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APPENDIX FIGURES AND TABLES

APPENDIX FIGURE A1. PLACEBO MEAN RISK EXTRAPOLATION
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Notes. This figure plots race-specific release rates for the 268 judges in our sample against rates of predicted pretrial
misconduct among the set of released defendants. Predicted misconduct is given by the fitted values of an OLS regression
of misconduct on the regressors in column 3 of Table 2, estimated in the set of released defendants. Average predicted
misconduct rates in the full sample of white and Black defendants are indicated with solid markers at the maximal release
rate of one. All estimates adjust for court-by-time fixed effects. The figure also plots race-specific linear, quadratic, and
local linear curves of best fit, obtained from judge-level regressions that inverse-weight by the variance of the estimated
predicted misconduct rate among released defendants. The local linear regression uses a Gaussian kernel with a race-
specific rule-of-thumb bandwidth. 95 percent confidence intervals for the local linear extrapolations’ intercept estimates
at one, obtained from robust standard errors two-way clustered at the individual and judge level, are indicated with
brackets.
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APPENDIX FIGURE A2. JUDGE-SPECIFIC RELEASE RATES AND CONDITIONAL MISCONDUCT RATES, WITH CO-

VARIATE ADJUSTMENT
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Notes. This figure plots race-specific release rates for the 268 judges in our sample against rates of pretrial misconduct
among the set of released defendants. All estimates adjust for court-by-time fixed effects and the case and defendant ob-
servables in Table 2. The figure also plots race-specific linear, quadratic, and local linear curves of best fit, obtained from
judge-level regressions that inverse-weight by the variance of the estimated misconduct rate among released defendants.
The local linear regressions use a Gaussian kernel with a race-specific rule-of-thumb bandwidth.
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APPENDIX FIGURE A3. DISPARATE IMPACT ESTIMATES, MODEL-BASED MEAN RISK ESTIMATES

Strata-Adjusted Disparity (SE)________________________
 Mean = 0.066 (0.002)
 S.D. = 0.040 (0.003)
 Frac. Positive = 0.959 (0.010)

Disparate Impact (SE)__________________
 Mean = 0.050 (0.002)
 S.D. = 0.037 (0.003)
 Frac. Positive = 0.912 (0.015)

0
5

10
15

D
en

si
ty

-.1 0 .1 .2
Posterior Release Rate Disparity

Observational Disparate Impact

Notes. This figure plots the posterior distribution of observational disparities and disparate impact for the 268 judges in
our sample. Strata-adjusted disparities are estimated by the coefficients of an OLS regression of an indicator for pretrial
release on white×judge fixed effects, controlling for judge main effects and court-by-time fixed effects. Disparate impact
is estimated as described in Section IV, using the hierarchical MTE model estimates of mean risk for each race. The
distribution of judge disparities and disparate impact estimates, and fractions of positive disparities and disparate impact
estimates, are computed from these estimates as posterior average effects; see Appendix B.B3 for details. Means and
standard deviations refer to the estimated prior distribution.
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APPENDIX FIGURE A4. PREDICTIVENESS OF OBSERVATIONAL RELEASE RATE DISPARITIES

Forecast Regression________________
 Coefficient = 0.903
 SE = 0.010
 R2 = 0.968
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Notes. This figure plots disparate impact estimates against the corresponding strata-adjusted release rate disparity pos-
teriors for the 268 judges in our sample. Observational disparities are estimated by the coefficients of an OLS regression
of an indicator for pretrial release on white×judge fixed effects, controlling for judge main effects and court-by-time
fixed effects. Disparate impact is estimated as described in Section IV, using the local linear extrapolation from Figure 2
to estimate the mean risk of each race. Empirical Bayes posteriors are computed using a standard shrinkage procedure,
as described in Appendix B.B3. The slope of the solid line indicates the forecast coefficient.
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APPENDIX TABLE A1—JUDGE LENIENCY AND SAMPLE ATTRITION

All White Black
Defendants Defendants Defendants

(1) (2) (3)
Dropped from Sample 0.00007 0.00003 0.00012

(0.00012) (0.00013) (0.00014)
Court x Time FE Yes Yes Yes
Mean Sample Attrition 0.416 0.409 0.424
Cases 1,425,652 726,284 697,597

Notes. This table reports OLS estimates of regressions of judge leniency on an indicator for leaving the sample due
to case adjournment or case disposal and court-by-time fixed effects. The regressions are estimated on the sample of
all arraignments made in NYC between November 1, 2008 and November 1, 2013. Judge leniency is estimated using
data from other cases assigned to a given bail judge, following the procedure described in Section III.A. Robust standard
errors, two-way clustered at the individual and the judge level, are reported in parentheses.
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APPENDIX TABLE A2—DESCRIPTIVE STATISTICS BY SAMPLE

All Defendants White Defendants Black Defendants
Full Estimation Full Estimation Full Estimation

Sample Sample Sample Sample Sample Sample
Panel A: Pretrial Release (1) (2) (3) (4) (5) (6)

Released Before Trial 0.852 0.730 0.872 0.767 0.832 0.695
Share ROR 0.601 0.852 0.616 0.852 0.586 0.851
Share Disposed 0.301 0.000 0.274 0.000 0.327 0.000
Share Adjourned 0.191 0.000 0.199 0.000 0.183 0.000
Share Money Bail 0.068 0.144 0.070 0.144 0.066 0.145
Share Other Bail Type 0.332 0.004 0.314 0.004 0.348 0.004
Share Remanded 0.000 0.000 0.000 0.000 0.000 0.000

Panel B: Defendant Characteristics
White 0.483 0.478 1.000 1.000 0.000 0.000
Male 0.822 0.821 0.831 0.839 0.813 0.804
Age at Arrest 31.819 31.969 31.540 32.055 32.080 31.890
Prior Rearrest 0.192 0.229 0.168 0.204 0.214 0.253
Prior FTA 0.085 0.103 0.071 0.087 0.099 0.117

Panel C: Charge Characteristics
Number of Charges 1.094 1.150 1.111 1.184 1.078 1.118
Felony Charge 0.184 0.362 0.181 0.355 0.188 0.368
Misdemeanor Charge 0.816 0.638 0.819 0.645 0.812 0.632
Any Drug Charge 0.347 0.256 0.342 0.257 0.352 0.256
Any DUI Charge 0.031 0.046 0.046 0.067 0.017 0.027
Any Violent Charge 0.072 0.143 0.062 0.124 0.081 0.160
Any Property Charge 0.217 0.136 0.209 0.127 0.226 0.144

Cases 1,358,278 595,186 656,711 284,598 701,567 310,588

Notes. This table summarizes the difference between the NYC analysis sample and the full sample of NYC arraign-
ments. The full sample consists of all bail hearings between November 1, 2008 and November 1, 2013. The analysis
sample consists of bail hearings that were quasi-randomly assigned to judges between November 1, 2008 and November
1, 2013, as described in the text. Information on demographics and criminal outcomes is derived from court records as
described in the text. Pretrial release is defined as meeting the bail conditions set by the first assigned bail judge. ROR
(released on recognizance) is defined as being released without any conditions. FTA (failure to appear) is defined as
failing to appear at a mandated court date.
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APPENDIX TABLE A3—TESTS OF QUASI-RANDOM JUDGE ASSIGNMENT

All White Black
Defendants Defendants Defendants

(1) (2) (3)
White 0.00013

(0.00009)
Male 0.00003 0.00003 0.00004

(0.00014) (0.00019) (0.00018)
Age at Arrest -0.00011 -0.00015 -0.00008

(0.00004) (0.00006) (0.00005)
Prior Rearrest -0.00021 0.00006 -0.00042

(0.00011) (0.00018) (0.00015)
Prior FTA 0.00016 -0.00011 0.00036

(0.00016) (0.00024) (0.00023)
Number of Charges -0.00001 -0.00001 -0.00001

(0.00001) (0.00001) (0.00003)
Felony Charge 0.00025 0.00011 0.00039

(0.00020) (0.00023) (0.00025)
Any Drug Charge -0.00022 -0.00017 -0.00027

(0.00016) (0.00021) (0.00018)
Any DUI Charge 0.00045 0.00051 0.00008

(0.00027) (0.00032) (0.00045)
Any Violent Charge -0.00008 -0.00023 0.00001

(0.00023) (0.00033) (0.00025)
Any Property Charge -0.00033 -0.00028 -0.00036

(0.00018) (0.00019) (0.00027)
Joint p-value [0.10689] [0.29792] [0.10136]
Court x Time FE Yes Yes Yes
Cases 595,186 284,598 310,588

Notes. This table reports OLS estimates of regressions of judge leniency on defendant characteristics. The regressions
are estimated on the sample described in Table 1. Judge leniency is estimated using data from other cases assigned
to a given bail judge, following the procedure described in Section III.A. All regressions control for court-by-time fixed
effects. The p-values reported at the bottom of each column are from F-tests of the joint significance of the variables listed
in the rows. Robust standard errors, two-way clustered at the individual and the judge level, are reported in parentheses.
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APPENDIX TABLE A4—FIRST STAGE EFFECTS OF JUDGE LENIENCY

