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Proofs

Proof of Theorem 1. Condition 1 satisfies the conditions of Theorem 1 in Imbens
and Angrist (1994), which implies

E [Yi|Ji = j,Xi = x] (1)

= (pj,x − p1,x)E [Yi (1)− Yi (0) |Di (j) > Di (0) , Xi = x] + E [Yi|Ji = 1, Xi = x] .

By Condition 1c, monotonicity, for each individual i with Xi = x, one can define
a marginal propensity, p̄i,x := inf {p : p ∈ {p1,x, . . . , pJ,x} , Di (j) = 1, Xi = x}, such
that when assigned a judge with pj,x ≥ p̄i,x, the individual is treated, and otherwise
is untreated. For never-takers, we define p̄i,x = ∞. For always-takers, p̄i,x = p1,x.
Note that p̄i,x depends only on Di (j), and by Condition 1a is therefore independent
of Ji conditional on Xi = x and that potential treatment status for individual i with
Xi = x can be written Di (Ji) = p̄i,x ≤ pJi,x. The right hand side of equation (1) then
can be written

φx (pj,x) = (pj,x − p1,x)E [Yi (1)− Yi (0) |p1,x < p̄i,x ≤ pj,x, Xi = x]+E [Yi|Ji = 1, Xi = x] ,

which depends on j only through pj,x. By monotonicity the average slope of φ through
two points p and p′ (where p′ ≥ p) can be written:

φx (p′)− φx (p) = (p′ − p)E [Yi (1)− Yi (0) |p ≤ p̄i,x ≤ p′, Xi = x] .

Let Y be the compact support of Yi. Noting that K := supY − inf Y is finite and
that |E [Yi (1)− Yi (0) |p ≤ p̄i,x ≤ p′, Xi = x]| ≤ K yields the result.
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Proof of Theorem 2. Define

T1,j =
ŷj − yj −K (p̂j − pj)√(

σ̂2
Y j +K2σ̂2

Dj − 2Kσ̂Y Dj
)
/nj

,

T2,j =
ŷj − yj +K (p̂j − pj)√(

σ̂2
Y j +K2σ̂2

Dj + 2Kσ̂Y Dj
)
/nj

,

Tn = max {|T1,j| , |T2,j|}Jj=1 .

Note that by Condition 1 {yj, pj} satisfy constraint (2). By the central limit theorem

√
nj

(
T1,j
T2,j

)
→d N (0, ρj) , j = 1, . . . , J,

independently across j. Therefore Tn is asymptotically distributed as the maximum
element of a 2J Gaussian variate with block-diagonal correlation matrix with corre-
lations ρj. Standard results on order statistics imply that the cdf of Tn is F (t). Since

by construction T̂ ≤ Tn, we have

lim
n→∞

Pr
(
T̂ > C1−α

)
≤ lim

n→∞
Pr (Tn > C1−α) = α.

Proof of Theorem 3. Define the following:

Yij = Yi (Di (j) , j)

D̄i =
J∑
j=1

λjDi (j)

p =
J∑
j=1

λjpj

Ȳi : =
J∑
j=1

λjYij

Iterating expectations in the numerator and denominator of the definition of β2SLS,
the expression becomes:∑k

j=1 λj (E [(pj − p) (Yi − E [Yi]) |Ji = j])∑k
j=1 λj (pj − p)2

=

∑k
j=1 λj

(
E
[
(pj − p)

(
Yij − Ȳi

)
|Ji = j

])∑k
j=1 λj (pj − p)E

[(
Di (j)− D̄i

)] ,
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where the second line follows from random assignment which implies E
[
Ȳi|Ji = j

]
=

E
[
Ȳi
]

= E [Yi]. Noting that λj (pj − p) is deterministic and that random assignment
implies E [Yij|Ji = j] = E [Yij], the IV estimand can be written:∑k

j=1 λj (pj − p)
(
E [Yij]− E

[
Ȳi
])

E
[∑k

j=1 λj (pj − p)
(
Di (j)− D̄i

)]
=

E
[∑k

j=1 λj (pj − p)
(
Yij − Ȳi

)]
E
[∑k

j=1 λj (pj − p)
(
Di (j)− D̄i

)]
=

E
[
ωi
(
Ȳi (1)− Ȳi (0)

)]
E [ωi]

+
E
[∑k

j=1 λj (pj − p) γij
]

∑k
j=1 λj (pj − p)2

where the first equality follows from the interchangeability of integration and sum-
mation, and the final equality from the definitions of Yij, Ȳi and ωi.

Formal Motivation for Test Statistics

This section shows that the judge-level test statistics,

T̂1,j =
ŷj − ỹj −K (p̂j − p̃j)√(

σ̂2
Y j +K2σ̂2

Dj − 2Kσ̂Y Dj
)
/nj

,

T̂2,j =
ŷj − ỹj +K (p̂j − p̃j)√(

σ̂2
Y j +K2σ̂2

Dj + 2Kσ̂Y Dj
)
/nj

,

are proportional to the distance between the sample judge quantities (p̂j, ŷj) and
candidate population judge quantities (p̃j, ỹj) when the slope constraints bind. To
see this, note that the boundaries of the constraints satisfied by judge j’s candidate
population quantities (p̃j, ỹj) are lines with slope ±K of the form

y = c±Kp.

The distance from the sample quantities (p̂j, ŷj) to such a line is

dj =
|ŷj ∓Kp̂j − c|√

1 +K2
.

When the constraint binds the line will pass through (p̃j, ỹj) , implying that c =
ỹj ∓Kp̃j. Substituting this in, the distance is

dj =
|ŷ − ỹj ∓K (p̂− p̃j)|√

1 +K2
,
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which is proportional to
∣∣∣T̂1,j∣∣∣ and

∣∣∣T̂2,j∣∣∣. Thus, the test statistics are proportional

to the distance between the sample quantities (p̂j, ŷj) and the candidate population
quantities (p̃j, ỹj) when the slope constraints bind.

Testing Procedure with Covariates

The main text describes how covariates may be incorporated into the testing proce-
dure in one of two ways: (1) assuming covariates have linear and separable effects
on the outcome and treatment; and (2) performing the test within discrete covariate
cells, which we’ll refer to as a saturated specification. This section provides formal
results to supplement the discussion in the text.

Separable, Linear Covariates

Let Xi be a k × 1 vector of covariates such that Condition 1 in the main text holds.
We assume in this section that the outcome and treatment depend on Xi linearly and
separably:

E [Yi|Ji = j,Xi] = ỹj +X ′iπY , (2)

E [Di|Ji = j,Xi] = p̃j +X ′iπD. (3)

Under this specification the Wald ratio between a pair of judges (j, j′) is

E [Yi|Ji = j,Xi]− E [Yi|Ji = j′, Xi]

E [Di|Ji = j,Xi]− E [Di|Ji = j′, Xi]
=
ỹj − ỹj′
p̃j − p̃j′

.

