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A.1 Proof of Lemma 1

Proof. We show that (a) holds for the weaker solution concept of PBE. For any K ∈

{1, . . . , m} and for any PBE (σB, (σL, σH) , β), let HK (σB, (σL, σH) , β) denote the set of his-

tories ht with K(ht) = K and β(ht) = 0.

We show first that (a) holds when only one unit remains. Let ūL denote the supremum,

over all PBE (σB, (σL, σH) , β), of the low-type seller’s continuation payoff at histories ht ∈

H1 (σB, (σL, σH) , β). Assume towards a contradiction that ūL > 0 and take ε =
(

1−δ
2

)
ūL.

There must exist a PBE (σB, (σL, σH) , β) and a history h̄t ∈ H1 (σB, (σL, σH) , β) at which

the buyer offers ϕt = (1, p) for some p ∈ [ūL − ε, ūL]. The low-type seller must accept

this offer with probability one. To see why, notice that if the low-type seller rejects this

offer with positive probability, then
(
h̄t, (ϕt, R)

)
∈ H1 (σB, (σL, σH) , β) and therefore the

low-type seller’s continuation payoff is at most ūL. But then, since ūL − ε > δūL, it is not

optimal for the low-type seller to reject ϕt. For the same reason, the low-type seller must

accept the offer ϕ′t =
(
1, ūL − 3

2 ε
)

with probability one. Thus, the buyer has a profitable

deviation at h̄t since he strictly prefers the offer ϕ′t to ϕt.

We show next that (a) holds for any number of remaining units K. We proceed by

induction. Fix K ∈ {2, . . . , m} and assume that for any PBE (σB, (σL, σH) , β) and for

any ht ∈ H1 (σB, (σL, σH) , β) ∪ . . . ∪ HK−1 (σB, (σL, σH) , β), the low-type seller”s continu-

ation payoff is zero. Again, let ūL denote the supremum, over all PBE (σB, (σL, σH) , β),

of the low-type seller’s continuation payoff at histories ht ∈ HK (σB, (σL, σH) , β). To-
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wards a contradiction, assume that ūL > 0 and take ε =
(

1−δ
2

)
ūL. There must exist

a PBE (σB, (σL, σH) , β) and a history h̄t ∈ HK (σB, (σL, σH) , β) at which the buyer offers

ϕt = (k, p) for some p ∈ [ūL − ε, ūL] and some k ≤ K. Using the induction hypothesis

and an argument similar to the one presented in the previous paragraph, we conclude

that the low-type seller must accept this offer with probability one. However, the same is

true for the offer ϕ′t =
(
k, ūL − 3

2 ε
)

which is, therefore, strictly preferred to ϕt. Again, this

shows that the buyer has a profitable deviation at h̄t and concludes the proof of part (a)

of Lemma 1.

We show (b) by contradiction. Assume that there exist two histories ht and h̃t′ with

the same state variables but with VB(ht) < VB

(
h̃t′
)

. The buyer then has a profitable

deviation after history ht. He can choose the same actions as he chooses after history h̃t′ .

Since the seller’s strategy depends only on state variables, then he reacts as he does after

history h̃t′ , and so the buyer’s continuation payoff increases.

We show (c) by contradiction. Assume instead that there is a history ht where the

high-type seller obtains a positive continuation payoff: VH(ht) > 0. Over all histories

with positive continuation payoffs, pick those with the smallest number of remaining

units K = min
{

K(ht) : VH(ht) > 0
}

. Let α = sup
{

VH(ht) : K(ht) = K
}

denote an upper

bound for the high-type seller’s continuation payoff when only K units remain. Finally,

let ε ≡ (1− δ)α/3.

There must exist a history ht with K(ht) = K at which the buyer makes an offer (k, p)

that the high-type seller accepts, and the offer satisfies 1 ≤ k ≤ K and p > c
m k+ α− ε. This

in turn implies that the low-type seller also accepts this offer (otherwise, by Lemma 1(a),

he gets a total payoff of zero). Consider instead the following deviation by the buyer; he

offers
(
k, c

m k + α− ε
)
. If the high-type seller rejects this offer, he obtains a continuation

payoff of at most δα < α− ε, so he accepts it. For the same reason as above, the low-type

seller also accepts this offer. Both the original offer and the deviation lead to the same

state variables, and therefore to the same continuation payoff to the buyer, as shown in

Lemma 1(b). This implies that the deviation is profitable. This shows part (c) of Lemma 1.

Consider next part (d) of Lemma 1. Whenever β(ht) = 0, the result follows imme-

diately from Lemma 1(a). Otherwise, the zero bound on the continuation payoff for the
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high type seller directly implies a c
m K(ht) upper bound for the continuation payoff for the

low-type seller. �

A.2 Proof of Lemma 2

Proof. In the case β(ht) = 0 all units are traded in the first period (this follows immediately

from Lemma 1(a)). Assume instead that β(ht) > 0 and consider an offer ϕt = (k, p)

with k < K(ht) and p < c
m k. We show that such an offer is not accepted with positive

probability. By contradiction, assume that this offer is accepted with positive probability.

A high-type seller would never accept such an offer, so it must be the low-type seller who

accepts this offer with probability σt
L(h

t, ϕt) > 0.

A rejection then leads to a posterior β′ ∈
(

β(ht), 1
)
. Whenever the low-type seller

accepts, the buyer immediately learns that the seller is of low type. Then, in the following

period all remaining units are traded, at zero cost. The buyer obtains the following payoff

from this offer:

[1− β(ht)]σt
L(h

t, ϕt)

 K(ht)

∑
s=K(ht)−k+1

Λm
s vL − p + δ

K(ht)−k

∑
s=1

Λm
s vL


+
[
1− β(ht)

(
1− σt

L(h
t, ϕt)

)]
VL(β′, K)

Consider instead an offer to pay p in exchange for all remaining units. If the low-type

seller accepts, he obtains the same payoff as from accepting the previous offer. Moreover,

because of stationarity, a rejection leads to the same belief β′ as before. Then, the low-

type seller accepts this offer with the same probability as the previous offer. The buyer,

however, obtains the following higher payoff from this offer:

[1− β(ht)]σt
L(h

t, ϕt)

 K(ht)

∑
s=K(ht)−k+1

Λm
s vL − p +

K(ht)−k

∑
s=1

Λm
s vL


+
[
1− β(ht)

(
1− σt

L(h
t, ϕt)

)]
VL(β′, K)

Then, if an offer for k < K(ht) remaining units was accepted with positive probabil-
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ity, the buyer would rather make an offer for all remaining units, so there would be a

profitable deviation. �

A.3 Proof of Proposition 2

In this proof we consider a good divided into a fixed number of units equal to m a fixed

period length equal to ∆. We thus suppress the dependence of all variables on m and ∆.

The proof is divided into two parts. In Part A we define the notion of a consistent

quadruplet (VL, P, W, y) of intertwined functions. We show that whenever a consistent

quadruplet (VL, P, W, y) exists, then a stationary PBE must exist. Our proof is construc-

tive: we derive equilibrium strategies and beliefs from the consistent quadruplet. In Part

B we construct a consistent quadruplet (VL, P, W, y).

Part A. The consistent quadruplet (VL, P, W, y)

We first describe the components of the quadruplet (VL, P, W, y). The function VL(K, q) :

{1, . . . , m} × [0, q̂]→ R determines the strategy of the low-type seller, as described in the

definition of stationary PBE. The function P(K, q) : {1, . . . , m}× [0, q̂]→ R pins down the

screening offer (K, P(K, q)) that induces (transformed) posterior belief q if rejected. The

function W(K, q) : {1, . . . , m} × [0, q̂] → R represents the buyer’s (normalized) continua-

tion payoff. Finally, the function y(K, q) : {1, . . . , m}× [0, q̂]→ {1, . . . , m} ∪ [0, q̂] specifies

the offers that the buyer makes on the equilibrium path.

Part A contains four steps. The first three define the notion of a consistent quadruplet

(VL, P, W, y). In step 1 we derive the function P from the function VL. In step 2 we turn to

the buyer’s optimization problem. We take as given the behavior of the low-type seller,

which is summarized by P. We define the buyer’s value function W and his best response

correspondence. From this best response correspondence, in step 3 we select the offer

y(K, q) that the buyer makes in state (K, q). We construct a candidate value function V ′L
for the low-type seller from the functions y and P. Finally, we say that the quadruplet

(VL, P, W, y) is consistent if V ′L = VL.
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In step 4 we construct strategies from the consistent quadruplet (VL, P, W, y) and show

that these strategies (together with appropriate beliefs) form a stationary PBE.

Step 1. From VL to P. Consider a (left-continuous) candidate function VL with 0 ≤

VL(K, q) ≤ c
m K for all (K, q). This function determines the low-type seller’s behavior,

following the definition of stationary PBE.1 This same definition also pins down the high-

type seller behavior: he accepts any offer for k units if and only if he receives in exchange

a payment greater or equal than c
m k.

We study the buyer’s best response to the seller’s behavior implied by VL(K, q). We

can restrict attention to two types of offers: universal and screening. Universal offers

are simple: the buyer offers a payment c
m k for some (or all) remaining units k ≤ K, both

sellers accept and beliefs do not change.