All White Black
Defendants Defendants Defendants

(1) (2) (3)
Judge Leniency 0.960 0.788 1.104

(0.025) (0.029) (0.033)
Court x Time FE Yes Yes Yes
Mean Release Rate 0.730 0.767 0.695
Cases 595,186 284,598 310,588

Notes. This table reports OLS estimates of regressions of an indicator for pretrial release on judge leniency. The
regressions are estimated on the sample described in Table 1. Judge leniency is estimated using data from other cases
assigned to a bail judge, following the procedure described in Section III.A. All regressions control for court-by-time
fixed effects. Robust standard errors, two-way clustered at the individual and the judge level, are reported in parentheses.
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APPENDIX TABLE A5—SIMPLE NUMERICAL EXAMPLE OF DISPARATE IMPACT ESTIMATION

Number of Number Scaling Rescaled Release Release
Defendants Released Factor Released Rate Disparity

Panel A: Observational Estimates (1) (2) (3) (4) (5) (6)

L Defendants
Y ∗i = 0 75 60 1 60

0.65
Y ∗i = 1 25 5 1 5

0.30
H Defendants

Y ∗i = 0 25 20 1 20
0.35

Y ∗i = 1 75 15 1 15

Panel B: Rescaled Estimates

L Defendants
Y ∗i = 0 75 60 2/3 40

0.50
Y ∗i = 1 25 5 2 10

0.00
H Defendants

Y ∗i = 0 25 20 2 40
0.50

Y ∗i = 1 75 15 2/3 10

Notes: This table uses a simple numerical example to illustrate how disparate impact can be measured with observa-
tional release rate comparisons that are rescaled using average group-specific misconduct risk. We assume there is one
type-neutral judge who releases 80 percent of defendants with Y ∗i = 0 and 20 percent of defendants with Y ∗i = 1. The
judge observes the type of the defendant, which is either High-risk or Low-risk. There are 100 High-risk defendants
where 75 have Y ∗i = 1, and 100 Low-risk defendants where 25 have Y ∗i = 1. Panel A shows that the judge has a Low-
risk release rate of 0.65 but a High-risk release rate of 0.35, meaning that an observational comparison would find that
Low-risk defendants have a 30 percentage point higher release rate than High-risk defendants despite the judge being
type-neutral. Panel B shows that the true disparate impact of zero can be measured by rescaling this observational release
rate comparison with the scaling factor described in the text. Column 3 of Panel B shows the scaling factor (Ωi) in this
example, and column 6 shows the resulting disparate impact estimate.
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APPENDIX TABLE A6—DISPARATE IMPACT ESTIMATION FOR NYC RELEASE DECISIONS

Number of Number Scaling Rescaled Release Release
Defendants Released Factor Released Rate Disparity

Panel A: Observational Estimates (1) (2) (3) (4) (5) (6)

White Defendants
Y ∗i = 0 186,250 159,296 1.000 159,296

0.765
Y ∗i = 1 98,348 58,425 1.000 58,425

0.068
Black Defendants

Y ∗i = 0 175,120 145,528 1.000 145,528
0.697

Y ∗i = 1 135,468 70,952 1.000 70,952

Panel B: Rescaled Estimates

White Defendants
Y ∗i = 0 186,250 159,296 0.928 147,788

0.753
Y ∗i = 1 98,348 58,425 1.137 66,418

0.042
Black Defendants

Y ∗i = 0 175,120 145,528 1.077 156,709
0.710

Y ∗i = 1 135,468 70,952 0.901 63,905

Notes: This table calculates system-wide disparate impact in NYC by rescaling observational release rate comparisons
using estimates of average white and Black misconduct risk. In Panel A we use the local linear estimates of mean risk
in Table 3 to estimate the number of defendants with and without misconduct potential (column 1) as well as the number
of such defendants that are released (column 2). In Panel A, column 6 we display the observational release rate disparity
between white and Black defendants. In Panel B we use the same mean risk estimates to rescale this observational release
rate comparison with the scaling factor described in the text. Column 3 of Panel B shows the scaling factor (Ωi) given by
these estimates, and column 6 shows the resulting disparate impact estimate.



VOL. NO. ONLINE APPENDIX: MEASURING RACIAL DISCRIMINATION IN BAIL DECISIONS 13

APPENDIX TABLE A7—MEAN RISK AND DISPARATE IMPACT ESTIMATES, SHRUNK LENIENCY ESTIMATES

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants 0.342 0.368 0.358

(0.008) (0.036) (0.014)
Black Defendants 0.403 0.436 0.441

(0.007) (0.026) (0.014)

Panel B: System-Wide Disparate Impact
Mean Across Cases 0.054 0.046 0.042

(0.003) (0.014) (0.006)

Panel C: Judge-Level Disparate Impact
Mean Across Judges 0.053 0.046 0.042

(0.003) (0.013) (0.006)
Std. Dev. Across Judges 0.029 0.029 0.029

(0.002) (0.002) (0.002)
Fraction Positive 0.963 0.938 0.920

(0.011) (0.075) (0.037)
Judges 268 268 268

Notes. This table summarizes estimates of mean risk and disparate impact from different extrapolations of the variation
in Figure 2, after applying conventional empirical Bayes shrinkage to the judge- and race-specific leniency estimates.
Panel A reports estimates of race-specific average misconduct risk, Panel B reports estimates of system-wide (case-
weighted) disparate impact, and Panel C reports empirical Bayes estimates of summary statistics for the judge-level
disparate impact prior distribution. To estimate mean risk, column 1 uses a linear extrapolation of the variation in Figure
2, while column 2 uses a quadratic extrapolation and column 3 uses a local linear extrapolation with a Gaussian kernel
and a rule-of-thumb bandwidth. Robust standard errors, two-way clustered at the individual and judge level, are obtained
by a bootstrapping procedure and appear in parentheses.
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APPENDIX TABLE A8—MEAN RISK AND DISPARATE IMPACT ESTIMATES, WITH COVARIATE ADJUSTMENT

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants 0.351 0.334 0.352

(0.007) (0.018) (0.013)
Black Defendants 0.394 0.412 0.423

(0.006) (0.021) (0.016)

Panel B: System-Wide Disparate Impact
Mean Across Cases 0.043 0.037 0.035

(0.002) (0.006) (0.005)

Panel C: Judge-Level Disparate Impact
Mean Across Judges 0.043 0.036 0.035

(0.002) (0.006) (0.005)
Std. Dev. Across Judges 0.031 0.030 0.031

(0.003) (0.003) (0.003)
Fraction Positive 0.923 0.891 0.878

(0.017) (0.042) (0.036)
Judges 268 268 268

Notes. This table summarizes estimates of mean risk and disparate impact from different extrapolations of the variation
in Figure 2, where release and misconduct rates adjust for both the court-by-time effects and the case and defendant
observables in Table 2. Panel A reports estimates of race-specific average misconduct risk, Panel B reports estimates of
system-wide (case-weighted) disparate impact, and Panel C reports empirical Bayes estimates of summary statistics for
the judge-level disparate impact prior distribution. To estimate mean risk, column 1 uses a linear extrapolation, while
column 2 uses a quadratic extrapolation and column 3 uses a local linear extrapolation with a Gaussian kernel and a
rule-of-thumb bandwidth. Robust standard errors, two-way clustered at the individual and judge level, are obtained by a
bootstrapping procedure and appear in parentheses.
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APPENDIX TABLE A9—DISPARATE IMPACT AND JUDGE CHARACTERISTICS

Full-Sample Disparate Impact
Split-Sample

Disparate Impact
(1) (2) (3) (4) (5) (6) (7)

New Judge -0.022 -0.011 -0.004
(0.007) (0.005) (0.007)

Lenient Judge -0.014 -0.018 -0.008
(0.007) (0.005) (0.006)

Above-Median Black Share -0.022 -0.007 0.003
(0.007) (0.008) (0.009)

Manhattan Courtroom 0.062 0.058 0.053
(0.008) (0.007) (0.011)

Bronx Courtroom -0.003 -0.005 0.005
(0.005) (0.009) (0.010)

Queens Courtroom 0.047 0.041 0.045
(0.008) (0.011) (0.010)

Richmond Courtroom 0.028 0.021 0.047
(0.011) (0.008) (0.017)

Lagged Disparate Impact 0.860 0.385
(0.093) (0.132)

Mean Disparate Impact 0.044 0.044 0.044 0.044 0.044 0.061 0.061
R2 0.059 0.027 0.066 0.452 0.508 0.294 0.428