Theorem 1 implies that this Wald ratio will lie between −K and K, where K is
the width of the support of the outcome variable, which gives the following testable
restrictions: ∣∣∣∣ ỹj − ỹj′p̃j − p̃j′

∣∣∣∣ ≤ K

for any pair of judges (j, j′). This can be tested using a similar procedure to that
described in the main text, but with the following adjustments. First, estimates of
{ỹj, p̃j} replace the estimated judge-level means {ŷj, p̂j}. The estimates of {ỹj, p̃j} are
obtained from regressions of Yi and Di on a set of judge dummies, Zi, and covariates
Xi. Let Zi include dummies for each judge (no omitted category) and assume that
the elements of Xi are mean zero and do not include a constant. Define Wi = (Zi, X

′
i)
′

and the least squares regression coefficients

θ̂Y =
n∑
i=1

(WiW
′
i )
−1
WiYi,

θ̂D =
n∑
i=1

(WiW
′
i )
−1
WiDi.
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Estimates of {ỹj} are the first J elements of θ̂Y and estimates of {p̃j} are the first J

elements of θ̂D. Under the assumptions of Theorem 2, the estimators θ̂ =
(
θ̂′Y , θ̂

′
D

)′
are jointly asymptotically normal:

√
n
(
θ̂ − θ

)
→d N (0, E [RiR

′
i]) ,

where

Ri =

(
Q−1W Wi (Yi −W ′

iθY )
Q−1W Wi (Di −W ′

iθD)

)
and QW = E [WiW

′
i ]. Let Σ̂ be the sample version of E [RiR

′
i]. Note that the nu-

merators of the statistics T1,j and T2,j are G′1,j

(
θ̂ − θ

)
and G′2,j

(
θ̂ − θ

)
, respectively,

where G1,j has a one in the jth component and a −K in the (J + k + j)th compo-
nent, and zeroes elsewhere and G2j is the same, but with a K in the (J + k + j)th

component. The full 2J×1 vector of test statistic numerators is given by G′
(
θ̂ − θ

)
,

where
G = [G1,1, G2,1, . . . , G1,J , G2,J ] .

The vector of normalized test statistics is given by

T =


T1,1
T2,1

...
T1,J
T2,J

 =

√
ndiag

(
G′Σ̂G

)−1
G′
(
θ̂ − θ

)
,

where diag(·) indicates a diagonal matrix whose elements are the diagonals of the ar-
gument, and

√
· is elementwise. The vector of test statistics converges in distribution:

T →d N (0,Ω) ,

Ω =

√
diag

(
G′Σ̂G

)−1
G′E [RiR

′
i]G

√
diag

(
G′Σ̂G

)−1
.

Let |T| be the maximum absolute element of T, and let |Z|1−α be the 1−α quantile of
the maximum absolute element of a mean-zero multivariate normal random variable
with covariance matrix Ω, which can be found by simulation. Note that |T| depends

on the values {ỹ1, p̃1, . . .}. Let
∣∣∣T̂ ∣∣∣ be the optimized version of this, minimizing over

{ỹ1, p̃1, . . .} subject to the pairwise slope constraints, as in the main version of the
test. The following result shows that a test based critical value |Z|1−α controls size
asymptotically.

Theorem 1 Suppose the conditions of Theorem 2 hold, in addition to covariate spec-

ifications (2) and (3). Then limn→∞ Pr
(∣∣∣T̂ ∣∣∣ > |Z|1−α) ≤ α.
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Proof. By construction
∣∣∣T̂ ∣∣∣ ≤ |T|, so by the convergence in distribution of |T| we

have
lim
n→∞

Pr
(∣∣∣T̂ ∣∣∣ > |Z|1−α) ≤ lim

n→∞
Pr
(
|T| > |Z|1−α

)
= α.

Saturated Covariates

Suppose Xi takes on k values so that without loss of generality we can assume Xi ∈
{1, . . . , k} and that the number of observations in each covariate cell is large enough
for asymptotic approximations to be appropriate. As described in the main text,

denote the test statistic for the cell with Xi = x as
∣∣∣T̂x∣∣∣, and define the overall test

statistic ∣∣∣T̂ ∣∣∣ = max
x

∣∣∣T̂x∣∣∣ .
The critical value is C1−α = F−1 (1− α), where the test statistic’s cdf is now F (t) =∏

x,j Fx,j (t), and

Fx,j (t) = Φ (t, t; ρ̂x,j) + Φ (−t,−t; ρ̂x,j)− 2Φ (−t, t; ρ̂x,j) ,

ρ̂x,j =
σ̂2
Y x,j −K2σ̂2

Dx,j√(
σ̂2
Y x,j +K2σ̂2

Dx,j

)2 − (2Kσ̂Y Dx,j)
2
,

and σ̂2
Y x,j, σ̂

2
Dx,j, σ̂Y Dx,j are the sample variances and covariance of Yi and Di condi-

tional on judge j and covariate cell x.
The following result shows that the test statistic described in the text controls

size asymptotically.

Theorem 2 Suppose the conditions of Theorem 2 hold conditional on Xi ∈ {1, . . . , k}
and that minx∈{1,...,k} Pr (Xi = x) ≥ κ for some κ > 0. Then limn→∞ Pr

(∣∣∣T̂ ∣∣∣ > C1−α

)
≤

α.

Proof. Define |Tn| = maxx |Tx,n|, where |Tx,n| is the cell-specific test statistic evalu-
ated at the true quantities {yj,x, pj,x}. Note that F (t) defined above is the limiting

distribution of |Tn|. By construction
∣∣∣T̂ ∣∣∣ ≤ |Tn|, so we have

lim
n→∞

Pr
(∣∣∣T̂ ∣∣∣ > C1−α

)
≤ lim

n→∞
Pr (|Tn| > C1−α) = α.

6



Exact Finite Sample Testing Procedure

The nonparametric test in the main text relies on an asymptotic approximation to
the distribution of the test statistic that converges as the number of observations per
judge grows. In applications of the judge fixed effects design with few observations
per judge, or where conditioning on covariates necessitates running the test in small
cells, a natural question is whether the approximation is accurate.

In this section we adapt the nonparametric test to the case where the number of
observations per judge may be small. We derive the exact finite-sample distribution of
the test statistic and show the approximation used in the main text is very accurate,
even for observations per judge much fewer than is common in applications.

The main challenge to overcome when the number of observations per judge is
small is that the distribution of the judge-level sample quantities (ŷj, p̂j) may not be
well approximated by a normal distribution. Fortunately, when the outcome is bi-
nary, as in our application, the distribution of judge-level sample quantities is exactly
characterized by a multinomial distribution. When the outcome is not binary, it can
be replaced by a binary indicator for the outcome exceeding some value. Without
loss of generality, therefore, we assume in this section that the outcome is binary.

Define the observed quantities W = Y D and V = Y (1−D), and let wj =
E [W |J = j], and vj = E [V |J = j]. Because Y = W + V , we have yj = wj + vj.
Treatment effects on W are bounded between zero and one, and treatment effects
on V are between negative one and zero. This puts the following constraints on
(pj, vj, wj) within and across judges:

0 ≤ pj ≤ 1,
0 ≤ wj ≤ pj,

0 ≤ vj ≤ 1− pj,


J

j=1
{

0 ≤ wj−wj′

pj−pj′
≤ 1,

−1 ≤ vj−vj′
pj−pj′

≤ 0,

}J−1

j=1


J

j′=j+1

.