Screening offers involve both a price and a transformed posterior belief. A price in-

duces a probability of acceptance, which in turn leads to a transformed posterior belief af-

ter the offer is rejected. As we show below, different prices may induce the same posterior.

Moreover, there may be some posteriors that no price can induce. We define a modified

problem where the buyer who starts a period with a (transformed) belief q ∈ [0, q̂] can in-

duce any (transformed) posterior belief q′ ∈ [q, q̂] by choosing a unique price P (K, q′). We

show in step 4 that solutions to the modified problem coincide with those of the original

one.

We first illustrate how we derive P(K, q) from VL(K, q) and then provide the formal

definition of P(K, q). Consider the function δVL(K, q) shown in Figure 1(a). It is simple to

see that the price P1 = δVL(K, q1) induces posterior belief q1. This is because the function

δVL(K, q) lies above P1 for posteriors greater than q1. In fact, obtaining P(K, q) would

be straightforward if VL(K, q) was continuous and strictly increasing. However, consider

for example posterior belief q2, which is induced by all prices in the range [P2, P3]. The

buyer’s preferred price in that range is the lowest: P2; and thus we set P(K, q2) = P2.

The set of induced beliefs may be non-convex. The price P4 induces posterior belief

q4, but no price induces posterior beliefs on the range [q3, q4). To restore convexity, in the

1The function VL(K, q) maps one-to-one to a function VL(K, β) : m × [β̂, 1] → R. The definition of
stationary PBE pins down the behavior of the low-type seller through the function VL(K, β).
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(a) Multiplicity and non-convexity
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δVL(K, q)
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(b) The function P(K, q)

Figure 1: Derivation of P(K, q) from V(K, q)

modified problem we allow the buyer to induce any belief q ∈ [q3, q4) by paying the price

P(K, q) = P4. Similarly, the buyer cannot induce posterior beliefs in the range (q4, q6).

We allow the buyer to induce any belief q ∈ (q4, q6) by paying the price P(K, q) = P5.

Differently than before, P(K, q) < δVL(K, q) for the interval q ∈ (q4, q5].

Formally, we let P(K, q) be the largest weakly increasing function below δVL(K, q).

As an example, the dashed line in Figure 1(b) depicts the function P(K, q) derived from

δVL(K, q) in Figure 1(a). Whenever the buyer can induce a posterior q but cannot induce

posteriors in some range (q− η, q), our definition implies that P(k, q′) = δVL(K, q) for all

q′ ∈ (q− η, q). By doing so, the function P(K, q) becomes flat in some region. Claim 1 in

step 4 shows that the buyer never chooses interior points in flat regions, which guarantees

that the solutions to the modified problem coincide with those of the original one.

Step 2. From P to W. The buyer’s modified problem. We now formalize the buyer’s

(modified) dynamic optimization problem. With a slight abuse of notation, let VB(K, q)

denote the buyer’s continuation payoff when the state is (K, q). For convenience, we work

directly with the buyer’s normalized continuation payoff

W(K, q) ≡ (1− q)VB(K, q).
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We set W(0, q) = 0 and

W(K, q̂) = (1− q̂)

[(
K

∑
s=1

Λm
s

)
vH −

c
m

K

]
.

For all other cases, we define W(K, q) recursively by:

W(K, q) = max

{
max

q′∈[q,q̂]

(∗) Screening. Offer P(K, q′) for K units. If rejected, induced belief is q′︷ ︸︸ ︷(
q′ − q

) [( K

∑
s=1

Λm
s

)
vL − P(K, q′)

]
+ δW(K, q′) ,

max
0≤k≤K−1

{(
K

∑
s=k+1

Λm
s

)
[(q̂− q) vL + (1− q̂) vH]− (1− q)

c
m
(K− k) + δW(k, q)

}
︸ ︷︷ ︸

(∗∗) Universal offer. Request next K− k units in exchange for payment c
m (K− k)

}
(1)

The first component (∗) of equation (1) provides the continuation payoff when the

buyer induces belief q′ through a screening offer. The second component (∗∗) of equa-

tion (1) provides the continuation payoff when the buyer makes a universal offer for K− k

units. The buyer compares the value of the best screening offer (optimal q′) with the value

of the best universal offer (optimal k) to choose which kind of offer to make.2

Equation (1) defines the buyer’s modified problem. When the state is (K, q) with q ∈

[0, q̂) we allow the buyer to induce any state (K, q′) with q′ ≥ q by making the screening

offer (K, P (K, q′)). This includes states that cannot be reached in the original game, like

(K, q5) in Figure 1.

Let Y(K, q) denote the set of solutions to the problem in equation (1). A screening offer

that induces posterior q′ is of the form (K, P(K, q′)). When such offer is optimal, we let

q′ ∈ Y(K, q). A universal offer for K − k units is of the form
(
K− k, c

m (K− k)
)
. When

such offer is optimal, we let k ∈ Y(K, q).

Step 3. From P and W to y and V ′L. The notion of consistent quadruplet. We com-

bine the low-type seller’s behavior, implicit in P, with the buyer’s optimal behavior to

construct a candidate value function V ′L(K, q) for the low-type seller. Let V ′L(K, q) be de-

2The buyer’s continuation payoff is always positive, so his individual rationality constraint is satisfied.
To see this, note that the buyer can always choose q′ = q in equation (1).
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fined recursively by:

V ′L(K, q) = min
{

min
q′∈Y(K,q)

P
(
K, q′

)
, min

k∈Y(K,q)

c
m
(K− k) + δV ′L(k, q)

}
(2)

As equation (2) shows, we construct V ′L by always selecting the offer that minimizes

the low-type seller’s continuation payoff from all of the buyer’s optimal choices Y(K, q).

Let y(K, q) ∈ Y(K, q) denote the buyer’s choice that solves (2). There may be many solu-

tions to (2), but if so, one of them is universal.3 In such case, we let y(K, q) be the universal

offer associated to the lowest k.

Finally, we say that a quadruplet (VL, P, W, y) is consistent if its components are linked

as described in steps 1 to 3 and if the derived V ′L satisfies V ′L = VL.

Step 4. From the consistent quadruplet (VL, P, W, y) to a stationary PBE.

a. Definition of strategies and beliefs. Fix a consistent quadruplet (VL, P, W, y). Our

definition of stationary PBE, together with VL, fully pins down the seller’s strategy. Both

types accept with probability one any offer (k, p) with p ≥ c
m k. The high-type seller

rejects offers (k, p) with p < c
m k with probability one, while the low-type seller accepts

them with probability pinned down by VL.

We next specify the buyer’s strategy and beliefs. We first define for each t a set of

histories Ĥt that is not reached on the equilibrium path. We say that ht ∈ Ĥt whenever

ht contains either 1) a rejected offer (k, p) with p ≥ c
m k, or 2) an accepted partial offer.

Whenever ht ∈ Ĥt, we let the buyer assign probability zero to the seller being of high

type. Also, we let the buyer offer a payment of zero for all remaining units after any

history ht ∈ Ĥt.4

If instead ht 6∈ Ĥt, the buyer’s offer depends on the state
(
K(ht), q(ht)

)
and on the

actions (ϕt−1, at−1) in t− 1. The buyer’s strategy and beliefs are as follows:

1. If (ϕt−1, at−1) = ((k, p) , A) with p ≥ c
m k, then the belief is unchanged: q(ht) =

3To see why, assume that P(K, q′) = P(K, q̃′) for q′ ∈ Y(K, q) and q̃′ ∈ Y(K, q). Since P(K, q) is weakly
increasing, then P(K, q) is constant between q′ and q̃′. But this cannot happen; Claim 1 shows that the buyer
never chooses interior points in flat regions of P(k, q).

4The set Ĥt contains some but not all off-path histories. Below we specify the buyer’s strategy and
beliefs for all histories on path, and also for the remaining off-path histories.
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q(ht−1). The buyer makes the offer implied by y(K(ht), q(ht)).

2. If (ϕt−1, at−1) = ((k, p) , R) with p < c
m k, then

a. If p ≤ P
(
K(ht−1), q(ht−1)

)
, then the belief is unchanged: q(ht) = q(ht−1). The

buyer makes the offer implied by y(K(ht), q(ht)).

b. If p > P
(
K(ht−1), q(ht−1)

)
and p = P

(
K(ht−1), q)

)
for some q > q(ht−1), then

the belief q(ht) is given by the probability of acceptance implied in the defini-

tion of stationary PBE. The buyer makes the offer implied by y(K(ht), q(ht)).

c. If p > P
(
K(ht−1), q(ht−1)

)
and p 6= P

(
K(ht−1), q)

)
for all q > q(ht−1), then the

belief q(ht) is given by the probability of acceptance implied in the definition of

stationary PBE. The buyer randomizes among the elements of Y(K(ht), q(ht))

to rationalize the probability of acceptance of the low-type seller in t− 1.5

b. Verification that strategies and beliefs form a stationary PBE. The strategy of the

high-type seller is optimal. On-path, the buyer never pays more than c
m k for any k. Then,

it is optimal to accept any offer greater or equal than c
m k for any k and to reject otherwise.

