
Appendix B Proofs and Additional Results

Proof of Proposition 2. By Shephard’s lemma, changes in the price of good i are given by

d log pi = −d log Ai +
∑
j∈N

Ωi jd log p j +
∑
f∈G

Ωi f d log w f ,

solving this system gives

d log pi = −
∑
j∈N

Ψi jd log A j +
∑
f∈G

Ψi f d log w f .

Furthermore,
d log w f = d logλ f + d log E − d log L f .

Hence, the change in real GDP is given by

d log Y = d log E −
∑

j∈mathcalN

Ω0 jd log p j,

= d log E +
∑
j∈N

Ψ0 jd log A j −

∑
f∈G

Ψ0 f d log w f ,

= d log E +
∑
j∈N

Ψ0 jd log A j −

∑
f∈G

Ψ0 f

(
d logλ f + d log E − d log L f

)
,

= d log E +
∑
j∈N

λ jd log A j −

∑
f∈G

λ f

(
d logλ f + d log E − d log L f

)
,

=
∑
j∈N

λ jd log A j +
∑
f∈G

λ f d log L f ,

using the fact that Ψ0i = λi and
∑

f∈G λ f = 1. To complete the proof, note that

d log L f = min{d log L̄ f , d logλ f + d log E − d log L̄ f }.

�

Proof of Proposition 3. The proof is provided in text. �

Proof of Proposition 4. This is a special case of Proposition 8. �

Proof of Proposition 5. Combine (4.1) and (4.2) with Proposition 8 and let θ = 1. �

Proof of Lemma 1. This is a special case of Lemma 2. �
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Proof of Proposition 6. This is a special case of Proposition 9. �

Proof of Proposition 7. From Proposition 10 in Appendix D, we know that

d logλk = CovΩ(0)

(
d logω0,

Ψ(k)

λk

)
+

∑
j∈N

λ j(θ − 1)CovΩ( j)

∑
i∈N

Ψ(i)d log Ai −

∑
f∈G

Ψ( f )

(
d logλ f − d log L f

)
,
Ψ(k)

λk

 .
with

d log L f =

 d log L̄ f , for f ∈ K ,
min

{
d logλ f + d log E, d log L̄ f

}
, for f ∈ L.

Now, use the identity

∑
λ j∈1+NCovΩ( j)

(
Ψ( f ),Ψ(k)

)
= λkλ f

[
Ψ f k − δ f k

λk
+

Ψk f − δ f k

λ f
+
δ f k

λk
− 1

]
,

where δ f k is Kronecker delta, to get

d logλk = CovΩ(0)

(
d logω0,

Ψ(k)

λk

)
− (θ − 1)

∑
f∈G

[δ f k − λ f ]
(
d logλ f − d log L f

)
+

1
λk

∑
f∈G

(θ − 1)
[
EΩ(0)

(
Ψ( f )Ψ(k)

)
− λlλk

] (
d logλ f − d log L f

)
,

where we use the fact that

CovΩ(0)

∑
f∈G

Ψ( f )

(
d logλ f − d log L f

)
,
Ψ(k)

λk

 =
1
λk

∑
f∈G

[
EΩ(0)

(
Ψ( f )Ψ(k)

)
− λlλk

] (
d logλ f − d log L f

)
.

Rearrange this to get

d logλk =
1
θ

CovΩ(0)

(
d logω0,

Ψ(k)

λk

)
+
θ − 1
θ

d log Lk−
1
λk

(1 − θ)
θ

∑
f∈G

[
EΩ(0)

(
Ψ( f )Ψ(k)

)] (
d logλ f − d log L f

)
.

�

Proof of Proposition 8. Suppose that there is only one capital factor, and conjecture an
equilibrium where every labor factor becomes demand-constrained. For each demand-
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constrained factor, from Proposition 7, we have

1
θ

d logλk =
1
θ

CovΩ(0)

(
d logω0,

Ψ(k)

λk

)
+ d log E −

1
θ

d log E

+
1
λk

(1 − θ)
θ
EΩ(0)

(
Ψ(D)Ψ(k)

)
d log E

−
1
λk

(1 − θ)
θ

∑
f∈S

[
EΩ(0)

(
Ψ( f )Ψ(k)

)] (
d logλ f − d log L̄ f

)
λkd logλk = CovΩ(0)

(
d logω0,Ψ(k)

)
− (1 − θ)λkd log E

+ (1 − θ)EΩ(0)

(
Ψ(D)Ψ(k)

)
d log E

− (1 − θ)EΩ(0)

(
Ψ(S)Ψ(k)

) (
d logλS − d log L̄S

)
.