Notes. This table reports OLS estimates of regressions of disparate impact estimates on judge characteristics. Disparate
impact is estimated as described in Section IV, using the benchmark local linear estimate of mean risk. New judges are
defined as judges appointed during our estimation period. Lenient judges are defined as judges with above-average
leniency, controlling for court-by-time fixed effects. Courtroom locations are defined using the location of the modal
case heard by each judge. Split-sample disparate impact estimates are computed by splitting each judge’s sample of
cases at the median case and constructing two samples, a before-median case sample and an after-median case sample.
Disparate impact is then re-estimated within each subsample. The estimation procedure conditions on court-by-time
effects, which causes a small number of judge effects to become collinear with the court-by-time effects and dropped. All
specifications are weighted by the inverse variance of the disparate impact estimates. Columns 6 and 7 include empirical
Bayes posteriors of lagged disparate impact, computed using a standard shrinkage procedure (Morris, 1983). Robust
standard errors are reported in parentheses.
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APPENDIX TABLE A11—MEAN RISK AND DISPARATE IMPACT BOUNDS

From 0.80 From 0.85 From 0.90
Leniency Leniency Leniency

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants [0.221,0.421] [0.248,0.398] [0.277,0.377]

(0.001,0.001) (0.002,0.002) (0.004,0.004)
Black Defendants [0.280,0.480] [0.313,0.463] [0.349,0.449]

(0.002,0.002) (0.003,0.003) (0.006,0.006)

Panel B: System-Wide Disparate Impact
Mean Across Cases [0.021,0.092] [0.029,0.083] [0.035,0.073]

(0.003,0.002) (0.002,0.001) (0.002,0.001)

Panel C: Judge-Level Disparate Impact
Mean Across Judges [0.021,0.091] [0.029,0.083] [0.035,0.073]

(0.003,0.002) (0.003,0.002) (0.002,0.002)
Std. Dev. Across Judges [0.036,0.046] [0.037,0.042] [0.037,0.039]

(0.003,0.004) (0.003,0.004) (0.003,0.005)
Fraction Positive [0.694,0.989] [0.770,0.982] [0.821,0.975]

(0.021,0.011) (0.021,0.011) (0.017,0.008)
Judges 268 268 268

Notes. This table summarizes bounds on mean risk and disparate impact estimated from the variation in Figure 2. Panel
A reports bounds on race-specific average misconduct risk, Panel B reports bounds on system-wide (case-weighted) dis-
parate impact, and Panel C reports bounds on empirical Bayes estimates of summary statistics for the judge-level disparate
impact prior distribution. To estimate bounds on mean risk, column 1 uses a local linear fit of released misconduct rates
among judges releasing 80% of white and Black defendants. Columns 2 and 3 form bounds from judges releasing 85%
and 90% of white and Black defendants, respectively. The local linear regressions use a Gaussian kernel and a rule-of-
thumb bandwidth. Bounds are formed under the assumption that either none or all of the detained defendants in each
column have pretrial misconduct potential. Panels B and C search within these bounds to find the combination of white
and Black mean risk that minimize or maximize each disparate impact statistic. Robust standard errors on the endpoints
of each set of bounds, two-way clustered at the individual and judge level, are obtained by a bootstrapping procedure and
appear in parentheses.



18 THE AMERICAN ECONOMIC REVIEW 0 0

APPENDIX TABLE A12—DECOMPOSITION OF DISPARATE IMPACT BY MISCONDUCT POTENTIAL

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants 0.338 0.319 0.346

(0.007) (0.021) (0.016)
Black Defendants 0.400 0.394 0.436

(0.006) (0.022) (0.016)

Panel B: Racial Disparity in Conditional on Misconduct Potential
∆ j1 0.033 0.060 0.066

(0.016) (0.054) (0.037)
∆ j0 0.066 0.050 0.027

(0.011) (0.038) (0.030)
Judges 268 268 268

Notes. This table summarizes estimates of mean risk and racial disparities in true/false negative rates from different
extrapolations of the variation in Figure 2. Panel A reports estimates of race-specific average misconduct risk and Panel
B reports estimates of true/false negative rates. ∆ j0 corresponds to defendants with Y ∗i = 0 while ∆ j1 corresponds to
defendants with Y ∗i = 1. To estimate mean risk, column 1 uses a linear extrapolation of the variation in Figure 2, while
column 2 uses a quadratic extrapolation and column 3 uses a local linear extrapolation with a Gaussian kernel and a
rule-of-thumb bandwidth. Robust standard errors, two-way clustered at the individual and judge level, are obtained by a
bootstrapping procedure and appear in parentheses.
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APPENDIX TABLE A13—MEAN RISK AND DISPARATE IMPACT ESTIMATES, BOROUGH-SPECIFIC ESTIMATES

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants 0.337 0.342 0.337

(0.014) (0.037) (0.025)
Black Defendants 0.415 0.399 0.420

(0.009) (0.023) (0.021)

Panel B: System-Wide Disparate Impact
Mean Across Cases 0.050 0.052 0.046

(0.002) (0.008) (0.007)

Panel C: Judge-Level Disparate Impact
Mean Across Judges 0.042 0.048 0.040

(0.003) (0.008) (0.007)
Std. Dev. Across Judges 0.032 0.040 0.039

(0.003) (0.008) (0.007)
Fraction Positive 0.902 0.885 0.846

(0.019) (0.047) (0.046)
Judges 267 267 267

Notes. This table summarizes estimates of mean risk and disparate impact. We estimate conditional regression models
for each borough and averages the resulting estimates by borough share. Panel A reports estimates of race-specific
average misconduct risk, Panel B reports estimates of system-wide (case-weighted) disparate impact, and Panel C reports
empirical Bayes estimates of summary statistics for the judge-level disparate impact prior distribution. To estimate mean
risk, column 1 uses a linear extrapolation of the variation in Figure 2, while column 2 uses a quadratic extrapolation and
column 3 uses a local linear extrapolation with a Gaussian kernel and a rule-of-thumb bandwidth. Robust standard errors,
two-way clustered at the individual and judge level, are obtained by a bootstrapping procedure and appear in parentheses.
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APPENDIX TABLE A14—MEAN RISK AND DISPARATE IMPACT ESTIMATES, BOROUGH-SPECIFIC ESTIMATES WITH

JUDGE-SPECIFIC TIME EFFECTS

Panel A: Mean Risk by Race (1) (2) (3) (4) (5) (6)
White Defendants 0.338 0.370 0.337 0.314 0.323 0.316

(0.033) (0.035) (0.036) (0.033) (0.033) (0.039)
Black Defendants 0.421 0.483 0.422 0.443 0.458 0.416

(0.038) (0.032) (0.044) (0.040) (0.038) (0.047)

Panel B: System-Wide Disparate Impact
Mean Across Cases 0.046 0.027 0.045 0.027 0.037 0.033

(0.031) (0.021) (0.045) (0.082) (0.039) (0.053)
Judges 262 159 244 262 159 244
Judge x Year-Month Yes Yes No Yes Yes No
Judge x Year-Month Squared No Yes No No Yes No
Judge x Year, Judge x Month No No Yes No No Yes
With Race Interactions No No No Yes Yes Yes

Notes. This table summarizes estimates of mean risk and disparate impact. We estimate conditional regression models
for each borough and averages the resulting estimates by borough share. The columns add different levels of judge-
specific time effects as well as judge-specific time effects interacted with race. Panel A reports estimates of race-specific
average misconduct risk, and Panel B reports estimates of system-wide (case-weighted) disparate impact. To estimate
mean risk, each column uses a local linear extrapolation with a Gaussian kernel and a rule-of-thumb bandwidth of the
variation in Figure 2 which is estimated for each borough separately. Robust standard errors, two-way clustered at the
individual and judge level, are obtained by a bootstrapping procedure and appear in parentheses.
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APPENDIX TABLE A15—MEAN RISK AND DISPARATE IMPACT ESTIMATES, ALTERNATIVE MISCONDUCT OUT-

COME

Any Case Any Violent
Misconduct FTA Rearrest Rearrest

Panel A: Mean Risk by Race (1) (2) (3) (4)
White Defendants 0.346 0.176 0.233 0.014

(0.014) (0.011) (0.019) (0.004)
Black Defendants 0.436 0.242 0.314 0.014

(0.017) (0.014) (0.019) (0.006)

Panel B: System-Wide Disparate Impact
Mean Across Cases 0.042 0.051 0.050 0.068

(0.006) (0.005) (0.005) (0.141)