The optimality of the low-type seller’s strategy follows from VL = V ′L. Assume that

the buyer and the seller follow the equilibrium strategies specified above. Then, in any

on-path history ht with state (K, q) =
(
K(ht), q(ht)

)
the function VL(K, q) satisfies:

VL(K, q) =


c
m (K− k) + δVL(k, q) if y(K, q) = k

P (K, q′) = δVL (K, q′) if y(K, q) = q′
(3)

Equation (3) follows from the definition of V ′L in equation (2), the equality V ′L = VL, the

definition of P(K, q) and the fact that the buyer never chooses an induced posterior in a

5Supoose that p > P
(
K(ht−1), q(ht−1)

)
, p 6= P

(
K(ht−1), q)

)
for all q > q(ht−1) and that the new belief

is q(ht). Then, δVL
(
K(ht), q(ht)

)
< p < δ limq↓q(ht) VL

(
K(ht), q

)
. One element of Y

(
K(ht), q(ht)

)
yields

a continuation payoff of VL
(
K(ht), q(ht)

)
to the low-type seller, while another one yields a continuation

payoff of limq↓q(ht) VL
(
K(ht), q

)
to the low-type seller. In period t the buyer randomizes between these two

elements of Y
(
K(ht), q(ht)

)
so that the low-type seller’s continuation payoff in period t − 1 (if he rejects

the screening offer) is exactly p. Note that this implies that off-the-equilibrium path the low-type seller’s
continuation payoff may depend not only on the state but also on the offer in the previous period.
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flat region of P(K, q). Therefore, VL(K, q) is the on-path continuation payoff of the low-

type seller.

The low-type seller obtains a continuation payoff of zero if he rejects a universal offer.

The first line of equation (3) shows that he obtains a strictly positive payoff if he instead

accepts it. Then, it is optimal for the low-type seller to accept a universal offer.6 The

second line of equation (3) shows that the low-type seller is indifferent between accepting

and rejecting the screening offers that the buyer makes on path. Consider instead a buyer

who deviates and makes a partial offer (k, P(K, q′)) with k < K. If the low-type seller

accepts, he obtains P(K, q′) in the current period and zero from then on. If he instead

rejects, his continuation payoff is δVL (K, q′). Thus, the low-type seller is also willing to

randomize in this case.7

We construct the strategy of the buyer by choosing for every history ht elements from

the set Y
(
K(ht), q(ht)

)
of best responses in the modified problem. The difference between

the original and modified problem lies in the set of posteriors that screening offers can

induce. While in the modified problem the buyer can induce the whole set of posteriors

[q, q̂] at any state (K, q), the set of posteriors that he can induce in the original game may

be limited. Claim 1 shows that the best response correspondence Y (K, q) in the modified

problem only induces posteriors that are feasible in the original game.

CLAIM 1. THE BUYER NEVER CHOOSES A POSTERIOR IN A FLAT REGION OF P(K, ·). If

q′ ∈ Y(K, q), then P(K, q′′) > P(K, q′) for every q′′ > q′.

See Section T.2 of the Technical Addendum for the proof.

This proves that the strategy of the buyer is optimal.

Part B. Construction of the consistent quadruplet (VL, P, W, y)

We construct a consistent quadruplet (VL, P, W, y) through two processes of induction

(and a fixed point argument). In the base step of the first process of induction we construct

the quadruplet (VL(1, ·), P(1, ·), W(1, ·), y(1, ·)), which deals with the case when only one

6For this same reason it is optimal for the low-type seller to accept any offer (k, p) with p > c
m k.

7The buyer could also deviate by making an offer (k, p) with k ≤ K and p 6= P(K, q′). The equilibrium
strategies that we define also guarantee that the low-type seller behaves optimally. We omit the details.
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unit remains. In the inductive step there are K units left, with 1 < K ≤ m. We assume

that the quadruplet (VL(k, ·), P(k, ·), W(k, ·), y(k, ·)) has already been constructed for all

k ∈ {1, . . . , K− 1} and construct the quadruplet (VL(K, ·), P(K, ·), W(K, ·), y(K, ·)).

The second process of induction is nested within the first one. We explain this process

in detail in steps 1 to 3 below. Let K be the number of remaining units and assume that

the quadruplet (VL(k, ·), P(k, ·), W(k, ·), y(k, ·)) has already been constructed for all k ∈

{1, . . . , K − 1}. In the base step, we construct (VL(K, ·), P(K, ·), W(K, ·), y(K, ·)) for q ∈

[q, q̂] for some q̄ < q̂ (see step 1 below). In the inductive step (indexed by n), we assume

that the quadruplet (VL(K, ·), P(K, ·), W(K, ·), y(K, ·)) has already been constructed for

q ∈ [qn, q̂]. We extend (VL(K, ·), P(K, ·), W(K, ·), y(K, ·)) to q ∈ [qn+1, q̂] with qn+1 < qn

(we explain this in step 2a below). This inductive step involves a fixed point argument

that we describe in detail in step 2b. Finally, we show that in a finite number (ñ) of steps

qñ = 0 (step 3 below).

Step 1. Quadruplet in interval q ∈ [q, q̂]. Claim 2 describes the simple form that the

quadruplet (VL, P, W, y) takes when transformed beliefs are sufficiently close to q̂. The

intuition behind Claim 2 is simple. If the buyer is sufficiently convinced that the seller

is of high type, he is better off trading right away. He offers to pay the high type’s cost

in exchange for all remaining units. Both types accept and the game ends. This leads

directly to the quadruplet’s form in Claim 2.

CLAIM 2. There exists q < q̂, such that any consistent quadruplet (VL, P, W, y) must satisfy

VL(K, q) =
c
m

K,

P(K, q) = δ
c
m

K,

W(K, q) =
K

∑
s=1

Λm
s [(q̂− q) vL + (1− q̂) vH]− (1− q)

c
m

K > 0 and

y(K, q) = K

for every q ∈ [q, q̂] and for every K ∈ {1, . . . , m}.

Proof. Assume that there are K remaining units. A buyer who makes a screening offer

11



obtains a (normalized) continuation payoff bounded above by

(q̂− q)
K

∑
s=1

Λm
s vL + (1− q̂) δ

(
K

∑
s=1

Λm
s vH −

c
m

K

)
.

Moreover, for a sufficiently high q < q̂, the expression above is strictly smaller than

K

∑
s=1

Λm
s [(q̂− q) vL + (1− q̂) vH]− (1− q)

c
m

K

which represents the continuation payoff for the buyer when he makes a universal offer

for all remaining units. This continuation payoff is strictly positive for sufficiently high

q < q̂. This, in turn, implies that there exists q̄ < q̂ such that for any q ∈ [q̄, q̂] and for

any K ∈ {1, . . . , m}, screening offers are strictly dominated by a universal offer for all

remaining units, and this universal offer leads to strictly positive payoffs. Therefore, the

best universal offer is to buy all units immediately, which leads to the expressions for W

and y outlined above. These expressions, in turn, imply that VL and P are as above. �

Step 2. Extension of quadruplet from interval [qn, q̂] to interval q ∈ [qn+1, q̂]. The ex-

tension of the quadruplet consists of two sub-steps. In the first one (a), we only allow the

buyer to make screening offers. We find an interval [qn+1, qn] where the optimal screening

offer induces posterior belief above qn. If universal offers were not allowed (i.e., if there

were only one unit left, as in DL), this would conclude the extension to [qn+1, qn]. In the

second sub-step (b), we give the buyer the possibility of making universal offers. This

modifies the low-type seller’s continuation payoff – and therefore the function P(K, ·) –

in the interval [qn+1, qn]. We allow the buyer to re-optimize, given the modified function

P(K, ·), which in turn changes the low-type seller’s continuation payoff. We continue this

process until we reach a fixed point.

a. Only screening offers. Fix the number of remaining units K. Assume that the

quadruplet (VL(k, ·), P(k, ·), W(k, ·), y(k, ·)) is already defined for all 1 ≤ k ≤ K − 1 and

that the quadruplet (VL(K, ·), P(K, ·), W(K, ·), y(K, ·)) is defined for q ∈ [qn, q̂].

We define two auxiliary value functions for the buyer that represent continuation pay-

offs from making screening offers. First, for q ∈ [0, qn] we let W I(K, q) represent the

12



buyer’s payoff from making a screening offer that leads to posterior q′ ≥ qn:

W I(K, q) = max
q′≥qn

(
q′ − q

) ( K

∑
s=1

Λm
s vL − P

(
K, q′

))
+ δW

(
K, q′

)
(4)

Let X(K, q) ∈ [qn, q̂] denote the set of solutions to the above maximization prob-

lem, and let x(K, q) and x(K, q) denote respectively the smallest and largest elements of

X(K, q).