Aggregating over all demand-constrained factors gives

λDd logλD =
∑
k∈D

λkd logλk =CovΩ(0)

(
d logω0,Ψ(D)

)
− (1 − θ)

[
λD − EΩ(0)

(
Ψ2

(D)

)]
d log E

− (1 − θ)EΩ(0)

(
Ψ(S)Ψ(D)

) (
d logλS − d log L̄S

)
=CovΩ(0)

(
d logω0,Ψ(D)

)
− (1 − θ)EΩ(0)

(
Ψ(D)Ψ(S)

)
d log E

+ (1 − θ)EΩ(0)

(
Ψ(S)Ψ(D)

) 1
λS
λDd logλD

+ (1 − θ)EΩ(0)

(
Ψ(S)Ψ(D)

)
d log L̄S

=
CovΩ(0)

(
d logω0,Ψ(D)

)
1 − (1 − θ) 1

λS
EΩ(0)

(
Ψ(S)Ψ(D)

)
−(1 − θ)EΩ(0)

(
Ψ(D)Ψ(S)

)
d log E + (1 − θ)EΩ(0)

(
Ψ(S)Ψ(D)

)
d log L̄S

1 − (1 − θ) 1
λS
EΩ(0)

(
Ψ(S)Ψ(D)

) .
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Where we use the fact that λDd logλD = −λSd logλS. Finally, combine the equation above
with Proposition 2 to get,

d log Y = λSd log L̄S + λDd logλD + λDd log E

=
CovΩ(0)

(
d logω0,Ψ(D)

)
1 − (1 − θ) 1

λS
EΩ(0)

(
Ψ(S)Ψ(D)

)
−(1 − θ)EΩ(0)

(
Ψ(D)Ψ(S)

)
d log E

1 − (1 − θ) 1
λS
EΩ(0)

(
Ψ(S)Ψ(D)

) + λDd log E

+
(1 − θ)EΩ(0)

(
Ψ(S)Ψ(D)

)
d log L̄S

1 − (1 − θ) 1
λS
EΩ(0)

(
Ψ(S)Ψ(D)

) + λSd log L̄S

=
λSCovΩ(0)

(
d logω0,Ψ(D)

)
λS − (1 − θ)EΩ(0)

(
Ψ(S)Ψ(D)

)
+
−λS(1 − θ)EΩ(0)

(
Ψ(D)Ψ(S)

)
d log E

λS − (1 − θ)EΩ(0)

(
Ψ(S)Ψ(D)

) + λDd log E

+ λS
(1 − θ)EΩ(0)

(
Ψ(S)Ψ(D)

)
d log L̄S

λS − (1 − θ)EΩ(0)

(
Ψ(S)Ψ(D)

) + λSd log L̄S

�

Proof of Lemma 2. Define the function Φ(L0) 7→ L by

w f L0
f =

∑
j∈N

Ψ j f

 w1−σ
f∑

k Ψ jkw1−σ
k

 p jc j,

p jc j =
(
Ω̄0i − κi

)
E,

E =
(1 − β)

∑
i(1 − κi)
β

Ē∗
1 + i

∑
h

λ̄∗h

(
L0

h

L∗h
(1 − φh) + φh

)
,

w̃ f = min{w f ,w f }1( f ∈ L) + w f1( f ∈ K ),

L f = min

 1
w̃ f

∑
j∈N

Ψ j f

 w̃1−σ
f∑

k Ψ jkw̃1−σ
k

 p jc j, L̄ f

 .
An equilibrium is when L0 = L. We show that Φ is an increasing function mapping∏

f∈G[0, L̄ f ] into itself.
By Lemma 3, w−i is increasing and wi is decreasing in L0

i . This means that w̃−i is
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increasing in L0
i and w̃i is decreasing in i if wi > wi. Hence, L−i is increasing in L0

i ,and Li is
increasing in L0

i . This proves that Φ is a monotone function, and so we can apply Tarski
(1955). �

Lemma 3. For the following system of equations

w f L f =
∑
j∈N

Ψ j f

 w1−σ
f∑

k Ψ jkw1−σ
k

Ω0 jE,

w−i is increasing and wi is decreasing in Li.

Proof. Start by noting that

CovΩ(0)(Ψ( f ),Ψ(k)) =
∑

l

Ω0lΨl f [Ψlk − λk] ,

Using this fact, and Proposition 10, we can simplify

λkd logλk = −(θ − 1)
∑
f∈G

[
−λ fλk − CovΩ(0)(Ψ( f ),Ψ(k)) + 1( f = k)λk

] (
d logλ f − d log L f

)
=

∑
f∈G

[
(1 − θ)1( f = k)λk − (1 − θ)λ fλk − (1 − θ)CovΩ(0)(Ψ( f ),Ψ(k))

] (
d logλ f − d log L f

)
=

∑
f∈G

(1 − θ)1( f = k)λk − (1 − θ)λ fλk − (1 − θ)
∑

l

Ω0lΨl f

(
Ψk f − λk

) (d logλ f − d log L f

)
=

∑
f∈G

(1 − θ)1( f = k)λk − (1 − θ)
∑

l

Ω0lΨl f Ψk f

 (d logλ f − d log L f

)
=

∑
f∈G

[
(1 − θ)1( f = k)λk − (1 − θ)

[
EΩ(0)(Ψ( f )Ψ(k))