Panel C: Judge-Level Disparate Impact
Mean Across Judges 0.042 0.051 0.050 0.068

(0.006) (0.005) (0.005) (0.130)
Std. Dev. Across Judges 0.037 0.039 0.039 0.045

(0.003) (0.003) (0.004) (0.099)
Fraction Positive 0.873 0.913 0.910 0.948

(0.036) (0.025) (0.027) (0.089)
Judges 268 268 268 268

Notes. This table summarizes estimates of mean risk and disparate impact for different outcome variables. Panel
A reports estimates of race-specific average misconduct risk, Panel B reports estimates of system-wide (case-weighted)
disparate impact, and Panel C reports empirical Bayes estimates of summary statistics for the judge-level disparate impact
prior distribution. Column 1 adjusts for differences by race in the mean risk of any misconduct (either rearrest or FTA).
Column 2 adjusts for differences by race in the mean risk of FTA. Column 3 adjusts for differences by race in the mean
risk of rearrest. Column 4 adjusts for differences by race in the mean risk of rearrest for a violent crime. Robust standard
errors, two-way clustered at the individual and judge level, are obtained by a bootstrapping procedure and appear in
parentheses.
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APPENDIX TABLE A16—MEAN RISK AND DISPARATE IMPACT ESTIMATES, ALTERNATIVE JUDGE DECISIONS

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants 0.343 0.341 0.345

(0.007) (0.026) (0.031)
Black Defendants 0.405 0.415 0.447

(0.006) (0.022) (0.039)

Panel B: System-Wide Disparate Impact
Mean Across Cases 0.045 0.042 0.032

(0.002) (0.007) (0.013)

Panel C: Judge-Level Disparate Impact
Mean Across Judges 0.044 0.042 0.032

(0.003) (0.007) (0.012)
Std. Dev. Across Judges 0.043 0.043 0.043

(0.004) (0.004) (0.004)
Fraction Positive 0.855 0.838 0.769

(0.017) (0.041) (0.082)
Judges 268 268 268

Notes. This table summarizes estimates of mean risk and disparate impact from different extrapolations of the variation
in Figure 2. The judge’s decision variable in this table is release on recognizance (ROR) versus the assignment of
any monetary bail, where there is a 5.8 percentage point disparity in the assignment of ROR between white and Black
defendants after controlling for court-by-time effects. Panel A reports estimates of race-specific average misconduct
risk, Panel B reports estimates of system-wide (case-weighted) disparate impact, and Panel C reports empirical Bayes
estimates of summary statistics for the judge-level disparate impact prior distribution. To estimate mean risk, column
1 uses a linear extrapolation of the variation in Figure 2, while column 2 uses a quadratic extrapolation and column 3
uses a local linear extrapolation with a Gaussian kernel and a rule-of-thumb bandwidth. Robust standard errors, two-way
clustered at the individual and judge level, are obtained by a bootstrapping procedure and appear in parentheses.
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APPENDIX TABLE A17—MEAN RISK AND DISPARATE IMPACT ESTIMATES, ALTERNATIVE RACE DEFINITION

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants 0.208 0.138 0.187

(0.009) (0.018) (0.014)
Black or Hispanic Defendants 0.393 0.419 0.415

(0.006) (0.019) (0.012)

Panel B: System-Wide Disparate Impact
Mean Across Cases 0.089 0.213 0.112

(0.007) (0.031) (0.017)

Panel C: Judge-Level Disparate Impact
Mean Across Judges 0.090 0.211 0.112

(0.007) (0.030) (0.016)
Std. Dev. Across Judges 0.000 0.000 0.000

(0.007) (0.020) (0.016)
Fraction Positive 1.000 1.000 1.000

(0.018) (0.004) (0.016)
Judges 250 250 250

Notes. This table summarizes estimates of mean risk and disparate impact from different extrapolations of the variation
in Figure 2. The racial comparison in this table is between Black or Hispanic defendants to non-Hispanic white defen-
dants, where there is a 8.4 percentage point release rate disparity after adjusting for court-by-time effects. Panel A reports
estimates of race-specific average misconduct risk, Panel B reports estimates of system-wide (case-weighted) disparate
impact, and Panel C reports empirical Bayes estimates of summary statistics for the judge-level disparate impact prior
distribution. To estimate mean risk, column 1 uses a linear extrapolation of the variation in Figure 2, while column 2
uses a quadratic extrapolation and column 3 uses a local linear extrapolation with a Gaussian kernel and a rule-of-thumb
bandwidth. Robust standard errors, two-way clustered at the individual and judge level, are obtained by a bootstrapping
procedure and appear in parentheses.
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APPENDIX TABLE A18—HIERARCHICAL MTE MODEL HYPERPARAMETER ESTIMATES

White Defendants Black Defendants
(1) (2) (3) (4) (5) (6)

Mean Misconduct Risk (µ) 0.346 0.391 0.371 0.423 0.441 0.437
(0.008) (0.007) (0.014) (0.009) (0.007) (0.016)

Mean ln(Signal Quality) (α) 0.538 0.316 0.523 -0.038 -0.044 -0.080
(0.128) (0.074) (0.125) (0.146) (0.075) (0.104)

Mean Release Threshold (γ) 0.912 1.055 1.144 0.893 1.072 1.089
(0.045) (0.023) (0.080) (0.051) (0.034) (0.079)

Release Threshold Std. Dev. (δ ) 0.369 0.109 0.149 0.417 0.194 0.203
(0.039) (0.011) (0.037) (0.052) (0.021) (0.049)

ln(Signal Quality) Std. Dev. (ψ) 0.140 0.134 0.166 0.151
(0.019) (0.016) (0.014) (0.013)

Regression of ln(Signal Quality) -0.376 -0.007
on Release Threshold (β ) (0.153) (0.212)

Judges 268 268 268 268 268 268

Notes. This table reports simulated minimum distance estimates of the MTE model described in the text. 500
simulation draws are used. Columns 3 and 6 estimate the full model with all hyperparameters. Columns 2 and 5
restrict β = 0, while columns 1 and 4 also restrict ψ = 0. The baseline model used in the text and summarized in Table
4 comes from columns 2 and 5 of this table. Robust standard errors, two-way clustered at the individual and the judge
level, are reported in parentheses.
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APPENDIX TABLE A19—TESTS OF CONVENTIONAL MTE MONOTONICITY

Number of Spline Knots
5 10 15 20

Panel A: White Defendants (1) (2) (3) (4)
Test Statistic 303.8 303.5 303.4 303.3
Deg. of Freedom 260 255 250 245
p-value [0.032] [0.020] [0.012] [0.007]

Cases 284,598 284,598 284,598 284,598

Panel B: Black Defendants
Test Statistic 403.8 402.9 402.8 402.3
Deg. of Freedom 260 255 250 245
p-value [<0.001] [<0.001] [<0.001] [<0.001]

Cases 310,588 310,588 310,588 310,588

Notes. This table reports the results of the tests of conventional MTE monotonicity proposed by Frandsen et al. (2019),
computed separately by defendant race. Test statistics are based on quadratic b-spline estimates of the relationship
between misconduct outcomes and judge leniency, with the number of knots specified in each column, controlling for
court-by-time fixed effects.
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APPENDIX TABLE A20—DISPARATE IMPACT AND JUDGE CHARACTERISTICS, MODEL-BASED MEAN RISK

Full-Sample Disparate Impact
Split-Sample

Disparate Impact
(1) (2) (3) (4) (5) (6) (7)

New Judge -0.023 -0.011 -0.002
(0.007) (0.005) (0.007)

Lenient Judge -0.015 -0.019 -0.011
(0.008) (0.005) (0.006)

Above-Median Black Share -0.021 -0.007 0.003
(0.007) (0.008) (0.009)

Manhattan Courtroom 0.060 0.056 0.046
(0.009) (0.008) (0.011)

Bronx Courtroom -0.004 -0.005 -0.003
(0.006) (0.009) (0.011)

Queens Courtroom 0.045 0.040 0.036
(0.008) (0.011) (0.011)

Richmond Courtroom 0.025 0.018 0.039
(0.010) (0.009) (0.014)

Lagged Disparate Impact 0.733 0.395
(0.087) (0.126)

Mean Disparate Impact 0.050 0.050 0.050 0.050 0.050 0.050 0.050
R2 0.061 0.032 0.063 0.435 0.499 0.308 0.420
Judges 268 268 268 268 268 252 252

Notes. This table reports OLS estimates of regressions of disparate impact estimates on judge characteristics. Disparate
impact is estimated as described in Section IV, using the hierarchical MTE model estimate of mean risk. New judges
are defined as judges appointed during our estimation period. Lenient judges are defined as judges with above-average
leniency, controlling for court-by-time fixed effects. Courtroom locations are defined using the location of the modal
case heard by each judge. Split-sample disparate impact estimates are computed by splitting each judge’s sample of
cases at the median case and constructing two samples, a before-median case sample and an after-median case sample.
Disparate impact is then re-estimated within each subsample. The estimation procedure conditions on court-by-time
effects, which causes a small number of judge effects to become collinear with the court-by-time effects and dropped. All
specifications are weighted by the inverse variance of the disparate impact estimates. Columns 6 and 7 include empirical
Bayes posteriors of lagged disparate impact, computed using a standard shrinkage procedure (Morris, 1983). Robust
standard errors are reported in parentheses.
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APPENDIX TABLE A21—RACIAL BIAS AND JUDGE CHARACTERISTICS