Second, let PI(K, q) = δP (K, x(K, q)) denote an auxiliary pricing function for q ∈

[0, qn]. The function W I I(K, q) represents the buyer’s payoff from making a screening

offer
(
K, PI(K, q)

)
that leads to posterior q′ ∈ [q, qn] (and to a continuation payoff W I

afterwards):

W I I (K, q) = max
q′∈[q,qn]

(
q′ − q

) ( K

∑
s=1

Λm
s vL − PI (K, q′

))
+ δW I (K, q′

)
for q ∈ [0, qn]

Let the endpoint qn+1 be defined by qn+1 = max
{

q ∈ [0, qn] : W I(K, q) ≤W I I(K, q)
}

if the set is non-empty and qn+1 = 0 otherwise.

CLAIM 3. Endpoints are strictly decreasing: qn+1 < qn. Moreover, the continuation payoff

W I(K, q) is continuous and satisfies W I(K, q) > 0 for all q ∈ [qn+1, qn].

Proof. The continuation payoff W I(K, qn) is strictly positive because it is bounded

below by δW(K, qn) > 0. By definition, W I I(K, qn) = δW I(K, qn), and so W I I(K, qn) <

W I(K, qn). Finally, the theorem of the maximum guarantees that the functions W I(K, ·)

and W I I(K, ·) are continuous. Therefore, qn+1 < qn. Next, by definition, for any q ∈

(qn+1, qn], we have W I(K, q) > W I I(K, q) ≥ δW I(K, q). Thus, for any q ∈ (qn+1, qn], we

have W I(K, q) > 0. It only remains to be shown that W I(K, qn+1) > 0, which we do in

Section T.3 of the Technical Addendum. �

b. Fixed Point. We define a sequence of quadruplets

{(
V `L(K, ·), P`(K, ·), W`(K, ·), y`(K, ·)

)}
`=1,2,...

for the interval [qn+1, q̂].
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The first element of the sequence is as follows. For q ∈ (qn, q̂], we set

(
V1

L(K, q), P1(K, q), W1(K, q), y1(K, q)
)
=
(
VL(K, q), P(K, q), W(K, q), y(K, q)

)
.

For q ∈ [qn+1, qn] we instead set

W1(K, q) = max

{
W I(K, q),

max
0≤k≤K−1

{
K

∑
s=k+1

Λm
s [(q̂− q) vL + (1− q̂) vH]− (1− q)

c
m
(K− k) + δW(k, q)

}}

and we let y1 (K, q) be the solution that gives the lowest continuation payoff to the low-

type seller.8 The screening offer in W I leads to a state (K, q′) with q′ ≥ qn. The contin-

uation payoff VL(K, q′) is already defined for this state. Similarly, a universal offer leads

to a state (k, q) with k < K, for which the continuation payoff VL(k, q) is already defined.

Thus, we extend V1
L(K, ·) to the interval [qn+1, qn] as follows:

V1
L(K, q) =

δVL (K, q′) if y1(K, q) = q′

c
m (K− k) + δVL (k, q) if y1(K, q) = k

Finally, in the interval [qn+1, qn], we define P1(K, ·) to be the largest weakly increasing

function below δV1
L (K, ·).

We define the remaining elements of the sequence of quadruplets recursively. For any

` ≥ 1, we define the `+ 1’th element of the sequence as follows. First, we set

W`+1(K, q) = max

{
max

q′∈[q,q̂]

(
q′ − q

) [( K

∑
s=1

Λm
s

)
vL − P`(K, q′)

]
+ δW`(K, q′),

max
0≤k≤K−1

{(
K

∑
s=k+1

Λm
s

)
[(q̂− q) vL + (1− q̂) vH]− (1− q)

c
m
(K− k) + δW(k, q)

}}
.

8As in Step 3 of Part A, whenever there are many solutions with the same continuation payoff, then
there must exist at least one that implies a universal offer

(
K− k, c

m (K− k)
)
. Of all such universal offers,

we pick the one with the lowest k.
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Next, we let y`+1 (K, q) be the solution to the above problem that gives the lowest

continuation payoff to the low-type seller. Denote that continuation payoff by V `+1
L (K, q).

Finally, let P`+1 (k, ·) be the largest weakly increasing function below δV`+1
L (K, ·).

CLAIM 4. There exists `∗ such that

(
V `∗L (K, ·), P`∗(K, ·), W`∗(K, ·), y`

∗
(K, ·)

)
=
(
V `∗+1

L (K, ·), P`∗+1(K, ·), W`∗+1(K, ·), y`
∗+1(K, ·)

)
.

Proof. For every q ≥ qn+1 and for every ` > 1, W`(k, q) ≥ W1(k, q) > 0. Then, there

exists η > 0 such that for q ∈ [qn+1, qn] and for every ` > 1, W`(k, q) > η.

If the claim fails, for any positive integer T there exist `, q ∈ [qn+1, qn), and a sequence

{qτ}T
τ=0 with q0 = q, qT < q + 1

T and y`(K, qτ−1) = qτ for all τ ∈ {1, . . . , T}. The buyer’s

continuation payoff W`(K, q) is bounded above:

W`(K, q) <
(

1
T
+ δT

) K

∑
s=1

Λm
s vH

Finally, pick T so that (
1
T
+ δT

) K

∑
s=1

Λm
s vH < η.

But W`(K, q) > η, so we have reached a contradiction. �

At the end of the n’th inductive step, the quadruplet is already defined for q ≥ qn.

We extend the quadruplet to q ∈ [qn+1, qn) by setting it equal to the fixed point defined

above:

(VL(K, q), P(K, q), W(K, q), y(K, q)) =
(
V `∗L (K, q), P`∗(K, q), W`∗(K, q), y`

∗
(K, q)

)
.

Step 3. Extension to interval [0, q̂] takes finitely many steps. In the last step of the

construction, we show that it takes finitely many steps to extend the quadruplet to the

whole interval [0, q̂].

CLAIM 5. There exists ñ so that qñ = 0.
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See Section T.4 of the Technical Addendum for the proof.

Finally, note that W(K, q) > 0 for every (K, q). Thus it is never optimal for the buyer

to make two consecutive universal offers. Formally, if k ∈ Y(K, q) for some (K, q), then

k′ 6∈ Y(k, q). Assume towards a contradiction that k ∈ Y(K, q) and k′ ∈ Y(k, q). Then,

W(K, q) =

(
K

∑
s=k+1

Λm
s

)
[(q̂− q) vL + (1− q̂) vH]− (1− q)

c
m
(K− k) + δW(k, q)

<

(
K

∑
s=k+1

Λm
s

)
[(q̂− q) vL + (1− q̂) vH]− (1− q)

c
m
(K− k) + W(k, q)

=

(
K

∑
s=k′+1

Λm
s

)
[(q̂− q) vL + (1− q̂) vH]− (1− q)

c
m
(K− k′) + δW(k′, q)

This shows that, at state (K, q), the buyer strictly prefers to make a universal offer for

K− k′ units, instead of making one for K− k units. Thus, k 6∈ Y(K, q). �

A.4 Convergence as bargaining frictions vanish

LEMMA 1. CONVERGENCE AS BARGAINING FRICTIONS VANISH. Fix m.

(a) Consider an arbitrary sequence of vanishing frictions {∆n}∞
n=1 → 0. The associated se-

quences
{

K∆n
m (·)

}∞

n=1
,
{

q∆n
m (·)

}∞

n=1
,
{{

P∆n
m (K, ·)

}m

K=1

}∞

n=1
and

{{
W∆n

m (K, ·)
}m

K=1

}∞

n=1
have subsequences that converge pointwise.

(b) There exist functions Km(·), qm(·), {Pm(K, ·)}m
K=1 and {Wm(K, ·)}m

K=1 such that for any

sequence of vanishing frictions {∆n}∞
n=1 → 0, the associated sequences

{
K∆n

m (·)
}∞

n=1
,{

q∆n
m (·)

}∞

n=1
,
{{

P∆n
m (K, ·)

}m

K=1

}∞

n=1
and

{{
W∆n

m (K, ·)
}m

K=1

}∞

n=1
converge pointwise to

Km(·), qm(·), {Pm(K, ·)}m
K=1 and {Wm(K, ·)}m

K=1, respectively, except for finitely many

points.9

Proof of part (a). For any ∆ > 0, the functions K∆
m(·) and q∆

m(·) are monotonic in time

elapsed τ and the function P∆
m(K, ·) is monotonic in q for all K ∈ {1, . . . , m}. Therefore,

9The finitely many points where pointwise convergence may not occur correspond to impasses. At any
impasse at state (K, q), P−m (K, q) and P+

m (K, q) are well defined. We set Pm(K, q) = P+
m (K, q). This is without

loss of generality, as the limit equilibrium outcome as bargaining frictions vanish does not depend on this
choice.
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they all have bounded variation. Moreover, all these functions are bounded above and

below by bounds that do not depend on ∆. By Helly’s First Theorem (Theorem 6.1.18

in Kannan and Krueger [1996]),
{

K∆n
m (·)

}∞

n=1
,
{

q∆n
m (·)

}∞

n=1
and

{{
P∆n

m (K, ·)
}m

K=1

}∞

n=1
all

have subsequences that converge pointwise.

Fix K ∈ {1, . . . , m}. The functions
{

W∆n
m (K, ·)

}∞

n=1
are uniformly equicontinuous since

they all have the same Lipschitz constant vH ∑K
s=1 Λm

s . They are also uniformly bounded.