]] (
d logλ f − d log L f

)
=

∑
f∈G

[
(1 − θ)1( f = k)λk − (1 − θ)

[
EΩ(0)(Ψ( f )Ψ(k))

]] (
d logλ f − d log L f

)
= −

∑
f∈G

[
(1 − θ)

[
EΩ(0)(Ψ( f )Ψ(k))

]] (
d logλ f − d log L f

)
+ [(1 − θ)λk]

(
d logλk − d log Lk

)
= −(1 − θ)

∑
f∈G

[
EΩ(0)(Ψ( f )Ψ(k))

] (
d logλ f − d log L f

)
+ [(1 − θ)λk]

(
d logλk − d log Lk

)
Let

Bk f =

[
EΩ(0)(Ψ( f )

Ψ(k)

λk
)
]
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We know that ∑
f

Bk f = 1.

Hence, letting x = d logλ/d log Li be a column vector and ei the ith basis vector, we can
write

θx = −(1 − θ)Bx − (I − (1 − θ)B) ei

x = − (θI + (1 − θ)B)−1 (I − (1 − θ)B) ei = −A (I − (1 − θ)B) ei.

By Lemma 4, A = (θI + (1 − θ)B)−1 is an M-matrix, hence by A5 of Theorem 6.2.3 of
Berman and Plemmons (1979), −A (I − (1 − θ)B) ei has the same signs as − (I − (1 − θ)B).
Since− (I − (1 − θ)B) has negative diagonal and positive off-diagonal elements, this means
that xi is negative and x−i is positive, as needed. �

Lemma 4. The matrix defined in Lemma 4

A = (θI + (1 − θ)B)−1

is an M-matrix.

Proof. By Theorem 6.2.3 of Berman and Plemmons (1979), it suffices to prove that A−1 has
all positive elements and that A is a Z-matrix. The fact that A−1 has all positive elements
is immediate from its definition. To show that A is a Z-matrix, note that we can write

A = (θI + (1 − θ)B)−1 ,

= (I − (1 − θ)(I − B))−1 ,

=

∞∑
n=0

(1 − θ)n(I − B)n.

Hence, since I−B is an M-matrix, (1−θ)(I−B)X does not change the sign of the columns of
X for any X. Hence, by induction, and the fact that M-matrices are closed under addition,
we have that A has the same sign as the elements of (I − B),and hence A is a Z-matrix. �

Proof of Proposition 9. To prove the statements regarding ∆ log L, we use Theorem 3 from
Milgrom and Roberts (1994). Since ∆ log Y is a monotone function of ∆ log L, this also
establishes the results about real GDP. It remains to prove the claims regarding inflation.
To prove that labor supply shocks (on their own) are inflationary, we need to show that
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the price level pY is decreasing in by L̄. To do so, consider some negative labor shocks then

∆ log pY = ∆ log E − ∆ log Y

≥ ∆ log E −
∑

f

λ̄ f ∆ log L f

= ∆ log

∑
h

λ̄∗h

(
Lh

L∗h
(1 − φh) + φh

) −∑
f

λ̄ f ∆ log L f

≥ ∆ log

∑
h

λ̄∗h
Lh

L∗h

 −∑
f

λ̄ f ∆ log L f

= ∆ log

∑
h

λ̄∗h exp(log Lh/L∗h)

 −∑
f

λ̄ f ∆ log L f

≥

∑
h

λ̄∗h∆ log Lh −

∑
f

λ̄ f ∆ log L f = 0,

as long as λ̄∗ = λ̄. The second line follows from the fact that log Y is log-concave (see
Baqaee and Farhi, 2019b).

To prove that aggregate demand shocks, like forward guidance shocks, (on their own)
are deflationary, we need to show that the price level pY is increasing E∗/(1 + i). To do so,
consider some shock then

∆ log pY = ∆ log E − ∆ log Y

≥ ∆ log E −
∑

f

λ̄ f ∆ log L f

= ∆ log

 (1 − β)
∑

i(1 − κi)
β

Ē∗
1 + i

∑
h

λ̄∗h

(
Lh

L∗h
(1 − φh) + φh

) −∑
f

λ̄ f ∆ log L f

≥ ∆ log
(

Ē∗
1 + i

)
−

∑
f

λ̄ f ∆ log L f

≥ ∆ log
(

Ē∗
1 + i

)
−

∑
f

λ̄ f ∆ log
(

Ē∗
1 + i

)
≥ 0.

�

Proof of Proposition 10. This follows from an application of Proposition 9 in Baqaee and
Farhi (2019a). �
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Appendix C A Microfoundation for Demand Shocks

When household preferences are Cobb-Douglas, there is a simple microfoundation for the
demand shocks motivated by health concerns. To see this, consider households with log
preferences

(1 − β)

∑
i∈N

Ω̄0i log ci −H ({ci}i∈N )

 + β
∑

i

Ω̄0i log c∗i ,

where β ∈ [0, 1] captures households’ time-preferences, and ci and c∗i are current and future
consumption of good i. The function H ({ci}i∈N ) is a homothetic aggregator that captures
health concerns of the household associated with consumption today. We assume there
are no health concerns in the future. We let the disutility of consumption due to health
concerns be

H ({ci}i∈N ) =
∑

i

κi log ci,

where κi ≥ 0 captures the riskiness of consuming good i. As κi increases, households
choose to spend a smaller fraction of their permanent income on purchasing i. We call an
increase in κi an individual negative demand shock for sector i (in contrast to aggregate
demand shocks which affect spending on all goods produced this period).