All the sample information for a given judge is captured in the following two-by-
two table:

D
0 1

Y 0 Aj, aj Bj, bj
1 Vj, vj Wj, wj

1− pj pj

.

In each cell, the capitalized quantity (e.g., Aj) represents the random (multinomial)
count in that cell, and the lower case quantity represents the probability associated
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with that cell. Note that we have

aj = 1− pj − vj
bj = pj − wj,
ŷj = (Vj +Wj) /nj,

p̂j = (Wj +Bj) /nj.

Our testing approach is based on the similar statistics to those used in the main text:

T̂1,j =
ŷj − ỹj −K (p̂j − p̃j)√(

σ̃2
Y,j +K2σ̃2

D,j − 2Kσ̃Y D,j
)
/nj

,

T̂2,j =
ŷj − ỹj +K (p̂j − p̃j)√(

σ̃2
Y,j +K2σ̃2

D,j + 2Kσ̃Y D,j
)
/nj

,

where

σ̃2
Y,j = ỹj (1− ỹj) ,

σ̃2
D,j = p̃j (1− p̃j) ,

σ̃Y D,j = w̃j − ỹj p̃j.

As before, we take the larger of the absolute values of these statistics:∣∣∣T̂j (ŷj, p̂j)
∣∣∣ = max

{∣∣∣T̂1j∣∣∣ , ∣∣∣T̂2j∣∣∣} .
Let the function gj (t; w̃j, ṽj, p̃j) be the probability that T̂j is strictly less than some
value t, given that w̃j, ṽj, and p̃j are the true parameters; that is,

gj (t; w̃j, ṽj, p̃j) =
nj∑
v=0

nj−v∑
b=0

nj−v−b∑
w=0

1
(∣∣∣T̂j ((v + w) /nj, (w + b) /nj)

∣∣∣ < t
)
f (xj (v, b, w) ;nj, φ (w̃j, ṽj, p̃j)) ,

where f is the multinomial pmf and

xj (v, b, w) =


v
b
w

nj − v − b− w

 ,

φ (w̃j, ṽj, p̃j) =


ṽj

p̃j − w̃j
w̃j

1− ṽj − p̃j

 .
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As before, we take the maximum deviation across judges:∣∣∣T̂ ({w̃j, ṽj, p̃j})
∣∣∣ = max

j

∣∣∣T̂j∣∣∣ .
Define the p-value for the test:

P̂ = max
{w̃j ,ṽj ,p̃j}

1−
∏
j

gj

(∣∣∣T̂ ({w̃j, ṽj, p̃j})
∣∣∣ ; w̃j, ṽj, p̃j)

s.t.

{
0 ≤ wj ≤ pj,

0 ≤ vj ≤ 1− pj,

}J
j=1

,
{

0 ≤ wj−wj′

pj−pj′
≤ 1,

−1 ≤ vj−vj′
pj−pj′

≤ 0,

}J−1

j=1


J

j′=j+1

The following result shows that a level α test rejects if P̂ < α.

Theorem 3 Let {Yi, Ji, Di}ni=1 be an iid sample where Yi has compact support, Ji has

support {1, . . . , J}. If Condition 1 holds, Pr
(
P̂ < α

)
≤ α.

Proof. Define |T | =
∣∣∣T̂ ({wj, vj, pj})

∣∣∣ and P = 1−
∏

j gj (|T | ;wj, vj, pj) = 1−G (|T |).
Note that given Condition 1, P̂ ≥ P by construction. Then

Pr
(
P̂ < α

)
≤ Pr (P < α)

= Pr (G (|T |) > 1− α)

= 1− Pr (G (|T |) ≤ 1− α)

≤ 1− (1− α)

= α,

The first inequality follows because P̂ ≥ P by construction. The second to last line
holds with weak inequality because |T | has discrete support.

Thus, the exact finite-sample adaptation of the nonparametric test controls size
in finite samples. Why, then, do we rely on an asymptotic approximation to the
test statistic’s distribution in the main text? There are considerable computational
advantages to the approximation. Namely, under the asymptotic approximation,
the test statistic can be computed by efficient linear programming algorithms, while
the exact finite sample version cannot be. The reason is that in the finite-sample
version of the test statistic, the normalizing factors in the denominators depend on
the choice parameters, and thus the optimization is nonlinear. Under the asymptotic
approximation, the normalizing factors can be replaced by consistent estimates.
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We now show that the asymptotic approximation converges quickly to the exact
finite-sample distribution of the test statistic. We thus gain a sizeable computational
advantage without material size distortions for the number of cases per judge typical
in applications, including ours. We compute the exact cdf of the judge-level test statis-
tic for several values of the parameters (pj, wj, vj), as defined in the notation above.
We set K = 1 throughout. In the first set of simulations, we set the parameters to
match the average judge in our empirical application: pj = .4, wj = .31, vj = .39, and
we examine how the exact distribution compares to the asymptotic approximation.
Figure 1 plots the exact distribution of the test statistic along with its asymptotic
approximation for several values of cases per judge: 5, 10, 20, and 50. For reference,
in our application there are on average about 1,000 observations per judge, and the
minimum is 50. Restricting to judges with at least 20 or 50 cases is nearly universal
practice in this research design. The figure shows that the approximation converges
quickly to the true distribution. The discreteness of the test statistic is evident in
the step-like nature of the exact distribution, but systematic distortions are minimal,
especially in the upper tail of the distribution where rejection occurs. By 50 observa-
tions per judge (the minimum in our application) the differences between the exact
distribution and the approximation are minimal.

It is well known that the normal approximation to the binomial distribution is
most accurate when the binomial probabilities are closest to one-half. The normal ap-
proximation to the multinomial distribution here may also depend on the underlying
parameters. We repeat the simulation exercise above for additional sets of param-
eter values, one constructed to be unfavorable to the normal approximation, with
multinomial probabilities near zero or one, and one that is favorable to the normal
approximation with probabilities evenly distributed. The unfavorable parameter val-
ues are pj = .1, wj = .05, vj = .8, and the favorable values are pj = .5, wj = vj = .25.
We focus on how the exact 95th percentile of the test statistic compares to the ap-
proximation, since it is the tail percentiles that are relevant for controlling size test.

Figure 2 plots the exact and approximate 95th percentiles of the test statistic
∣∣∣T̂j∣∣∣

as a function of the number of cases per judge for each of the three scenarios: pa-
rameters calibrated to the empirical example, parameters unfavorable to the normal
approximation, and parameters favorable to the empirical example. In all cases the
exact converges to the approximation quickly, and the normal distribution offers an
accurate approximation for as few as 100 cases per judge even in the least favorable
scenario. Given the significant computational advantage, we recommend the test
based on the approximation for use in applications.