Then, the Arzelà-Ascoli Theorem guarantees that
{

W∆n
m (K, ·)

}∞

n=1
has a subsequence that

converges uniformly. �

Proof of part (b). In Proposition 3 we show that all convergent sequences
{

K∆n
m (·)

}∞

n=1
,{

q∆n
m (·)

}∞

n=1
,
{{

P∆n
m (K, ·)

}m

K=1

}∞

n=1
and

{{
W∆n

m (K, ·)
}m

K=1

}∞

n=1
have the same limit. �

A.5 Proof of Proposition 3

In this proof we introduce an algorithm that characterizes the limit equilibrium outcome

as bargaining frictions vanish.10 Proposition 3 follows immediately from this characteri-

zation.

We consider a sequence of vanishing bargaining frictions {∆n}∞
n=1 → 0 with associ-

ated sequences
{{

P∆n
m (K, ·)

}m

K=1

}∞

n=1
,
{{

W∆n
m (K, ·)

}m

K=1

}∞

n=1
and

{(
K∆n

m (·), q∆n
m (·)

)}∞

n=1
that converge pointwise, by Lemma 1(a). We characterize the limits of these associated

sequences, which we denote by {Pm(K, ·)}m
K=1, {Wm(K, ·)}m

K=1 and (Km(·), qm(·)).

We describe both on-path and off-path behavior: we specify how quantities and be-

liefs evolve starting from any state (K, q). We let Km (τ; (K, q)) and qm (τ; (K, q)) denote

respectively the number of remaining units and the belief at time elapsed τ if the starting

state at time elapsed zero is (K, q).11 The on-path limit equilibrium outcome as bargaining

frictions vanish (Km (τ) , qm (τ)) then corresponds to (Km (τ; (m, 0)) , qm (τ; (m, 0))).

Our algorithm proceeds by induction. In each step we characterize the limit functions

{Pm(K, ·)}m
K=1, {Wm(K, ·)}m

K=1 and (Km(·), qm(·)) for different subsets of the state space

10We do this for generic values of the parameters (for details, see Remark 1 on page 20 of this Appendix).
11As in the main body of the paper, these functions are left-continuous in τ. These functions are uniquely

identified at all states, except at finitely many states, which correspond to (on- and off-path) impasses. For
these states, the functions Km (τ; (K, q)) and qm (τ; (K, q)) reflect the evolution after the impasse is resolved.
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{1, . . . , m} × [0, q̂]. In the base step (j = 0), we identify a candidate impasse (k1, q1) =

(1, q̄m(1)). We characterize the limit functions for all states (1, q) with q < q1 (Claim 6)

and for all states (K, q) with q ≥ q1 (Claim 7). At each (non-final) step j ≥ 1 of the

inductive process we identify a candidate impasse (k j+1, qj+1) with k j+1 > k j and qj+1 <

qj. Claims 8, 9 and 10 characterize the limit functions for all states (K, q) with either 1)

K ∈ {k j + 1, . . . , k j+1} and q ∈ [0, qj), or 2) K ∈ {k j+1 + 1, . . . , m} and q ∈ [qj+1, qj).

In particular, these claims show that the candidate impasse (k j, qj) is reached from the

candidate impasse (k j+1, qj+1).

The algorithm ends after finitely many steps with a characterization of the limit func-

tions for the whole state space {1, . . . , m} × [0, q̂] and with a collection
{
(k j, qj)

}J
j=1 of J

candidate impasses. All candidate impasses are on-path: the limit equilibrium outcome

as bargaining frictions vanish consists of a sequence of phases of fast trade and impasses

summarized by
{
(k j, qj)

}J
j=1.

The base step (j = 0)

In the base step we obtain the first candidate impasse (k1, q1) = (1, q̄m(1)). Claim 6

shows that the candidate impasse (1, q̄m(1)) is reached without delay starting from any

state (1, q) with q < q̄m(1).

CLAIM 6. For all q < q̄m(1), we have

Pm(1, q) =
(
Λm

1 vL
)2

c/m
,

Wm(1, q) = (q̄m(1)− q) (Λm
1 vL)

(
1−

Λm
1 vL

c/m

)
and

(Km (τ; (1, q)) , qm (τ; (1, q))) =

(1, q̄m(1)) if τ ≤ τ1

(0, q̂) if τ > τ1

with τ1 =
2
r

ln
(

c/m
Λm

1 vL

)
.

The proof of Claim 6 is in DL, so we omit it.

Claim 7 shows that starting at any state (K, q) with K ∈ {1, . . . , m} and q ∈ [q̄m(1), q̂],

the game ends without delay.
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CLAIM 7. For all (K, q) with K ∈ {1, . . . , m} and q ∈ [q̄m(1), q̂] we have

Pm(K, q) = K
c
m

,

Wm(K, q) = (q̂− q)

(
K

∑
s=1

Λm
s vL − K

c
m

)
+ (1− q̂)

(
K

∑
s=1

Λm
s vH − K

c
m

)
and

(Km (τ; (K, q)) , qm (τ; (K, q))) = (0, q̂) ∀τ ≥ 0.

Proof. At all states (K, q) with K ∈ {1, . . . , m} and q ∈ [q̄m(1), q̂], except for (1, q̄m(1)),

the buyer can guarantee a strictly positive continuation payoff by making a universal offer

for K units. Thus, the game ends without delay. The low-type seller can always mimic

the high-type seller’s behavior. Therefore, as bargaining frictions vanish, the price that the

low-type seller is willing to accept for K units must converge to K c
m . Then, the function

Pm(1, ·) is discontinuous at (1, q̄m(1)). We assign Pm(1, q̄m(1)) = P+
m (1, q̄m(1)). We do

the same with the outcome (Km (τ; (1, q̄m(1))) , qm (τ; (1, q̄m(1)))), i.e. we take the limit

from the right. In this way, these functions evaluated at (1, q̄m(1)) reflect what happens

right after the impasse (1, q̄m(1)) is resolved. We follow this convention also for the next

impasses. �

The algorithm then continues to the first inductive step (j = 1).

The inductive step (j ≥ 1)

The previous step j− 1 provides a (candidate) impasse (k j, qj) of length τj. The impasse

(k j, qj) satisfies q̄m(k j + 1) < qj and k j < m. All previous steps together provide a char-

acterization of the limit functions for all states (K, q) with either K ≤ k j, or q ≥ qj, or

both.

As we do in the main body of the paper, throughout this proof we focus on the “limit

game” in the sense that the low-type seller’s behavior is summarized by the limit function

Pm(·, ·). We consider a simple course of action that brings the buyer from any state (K, q)

with K ∈ {k j + 1, . . . , m} and q ∈ [0, qj] to the impasse (k j, qj). The buyer first makes

the universal offer
(
K− k j, c

m (K− k j)
)

and then the screening offer
(
K, P−m (k j, qj)

)
. The
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function W(K, q) : {k j + 1, . . . , m} × [0, qj] → R, defined in equation (5), denotes the

buyer’s (normalized) payoff from following this simple course of action.

W(K, q) ≡ (q̂− q)

 K

∑
s=kj+1

Λm
s vL − (K− k j)

c
m

+ (1− q̂)

 K

∑
s=kj+1

Λm
s vH − (K− k j)

c
m


+
(
qj − q

)  kj

∑
s=1

Λm
s vL − P−m

(
k j, qj

) (5)

REMARK 1. The following two conditions hold for generic values of the parameters:

W (K, 0) 6= 0 for all K ∈ {k j + 1, . . . , m} (6a)

W (K, q̄m(K)) 6= 0 for all K ∈ {k j + 1, . . . , m} (6b)

Throughout this proof we restrict attention to parameters that satisfy these two condi-

tions.

The function W(·, ·) satisfies W(K, qj) > 0 because q̄m(K) ≤ q̄m(k j + 1) < qj. More-

over,W(·, 0) is strictly decreasing in K. Given the genericity condition (6a), we next let

k =

max
{

K ∈ {k j + 1, . . . , m} :W(K, 0) > 0
}

ifW(k j + 1, 0) > 0

k j ifW(k j + 1, 0) < 0

We split the remainder of the inductive step into two parts, a and b. If k = m, the

algorithm proceeds with part a and then ends. If k j < k < m, the algorithm proceeds first

with part a and then with part b. If k = k j, the algorithm skips part a and moves directly

to part b. Throughout the description of these two parts, we refer to Figure 2 to facilitate

their exposition.

Part a. In this part we characterize the equilibrium outcome for all states (K, q) with

K ∈
{

k j + 1, . . . , k
}

and q ∈ [0, qj). At any such state, the buyer can guarantee a positive

continuation payoff by following the simple course of action described above. We repre-

sent this area of the state space with thick green lines in Figure 2. We show in Claim 8

how starting an any state (K, q) with K ∈
{

k j + 1, . . . , k
}

and q ∈ [0, qj), the state (k j, qj) is
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q̂

1

q̄m(1)qj

...

k j

k j + 1

...

k
k + 1

...

k = k j+1

k + 1

...

m

q̌(k + 1) . . . q̌(k) = qj+1

Notes: The green circle at state (k j, qj) denotes the candidate impasse from the previous
step j − 1. Thick green lines represent states (K, q) with W(K, q) > 0, while thick blue
lines represent states (K, q) with W(K, q) < 0. Dashed black arrows illustrate transitions
without delay. Filled circles represent on-path impasses, while empty circles represent off-
path impasses.