(1) (2) (3) (4) (5) (6) (7)
New Judge -0.021 -0.023 -0.007

(0.009) (0.007) (0.005)
Lenient Judge 0.023 0.017 0.033

(0.007) (0.005) (0.003)
Above-Median Black Share -0.008 -0.013 -0.002

(0.007) (0.008) (0.005)
Manhattan Courtroom 0.052 0.044 -0.006

(0.008) (0.008) (0.006)
Bronx Courtroom -0.016 -0.027 -0.015

(0.007) (0.010) (0.006)
Queens Courtroom 0.038 0.023 -0.007

(0.009) (0.011) (0.008)
Richmond Courtroom 0.037 0.019 -0.010

(0.007) (0.009) (0.014)
Disparate Impact 1.369 1.403

(0.086) (0.085)
Mean Bias 0.072 0.072 0.072 0.072 0.072 0.072 0.072
R2 0.026 0.053 0.007 0.332 0.397 0.646 0.770
Judges 268 268 268 268 268 268 268

Notes. This table reports OLS estimates of regressions of racial bias estimates on judge characteristics. Bias estimates
are obtained from the heirarchical MTE model as described in Section V. New judges are defined as judges appointed
during our estimation period. Lenient judges are defined as judges with above-average leniency, controlling for court-
by-time fixed effects. Courtroom locations are defined using the location of the modal case heard by each judge. All
specifications are weighted by the inverse variance of the racial bias posteriors. Robust standard errors are reported in
parentheses.
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APPENDIX TABLE A22—SIGNAL QUALITY DIFFERENCES AND JUDGE CHARACTERISTICS

(1) (2) (3) (4) (5) (6) (7)
New Judge -0.092 -0.073 -0.014

(0.029) (0.022) (0.012)
Lenient Judge 0.031 0.016 0.074

(0.020) (0.016) (0.009)
Above-Median Black Share -0.031 -0.029 -0.006

(0.020) (0.024) (0.013)
Manhattan Courtroom 0.172 0.153 -0.001

(0.023) (0.025) (0.016)
Bronx Courtroom -0.042 -0.062 -0.044

(0.022) (0.030) (0.016)
Queens Courtroom 0.120 0.090 -0.018

(0.028) (0.034) (0.021)
Richmond Courtroom 0.117 0.081 -0.050

(0.023) (0.029) (0.037)
Disparate Impact 4.575 4.584

(0.197) (0.215)
Mean Difference 0.412 0.412 0.412 0.412 0.412 0.412 0.412
R2 0.055 0.011 0.010 0.338 0.379 0.738 0.812
Judges 268 268 268 268 268 268 268

Notes. This table reports OLS estimates of regressions of differences in signal quality estimates on judge character-
istics. Signal quality estimates are obtained from the heirarchical MTE model as described in Section V. New judges
are defined as judges appointed during our estimation period. Lenient judges are defined as judges with above-average
leniency, controlling for court-by-time fixed effects. Courtroom locations are defined using the location of the modal case
heard by each judge. All specifications are weighted by the inverse variance of the signal quality difference posteriors.
Robust standard errors are reported in parentheses.
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ECONOMETRIC APPENDIX

B1. Defining and Measuring Disparate Impact with Multi-Valued Y ∗i

This appendix first generalizes our definition of disparate impact and derivation of OVB in observa-
tional comparisons to settings where the decision-maker’s objective is non-binary. We then discuss how
our quasi-experimental framework for measuring disparate impact extends to this case.

Natural generalizations of Equation (3) are given by

∆ j = ∑
y∈Supp(Y ∗i )

(
δ

y
jw−δ

y
jb

)
py(B1)

in the multi-valued Y ∗i case, where py = Pr(Y ∗i = y), and:

∆ j =
∫

Supp(Y ∗i )

(
δ

y
jw−δ

y
jb

)
dF(y)(B2)

in the case of continuous Y ∗i , where F(·) is the cumulative distribution function of Y ∗i . In both cases,
δ

y
jr = E[Di j | Y ∗i = y,Ri = r] gives conditional release rates for each race r and each y ∈ Supp(Y ∗i ).
As in Section II.B, the bias of observational benchmarking regressions relative to these parameters,

when judges are as-good-as-randomly assigned, is given by
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in the multi-valued Y ∗i case, where pyr = Pr(Y ∗i = y | Ri = r) and again pr = Pr(Ri = r), and:
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∫
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d(Fw(y)−Fb(y))(B4)

in the case of continuous Y ∗i , where Fr(·) is the cumulative distribution function of Y ∗i given Ri = r.
As in Section IV, disparate impact is identified by the distribution of misconduct outcomes Y ∗i within

each race when judges are quasi-randomly assigned. By Bayes’ law:

δ
y
jr = Pr(Y ∗i = y | Di j = 1,Ri = r)

E[Di j | Ri = r]
Pr(Y ∗i = y | Ri = r)

(B5)

for multi-valued Y ∗i and similarly for continuous Y ∗i . The first two terms, Pr(Y ∗i = y |Di j = 1,Ri = r) and
E[Di j | Ri = r], are identified by Pr(Yi = y |Di = 1,Zi j = 1,Ri = r) and E[Di | Zi j = 1,Ri = r] under quasi-
random judge assignment as before. In the continuous Y ∗i case, the first term is given by the conditional
density of Y ∗i given Di = 1, Zi j = 1, and Ri = r. Estimates of the race-specific misconduct distribution
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corresponding to the third Pr(Y ∗i = y | Ri = r) term (which might be obtained from similar extrapolations
of quasi-experimental data as in the binary Y ∗i case) thus yield a plug-in estimator of each δ

y
jr, which can

be combined to estimate ∆ j.

B2. Included Variables Bias

This appendix derives the included variables bias (IVB) formula (9) in a conditional release rate com-
parison that adjusts for a binary characteristic Xi:

∆̃ j = ∆̃ j,X=0(1− µ̄
X)+ ∆̃ j,X=1µ̄

X ,(B6)

where ∆̃ j,X=x = δ jw,X=x−δ jb,X=x and µ̄X = E[Xi] = µX
b pb +µX

w pw. Since we assume here that white and
Black misconduct risk are equal, µw = µb, we have no OVB, and:

∆ j = α j =
(
δ jw,X=0(1−µ

X
w )+δ jw,X=1µ

X
w
)
−
(
δ jb,X=0(1−µ

X
b )+δ jb,X=1µ

X
b
)
.(B7)

It thus follows similarly to Equation (8) that:

∆̃ j−∆ j =
(
δ jw,X=0(µ̄

X −µ
X
w )+δ jw,X=1(µ

X
w − µ̄

X)
)
−
(
δ jb,X=0(µ̄

X −µ
X
b )+δ jb,X=1(µ

X
b − µ̄

X)
)

=
[
(δ jw,X=0−δ jw,X=1) pb +

(
δ jb,X=0−δ jb,X=1

)
pw
]
× (µX

b −µ
X
w ).(B8)

B3. Empirical Bayes Methods

This appendix summarizes the two conventional empirical Bayes approaches used in this paper: the
posterior mean calculation of Morris (1983) and the posterior average effect calculation of Bonhomme
and Weidner (2020). We use the former to gauge sensitivity of our main extrapolations in Appendix Table
A7 (see footnote 19), and to compute the prior means and standard deviations in Figures 1, 3, and A3.
We use the latter to compute the posterior distribution and fraction of judges with positive disparities in
these figures, and to interpret the coefficient estimates in Tables A9, A20, A21, and A22.

Let θ̂ j be an estimate of an unknown judge-specific parameter θ j, such as an observational benchmark-
ing coefficient or our rescaled disparate impact measure. Applying a usual asymptotic approximation,
we write θ̂ j = θ j + ε j where ε j ∼ N(0,Σ j) for known Σ j. Conventional empirical Bayes methods further
assume θ j ∼ N(θ̄ ,Λ), where θ̄ and Λ are unknown hyperparameters. Given this prior distribution, the
posterior mean of θ j after observing the estimate θ̂ j is given by

θ
∗
j ≡ E[θ j | θ̂ j] =

Σ j

Λ+Σ j
θ̄ +

Λ

Λ+Σ j
θ̂ j(B9)

More generally, Equation (B9) gives the minimum mean-squared error prediction of θ j given θ̂ j when
the normality of θ j is relaxed, provided θ̄ and Λ continue to parameterize the mean and variance of the
prior distribution.

Empirical Bayes posteriors estimate θ̄ and Λ and plug these hyperparameter estimates into Equation
(B9). We estimate θ̄ and Λ by the weighted iterative procedure studied by (Morris, 1983), which is
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equivalent to a maximum likelihood procedure. At iteration k the hyperparameter estimates are:

ˆ̄
θk = ∑

j

ω jk

∑ j′ ω j′k
θ̂ j(B10)

Λ̂k = ∑
j

ω jk

∑ j′ ω j′k

(
(θ̂ j− ˆ̄

θk)
2−Σ j

)
(B11)

with inverse-variance weights that are proportional to ω jk = (Λ̂k−1+Σ j)
−1 and where ω j0 = 1. We iterate

this procedure to convergence.

