 2 {A,B}, f i(x) = g(x) + a(wi|P )h(x) = g̃(x) + a(wi|P̃ )h̃(x) = f̃
i(x),

implying statement (ii).

Next, suppose that (ii) holds; i.e., AB
�
w

A
, w

B
��P

�
= AB

⇣
w

A
, w

B
�� P̃

⌘
. Then it follows

from Condition 2 that g = g̃ and h = h̃. Moreover, for each i 2 {A,B}, we have a(wi) =

ã(wi), and by Condition 1, I(wi) = Ĩ(wi). Thus, by Condition 2, " = "̃ and � = �̃, and so

statement (i) is true.

Finally, it is straightforward that the solution to (Adj) depends only on the parameters

g, h, ✏, and �, in addition to the agent’s utility function, v(·). This completes the proof.
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Proof of Proposition 4. Given A/B test AB
�
w

A
, w

B
�
, a type-� agent’s e↵ort arc-elasticity

satisfies

" =
ln a�

�
w

A
�
/a

�
�
w

B
�

ln IA/IB
.

Since this holds for all �, it must be the case that for all �,

a
�
�
w

A
�

a� (wB)
=

a
A

a
B
,

where this holds because for any real vectors (x1, . . . , xN), (y1, . . . , yN), and (z1, . . . , zN),

x1

y1
= · · · = xN

yN
) xi

yi
=

P
i
zixiP

i
ziyi

.

The principal therefore correctly estimates the arc elasticity parameter, since

"̂ =
ln āA � ln āB

ln IA � ln IB
=

ln a�
�
w

A
�
� ln a�

�
w

B
�

ln IA � ln IB
= ".

Next, notice that a type-� agent’s e↵ort-cost coe�cient satisfies � = ln a�
�
w

A
�
� " ln IA,

and so his actual e↵ort choice under contract w̃ is

a
� (w̃) = e

�
I (w̃)" = a

�
�
w

A
�✓I (w̃)

IA

◆"

.

Mean e↵ort under contract w̃ is therefore

a (w̃) =
X

�

p
�
a
� (w̃) =

X

�

p
�
a
�
�
w

A
�✓I (w̃)

IA

◆"

= a
�
w

A
�✓I (w̃)

IA

◆"

.

The principal’s predicted mean e↵ort is

â (w̃) = e
�̂
I (w̃)"̂ = a

�
w

A
�✓I (w̃)

IA

◆"

,

which is equal to a (w̃).

We conclude the proof by showing that an aggregate A/B test su�ces to solve the princi-

pal’s problem. By Lemma 3, for each type �, u� ( ew) = u�

�
w

A
�
+
R ⇥

v ( ew (x))� v
�
w

A (x)
�⇤

g (x) dx+
R

I( ew)

I(wA) ã� (i) di, where ea� (I) is implicitly defined by the equation c
0
�
(ea� (I)) = I. Taking av-
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erages across types, and rearranging, we see that

X

�2�

p�

⇥
u� ( ew)� u�

�
w

A
�⇤

=

Z ⇥
v ( ew (x))� v

�
w

A (x)
�⇤

g (x) dx+

Z
I( ew)

I(wA)

ea (i) di,

where ea (I) =
P

�2� p�ea� (I). We can therefore rewrite the principal’s problem as

max
ew

ma ( ew)�
Z

ew (x) [g (x) + a ( ew)h (x)] dx

subject to Z ⇥
v ( ew (x))� v

�
w

A (x)
�⇤

g (x) dx+

Z
I( ew)

I(wA)

ea (i) di � 0.

Given the first part of this proposition, this problem and therefore its solution, depends only

on the aggregate information AB
�
w

A
, w

B
�
=

�
f̄
A
, f̄

B
�
.
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