Figure 2: The inductive step (j ≥ 1) of the algorithm

reached without delay. The state remains there for time elapsed τj, i.e. there is an impasse

of length τj at state (k j, qj). After the impasse is resolved, the evolution of the number of

remaining units and of beliefs is as specified in the previous step of the induction process.

CLAIM 8. For all K ∈ {k j + 1, . . . , k} and for all q ∈ [0, qj) we have:

Pm(K, q) = (K− k j)
c
m

+ P−m
(
k j, qj

)
Wm(K, q) =W(K, q)

(Km (τ; (K, q)) , qm (τ; (K, q))) =


(
k j, qj

)
if τ ≤ τj(

Km
(
τ − τj; (k j, qj)

)
, qm

(
τ − τj; (k j, qj)

))
if τ > τj

See Section T.5 of the Technical Addendum for the proof.

If k = m, then (k j, qj) is the first impasse and the algorithm ends. Otherwise, the
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algorithm proceeds to part b.

Part b. We first let

k = max {K ∈ {k + 1, . . . , m} :W (K, q̄m(K)) > 0} .

Furthermore, for all K ≥ k + 1 we let q̌(K) ∈ (0, qj) be defined byW(K, q̌(K)) = 0. In this

part we derive the functions of interest for all states (K, q) with either 1) K ∈ {k+ 1, . . . , k}

and q < qj or 2) K > k and q ∈ [q̌(k), qj). To do so, we first prove the following fact.

FACT 1. The following inequalities hold:

∂W(K, q)
∂q

= (K− k j)
c
m

+ P−m
(
k j, qj

)
−

K

∑
s=1

Λm
s vL > 0 ∀ K > k (7a)

q̄m(k + 1) < q̌(k) < q̄m(k) (7b)

q̌(k + 1) < q̌(k + 2) < · · · < q̌(k− 1) < q̌(k) (7c)

where if k = m, replace (7b) by q̌(k) < q̄m(k).

Proof. First, for (7a), note thatW(K, 0) < 0 andW(K, qj) > 0 for all K > k. Moreover,

W(K, q) is linear in q. Thus, W(K, q) is strictly increasing in q for all K > k.12 Second,

for (7b), note that by the definition of k, W
(

k, q̄m(k)
)

> 0. Since W(K, q) is strictly

increasing, then q̌(k) < q̄m(k). If k = m, this finishes the proof of (7b). Otherwise, note that

the definition of k (and the genericity condition (6b)) imply thatW
(

k + 1, q̄m(k + 1)
)
< 0.

SinceW
(

k + 1, q̄m(k + 1)
)
=W

(
k, q̄m(k + 1)

)
, then q̄m(k+ 1) < q̌(k). Finally, regarding

equation (7c), note that:

W(K, q) =W(K− 1, q) + (q̂− q)
[
Λm

K vL −
c
m

]
+ (1− q̂)

[
Λm

K vH −
c
m

]
Then, W(K, q) ≥ W(K − 1, q) ⇔ q ≥ q̄m(K). Suppose that q̌(K) < q̄m(K). Then, 0 =

W(K, q̌(K)) <W(K− 1, q̌(K)) and so q̌(K− 1) < q̌(K). Since, q̌(k) < q̄m(k), an inductive

12The strict monotonicity of W(K, q) together with the equality W (K, q̄m(K)) = W (K− 1, q̄m(K))
implies that W (K, q̄m(K)) > 0 for all K ∈ {k + 1, . . . , k}. Furthermore, q̌(K) < q̄m(K + 1) for all
K ∈ {k + 1, . . . , k− 1}.
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argument shows equation (7c).13 �

The buyer can guarantee a positive continuation payoff at any state (K, q) with K ∈

{k + 1, . . . , k} and q ∈ (q̌(K), qj). This follows directly from the definition of q̌(·). The

buyer can also guarantee a positive continuation payoff at any state (K, q) with K ∈ {k +

1, . . . , m} and q ∈ [q̌(k), qj). This follows from the first inequality in equation (7b) and

the fact that q̄m(·) is strictly decreasing in K. We represent these areas of the state space

with thick green lines in Figure 2. As in Claim 8, starting from any state (K, q) with

W(K, q) > 0, the state (k j, qj) is reached without delay and an impasse of length τj occurs.

Claim 9 summarizes these findings.14 We omit the proof of Claim 9 since it is analogous

to that of Claim 8.

CLAIM 9. For all (K, q) with either 1) K ∈
{

k + 1, . . . , k
}

and q ∈
[
q̌(K), qj

)
or 2) K ∈{

k + 1, . . . , m
}

and q ∈
[
q̌(k), qj

)
we have

Pm(K, q) = (K− k j)
c
m

+ P−m
(
k j, qj

)
,

Wm(K, q) =W(K, q) and

(Km (τ; (K, q)) , qm (τ; (K, q))) =


(
k j, qj

)
if τ ≤ τj(

Km
(
τ − τj; (k j, qj)

)
, qm

(
τ − τj; (k j, qj)

))
if τ > τj.

Claim 10 completes the description of the limit functions in the inductive step. States

(K, q) with K ∈ {k + 1, . . . , k} and q < q̌(K) have W(K, q) < 0. We represent these

states with thick blue lines in Figure 2. Claim 10 shows that starting from any such (K, q),

the state shifts without delay to (K, q̌(K)), where an impasse of length ρ(K) occurs. The

reason behind this impasse is that the function Pm(K, ·) must be discontinuous at q̌(K)

for any K ∈ {k + 1, . . . , k}. If it were continuous, the buyer’s continuation payoff would

be negative at states (K, q) with q close (and to the left) of q̌(K). This impasse makes the

13It is easy to show in a similar way that q̌(k) > q̌(k + 1) > . . . > q̌(m). Thus k =
arg maxK∈{kj+1,...,m} {q̌(K)}, which is consistent with the definition of k2 in section III.B.

14In Claim 10 we show that there is a (potentially off-path) impasse at every state (K, q̌(K)) with K ∈{
k + 1, . . . , k

}
. Following the convention established in Claim 7, the limit functions evaluated at (K, q̌(K))

reflect the outcome after the impasse is resolved.
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price P−m (K, q̌(K)) low enough so that the buyer finds it optimal to move to state (K, q̌(K))

without delay.

CLAIM 10. For all (K, q) with K ∈ {k + 1, . . . , k} and q ∈ [0, q̌(K)) we have:

Pm(K, q) =

(
∑K

s=1 Λm
s vL

)2

(K− k j)
c
m + P−m

(
k j, qj

) ,

Wm(K, q) = (q̌(K)− q)

(
K

∑
s=1

Λm
s vL

)(
1− ∑K

s=1 Λm
s vL

(K− k j)
c
m + P−m

(
k j, qj

))

and

(Km (τ; (K, q)) , qm (τ; (K, q))) =


(K, q̌(K)) if τ ≤ ρ(K)(

Km (τ − ρ(K); (K, q̌(K))) ,

qm (τ − ρ(K); (K, q̌(K)))
) if τ > ρ(K)

with ρ(K) =
2
r

log

 (K− k j)
c
m + P−m (k j, qj)(

∑K
s=1 Λm

s

)
vL

 .

See Section T.5 of the Technical Addendum for the proof.

We finally describe how the inductive step concludes. We let
(
k j+1, qj+1

)
=
(

k, q̌
(

k
))

and τj+1 = ρ
(
k
)
. If k < m, then the algorithm proceeds to the next inductive step. If

k = m, then the algorithm ends. Since m is finite, the algorithm ends in finitely many

steps.

When the algorithm ends, it provides a collection
{
(k j, qj)

}J
j=1 of candidate impasses

and a complete characterization of the limit functions. The last inductive step shows that

starting at the initial state (m, 0), the state (k J , qJ) is reached without delay and an impasse

of length τJ ensues. Each inductive step shows how after the impasse in state (k j, qj)

is resolved, the state shifts without delay to (k j−1, qj−1), where an additional impasse

of length τj−1 occurs. The base step shows that the game ends after the last impasse

(1, q̄m(1)) is reached.

To sum up, all impasses in
{
(k j, qj)

}J
j=1 occur on-path.15 Thus, the limit equilibrium

15All other impasses identified in Claim 10 in each inductive step are off-path.
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outcome as bargaining frictions vanish consists of a sequence of phases of fast trade an

impasses characterized by
{
(k j, qj)

}J
j=1. �

A.6 Proof of Proposition 4

We first show equation (8d). We then proceed with the proof of equation (8b), which is

the most involved part of the proof of Proposition 4 and includes several steps. We finally

show how the remaining equations in Proposition 4 follow from equations (8b) and (8d).