Bonhomme and Weidner (2020) discuss posterior average effect estimators of the cumulative distribu-
tion function for θ j, given by

F̂θ (t) =
1
J ∑

j
E[1[θ j ≤ t] | θ̂ j](B12)

for each t in the support of θ j. Note that 1− F̂θ (0) is a posterior average effect estimate of the fraction of
θ j in the population that is positive. Under the normality assumption:

E[1[θ j ≤ t] | θ̂ j] = Φ

− θ ∗j√
ΛΣ j

Λ+Σ j

(B13)

which can, as with Equation (B9), be estimated by plugging in the estimates of the mean and variance
hyperparameters. Just as with the empirical Bayes posterior estimator, Bonhomme and Weidner (2020)
show that this posterior average effect estimator has certain robustness properties: it is optimal in terms
of local worst-case bias, and its global bias is bounded by the minimum worst-case bias within a large
class of estimators. They further show how regressions of the empirical Bayes posterior means on judge
characteristics also have a posterior average effect interpretation and thus the same robustness properties
for estimating conditional mean functions.

To estimate the density of θ j as posterior average effects, we consider

f̂θ (t) =
1
J ∑

j
E
[

1
h

K
(

t−θ j

h

)
| θ̂ j

]
(B14)

where K(·) is a kernel function and h is a bandwidth. For the posterior densities in Figures 1, 3, and A3
we use an Epanechnikov kernel, K(u) = 3

4(1−u2)1[|u| ≤ 1], and a rule-of-thumb bandwidth. To compute
f̂θ (t), we note that under the reference model (i.e., normality)

Pr
(∣∣∣∣ t−θ j

h

∣∣∣∣≤ 1 | θ̂ j

)
= Φ

 t +h−θ ∗j√
ΛΣ j

Λ+Σ j

−Φ

 t−h−θ ∗j√
ΛΣ j

Λ+Σ j

(B15)
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E
[

θ j |
∣∣∣∣ t−θ j

h

∣∣∣∣≤ 1, θ̂ j

]
= θ

∗
j +

√
ΛΣ j

Λ+Σ j

φ

 t−h−θ ∗j√
ΛΣ j

Λ+Σ j

−φ

 t+h−θ ∗j√
ΛΣ j

Λ+Σ j


Φ

 t+h−θ ∗j√
ΛΣ j

Λ+Σ j

−Φ

 t−h−θ ∗j√
ΛΣ j

Λ+Σ j

(B16)

and

Var
(

θ j |
∣∣∣∣ t−θ j

h

∣∣∣∣≤ 1, µ̂ j

)
=

ΛΣ j

Λ+Σ j

1+

 t−h−θ ∗j√
ΛΣ j

Λ+Σ j

φ

 t−h−θ ∗j√
ΛΣ j

Λ+Σ j

−
 t+h−θ ∗j√

ΛΣ j
Λ+Σ j

φ

 t+h−θ ∗j√
ΛΣ j

Λ+Σ j


Φ

 t+h−θ ∗j√
ΛΣ j

Λ+Σ j

−Φ

 t−h−θ ∗j√
ΛΣ j

Λ+Σ j





−
ΛΣ j

Λ+Σ j


φ

 t−h−θ ∗j√
ΛΣ j

Λ+Σ j

−φ

 t+h−θ ∗j√
ΛΣ j

Λ+Σ j


Φ

 t−h−θ ∗j√
ΛΣ j

Λ+Σ j

−Φ

 t+h−θ ∗j√
ΛΣ j

Λ+Σ j





2

.(B17)

We compute these by again plugging in estimates of the mean and variance hyperparameters, and use

E
[

1
h

K
(

t−θ j

h

)
| θ̂ j

]
=

3
4h

Pr
(∣∣∣∣ t−θ j

h

∣∣∣∣≤ 1 | θ̂ j

)1−
t2−E

[
θ j |

∣∣∣ t−θ j
h

∣∣∣≤ 1, θ̂ j

]2
−Var

(
θ j |

∣∣∣ t−θ j
h

∣∣∣≤ 1, θ̂ j

)
h2


+

3t
2h3 Pr

(∣∣∣∣ t−θ j

h

∣∣∣∣≤ 1 | θ̂ j

)
E
[

θ j |
∣∣∣∣ t−θ j

h

∣∣∣∣≤ 1, θ̂ j

]
(B18)

to compute the posterior density.

B4. Rescaled Benchmarking Regressions: Numerical Example and in NYC

This appendix illustrates how our rescaling approach allows us to measure disparate impact in bail
decisions, even though misconduct potential is unobserved and cannot be directly conditioned on. We
first consider a simple numerical example. Suppose that there are two types of hypothetical defendants
assigned to a single bail judge: high-risk H types and low-risk L types. 75 of the 100 H-type defendants
have misconduct potential (Y ∗i = 1) but only 25 of the 100 L-type defendants have misconduct potential,
such that µH = 0.75, µL = 0.25, and pH = pL = 0.5. The judge is type-neutral when making release de-
cisions: if the defendant has Y ∗i = 1 there is an 80 percent chance the defendant is released regardless of
type, and if the defendant has Y ∗i = 0 there is a 20 percent chance the defendant is released regardless of
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type. Thus, while the judge receives a signal of the defendant’s unobserved misconduct potential, this sig-
nal is not perfectly predictive, implying the judge will release some defendants with pretrial misconduct
potential and detain some defendants without pretrial misconduct potential.

Appendix Table A5 summarizes the setup. Panel A shows that this judge has a release rate of 0.65 for L-
type defendants but a release rate of 0.35 for H-type defendants. This means that a simple benchmarking
regression would suffer from OVB: it finds that L-type defendants have a 30 percentage point higher
release rate than H-type defendants (α j = 0.3), despite the judge being type-neutral.

Panel B of Appendix Table A5 shows how discrimination can be measured in this simple numerical
example with observational release rate comparisons that are rescaled using average misconduct risk.
Following Equations (14) and (15), we compute Ωi =

0.50
0.75 = 2/3 for released H-type defendants with

Yi = 0 and released L-type defendants with Yi = 1, and Ωi =
0.50
0.25 = 2 for released L-type defendants with

Yi = 1 and released H-type defendants with Yi = 0. The rescaling factor thus up-weights the release rates
of individuals who are relatively less common in each type (risky L-type defendants and non-risky H-
type defendants), while down-weighting the release rates of individuals who are relatively more common
(non-risky L-type defendants and risky H-type defendants). This pattern of up- and down-weighting
generally arises when H-type defendants have higher misconduct risk: i.e., when µH > µ̄ > µL. In such
cases, observations of released L-type defendants who subsequently offend are up-weighted (Yi−µL > 0
and µ̄ − µL > 0 so Ωi > 1), as are observations of released H-type defendants who do not subsequently
offend (Yi−µH < 0 and µ̄−µH < 0, so again Ωi > 1.

The rescaling factor removes OVB by implicitly equalizing the proportion of risky and non-risky de-
fendants by type. This means that a rescaled benchmarking regression correctly find that H- and L-type
defendants with the same misconduct potential have identical release rates (∆ j = 0). This is shown in the
final column of Appendix Table A5, Panel B.

Appendix Table A6 similarly illustrates our finding of significant disparate impact in NYC bail deci-
sions. We use the benchmark local linear estimates of mean risk in Table 3 to estimate the number of
white and Black defendants with and without misconduct potential in column 1 of Panel A. In column 2,
we combine these estimates with estimates of release and released misconduct rates adjusted by court-by-
time fixed effects to compute the number of released defendants in each race and misconduct category, as
in Equation (19). This calculation yields the case-weighted average observational disparity of 6.8 percent-
age points in column 6. In Panel B, we use the local linear estimates of mean risk to compute and apply
the appropriate rescaling factor Ωi. Our baseline estimates of average misconduct risk are µw = 0.346
for white defendants and µb = 0.436 for Black defendants. Combining these estimates with the share
of white and Black defendants in our sample yields an overall average misconduct risk of µ̄ = 0.392.
Following Equations (14) and (15), these estimates yield a rescaling factor of Ωi =

1−0.392
1−0.346 = 0.928 for

released white defendants with Yi = 0, Ωi =
0.392
0.436 = 0.901 for released Black defendants with Yi = 1,

Ωi =
0.392
0.346 = 1.137 for released white defendants with Yi = 1, and Ωi =

1−0.392
1−0.436 = 1.077 for released

Black defendants with Yi = 0. Thus the rescaling factor up-weights the release rates of risky white de-
fendants and non-risky Black defendants (who are relatively less common) while down-weighting the
release rates of non-risky white defendants and risky Black defendants (who are relatively more com-
mon). Applying these rescaling factors to the observational release rates yields a system-wide disparate
impact estimate of 4.2 percentage points, matching the estimate in Panel B of Table 3.
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B5. Bounding Mean Risk and Racial Discrimination

This appendix details the construction of mean risk and disparate impact bounds in Appendix Table
A11. As in the baseline analysis, the procedure uses estimates of race- and judge-specific release rates
ρ jr = E[Di j | Ri = r] and released misconduct rates λ jr = E[Y ∗i |Di j = 1,Ri = r]. Instead of extrapolating
the latter estimates to estimate the mean risk parameters µ jr, and the corresponding estimates of disparate
impact ∆ j, we bound the range of logically possible µ jr given typical misconduct rates of highly lenient
judges and search within these ranges to bound statistics of the prior distribution of disparate impact.