The health-risk parameters κ then map into shocks to both the intersectoral composi-
tion of demand

∆ logω0i = ∆ log
Ω̄0i − κi

(1 −
∑

j∈N κ j)Ω̄0i
,

and shocks to aggregate demand

∆ log ζ = −∆ log(1 + i) − ∆ log
β

1 − β
+ ∆ log Ē∗ + ∆ log(1 −

∑
j∈N

κ j).

For future reference, when we refer to an aggregate demand shock, we mean a change in
∆ log ζ that keeps the intersectoral composition of final demand ∆ logω0 = 0 constant.

Appendix D Extension: Generalizing to Arbitrary CES Economies

This appendix shows how Proposition 7 generalizes to arbitrary nested-CES production
networks.28 To do this, suppose that each good i ∈ N is produced with the production

28Our results can easily be extended beyond the nested-CES case along the lines of Section 5 in Baqaee
and Farhi (2019a).
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function

yi

yi
=

Ai

Āi

 ∑
j∈N+G

ω̄i j

(
xi j

xi j

) θi−1
θi


θi
θi−1

,

where we now allow the elasticity of substitution θi to vary across producers. The
households’ consumption function is

y0

y0
=

 ∑
j∈N+G

ω̄0 j
ω0 j

ω̄0 j

(
x0 j

x0 j

) θ0−1
θ0


θ0
θ0−1

,

where ω0 j are sectoral demand shocks with
∑

jω0 j = 1. where xi j are intermediate inputs
from j used by i. In these equations, variables with over-lines are normalizing constants.To
simplify the notation below, we think of ω0 as a 1 × (1 +N + G) vector with k-th element
ω0k.

We now show how changes in factor income shares d logλ f are determined, which
along with Propositions 1 and 2 pins down output, employment, and inflation. Recall
that for a matrix M, we denote by M(i) its i-th row by M( j) its j-th column. We write
CovΩ( j)(·, ·) to denote the covariance of two vectors of size 1 +N +G using the j-the row of
the input-ouput matrix Ω( j) as a probability distribution.

Proposition 10 (Propagation). Changes in sales and factor shares are given by

d logλk = θ0CovΩ(0)

(
d logω(0),

Ψ(k)

λk

)
+

∑
j∈1+N

λ j(θ j − 1)CovΩ( j)

∑
i∈N

Ψ(i)d log Ai −

∑
f∈G

Ψ( f )

(
d logλ f − d log L f

)
,
Ψ(k)

λk


almost everywhere, where changes in factor employments are given by

d log L f =

 d log L̄ f , for f ∈ K ,
min

{
d logλ f + d log E, d log L̄ f

}
, for f ∈ L.

The intuition for Proposition 10 is similar to that of Proposition 7. Changes in factor
shares depend on changes in the composition of final demand and on relative prices:

d logλk = θ0CovΩ(0)

(
d logω0,Ψ(k)/λk

)
+

∑
j∈1+N

λ j(θ j − 1)CovΩ( j)

(
−d log p,Ψ(k)/λk

)
.
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The first term on the right-hand side θ0CovΩ(0)(d logω0,Ψ(k)/λk) on the right-hand side is
the direct effect of shocks to the sectoral composition of final demand on the sales of k.The
second term

∑
j∈1+N λ j(θ j − 1)CovΩ( j)(−d log p,Ψ(k)/λk) on the right-hand side captures the

changes in the sales of k from substitutions by producers j downstream from k. If producer
j has an elasticity of substitution θ j below one so that its inputs are complements, then it
shifts its expenditure towards those inputs with higher price increases, and this increases
the demand for k if those inputs also use k intensively (measured by Ψlk/λk).The result
follows from noticing that changes in relative prices are, in turn, given by changes in
factor shares

d log pk − d log E = −
∑
i∈N

Ψkid log Ai +
∑
f∈G

Ψk f d log(d logλ f − d log L f ),

where we use the fact that d log w f − d log E = d logλ f + d log E − d log L f .

Appendix E Extension: Semi-Flexible Wages

In practice, we might imagine that wages can fall albeit not by enough to clear the market.
For each factor f ∈ L, suppose the following conditions holdw f

w̄ f
−

(
L f

L̄ f

) 1
γ f

 (L − L̄ f

)
= 0, L f ≤ L̄ f ,

(
L f

L̄ f

) 1
γ f

≤
w f

w̄ f
.