Relationship with Testable Implications in Kitagawa

(2015)

Kitagawa (2015) develops a test for IV validity in the same heterogeneous treatment

10



effects framework we consider. The principal difference between the two settings is
that Kitagawa (2015) assumes the order of the instruments in terms of treatment
propensity is known a priori, while we do not require this knowledge. Another appar-
ent difference in the two settings is in the testable implications exploited by the tests.
Kitagawa (2015) is based on the restriction that the implied densities of potential
outcomes for compliers be nonnegative everywhere. Ours is based on the restric-
tion that the implied average treatment effect among compliers be within the bounds
allowed by the support of the outcome. Kitagawa (2015) shows that the complier
density condition is optimal in that it exhausts the possible testable implications of
instrument validity. Here we show that our condition is equivalent to Kitagawa’s for
a suitably defined collection of outcomes. Our testable implication therefore inherits
the same optimality.

Without loss of generality, consider a single pair of judges, where Z = 0 indicates
the judge with the lower treatment propensity, and Z = 1 indicates the judge with
the higher propensity. The testable implication in Kitagawa (2015) is

P (B, 1)−Q (B, 1) ≥ 0,

Q (B, 0)− P (B, 0) ≥ 0

for all Borel sets B ⊆ Y , where

P (B, d) = Pr (Y ∈ B,D = d|Z = 1) ,

Q (B, d) = Pr (Y ∈ B,D = d|Z = 0) .

Define the observed variables WB := 1 (Y ∈ B)D and VB := −1 (Y ∈ B) (1−D) for
Borel set B. Note that for both of these variables, the possible support of treatment
effects is {0, 1}. Our complier treatment effect restriction therefore yields:

E [WB|Z = 1]− E [WB|Z = 0]

E [D|Z = 1]− E [D|Z = 0]
≥ 0,

E [WB|Z = 1]− E [WB|Z = 0]

E [D|Z = 1]− E [D|Z = 0]
≤ 1,

E [VB|Z = 1]− E [VB|Z = 0]

E [D|Z = 1]− E [D|Z = 0]
≥ 0,

E [VB|Z = 1]− E [VB|Z = 0]

E [D|Z = 1]− E [D|Z = 0]
≤ 1.

We now show that these implications imply and are implied by Kitagawa’s (2015)
implications. Recalling that E [D|Z = 1] − E [D|Z = 0] > 0 by definition, the first
and third of these inequalities simplify to

E [WB|Z = 1]− E [WB|Z = 0] ≥ 0,

E [VB|Z = 1]− E [VB|Z = 0] ≥ 0.
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Noting that E [WB|Z = 1] = P (B, 1), E [WB|Z = 0] = Q (B, 1), E [VB|Z = 1] =
−P (B, 0), and E [VB|Z = 0] = −Q (B, 0), these inequalities are precisely Kitagawa’s
restrictions. Similarly, the second and fourth inequalities simplify to

E [D (1− 1 (Y ∈ B)) |Z = 1]− (E [D (1− 1 (Y ∈ B)) |Z = 0]) ≥ 0,

E [(1−D) (1− 1 (Y ∈ B)) |Z = 0]− E [(1−D) (1− 1 (Y ∈ B)) |Z = 1] ≥ 0.

These are Kitagawa’s restrictions where B is replaced by the complement of B. Thus,
our restrictions applied to WB and VB imply and are implied by Kitagawa’s restric-
tions applied to Borel set B and its complement.

It is conceptually straightforward to extend our test to enable it to detect viola-
tions of instrument validity at any Borel set. In the spirit of Kitagawa (2015), let
TW (y, y′) be our test statistic applied to outcome W[y,y′], where y ≤ y′ are values in
the support of Y . Let TV (y, y′) be our test statistic applied to outcome V[y,y′]. The
overall test statistic is

T = sup
−∞≤y≤y′≤∞

max {TW (y, y′) , TV (y, y′)} .

The critical values for this test statistic can be simulated in a straightforward manner.
Like the Kitagawa (2015) test, this procedure has asymptotic power against any
alternative that violates the testable implications of instrument validity, but does not
require a priori knowledge of the instrument ordering. We do not fully explore this
extension because it would be computationally prohibitive, but note the connection
between the testable implications exploited in our approach and Kitagawa’s (2015)
approach.

Semiparametric Test

The nonparametric test proposed in the main text imposes minimal structure on
treatment effects beyond bounds on their magnitude. This means the test can fail to
reject because it implicitly allows wildly fluctuating treatment effects from judge to
judge which may not be plausible. If one is willing to impose more smoothness on
the relationship between treatment effects and judge propensity, one can construct
a more powerful test. In this section we propose a semiparametric approach that
allows researchers to impose additional structure. This results in a more powerful
test, but requires additional assumptions and a larger number of cases per judge for
the accurate inference than is necessary for the nonparametric test.

Like the nonparametric test developed in the main text, the semiparametric test
is based on two observations that follow from Theorem 1: (1) average outcomes
conditional on judge assignment should fit a continuous function of judge propensities;
and (2) the slope of that continuous function should be bounded in magnitude by the
width of the outcome variable’s support. The semiparametric test allows researchers
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to posit a flexible form for the relationship between judge-level average outcomes and
propensities, and then examines whether observed outcomes averaged by judge are
consistent with such a function.

Figure 3 illustrates graphically the intuition behind the test. The top panel depicts
a situation in which the assumptions are satisfied, so that average outcomes by judge
lie on a continuous function of judge propensity, and the slope of that function is
within the required bounds. The bottom panel illustrates two ways that violations of
the assumptions may appear. In the first (labeled “A” on the figure), two judges have
identical propensities, but different average outcomes; thus no continuous function can
pass through both points. In the second (labeled “B”), two adjacent judges do not
have identical propensities, but their average outcomes are sufficiently different that
the slope of the curve connecting them exceeds the possible treatment effect values.

This suggests a conceptually straightforward procedure for testing the judge fixed
effects design’s assumptions:

1. Regress the outcome Yi on a flexible function of the judge propensity, φ (pJi)

2. Jointly test fit and slope by

(a) Regressing the residuals from step 1, ui = Yi− φ (pJi), on judge indicators
and testing whether the coefficients are jointly zero;

(b) Testing whether the function’s slope stays within the bounds dictated by
the support of Yi.

To implement this process in our application, we regress the indicator for whether a
defendant was convicted on a flexible function of judge severity. Visually, this means
fitting a function to the observed judge severity and average outcome points plotted
in Figure 2 in the main text. Our test will assess whether judge assignment has
significant explanatory power over outcomes beyond the predictions from the fitted
function, and whether the implied treatment effects are too big anywhere based on
the slope of the fitted function.