Each column of Appendix Table A11 forms bounds from a different leniency threshold ρ ∈{0.8,0.85,0.9}.
For each race r, we first use a local linear regression of the estimated λ jr on the estimated ρ jr to estimate
the average λ jr for judges with ρ jr = ρ , parameters we denote by λ r. By definition, each λ r bounds the
mean risk of race r as

µr ∈ [λ rρ,λ rρ +(1−ρ)].(B19)

The lower bound λ rρ is obtained from assuming all detained defendants for a judge with a leniency of ρ

have Y ∗i = 0 while the upper bound is obtained from assuming the (1−ρ) share of detained defendants
have pretrial misconduct potential (Y ∗i = 1). Panel A of Appendix Table A11 reports estimates of these
bounds for each race, along with their associated standard errors in parentheses. Note that by construction
the width of each interval is equal to 1−ρ .

To obtain bounds on the statistics in Panels B and C of Appendix Table A11, we perform grid searches
within the mean risk bounds in Panel A. For example, to bound the system-wide level of discrimination
we search within the mean risk bounds to find the (µw,µb) pair that minimizes and maximizes the case-
weighted average of judge-specific disparate impact ∆ j. We report these bounds and their associated
standard errors in parentheses. Note that the width of each statistic’s interval is weakly increasing in
1−ρ , reflecting the increase in the range of mean risk parameters.

B6. Judge Decision-Making Model and Extensions

This appendix first derives the specific form of the posterior function p j(·) in the model discussed in
Section V.A. We then show how equivalent models are obtained when judges have inaccurate beliefs
over the risk of white and Black defendants, and when judges minimize race-specific costs of misconduct
classification errors. Finally, we show how disparate impact manifests in this model.

The initial model assumes judges form accurate posteriors of defendant misconduct potential Y ∗i after
observing noisy signals νi j = Y ∗i +ηi j with normally distributed noise: ηi j | Y ∗i ,(Ri = r) ∼ N(0,1/τ2

jr).
The distribution of these posteriors is given by Bayes’ rule as:

p j(ν ;r)≡ Pr(Y ∗i = 1 | νi j = ν ,Ri = r)
Pr(νi j = v | Y ∗i = 1,Ri = r)Pr(Y ∗i = 1,Ri = r)

Pr(νi j = v,Ri = r)

=
φ(τ jr(v−1))τ jrµr

φ(τ jr(v−1))τ jrµr +φ(τ jrv)τ jr(1−µr)
(B20)

where φ(x) ∝ exp(−x2/2) is the standard normal density and µr = E[Y ∗i | Ri = r] is the mean risk of race
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r. Simplifying this expression yields:

p j(ν ;r) =
(

1+ exp(τ2
jr(1−2v)/2)

1−µr

µr

)−1

(B21)

With π jr giving the private benefits of releasing defendants of race r, the judge’s release rule is then given
by Di j = 1[π jRi ≥ p j(νi j;Ri)].

Equation (B21) shows that risk posteriors are strictly increasing in v, such that they can be inverted to
write the judge’s release decision as a cutoff rule for her observed signals νi j:

Di j = 1
[

1
2
− ln

(
µRi(1−π jRi)

(1−µRi)π jRi

)
/τ

2
jRi
≥ νi j

]
(B22)

We use this fact to parameterize the hierarchical model, as discussed in Section V.A. Here

κ jr =
1
2
− ln

(
µr(1−π jr)

(1−µr)π jr

)
/τ

2
jr.(B23)

It follows from Equation (B23) that if judges form posteriors with inaccurate priors µ̃ jr 6= µr, this
bias in beliefs cannot be distinguished from bias in the preference parameters π jr. Only the index I jr =
µ̃ jr(1−π jr)
π jr(1−µ̃ jr)

, which combines beliefs and preferences, is relevant to the judge’s decision-making process.
Consequently, the judge’s marginal released outcomes

E[Y ∗i | p j(νi j;r) = πr,Ri = r] =
(

1+ I jr

(
1−µr

µr

))−1

(B24)

will generally differ by race when either µ̃ jr 6= µr for one or both races (indicating inaccurate beliefs) or
when π jw 6= π jb (indicating racial animus).

An equivalent model is derived by assuming the judge minimizes the cost of making “false positive”
decisions (detaining an individual with no pretrial misconduct risk) and “false negative” decisions (re-
leasing an individual with pretrial misconduct risk), rather than having explicit benefits of releasing white
and Black defendants. Denote these judge- and race-specific type-I and type-II error costs by cI

jr,c
II
jr > 0.

A judge’s ex-post utility for a given release decision Di j ∈ {0,1} is then:

Ui j =−cII
jRi

Di jY ∗i − cI
jRi
(1−Di j)(1−Y ∗i )(B25)

and her expected utility over her posterior risk beliefs is

E[Ui j | νi j,Ri] =−cII
jRi

Di j p j(νi j,Ri)− cI
jRi
(1−Di j)(1− p j(νi j,Ri))(B26)

The judge’s expected utility is thus maximized by cutoff rule:

Di j = 1[π jRi ≥ p j(νi j,Ri)](B27)
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where π jr =
cII

jRi
cI

jRi
+cII

jRi
∈ (0,1) gives the judge’s relative cost of type-II error.

To characterize discrimination in this model, note that Equation (B22) and the conditional normality of
νi j implies that the judge’s conditional release rates can be written

δ jr0 = Pr(Di j = 1 | Y ∗i = 0,Ri = r) = Φ

(
1
2

τ jr−
1

τ jr
ln I jr

)
(B28)

δ jr1 = Pr(Di j = 1 | Y ∗i = 1,Ri = r) = 1−Φ

(
1
2

τ jr +
1

τ jr
ln I jr

)
(B29)

When signal quality is the same by race, τ jw = τ jb, these expressions show that disparate impact ∆ j =
(δ jw0−δ jb0)(1− µ̄)+ (δ jw1−δ jb1)µ̄ is only zero when I jw = I jb. By comparison with Equation (B24),
this scenario will generally lead to bias at the margin unless white and Black average misconduct risk are
also equal (µw = µb). Furthermore, the fact that ∆ j is strictly decreasing (to zero) in the white index I jw
and strictly increasing (to one) in the Black index I jb implies that there exist a set of thresholds (I jw, I jb)
resulting in no disparate impact on average, even when signal quality differs. Again, this will typically
yield racial bias, per Equation (B24), to the extent mean risk differs by race.

B7. Conventional Monotonicity Violations and Judge Signal Quality

This appendix shows how differences in the way judges consider defendant and case characteristics,
which lead to violations of conventional MTE monotonicity, can be viewed as differences in judge signal
quality within models like the one we develop in Section V.A. In doing so we show that such models are
without observational loss, provided judge release decisions are better-than-random.

Consider a setting with a binary potential misconduct outcome Y ∗i and a set of binary judge release de-
cisions Di j. The distribution of these random variables is fully specified by the mean risk µ = E[Y ∗i ] and
the conditional release rates δ j0 = E[Di j | Y ∗i = 0] and δ j1 = E[Di j | Y ∗i = 1]. With mean risk fixed,
any restriction on judicial decision-making —such as conventional MTE monotonicity or alternative
parameterizations—can thus be understood as restricting the set of (δ j0,δ j1).

We first show that when judges are making better-than-random release decisions, in the sense of
0 < δ j0 < δ j1 < 1 for each j, it is without observational loss to assume a decision-making model of
Di j = 1[κ j ≥ Y ∗i + ηi/τ j], with ηi | Y ∗i continuously distributed and τ j > 0. This follows since then
τ j = G−1

η (δ j0)−G−1
η (δ j1) > 0 and κ j = G−1

η (δ j0)/τ j rationalize each (δ j0,δ j1), where Gη(·) specifies
the cumulative distribution of ηi | Y ∗i :

E[Di j | Y ∗i = y] = Pr(κ j ≥ y+ηi/τ j)

= Gη((κ j− y)τ j)

= Gη(G−1
η (δ j0))+ y(G−1

η (δ j1)−G−1
η (δ j0))

= δ j0 + y(δ j1−δ j0)(B30)

In particular, Equation (B30) shows that our risk signal threshold decision rule (23), in which ηi | Y ∗i ∼
N(0,1), is without loss in this case. In general, we may think of τ j as capturing judge j’s signal quality:
how less likely she is to release defendants with Y ∗i = 1 than those with Y ∗i = 0.