The parameter γ f controls the degree of downward wage flexibility. If γ f = ∞, then the
wage is perfectly rigid downwards. If γ f = 0, then the wage is fully flexible, and we
recover the neoclassical case.

E.1 Generalizing the Results

Collectively, Propositions 1 and 2, as well as Proposition 10 in Appendix D, pin down
all equilibrium outcomes. So, we discuss how each can be generalized. Proposition 1
remains exactly the same as before, so we do not restate it. The only change to Proposition
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2 is that we now have

d log Y =
∑
i∈N

λid log Ai +
∑
f∈G

λ f d log L f ,

=
∑
i∈N

λid log Ai +
∑
f∈G

λ f d log L̄ f +
∑
f∈L

γ f

1 + γ f
λ f min

{
d logλ f + d log E − d log L̄ f , 0

}
,

In particular, this implies that Corollary 1 about the behavior of inflation remains un-
changed:

d log pY =
1
ρ

d log ζ −
1
ρ

∑
i∈N

λid log Ai −
1
ρ

∑
f∈G

φ fλ f d log L f .

Hence, reductions in employment are still inflationary in the absence of exogenous nega-
tive demand shocks.

The only endogenous objects left to be determined are the factor shares. Proposition 10
can be generalized to pin down factor shares. In particular, changes in factor shares solve
the following linear system:

d logλk = θ0CovΩ(0)

(
d logω(0),

Ψ(k)

λk

)
+

∑
j∈1+N

λ j(θ j − 1)CovΩ( j)

∑
i∈N

Ψ(i)d log Ai

−

∑
f∈G

Ψ( f )

(
d logλ f − d log L f + d log E

)
,
Ψ(k)

λk


where

d log L f =


γ f

1+γ f

(
d logλ f + d log E

)
+ 1

1+γ f
d log L̄ f if f ∈ D

d log L̄ f if f ∈ S.

Appendix F Extension: Investment

To model investment, we add intertemporal production functions into the model. An
investment function transforms goods and factors in the present period into goods that can
be used in the future. In this case, instead of breaking the problem into an intertemporal
and intratemporal problem, we must treat both problems at once. In this section, we
first discuss the general local comparative statics with investment, extending the results
in Section 3, then we discuss a special case with simple sufficient statistics and global
comparative statics, extending the results in Section 5.2.

In the body of the paper, we assumed that prices in the future pY
∗

were fixed, which
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meant that nominal expenditures in the future were also fixed pY
∗
Y∗ = E∗. In the version

of the model with investment, output in the future Y∗ is not exogenous, so assuming pY
∗

is
no longer equivalent to assuming E∗ is fixed. Therefore, we consider both situations.

F.1 General local comparative statics

When we add investment to the model, we can still use Proposition 2 without change.
However, we can no longer use the Euler equation to pin down nominal expenditures
today, since nominal GDP today includes investment expenditures and output tomorrow
can no longer taken to be exogenous. Instead, to determine d log E, we must use a version
of Proposition 10. For this subsection, we assume that nominal expenditures in the future
period are fixed and we denote the future period by ∗.

In particular, let λI
i denote the intertemporal sales share — expenditures on quantity i

as a share of the net present value of household income. Furthermore, let Ω̄I represent the
intertemporal input-output matrix, which includes the capital accumulation equations.
Then, letting intertemporal consumption be the zero-th good, and abstracting from shocks
to the sectoral composition of demand for simplicity, we can write

d logλI
k =

∑
j

λI
j(θ j − 1)CovΩI,( j)

∑
i∈N

ΨI
(i)d log Ai −

∑
f∈G

ΨI
( f )

(
d logλI

f − d log L f

)
,
ΨI

(k)

λI
k


almost everywhere, where changes in factor employments are given by

d log L f =

 d log L̄ f , for f ∈ K ,
min

{
d logλI

f − d logλI
∗
, d log L̄ f

}
, for f ∈ L.

This follows from the fact that nominal expenditures on each factor f is given by d logλI
f +

d log EI, where EI is the net-present value of household income. However, since nominal
expenditures in the future are fixed, we have d log E∗ = d logλI

∗
+ d log EI = 0. This allows

us to write nominal expenditures on each factor as d logλI
f − d logλI

∗
.

F.2 Global Comparative Statics

We can extend the results in Section 5.2 to the model with investment. To do so, we
assume that the intertemporal elasticity of substitution ρ is the same as the intersectoral
elasticities of substitution ρ = θ j = θ for every j ∈ N . In this case, the initial factor shares
are, once again, a sufficient statistic for the production network. Furthermore, we can also
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prove that the set of equilibria form a lattice under some additional assumptions.

Proposition 11. Suppose that the intertemporal elasticity of substitution, the elasticities of substi-
tution in production and in final demand are all the same θ. Suppose that there are only shocks to
potential factor supplies ∆ log L̄. If future nominal expenditure is fixed, then assuming in addition
that θ < 1, there is a unique best and worst equilibrium: for any other equilibrium, ∆ log L are
lower than at the best and higher than at the worst. Furthermore, both in the best and in the worst
equilibrium, ∆ log L are increasing in ∆ log L̄.