The procedure presents two complications. The first is specifying the propensity
regression in step 1. The step 1 regression of the outcome on the judge propensi-
ties should be as flexible as the researcher’s assumptions regarding treatment effect
heterogeneity. A linear regression imposes constant treatment effects and makes the
test procedure above equivalent to the usual Sargan-Hansen overidentification test
(Sargan, 1958; Hansen, 1982). In many applications, including all those with a bi-
nary outcomes, constant treatment effects are unlikely or impossible. To impose less
structure on treatment effect heterogeneity, Theorem 1 suggests one should choose a
flexible specification that approximates Lipschitz functions well, such as polynomials
or splines (Chen, 2007). Our simulations and application use b-splines (see Racine,
2018), but other bases could be used as well.
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We now formalize this intuition. Let the number of terms in the chosen series be
m + 1, and let the function class in which the chosen specification lies be denoted
Sm; for example, degree-m polynomials or degree-r splines with m − r knots. In
the context of the judges design, the number of terms in the approximating series is
limited by the number of judges; settings with a large number of judges, such as our
application, allow the specification to be quite flexible.

The second complication is accounting for the estimation of the judge propen-
sities and the step 1 residuals when performing the tests in step 2. The simplest
estimator for the propensity of judge J assigned to individual i, pJi , is simply the
fitted value from a regression of treatment status Di on a vector of judge indicators
Wi = (1, 1 (Ji = 1) , . . . , 1 (Ji = J))′, which amounts to the fraction treated among
individuals assigned to judge j, although it may be generalized by adding controls
to the first stage regression. Denote the estimated fitted values P̂i. The first-step
residuals also depend on a linear regression coefficient: collecting the terms of the
spline (or whichever basis is chosen) in the estimated propensity into the vector Ŝi,
the estimated residual for the i-th observation is

ûi = Yi − Ŝ ′i

(
n∑
i=1

ŜiŜ
′
i

)−1 n∑
i=1

ŜiYi.

The fit component of our test is based on the second-step coefficients obtained by
regressing ûi on Wi:

γ̂ =

(
n∑
i=1

WiW
′
i

)−1 n∑
i=1

Wiûi.

Under the conditions of Theorem 1 and the posited functional form, γ̂ converges in
probability to zero. Our procedure tests this via the following Wald statistic:

T̂ = nγ̂′Ω̂−1γ̂, (4)

where Ω̂ is a consistent estimator of the limiting covariance of
√
nγ̂, accounting for the

first-step estimates
(∑n

i=1 ŜiŜ
′
i

)−1∑n
i=1 ŜiYi and P̂i. We derive a suitable estimator

for Ω̂, given an iid sample, in the appendix.
Given the assumptions so far, the test statistic (4) converges in distribution to a

chi-squared random variable with degrees of freedom equal to the difference between
the number of judges and the number of terms in the specification for φ, as the
following theorem formalizes:

Theorem 4 Suppose Condition 1 holds and φ ∈ Sm, where m < J . Suppose further
that {Yi, Di, Ji}ni=1 comprise an iid sample and E

[
|Yi|3

]
<∞. Then

T̂ →
d
χ2 (J −m) .
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Proof. Define the estimated judge propensity to treat as

p̂Ji = W ′
i α̂,

α̂ =

(
n∑
i=1

WiW
′
i

)−1 n∑
i=1

WiDi.

Define vi := Di −W ′
iα and ui := Yi − S ′iδ, where Si is a vector powers of pJi := W ′

iα,
judge Ji’s (population) propensity to treat, and δ is the vector of coefficients from the
population regression of Yi on Si. Write S ′iδ := f (λ,Wi), where λ = (α′, δ′)′. Letting

δ̂ =

(
n−1

n∑
i=1

ŜiŜ
′
i

)−1
n−1

n∑
i=1

ŜiYi,

we can write ûi = Yi − f
(
λ̂,Wi

)
where λ̂ =

(
α̂′, δ̂′

)′
, which has limiting behavior as

follows:
√
n
(
λ̂− λ

)
= n−1/2

n∑
i=1

(
Q−1W Wivi
Q−1S Siui

)
+ op (1) ,

where for some random vector Ai we adopt the notation QA := E [AiA
′
i]. By a mean

value expansion we can write ûi = ui − ∇
(
λ̃,Wi

)′ (
λ̂− λ

)
, where ∇ (λ,Wi) is the

Jacobian of f (λ,Wi) with respect to λ,

∇ (λ,Wi) =

(
Wi∆

′
iδ

Si

)
and

∆̂i =

(
dS0 (p̂i)

dp
, . . . ,

dSm (p̂i)

dp

)′
.

The estimator on which the test statistic is based can therefore be expanded as:

√
nγ̂ =

√
n

(
n−1

n∑
i=1

WiW
′
i

)−1
n−1

n∑
i=1

Wiûi

= Q−1W

(
n−1/2

n∑
i=1

Wiui − ri

)
+ op (1) ,

where

ri = E

[
Wi

(
Wi∆

′
iδ

Si

)′](
Q−1W Wi (Di −W ′

iα)
Q−1S Siui

)
,

a consistent estimator for which is

R̂i =

(
n−1

n∑
j=1

Wj

(
Wj∆

′
j δ̂

Ŝj

)′)(
Q̂−1W Wi (Di − p̂i)

Q̂−1S Ŝiûi

)
. (5)
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By the central limit theorem we therefore have

√
nγ̂ →

d
N (0,Ω) ,

where
Ω = Q−1W V ar (Wiui − ri)Q−1W

is consistently estimated by

Ω̂ =

(
n−1

n∑
i=1

WiW
′
i

)−1(
n−1

n∑
i=1

(
Wiûi − R̂i

)(
Wiûi − R̂i

)′)(
n−1

n∑
i=1

WiW
′
i

)−1
,

The quadratic form
nγ̂′Ω̂−1γ̂

is therefore asymptotically a chi-squared random variable with degrees of freedom
equal to the rank of Ω̂−1, in this case k −m.
Performing the fit component of the test means computing the test statistic and
obtaining the associated p-value from the appropriate chi-squared distribution.

The slope component of the test examines whether the slopes of the function
relating outcomes to judge propensities lie between −K and K, recalling that K is
the width of the outcome variable’s support. The function relating average outcomes
given judge assignment to judge propensities is specified as

φ (p) = δ0S0 (p) + · · ·+ δmSm (p) ,

where S0, . . . , Sm are elements of a polynomial series, spline series, or whichever basis
is chosen for φ. When φ is specified as a quadratic b-spline, the maximum slope
occurs at one of the knots, {t0 = 0, t1, . . . , tm−2, tm−1 = 1}. The slope at the l-th knot
is given by

φ′ (tl) =
2

tl+1 − tl−1
(δl+1 − δl) , l = 0, . . . ,m− 1,

where we define t−1 = t0 = 0 and tm−1 = tm = 1. The restriction on the slope of φ
corresponds to the following set of inequality constraints:{

−K ≤ 2

tl+1 − tl−1
(δl+1 − δl) ≤ K

}m−1
l=0

.

Given estimates δ̂ =
(∑n

i=1 ŜiŜ
′
i

)−1∑n
i=1 ŜiYi and the corresponding variance matrix

that accounts for the estimation of P̂i, we implement the moment inequality testing
procedure proposed by Andrews and Soares (2010). This procedure first performs
generalized moment selection to eliminate inequalities that are far from binding, and
then constructs a modified method of moments (MMM) test statistic to test the

16



remaining inequalities. The following appendix section describes the details of the
implementation.