Proof of equation (8d). Any impasse (km
j , qm

j ) must satisfy q̄m(km
j + 1) < qm

j < q̄m(km
j )

(see Proposition 3). Together with the definitions of q̄(·) and q̄m(·), and replacing zm
j =

km
j /m when needed, this implies

q̄
(

zm
j +

1
m

)
= q̄

(
km

j + 1

m

)
< q̄m(km

j + 1) < qm
j < q̄m(km

j ) < q̄

(
km

j − 1

m

)
= q̄

(
zm

j −
1
m

)

Notice that
∣∣∣ dq̄(z)

dz

∣∣∣ is bounded by some constant ρ̌ < ∞ (because dλ(·)
dz is continuous). Thus,

∣∣∣qm
j − q̄(zm

j )
∣∣∣ < max

{∣∣∣q̄ (zm
j − 1/m

)
− q̄(zm

j )
∣∣∣ ;
∣∣∣q̄ (zm

j + 1/m
)
− q̄(zm

j )
∣∣∣} < ρ̌/m.

The bound ρ̌ is independent of j, so max
{∣∣∣qm

j − q̄(zm
j )
∣∣∣}Jm

j=1
< ρ̌/m, which leads to equa-

tion (8d):

lim
m→∞

max
{∣∣∣qm

j − q̄(zm
j )
∣∣∣}Jm

j=1
= 0

Proof of equation (8b). We split this proof in two parts. In the first one we construct

a sequence of limits of consecutive impasses and show how to link these limits. In the

second one we use this construction to show that limits of consecutive impasses must be

arbitrarily close.

Construction of the sequence of limits of consecutive impasses. Assume towards a

contradiction that

lim sup
m→∞

(
max

{
qm

j−1 − qm
j

}Jm

j=2

)
> 0.

Then, by taking a subsequence if necessary, we may assume that a sequence of consecu-
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tive impasses
{(

zm
jm , qm

jm

)
,
(

zm
jm−1, qm

jm−1

)}∞

m=1
that converges to ((z0, q0) , (z−1, q−1)) with

q0 > q−1 exists. Equation (8d) guarantees that q0 = q̄(z0) and q−1 = q̄(z−1)

The buyer obtains a zero continuation payoff at every impasse. Thus, the difference

Wm(mzm
jm , qm

jm)−Wm(mzm
jm−1, qm

jm−1), which we express in equation (8), is also zero:16

(
qm

jm−1 − qm
jm

) [∫ zm
jm

0
λ(z)vLdz− P+

m

(
mzm

jm , qm
jm

)]
(8)

+
(

q̂− qm
jm−1

) ∫ zm
jm

zm
jm−1

[λ(z)vL − c] dz + (1− q̂)
∫ zm

jm

zm
jm−1

[λ(z)vH − c] dz = 0

The left hand side of equation (8) is continuous in
(

zm
jm , qm

jm

)
,
(

zm
jm−1, qm

jm−1

)
and in

P+
m

(
mzm

jm , qm
jm

)
. Moreover it strictly decreases in P+

m

(
mzm

jm , qm
jm

)
, with derivative bounded

away from zero. Hence, since
{(

zm
jm , qm

jm

)}∞

m=1
and

{(
zm

jm−1, qm
jm−1

)}∞

m=1
converge, then{

P+
m

(
mzm

jm , qm
jm

)}∞

m=1
must also converge. We let P+

0 denote its limit. Equation (9) ex-

presses equation (8) in the limit:

(q−1 − q0)

[∫ ψ(q0)

0
λ(z)vLdz− P+

0

]
(9)

+ (q̂− q−1)
∫ ψ(q0)

ψ(q−1)
[λ(z)vL − c] dz + (1− q̂)

∫ ψ(q0)

ψ(q−1)
[λ(z)vH − c] dz = 0

with a change of variables taking advantage of z` = ψ(q`) for ` ∈ {0,−1}, where ψ(·) is

the inverse of q̄(·). Equation (9) links the limits (z0, q0) and (z−1, q−1).

We show next that q−1 < q̄(0) (and so z−1 > 0). Assume towards a contradiction that

q−1 = q̄(0) and z−1 = 0. This implies that P+
0 = z0c.17 Using this, we rewrite the left

hand side of equation (9) as

(q̂− q0)

[∫ ψ(q0)

0
[λ(z)vL − c] dz

]
+ (1− q̂)

∫ ψ(q0)

0
[λ(z)vH − c] dz < 0

where the inequality follows from the definition of ψ(·). This leads to a contradiction.

16We use equation (4c) to obtain equation (8).
17Equation (4b) implies that P−m

(
mzm

jm−1, qm
jm−1

)
< vL

∫ zm
jm−1

0 λ(z)dz, which converges to zero as m → ∞.

This and equation (4c) imply that P+
m

(
mzm

jm , qm
jm

)
becomes arbitrarily close to (zm

jm − zm
jm−1)c as m→ ∞.
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For every (large enough) m there exists an impasse
(

zm
jm−2, qm

jm−2

)
that occurs after(

zm
jm−1, qm

jm−1

)
is resolved. This is because the last impasse occurs at z = 1

m and z−1 > 0.

Assume, by taking a subsequence if necessary, that the sequence
{(

zm
jm−2, qm

jm−2

)}∞

m=1
converges to (z−2, q−2). By an argument like the one for q−1, then also q−2 < q̄(0).

We show next that q−1 < q−2. Assume instead that q−1 = q−2 (so z−1 = z−2). Equa-

tion (4c) then implies limm→∞ P+
m

(
mzm

jm−1, qm
jm−1

)
− P−m

(
mzm

jm−2, qm
jm−2

)
= 0. Proposi-

tion 3 guarantees that in general

P−m
(

mzm
jm−2, qm

jm−2

)
< vL

∫ zm
jm−2

0
λ(z)dz < vL

∫ zm
jm−1

0
λ(z)dz < P+

m

(
mzm

jm−1, qm
jm−1

)
.

Thus, q−1 = q−2 implies limm→∞ P+
m

(
mzm

jm−1, qm
jm−1

)
= limm→∞ P−m

(
mzm

jm−2, qm
jm−2

)
=

vL
∫ z−1

0 λ(z)dz. Finally, we link P+
m

(
mzm

jm , qm
jm

)
and P+

m

(
mzm

jm−1, qm
jm−1

)
using equations

(4b) and (4c) and take limits to obtain

P+
0 = (z0 − z−1) c + vL

∫ z−1

0
λ(z)dz.

We plug this expression for P+
0 in the left hand side of equation (9) and obtain the follow-

ing contradiction:

(q̂− q0)
∫ ψ(q0)

ψ(q−1)
[λ(z)vL − c] dz + (1− q̂)

∫ ψ(q0)

ψ(q−1)
[λ(z)vH − c] dz < 0

The same argument that shows that the sequence
{

P+
m

(
mzm

jm , qm
jm

)}∞

m=1
must converge

to P+
0 also guarantees that the sequence

{
P+

m

(
mzm

jm−1, qm
jm−1

)}∞

m=1
must converge, and its

limit, which we denote by P+
−1 must satisfy an equation like (9):

(q−2 − q−1)

[∫ ψ(q−1)

0
λ(z)vLdz− P+

−1

]
+ (q̂− q−2)

∫ ψ(q−1)

ψ(q−2)
[λ(z)vL − c] dz + (1− q̂)

∫ ψ(q−1)

ψ(q−2)
[λ(z)vH − c] dz = 0

The previous equation links the limits (z−1, q−1) and (z−2, q−2) of the sequences of con-

secutive impasses
{(

zm
jm−1, qm

jm−1

)}∞

m=1
and

{(
zm

jm−2, qm
jm−2

)}∞

m=1
.
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We next link the limit prices P+
0 and P+

−1 using equations (4b) and (4c). Equation (4c)

links P+
m

(
mzm

jm , qm
jm

)
and P−m

(
mzm

jm−1, qm
jm−1

)
. Equation (4b) links P−m

(
mzm

jm−1, qm
jm−1

)
and

P+
m

(
mzm

jm−1, qm
jm−1

)
. Using these equations together, and taking limits, we obtain

P+
0 = [ψ(q0)− ψ(q−1)] c +

(
vL
∫ ψ(q−1)

0 λzdz
)2

P+
−1

. (10)

We proceed recursively and construct, taking subsequences if necessary, a collection

of sequences of impasses
{{(

zm
jm−`, qm

jm−`

)}∞

m=1

}∞

`=0
, where, for every `, the sequence{(

zm
jm−`, qm

jm−`

)}∞

m=1
converges to (z−`, q−`) as m grows to infinity. Furthermore, for ev-

ery `, the sequence
{

P+
m

(
mzm

jm−`, qm
jm−`

)}∞

m=1
converges to P+

−`.

For every ` = 0, 1, . . . the limits of consecutive impasses must satisfy equations (11)

and (12).