Intuitively, a negative shock to potential factor supply today potentially reduces output
tomorrow by reducing resources available for consumption tomorrow. Since nominal
expenditures tomorrow are fixed, this raises the price level tomorrow. If the elasticity
of substitution θ is less than one, then the increase in the price level tomorrow reduces
expenditures on non-shocked factor markets and potentially causes them to become slack.

In Proposition 11, we assume that nominal expenditures in the final period are fixed.
If instead we assume that the nominal price level in the future is fixed, rather than
nominal expenditures, then Proposition 11 applies regardless of the value of the elasticity
of substitution θ.

Appendix G Extension: Bankruptcies

The paper abstracts from capital market frictions and bankruptcies. In this appendix,
we briefly discuss how our results can be extended to the case with these frictions. We
begin by generalizing our comparative statics to a case with firm exits. We then make
three observations: (1) in a production network, the negative effects of demand shocks
are amplified if there are exits because of an intermediate-input multiplier; (2) exits,
by acting as endogenous negative supply shocks, can change the flow of spending and
cause Keynesian spillovers outside of the Cobb-Douglas case; and, (3) firm failures, by
potentially destroying intangible firm-specific capital, can reduce output in the future,
and by lowering output in the future, reduce aggregate demand today through the Euler
equation.

G.1 Local Comparative Statics with Bankruptcies

To capture firm failures, we modify the general structure described in Section 2 as follows.
We assume that output in sector i ∈ N is a CES aggregate of identical producers j each with
constant returns production functions yik = Ai fi(xk

i j), where xk
i j is the quantity of industry
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j’s output used by producer k in industry i. Assuming all firms within an industry use
the same mix of inputs, sectoral output is

yi =

(∫
y
σi−1
σi

ik dk
) σi
σi−1

= M
1

σi−1

i Ai fi(xi j), (G.1)

where xi j is the quantity of input j used by industry i, Mi is the mass of producers in
industry i, σi > 1 is the elasticity of substitution across producers, and Ai is an exogenous
productivity shifter. From this equation, we see that a change in the mass of operating
firms acts like a productivity shock and changes the industry-level price. Therefore, if
shocks outside sector i trigger a wave of exits, then this will set in motion endogenous
negative productivity shock (1/(σi − 1))∆ log Mi in sector i.

Suppose that each firm must maintain a minimum level of revenue in order to continue
operation.29, 30 We are focused on a short-run application, so we do not allow new entry,
but of course, this would be important for long-run analyses.31

The mass of firms that operate in equilibrium is therefore given by

Mi = min
{
λiE
λ̄iĒ

M̄i, M̄i

}
,

where M̄i is the exogenous initial mass of varieties, λiE is nominal revenue earned by
sector i and λ̄iĒ is the initial nominal revenue earned by i. If nominal revenues fall relative
to the baseline, then the mass of producers declines to ensure that sales per producer
remain constant. In order to capture government-mandated shutdowns of certain firms,
we allow for shocks that reduce the exogenous initial mass of producers ∆ log M̄i ≤ 0.

We can generalize Propositions 2 and 10 to this context. The only difference is that we
must replace d log Ai by d log Ai + (1/(σi − 1))d log Mi, where

d log Mi = d log M̄i + min{d logλi + d log E − d log M̄i, 0}.

29One possible micro-foundation is each producer must pay its inputs in advance by securing within-
period loans and that these loans have indivisibilities: only loans of size greater than some minimum level
can be secured. This minimum size is assumed to coincide with the initial costs λ̄iĒ/M̄i of the producer.

30Another possible micro-foundation is as follows. Producers within a sector charge a CES markup
µi = σi/(σi − 1) over marginal cost. These markups are assumed to be offset by corresponding production
subsidies. Producers have present nominal debt obligations corresponding to their initial profits (1 −
1/µi)λ̄iĒ/M̄i. The same is true in the future. If present profits (1 − 1/µi)λiE/Mi fall short of the required
nominal debt payment (1 − 1/µi)λ̄iĒ/M̄i, then the firm goes bankrupt and exits. Alternatively, we can
imagine that there is no future debt obligation but that firms cannot borrow.

31See Baqaee (2018) and Baqaee and Farhi (2020a) for production networks with both entry and exit.
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This backs up the claim that the d log Mi’s act like endogenous negative productivity
shocks. They provide a mechanism whereby a negative demand shock, say in the com-
position of demand or in aggregate demand d log ζ, triggers exits that are isomorphic to
negative supply shocks.

As in the other examples, the general lesson is that the output response, to a first-
order, is again given by an application of Hulten’s theorem along with an amplification
effect which depends on how the network redistributes demand and triggers Keynesian
unemployment in some factors and firm failures in some sectors.

Having generalized the local comparative statics, we now make three observations
about the way bankruptcies can propagate and affect aggregates. In order to simplify the
exposition, we abstract away from HtM households for the rest of the section.