Finally, we combine the fit component and slope component of the test via a
Bonferroni procedure to produce a single joint test. In the “just identified” case
when there are only two judges, the fit component of the test will have no power.
As the number of judges grows, the specification of ω becomes more flexible and the
number of inequalities being tested in the slope component grows, causing the slope
component of the test to lose power as the fit component gains power.1

In Table 1 we present the results of our test in the context of our empirical example.
Again, we control for the same set of covariates as in our baseline specification. We
see that our semiparametric test rejects the null hypothesis on the full sample for
various numbers of knots in the spline function. Indeed, we reject the null hypothesis
even when our assumed function form is quite flexible with 15 knot points. It is
only when we increase the number of knot points to 20 that we fail to reject the null
hypothesis.2

Extensions

The proposed tests have power against alternatives that manifest themselves in shifts
in the mean of Yi, but will not have power against alternatives where other features
of Yi are changed but not the mean. The tests naturally extend to have power
against shifts in other features of the distribution, as well by replacing the outcome
with a set of indicator variables of the form 1 (Yi ≤ yj) for a grid of {yj} values.
For the semiparametric version specifically, one can also replace the mean regression
with a set of quantile regressions of Yi with a grid of quantile values τj ∈ (0, 1).
The test then consists of jointly testing the hypothesis that the coefficients on the
instrument dummies are zero across all quantile regressions. In this case and the
dummy dependent variable alternative above, the test is carried out using a variance
matrix accounting for the estimation of p̂ (Ji), analogous to the procedure described
in the main text. These extensions allow the test to have power against a wider array
of alternatives, although at the expense of more computational burden and perhaps

1We recommend putting equal weight on each of the test components, as we do in our applica-
tion. However, it is possible to adjust the weighting scheme. If we denote the p-value from the fit
component of the test as pf and the p-value from the slope-component of the test as ps, then a joint
level-α test rejects if either pf < ωα or ps < (1− ω)α, for some weight ω ∈ [0, 1]. Equivalently, one
can define a joint p-value as min {pf/ω, ps/ (1− ω)} and reject if the joint p-value is less than α.
The choice of ω governs the direction of power between the fit component and the slope component,
with values near one directing more power to the fit component of the test.

2If one suspects that monotonicity violations are violated across observable groups but hold within
these groups, one can test jointly for monotonicity within the groups. Assuming independence of
the subsamples, one can add up the chi-squared test statistics and degrees of freedom after running
the test on all subsamples defined by the relevant observables to get the joint test statistic and its
chi-squared degrees of freedom.
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a lack of specific power against alternatives where only the mean is shifted.

Generalized Moment Selection Implementation

The slope component of the semiparametric test implements the moment inequality
testing procedure proposed by Andrews and Soares (2010). This procedure is based
on the following modified method of moments (MMM) test statistic:

M̂ =
m−1∑
l=0


 K − φ̂′ (tl)

s.e.
(
φ̂′ (tl)

)
2

−

+

 K + φ̂′ (tl)

s.e.
(
φ̂′ (tl)

)
2

−

 ,

where [x]− = x1 (x < 0),

φ̂′ (tl) =
2

tl+1 − tl−1

(
δ̂l+1 − δ̂l

)
,

s.e.
(
φ̂′ (tl)

)
= n−1/2

2

tl+1 − tl−1

(
Σ̂l+1,l+1 + Σ̂l,l − 2Σ̂l+1,l

)1/2
,

and Σ̂ is a consistent estimator of the variance matrix of δ̂ =
(∑n

i=1 ŜiŜ
′
i

)−1∑n
i=1 ŜiYi

that takes into account estimation of P̂i:

Σ̂ = Q̂−1S

(
n∑
i=1

(
Ŝiûi − ∆̂iW

′
i Q̂
−1
W Wiv̂

)(
Ŝiûi − ∆̂iW

′
i Q̂
−1
W Wiv̂

)′)
Q̂−1S .

Under the regularity conditions described in Andrews and Soares (2010), the dis-
tribution of the MMM test statistic can be approximated by the distribution of

M̂∗ =
∑
l∈L−

[Z∗l ]2− +
∑
l∈L+

[−Z∗l ]2− ,

where Z∗ is an m-element multivariate normal random variable with unit variances
and correlation matrix corresponding to the asymptotic variance of

([0m×1 : Im]− [Im : 0m×1]) δ̂,

and the moments selected by the generalized moment selection are given by:

L− =

l :
K − φ̂′ (tl)

s.e.
(
φ̂′ (tl)

) ≤ √lnn

 ,
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and

L+ =

l :
K + φ̂′ (tl)

s.e.
(
φ̂′ (tl)

) ≤ √lnn

 .

The p-value from the slope component of the test can be found to arbitrary pre-
cision by simulating many multivariate draws, constructing M̂∗ for each draw, and
computing the fraction of draws for which M̂∗ ≥ M̂ .

Simulations

Nonparametric version

We examine the finite-sample performance of the nonparametric test by applying it
to data generated from several different processes that mimic our empirical example.
In our simulated data, J judges are endowed with propensity to treat pj, j = 1, . . . , J .
Each judge handles nj defendants. The propensities pj are drawn from the following
distribution, calibrated to match our empirical example:

pj ∼ p+
(
p̄− p

)
B (a, b) ,

where p = .2 is the lowest propensity observed in the data, p̄ = .7 is the highest
propensity observed in the data, and B (a, b) is a beta-distributed random variable
with parameters a ≈ 6.67 and b ≈ 4.44 chosen to match the observed mean and
interquartile range of propensities. The caseloads nj were drawn from the following
distribution, also calibrated to match the empirical example:

nj ∼ n+NB (r, p) ,

where n is the minimum caseload cutoff (50 in the baseline case) and NB (r, p)
is a negative binomial random variable with parameters r = .59 and p = 1 −
(n̄− n) / (n̄− n+ r), where n̄ is the average number of cases per judge (around 1,000
in the baseline case). The negative binomial parameters r and p were chosen this
way to match the mean and IQR of caseloads in the baseline case with our empiri-
cal example. For individual i assigned to judge j, treatment status was assigned as
Di = 1 (Vi < pj), where Vi is a uniformly distributed random variable.

In the first set of simulations we examine the finite-sample size of our test in
a scenario where the exclusions and monotonicity conditions are satisfied. To this
end the outcome was defined as Yi = 1 (Ui < β0 + β1pj), where Ui is a uniformly
distributed random variable, β0 = .644, and β1 = .14 to match the two-stage least
squares estimates from our empirical example. We vary the number of judges J from
10 to 256 (the number in our empirical example), the average number of cases per
judge n̄ from 50 to 1,000, and the minimum number of cases per judge from zero
to 50. For each set of parameters we generate 999 simulated datasets, apply our
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nonparametric test, and record the rejection rate. In investigating the size of the test
we make a modification to our nonparametric test to avoid mechanically reducing the
rejection rate. The fact that our testing procedure searches over parameter values to
minimize the test statistic builds in some finite-sample conservativity mechanically.
We remove this mechanical conservativity by calculating the test statistic relative to
the true parameter values, without optimizing. This allows us to directly assess the
accuracy of the large sample approximations in finite samples. Naturally, we do not
remove the conservativity when we assess power.