(
q−(`+1) − q−`

) [∫ ψ(q−`)

0
λ(z)vLdz− P+

−`

]
(11)

+
(

q̂− q−(`+1)

) ∫ ψ(q−`)

ψ(q−(`+1))
[λ(z)vL − c] dz + (1− q̂)

∫ ψ(q−`)

ψ(q−(`+1))
[λ(z)vH − c] dz = 0

P+
−` =

[
ψ(q−`)− ψ(q−(`+1))

]
c +

(
vL
∫ ψ(q−(`+1))

0 λ(z)dz
)2

P+
−(`+1)

(12)

These conditions mirror equations (9) and (10). Finally, limit beliefs satisfy

q0 < q−1 < . . . < q−` < . . . < q̄(0). (13)

Bounding the distance between limits of consecutive impasses. In the remainder of

the proof we focus on the collection
{(

q−`, P+
−`

)}∞

`=0
which satisfies equations (11), (12),

and (13). We show that the limit beliefs {q−`}∞
`=0 are arbitrarily close to each other. To do

this, we obtain explicit bounds that link successive limit impasses by using equations (11)

and (12). These bounds link differences between consecutive beliefs and also differences

between prices and valuations. Facts 2 and 3 state the first bounds (see Section T.6 of the

Technical Addendum for their proof).
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FACT 2. There exists η∗ > 0 such that for every ` ≥ 1, if q−(`+1) − q−` < η∗, then q−` −

q−(`−1) <
4
3

(
q−(`+1) − q−`

)
.

FACT 3. There exists constants b1 > 0 and b2 > 0 such that for every ` = 0, 1, . . ., we have:

[
P+
−` −

∫ ψ(q−`)
0 λ(z)vLdz

]
−
[

P+
−(`+1) −

∫ ψ(q−(`+1))

0 λ(z)vLdz
]

q−(`+1) − q−`
≤ b1

(
q−(`+1) − q−`

)
(14)

q−(`+1) − q−` ≤ b2

[
P+
−` −

∫ ψ(q−`)

0
λ(z)vLdz

]
(15)

Using Facts 2 and 3 we prove Claims 11 and 12, which provide further bounds. Claim

11 links successive differences between prices and valuations and Claim 12 links differ-

ences between successive beliefs.

CLAIM 11. Consider `′ and `′′ with 0 ≤ `′ < `′′. Let ε > 0 and η > 0 be such that q−(`+1) −

q−` < ε for all ` ∈ {`′, . . . , `′′ − 1} and q−`′′ − q−`′ < η. Then, for every ` ∈ {`′, . . . , `′′ − 1},

we have:

P+
−` −

∫ ψ(q−`)

0
λ(z)vLdz < P+

−`′′ −
∫ ψ(q−`′′ )

0
λ(z)vLdz + εηb1

Proof. For every ` ∈ {`′, . . . , `′′ − 1} we have

P+
−` −

∫ ψ(q−`)

0
λ(z)vLdz = P+

−(`+1) −
∫ ψ(q−(`+1))

0
λ(z)vLdz

+
(

q−(`+1) − q−`
) P+
−` −

∫ ψ(q−`)
0 λ(z)vLdz−

(
P+
−(`+1) −

∫ ψ(q−(`+1))
0 λ(z)vLdz

)
q−(`+1) − q−`

< P+
−(`+1) −

∫ ψ(q−(`+1))

0
λ(z)vLdz + εb1

(
q−(`+1) − q−`

)
where the inequality follows from q−(`+1)− q−` < ε and equation (14) in Fact 3. Applying

the same argument recursively leads to

P+
−` −

∫ ψ(q−`)

0
λ(z)vLdz < P+

−`′′ −
∫ ψ(q−`′′ )

0
λ(z)vLdz + εb1

`′′−1

∑̃
`=`

(
q−( ˜̀+1) − q− ˜̀

)
< P+

−`′′ −
∫ ψ(q−`′′ )

0
λ(z)vLdz + εηb1 �
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CLAIM 12. Consider `′ and `′′ with 1 ≤ `′ < `′′. Let 0 < ε < η∗ and 0 < η < (3b1b2)
−1

be such that q−(`+1) − q−` < ε for all ` ∈ {`′, . . . , `′′ − 1}, q−`′′ − q−`′ < η and P+
−`′′ −∫ ψ(q−`′′ )

0 λ(z)vLdz < (3b2)
−1ε. Then, q−`′ − q−(`′−1) < ε.

Proof. We have

q−(`′+1) − q−`′ ≤ b2

[
P+
−`′ −

∫ ψ(q−`′ )

0
λ(z)vLdz

]
< b2

(
P+
−`′′ −

∫ ψ(q−`′′ )

0
λ(z)vLdz + εηb1

)
< b2

(
(3b2)

−1ε + ε(3b1b2)
−1b1

)
<

2
3

ε

where the first inequality follows from equation (15) in Fact 3 and the second one from

Claim 11. This, together with Fact 2, implies that

q−`′ − q−(`′−1) <
4
3

(
q−(`′+1) − q−`′

)
<

(
4
3

)(
2
3

)
ε < ε �

Claim 12 provides the last intermediate result to complete the proof of equation (8b).

The sequence {q−`}∞
`=0 is strictly increasing and bounded above by q̄(0). Then, it has a

limit, which we denote by q−∞. With this, applying L’Hôpital’s rule to equation (11) we

obtain

lim
`→∞

P+
−` −

∫ ψ(q−`)

0
λ(z)vLdz = 0.

We focus on elements of the sequence {q−`}∞
`=0 which are sufficiently close to q−∞. Let

`′ = min
{
` : q−` ≥ q−∞ − (6b1b2)

−1}. Fix ε = 1
2 min {q−`′ − q−`′+1; η∗} > 0 and pick `′′

such that:

max
{

q−(`′′+1) − q−`′′ ; P+
−`′′ −

∫ ψ(q−`′′ )

0
λ(z)vLdz

}
< min

{
ε, (3b2)

−1ε
}

Then, applying Claim 12 recursively, we obtain q−`′ − q−`′+1 < ε, which is a contradiction

and completes the proof of equation (8b).

Proof of equations (8a), (8c), (8e) and (8f). Equations (8b) and (8d) together imply

equation (8a). Equation (8) links any sequence of consecutive impasses. We take the limit

of equation (8) as m grows large, use equations (8b) and (8d) and apply L’Hôpital’s rule

to obtain equation (8f). Equation (8e) follows from equation (8f) and equation (4b) in
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Proposition 3. Finally, we show equation (8c) by contradiction. Assume instead that,

taking subsequences if necessary, limm→∞ zm
Jm

= z̄ < 1. This, together with equation (8e),

implies that, in the limit, the buyer’s continuation payoff at the beginning of the game is

negative:

lim
m→∞

Wm(m, 0) = q̂
[∫ 1

z̄
[λ(z)vL − c] dz

]
+ (1− q̂)

[∫ 1

z̄
[λ(z)vH − c] dz

]
< 0

This can never happen, so we have reached a contradiction. �

A.7 Proof of Proposition 1

Proof. We present here the proof for (a). The cases (b), (c) and (d) follow the same argu-

ment. Assume towards a contradiction that the result does not hold for (a). Equation (3b)

implies that

z̃∗′(0) =
rvL
∫ 1

0 λ̃(z)dz
vLλ̃ (1)− c

<
rvL
∫ 1

0 λ(z)dz
vLλ (1)− c

= z∗′(0).

Let τ = min {τ > 0 : z̃∗(τ) = z∗(τ)}. It follows again from equation (3b) that

z̃∗′ (τ) =
rvL
∫ z̃∗(τ)

0 λ̃(z)dz
vLλ̃ (z̃∗ (τ))− c

<
rvL
∫ z∗(τ)

0 λ(z)dz
vLλ (z∗ (τ))− c

= z∗′ (τ) .

But then there exists τ′ ∈ (0, τ) with z̃∗′ (τ′) = z∗′ (τ′), reaching a contradiction. Finally,

notice that z∗(0) = 1 and that z∗′(·) does not depend on vH or β̂. �

A.8 Proof of Proposition 5

Proof. Let λ(z) = 1 for every z ∈ [0, 1]. Fix the number of units m and the period

length ∆. Let W(1, ·) and P(1, ·) be respectively the buyer’s normalized payoff and the

price function when one unit remains. These functions are as in DL, so W(1, q) > 0

for every q ∈ [0, q̂]. Suppose that for every K ∈ {1, . . . , m} and for every q ∈ [0, q̂],

W(K, q) = KW(1, q) and P(K, q) = KP(1, q). Finally consider a belief q′ ∈ [0, q̂] such that

the buyer makes a screening offer at state (1, q′). The following argument shows that it is
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not optimal for the buyer to make a universal offer at any state (K, q′) with K ∈ {2, . . . , m}.

Assume towards a contradiction that it is optimal to make a universal offer for K− k units.

Then,

W(K, q′) = KW(1, q′) ≤ K− k
m

[(
q̂− q′

)
vL + (1− q̂) vH − (1− q′)c

]
+ δkW(1, q′)

<
K− k

m
[(

q̂− q′
)

vL + (1− q̂) vH − (1− q′)c
]
+ kW(1, q′)

This in turn, implies that

W(1, q′) <
1
m
[(

q̂− q′
)

vL + (1− q̂) vH − (1− q′)c
]

which violates the assumption that a screening offer is optimal at state (1, q′). This argu-

ment directly implies Proposition 5 when gains from trade are constant.

An argument analogous to the one in the previous paragraphs extends the result to

the case of increasing gains from trade. We omit the proof here.18 �
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