G.2 Intermediate Multiplier of Bankruptcies

If there are increasing returns, then firm failures can also affect supply today directly.
As the economy scales down, marginal cost goes up. Our formulation of industry-level
production functions (G.1) have this property due to the love-of-variety effect. Hence,
firm exits act like negative TFP shocks, and if there are intermediate inputs, then these
endogenous negative TFP shocks are amplified.

To see this, consider a Cobb-Douglas model where ρ = θ0 = θ j = 1 and negative
demand shocks. In this case, since there are no HtM households, the effect on output is
given by

d log Y =
∑
i∈N

λi
1

σi − 1
d log Mi =

∑
i∈N

λi
1

σi − 1
(d logλi + d log E).

Using the fact that d logλi + d log E = −
∑

j∈N Ψ jidκ j/λi, we can write

d log Y = −
∑
i∈N

1
σi − 1

∑
j∈N

Ψ jidκ j.

Hence, the higher is the use of intermediate inputs, the larger are the elements of the
Leontief inverse Ψ, and the larger is the negative effect on output. Intuitively, a reduction
in demand causes exits at every step in the supply chain, and so the longer the supply
chains, the more costly the exits.
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G.3 Bankruptcies and Expenditure Switching

In the previous example, we deliberately chose a Cobb-Douglas economy since the expen-
diture shares do not respond to relative prices. If the elasticities of substitution are not all
equal to one, the endogenous TFP shocks associated with exits, by changing expenditure
shares and the flow of spending, can trigger additional cascades of unemployment and
failure.

To make this concrete, consider a simple example economy without intermediate
inputs where each sector uses only its own labor. Assume that there are no shocks to
aggregate demand (d log ζ = 0). Set the intertemporal elasticity of substitution ρ = 1
and share of HtM households 1 − φ = 0 to ensure that nominal expenditure is constant
(d log E = 0). We also assume that there are no exogenous shocks to productivities
(d log Ai = 0), no shocks to potential labor (d log L̄ f = 0), and no shocks to the sectoral
composition of demand (d logω0 j = 0). Finally, we assume that all sectors have the same
within-sector elasticity of substitution σi = σ > 1.

We focus on exogenous shocks d log M̄i ≤ 0 capturing government-mandated shut-
downs. We show how endogenous failures can amplify these negative supply shocks.
The insights are more general and also apply to shocks to potential labor. Similarly, fail-
ures can be triggered by negative aggregate demand shocks, and the resulting endogenous
negative supply shocks can result in stagflation with simultaneous reductions in output
and increases in inflation.

We start by analyzing the case where sectors are complements, and then consider the
case where they are substitutes. For brevity, we jump directly to the final result and leave
the derivations in a different appendix — Appendix H.

Shut-down shock with complements. Assume that sectors are complements (θ < 1)
and consider the government-mandated shutdown of some firms in only one sector i. The
change in output is given by

d log Y = λi
1

σ − 1
d log M̄i +

(1 − θ)(1 − λi) σ
σ−1

1 − (1 − θ)(1 − λi)
(
1 − 1

σ−1
λi

1−λi

)λi
1

σ − 1
d log M̄i.

The first term on the right-hand side is the direct reduction in output from the shut-down in
sector i. The second term capture the further indirect equilibrium reduction in output due
to firm failures and Keynesian unemployment in the other sectors. Intuitively, the shut-
down in sector i raises the relative price of i, and because of complementarities, demand
in the rest of the sectors falls. This reduction in nominal spending causes unemployment
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and additional exits in the other sectors.

Shut-down shock with substitutes. Consider the same experiment as above but assume
now that sectors are substitutes (θ > 1). Shut-downs in i raise the price of i relative to other
sectors, and cause substitution away from i. As long as the elasticity of substitution within
the sector σ > 1 is large enough and the elasticity of substitution across sectors θ > 1 is not
too large, the shut-down in sector i causes unemployment in sector i, but no additional
firm failures in sector i. Furthermore, the other sectors maintain full employment and
experiences no failures. In this case the response of output is given by

d log Y = λi
1

σ − 1
d log M̄i +

(θ0 − 1)(1 − λi)
1 − (θ0 − 1)λi

λi
1

σ − 1
d log M̄i,

where the first term on the right-hand side is the direct effect of the shutdown and the
second term is the amplification from the indirect effect of the shutdown which results in
Keynesian unemployment in i.

G.4 Scarring Effect of Bankruptcies

One of the primary concerns about firm failures is that it results in the destruction of
irreversible investments. This lowers output in the future, and through the Euler equation,
depresses spending today.32 In other words, the destruction of irreversible investments
can act like an endogenous negative aggregate demand shock. To see this, for simplicity,
assume there are no HtM agents and suppose that when firms exit in the first period
d log M, they do not return in the next period.

In particular, by the Envelope theorem, output in the future falls by

d log Y∗ =
∑
i∈N

λ∗i
σi − 1

d log Mi =
∑
i∈S

λ∗i
σi − 1

d log M̄i +
∑
i∈D

λ∗i
σi − 1

(
d logλi + d log E

)
.