The first set of simulations shows that the test maintains accurate size as we vary
the number of judges and the average number of casees per judge. Table 2 reports the
rejection rate as a function of the number of judges from J = 10 to J = 256, which
is the number of judges in our empirical example, and average cases per judge from
50 to 1, 000 (the average in our empirical example). We set the minimum number of
cases per judge at 50, the value in our empirical example. The table shows that the
rejection rate hovers close to the nominal size, .05, across the entire range, with the
minimum rejection rate .0465 and the maximum .0700.

The next set of simulations shows that setting a minimum number of cases per
judge is important to maintaining correct size of the test. Figure 4 plots the rejection
rate as a function of the minimum number of cases per judge ranging from zero (no
minimum) to 50. We set the average cases per judge to 1,000 and the number of judges
to 256 to match the empirical example. The figure shows that when no minimum is
imposed the test can overreject. The rejection rate is at about 15 percent when no
minimum is imposed, but falls to near the nominal level as the minimum increases
to above 20. The overrejection for cases where the minimum caseload is very small
shows that the large sample approximation to the distribution of the test stastistic is
poor when there are few cases per judge. This result provides support for the common
practice of including only judges with at least a minimum number of cases per judge,
as in our example.

The preceding sets of simulations show that our test maintains accurate size in
realistic data generating processes. We now investigate the finite-sample power of
our test. In these simulations we also use a data generating process calibrated to our
empirical example. We modify the process described above to incorporate violations
of the exclusion and monotonicity conditions. We do this by introducing a judge-
specific additive effect, γj, that has the following distribution:

γj ∼ N
(
0, σ2

γ

)
.

We then generate the outcome as

Yi = β0 + β0pj + γj + εi,

where εi is normally distributed error term with mean zero and standard deviation .46
to match the residual variance in our empirical example. Setting σγ = 0 corresponds
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to a setting where the assumptions are satisfied. Increasing σγ violates the instrument
validity assumptions to a greater and greater degree. By simulating the rejection rate
for different values of σγ we can assess the power of the test. We calibrate the range
for σγ to our empirical example by splitting our sample within each judge, regressing
the outcome on a cubic polynomial in the estimated propensity, and averaging the
resulting residuals at the judge level. The square root of the covariance between
the judge averages across the two samples is around .025, and provides a reasonable
magnitude for σγ in our simulations. We vary σγ between zero and .2 to provide a
range around this calibrated value.

The first power simulations show that power increases when there are more cases
per judge. Figure 5 plots the rejection rate by the degree of violation (σγ) for several
different levels of average caseload per judge, ranging from 50 to 1,000. The simu-
lations set the minimum caseload and number of judges to 50 and 20. For 500 and
1,000 cases per judge (which corresponds to our empirical example) the rejection rate
increases from near zero when σγ = 0 to one for values above .1 or so. Power increases
more slowly when there are fewer cases per judge.

The next power simulations show that power improves when there are more judges.
Figure 6 plots the rejection rate by the degree of violation (σγ) for 2, 10, and 20 judges.
The simulations set the minimum number of cases per judge to 50 and the average
number of cases per judge to 1,000 to match the empirical example. When there are at
least 10 judges, power increases rapidly and reaches 100 percent at or before σγ = .2.
The increase is somewhat more rapid when there are 20 judges than when there are
10. When there are only 2 judges, however, the increase in power is much slower, and
does not reach 100 percent for the values of σγ considered. It should be noted that in
practice the number of judges in judge fixed effects designs is nearly always at least
of the order of 10 or 20 if not much greater (as in our empirical example), where our
simulations show that power is excellent.

The next set of power simulations show that imposing a minimum number of
cases per judge improves power. Figure 7 plots the rejection rate by the degree of
violation (σγ) for one, 30, and 50 minimum cases per judge. The simulations set
the average number of cases per judge to 1,000 (as in our empirical example) and
the number of judges to 20. For minimum caseload equal to 30 or 50 the power
curves are essentially identical, increasing quickly to 100 percent. When there is no
minimum caseload, however, power increases more slowly and tops out around 60
percent. Thus, both size and power of the test is greatly improved by imposing a
minimum number of cases of at least 30.

Finally, we show that the test’s power increases when the bound on the possible
magnitude of treatment effects is tightened. Figure 8 plots the rejection rate by the
degree of violation (σγ) for K = 1, .6, .2. The simulations set the average cases per
judge to 1,000, the minimum cases per judge to 50, and the number of judges to 20.
Power increases much more quickly for smaller values of K. For example, for K = .2,
power is between 70 and 80 percent for σγ near .02-.03, the value calibrated to our
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empirical example.

Additional data generating processes

In this section we examine the finite-sample performance of the test in additional
data generating processes. Like those above, these simulations mimic the random
assignment of defendants to one of J judges, but with n defendants assigned per
judge. We endow judge j ∈ {1, . . . , J} with a severity (probability of treatment):

pj := pa + (j − 1) (1− pa − pn) / (J − 1) .

Thus, a fraction pa of defendants are always treated and a fraction pn never treated
regardless of judge assignment. We generate a binary outcome, Yi ∈ {0, 1} so that
the expected value of Yi given assignment to a judge with propensity pj is

E [Yi|pj] =
1− (1− λ) (pn + pa)

1− (pn + pa)
pj −

λ

1− (pn + pa)
pa.

When λ = 0, the slope of this function is one, corresponding to no violation of the
assumptions. When λ exceeds zero, the slope of this function exceeds one, reflecting
a violation of the exclusion restriction. Thus, λ governs the degree of departure
from the instrument assumptions. We show how the nonparametric test’s power as a
function of λ depends on the number of judges J and the number of cases per judge,
n. We set pa = pn = .2 in the simulations.

Figure 9 plots the nonparametric test’s rejection rate as a function of λ for 2, 10,
and 20 judges, setting the number of cases per judge at n = 100. The rejection rate
is near zero for small values of λ, but increases sharply as the degree of violation
increases, reaching 100 percent around λ = .8. The power of the test does not differ
dramatically for different numbers of judges.

Figure 10 plots the nonparametric test’s rejection rate as a function of λ for 30,
100, and 1000 cases per judge, setting the number of judges at J = 10. The figure
shows that power varies dramatically by the number of cases per judge. Power is
near zero for 30 cases per judge until λ exceeds .5, and power never exceeds .1. When
cases per judge is 1000, however, power reaches 100 percent when λ is .3 or greater.

Semiparametric version

The section illustrates how the semiparametric version of the proposed test performs
in terms of finite-sample size and power.