We next relate differences in such signal quality to conventional monotonicity violations in a simple
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behavioral model of judicial decision-making. Suppose judges observe a vector of defendant and case
characteristics Xi

∗ which are, without loss, mean zero and positively correlated with misconduct potential:
µµµXXX(1)≡ E[Xi

∗ | Y ∗i = 1]> E[Xi
∗ | Y ∗i = 0]≡ µµµXXX(0). Judges place different weights βββ jjj on the elements

of this vector and also vary in their overall leniency π j, such that:

Di j = 1[π j ≥ Xi
∗′

βββ jjj +Ui](B31)

where we assume Ui | Xi
∗,Y ∗i is uniformly distributed. In this model E[Di j | Y ∗i = y] = π j− µµµXXX(y)

′βββ jjj,
assuming the parameters are such that these are all between zero and one.

Conventional monotonicity in this model requires Pr(Di j ≥ Dik = 1) or Pr(Dik ≥ Di j = 1) for each
( j,k), which generally restricts the weights βββ jjj to be the same across judges. If some elements of Xi

∗ were
observed to the econometrician, one could relax this assumption by a conditional analysis within sets of
defendants with identical observables (e.g., Mueller-Smith, 2015). Conditional monotonicity would then
generally constrain the weights corresponding to unobserved characteristics to be constant.

Judge decision-making is here better-than-random when δ j0−δ j1 = (µµµXXX(1)−µµµXXX(0))
′βββ jjj > 0 or when

the weights in each βββ jjj are non-negative with at least one element strictly positive. In this case we have
from the above result an equivalent representation of:

Di j = 1[κ j ≥ Y ∗i +Vi/τ j](B32)

where Vi |Y ∗i ∼U(0,1). Here judge signal quality is given by τ j =(µµµXXX(1)−µµµXXX(0))
′βββ jjj and has a straight-

forward interpretation: with only one element in Xi
∗, for example, differences in τ j are proportional to

differences in the behavioral weights βββ jjj. More generally, this discussion shows how parameterizations
of the distribution of signal quality across judges can be thought to structure differences in how judges
weigh defendant and case characteristics when making release decisions.

B8. SMD Estimation of the Hierarchical MTE Model

We estimate the hierarchical model described in Sections V.A and V.B by a simulated minimum dis-
tance (SMD) procedure that targets moments of the distribution of race- and judge-specific release rates
ρ jr = E[Di j | Ri = r] and released misconduct rates λ jr = E[Y ∗i | Di j = 1,Ri = r], estimated from quasi-
experimental judge assignments. This appendix formally specifies this procedure.

We first obtain estimates of ρ jr and λ jr from OLS regressions of pretrial release Di and pretrial mis-
conduct Yi on judge-by-race interactions, adjusting for the quasi-experimental court-by-time effects) and
defendant and case observables as discussed in Section IV.B. Subject to the usual asymptotic approxima-
tion, the resulting estimates ρ̂ jr and λ̂ jr can be modeled as noisy measures of the true parameters, with a
known distribution of sampling error. Specifically:

ρ̂ jr = ρ jr + ε
ρ

jr(B33)

λ̂ jr = λ jr + ε
λ
jr(B34)

where εεε | ρρρ,λλλ ∼ N(0,ΣΣΣ) for a variance-covariance matrix ΣΣΣ that is given by conventional asymptotics.
Let X = ((ρ̂ jr, λ̂ jr) j=1,...,268,r∈{w,b}) collect these estimates across the 268 judges in our sample and both
races w and b.
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The model in Appendix B.B6 specifies ρ jr and λ jr as functions of mean misconduct risk µr, judge
signal quality τ jr, and risk thresholds π jr:

ρ jr = Φ(( f (π jr,µr,τ jr)−1)τ jr))µr +Φ( f (π jr,µr,τ jr)τ jr))(1−µr)(B35)
λ jr = Φ(( f (π jr,µr,τ jr)−1)τ jr))µr/ρ jr(B36)

where Φ(·) denotes the standard normal cumulative distribution function and:

f (π,µ,τ) =
1
2
− ln

(
µ(1−π)

π(1−µ)

)
/τ

2.(B37)

We further model signal thresholds κ jr = f (π jr,µr,τ jr) and log signal quality lnτ jr as being joint-
normally distributed across judges, with reisdual correlation across races. That is, we specify:

lnτ jr = αr +βrκ jr + ε jr(B38)

for each race r, with (κ jw,κ jb)
′ ∼ N(µµµκκκ ,ΛΛΛκκκ) and (ε jw,ε jb)

′ | κκκ ∼ N(0,ΛΛΛτττ).

Equations (B33)–(B38) specify a complete distribution for the observed quasi-experimental estimates
X in terms of a hyperparameter vector ΘΘΘ = (µw,µb,αw,αb,βw,βb,µµµ

′
κκκ ,vec(ΛΛΛ1/2

κκκ )′,vec(ΛΛΛ1/2
τ̃

)′)′. We es-
timate ΘΘΘ by SMD, targeting moments of X as discussed in Section V.A. Specifically, let M̂ be a vector
with the first two race-specific elements of:

M̂1r =
268

∑
j=1

ω
ρ

jrρ̂ jr(B39)

M̂2r =
268

∑
j=1

ω
ρ

jr(ρ̂ jr− M̂1r)
2(B40)

the next three race-specific elements corresponding to coefficient estimates from the ωλ
jr-weighted quadratic

OLS regression of:

λ̂ jr = M̂3r + M̂4rρ̂ jr + M̂5rρ̂
2
jr + υ̂ jr(B41)

and the sixth race-specific element corresponding to the ωλ
jr-weighted residual variance estimate:

M̂6r =
268

∑
j=1

ω
λ
jrυ̂

2
jr(B42)

The weights are derived from the estimation error matrix ΣΣΣ: ω
ρ

jr is proportional to the inverse variance of
ρ̂ jr−ρ jr while ωλ

jr is proportional to the inverse variance of λ̂ jr−λ jr, with both weights rescaled to sum

to one in the population of judges. We further include in M̂ the
√

ω
ρ

jwω
ρ

jb-weighted covariance of ρ̂ jw

and ρ̂ jw as well as the
√

ωλ
jwωλ

jb-weighted covariance of λ̂ jw and λ̂ jw. Together this gives 14 elements in
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M̂, the same number of hyperparameters in ΘΘΘ.
The SMD procedure matches the empirical moments in M̂ with the corresponding model-implied mo-

ments averaged across 500 simulated draws of the above data-generating process. That is, we estimate:

Θ̂ΘΘ = argmin
Θ̃ΘΘ

14

∑
m=1

(
M̂m−

1
500

500

∑
s=1

Mms(Θ̃ΘΘ)

)2

(B43)

where the functions Mms(·) of candidate hyperparameters Θ̃ΘΘ are given by applying the previous moment
calculations to data generated from 500 fixed simulation draws s. Conventional asymptotic theory for Θ̂ΘΘ

applies under appropriate regularity conditions (e.g., Pakes and Pollard, 1989).
Columns 3 and 6 of Appendix Table A18 report SMD estimates and standard errors for the full model.

As discussed in the main text, our baseline model estimates set βr = 0. Per the intuition in Section
V.A and to keep the model just-identified, we correspondingly drop the quadratic term from the moment
regression in Equation (B41). The resulting estimates are reported in columns 2 and 5 of Appendix Table
A18. To impose conventional MTE monotonicity, we further set the variance of τ jr to zero. The resulting
estimates are reported in columns 1 and 4 of Appendix Table A18.

Lastly, given Θ̂, we compute maximum a posteriori probability estimates (also known as posterior
modes) of the judge-specific parameters θθθ jjj = (κ jw, lnτ jw,κ jb, lnτ jb)

′, following an approach similar to
that which Angrist et al. (2017) apply for a similar hierarchical model. Note that the log-likelihood of
θθθ = (θθθ ′111 . . . ,θθθ

′
268)

′ and quasi-experimental estimates X can be written:

L (θθθ ,X ) = lnφm
(
X − X̄(θθθ);ΣΣΣ

)
+ lnφm (θθθ −µµµθθθ ;ΛΛΛθθθ )(B44)

where φm(·;V) gives the density of a mean-zero multivariate normal vector with variance-covariance
matrix V; X̄(·) collects the formulas from Equations (B35) and (B36), for ρ jr and λ jr in terms of µw, µb,
and θθθ ; and both µµµθθθ and ΛΛΛθθθ are derived from the αr and βr, µµµκκκ , ΛΛΛκ , and ΛΛΛτττ . Our estimates of θθθ are given
by maximizing this likelihood, plugging in our baseline hyperparameter estimates Θ̂ΘΘ.

*
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