The endogenous changes in d log Y∗ then mean that the previously exogenous aggregate
demand shock d log ζ, defined by (3.3) now contains an endogenous term

d log ζ = −ρ
(
d log(1 + i) +

1
1 − β

d log β − d log p̄Y
∗

)
+ d log Y∗.

However, the rest of the model remains the same. We can combine the Euler equation in

32This mechanism is the same as the one emphasized by Benigno and Fornaro (2018), except here it
corresponds to the destruction of irreversible investment instead of reduced investment in innovation.
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(3.4), with the aggregation and propagation equations in Propositions 2 and 10 (remem-
bering that d log Ai should be replaced by d log Ai + d log Mi/(σi − 1)).

Appendix H Detailed Derivations for Example with Fail-

ures

Preliminaries. Changes in the sales of i are given by

d logλi = (1 − θ0)(1 − λi)
(
d log pi −

∑
j∈N

λ jd log p j

)
, (H.1)

where changes in the price of i depend on changes in the wage in i and on the endogenous
reduction in the productivity of i driven by firm failures

d log pi = d log wi −
1

σ − 1
d log Mi. (H.2)

The change in wages in i are given by

d log wi = max{d logλi − d log L̄i, 0}, (H.3)

and changes in the mass of producers in i are given by

d log Mi = min{d logλi, d log M̄i}. (H.4)

We consider the effect of shutdown shocks d log M̄i starting with the case where sectors
are complements and then the case where they are substitutes. The effect of negative labor
shocks d log L̄i is similar.

Shut-down shock with complements. Assume that sectors are complements (θ < 1)
and consider the government-mandated shutdown of some firms in only one sector i. We
can aggregate the non-shocked sectors into a single representative sector indexed by −i.
We therefore have d log M̄i < 0 = d log M̄−i.

The closures of firms in i raise its price (d log pi > 0), which because of complementari-
ties, increases its share (d logλi > 0). It therefore does not trigger any further endogenous
exit in this shocked sector (d log Mi = d log M̄i). In addition, the wages of its workers
increases (d log wi > 0). The shock reduces expenditure on the other sectors (d logλ−i < 0),
and this reduction in demand triggers endogenous exits (d log M−i < 0), pushes wages
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against their downward rigidity constraint (d log w−i = 0) and creates unemployment
(d log L−i < 0), both of which endogenously amplify the reduction in output through
failures and Keynesian effects.

Using equations (H.1), (H.2), (H.3), and (H.4), we find

d logλi = −
(1 − θ)(1 − λi)

1 − (1 − θ)(1 − λi)
(
1 − 1

σ−1
λi

1−λi

) 1
σ − 1

d log M̄i > 0,

d log M−i = d log L−i = −
λi

1 − λi
d logλi < 0,

and finally

d log Y = λi
1

σ − 1
d log M̄i +

(1 − θ)(1 − λi) σ
σ−1

1 − (1 − θ)(1 − λi)
(
1 − 1

σ−1
λi

1−λi

)λi
1

σ − 1
d log M̄i.

The first term on the right-hand side is the direct reduction in output from the shut-down
in sector i. The second term capture the further indirect equilibrium reduction in output
via firm failures and Keynesian unemployment in the other sectors.

Shut-down shock with substitutes. Consider the same experiment as above but assume
now that sectors are substitutes (θ > 1). We conjecture an equilibrium where sales in sector
i do not fall more quickly than the initial shock d logλi−d log M̄i > 0. Sector i loses demand
following the exogenous shutdown of some of its firms, and this results in unemployment
in in the sector (d log Li < 0) but no endogenous firm failures (d log Mi = d log M̄i) . On the
other hand, sector −i maintains full employment and experiences no failures.

To verify that this configuration is indeed an equilibrium, we compute

d logλi =
(θ − 1)(1 − λi)
1 − (θ − 1)λi

1
σ − 1

d log M̄i.

We must verify that
0 > d logλi > d log M̄i.

The first inequality is verified as long as θ > 1 is not too large. The second inequality is
verified if σ > 1 is large enough and θ > 1 is not too large.

If these conditions are violated, then we can get a jump in the equilibrium outcome.
Intuitively, in those cases, the shutdown triggers substitution away from i, and that
substitution is so dramatic than it causes more firms to shutdown, and the process feeds on
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itself ad infinitum. Any level of d log Li < 0 and d log Mi < d log M̄i can then be supported
as equilibria. Although we do not focus on it, this possibility illustrates how allowing for
firm failures with increasing returns to scale can dramatically alter the model’s behavior.

Assuming the regularity conditions above are satisfied, the response of output is given
by

d log Y = λi
1

σ − 1
d log M̄i +

(θ0 − 1)(1 − λi)
1 − (θ0 − 1)λi

λi
1

σ − 1
d log M̄i,

where the first term on the right-hand side is the direct effect of the shutdown and the
second term is the amplification from the indirect effect of the shutdown which results in
Keynesian unemployment in i.
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