The data generating process for the first set of simulations is calibrated to the
empirical application in the main text, just as the nonparametric test simulations
presented above. We set the minimum number of cases per judge to 50 and the
number of judges to 256, to match our empirical application. The average number
of cases per judge is 100. We generate datasets where the degree of violation of
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the assumptions is parameterized by the standard deviation of judge direct effects,
ranging from zero (assumptions satisfied) to .2, as in the simulations above. Figure
11 plots the rejection rate as a function of the degree of violation. At the far left
of the plot, where the assumptions are satisfied, the rejection rate is just below the
nominal level of .05, showing that the test has correct size. As the violations become
more severe, the rejection rate increases steeply to 100 percent at about .04.

We also explore the performance of the semiparametric version of the test in an
alternative data generating process that mimics a setting with J judges, to whom
individuals are assigned with uniform probablity:

Ji ∼ U {1, . . . , J} .

A judge’s propensity to assign treatment is given by:

p (Ji) = θJi/ (J) .

The outcome is generated as

Yi = β0 + β1Di + εi,

and treatment is determined by

Di = 1 (Φ (−νi) ≤ p (Ji)) ,

where
vi = ρεi +

√
1− ρ2ηi

and
(εi, ηi) ∼ N (0, I2) .

In this setup the parameter θ governs the strength of the instruments and ρ determines
the degree of treatment endogeneity. Note that this setup satisfies Condition 1. The
main simulation results set ω = 1, which directs power to the fit component of the
test. Further simulation results below show how the test performs under different
choices for ω.

The first set of simulations examines how the test’s size depends on the number
of observations. We set the simulation parameters as J = 10, θ = 1, β0 = β1 = 1,
and ρ = .5. We consider sample sizes of n ∈ {500; 1, 000; 2, 000; 5, 000; 10, 000}, and
for each sample size draw 999 samples from the data generating process described
above and perform the test with nominal size α = .05, recording the rejection rate
for each sample size. The simulations show that the test has very close to nominal
size even for modest sample sizes. Figure 12 plots the rejection rate as a function of
the sample size. The horizontal line is at .05. The simulated rejection rate is very
near the nominal level throughout the range of sample sizes.

The next set of simulations explores the test’s power to detect a violation of the
exclusion restriction, Condition 1a, which can arise if judges have direct effects on
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outcomes other than through treatment. The data generating process is as described
above, except judges now have direct effects on the outcomes:

Yi = β0 + β1Di +
J∑
j=1

γj1 (Ji = j) + εi,

where the individual judge effects γj are drawn from a normal distribution with mean
zero and standard deviation that varies from zero (corresponding to no violation) to 1
(severe violation). We set n = 1000 for this set of simulations. The simulations show
that the proposed test’s power increases rapidly with the severity of the violation.
Figure 13 plots the rejection rate as a function of the standard deviation of the direct
judge effects. At the far left the rejection rate is very near .05, reproducing the result
that the test has correct size when the assumptions are satisfied. As the standard
deviation of the direct judge effects grows, the rejection rate increases rapidly. Power
exceeds 90 percent when the standard deviation is 0.2 and is essentially 100 percent
for standard deviations above 0.3.

The next set of simulations illustrates the test’s power to detect violations of the
monotonicity assumption, Condition 1c, which can occur if judges do not implicitly
agree on the order in which defendants should be treated. To allow for monotonicity
violations in the simulations, we introduce heterogeneity in defendants and judges.
We introduce an additional set of J judges (indexed J + 1, . . . , J) who order most
defendants identically to the first J judges, but order a fraction φ < .5 of defendants,
whom we call defiers, in the opposite order. Since violations of monotonicity only
lead to bias when treatment effects vary, we set defiers’ treatment effect to −β1. Let
the binary variable Fi with Pr (Fi = 1) = φ indicate whether a defendant is a defier.
Treatment assignment and outcomes are then determined as follows:

Yi =

{
β0 − β1Di + εi , Fi = 1
β0 + β1Di + εi , otherwise

,

Di =

{
1 (Φ (−νi) ≤ 1− p (Ji)) , Fi = 1 and Ji ≥ J + 1

1 (Φ (−νi) ≤ p (Ji)) , otherwise
.

The simulations show the proposed test has good power to detect violations of mono-
tonicity of this sort. Figure 14 plots the test’s rejection rate as a function of the
fraction of defiers φ. At the far left (φ = 0, corresponding to no violation) the test
rejects at a rate near α = .05 as expected. As the fraction φ increases and the viola-
tion of monotonicity becomes more severe, the rejection rate increases rapidly. Power
exceeds 80 percent when the fraction of defiers is greater than .3.

We also run simulations that allow us to compare how our test performs rela-
tive to the the test described in Kitagawa (2015). The Kitagawa test assumes a
priori knowledge of the instruments’ order with respect to the probability of treat-
ment. In the context of judge assignment, this assumption is problematic because
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the judge propensities to treat are estimated rather than directly observed. To as-
sess the size of the Kitagawa test, we run simulations with four judges (the test
quickly becomes computationally burdensome as the number of judges increases)
with population propensities .25, .495, .5, and .505 using three different samples sizes
(n ∈ {5, 000; 10, 000; 100, 000}). The monotonicity assumption in this scenario means
individuals fall into one of five compliance categories: always-takers, never-takers,
and one of three complier groups. We set the treatment effect equal to zero, and set
always-takers’ outcomes to Yi = 0, judge 1 compliers’ outcomes to Yi = 1, judge 2
compliers’ outcomes to Yi = 2, judge 3 compliers’ outcomes to Yi = 3, and never-
takers’ outcomes to Yi = 4. Figure 15 plots the rejection rate from the Kitagawa test
as a function of the sample size, along with the rejection rate from our semiparametric
test. With a nominal test size of 5%, rejection rates for the Kitagawa test are 10.3%
for a sample size of 5,000, and grow to 22.2% for n = 10, 000 and 27.9% with a sample
size of 100,000. In comparison, rejection rates for our test in the same simulations are
5.2%, 5.1% and 4.7%. The results show that the Kitagawa test substantially overre-
jects and that the distortion does not decrease with the sample size over the range
considered. For a large enough sample size, of course, and given a data generating
process, estimation error in the propensities will become negligible and the Kitagawa
test will have correct size. But for any given sample size, there is a data generating
process for which the Kitagawa test will fail to control size; that is, the Kitagawa test
is not uniformly asymptotically valid when propensities are estimated, as illustrated
in our simulations.

Finally, we show how the test performs under different choices for ω. To demon-
strate this, we run two sets of simulations: one with a small number of judges (J = 2),
in which we will see that small values for ω are best, and another with a large number
of judges (J = 20) in which larger values for ω are best. The outcome variable is
binary, as in our application below, with expected value conditional on judge assign-
ment given by

Pr (Yi = 1|Ji) = β0 + β1Ji/k +
J∑
j=0

γj1 (Ji = j) ,

and treatment propensity given by

Pr (Di = 1|Ji) = α0 + α1Ji/k.

As above, the γj terms represent violations of the exclusion restriction when they
are nonzero; in this set of simulations they are drawn from normal distribution with
standard deviation .2. This simulation setup also allows the assumptions to be vi-
olated when β1 > α1, as this would imply an average treatment effect greater than
one, which is impossible for a binary outcome. This corresponds to a violation of
the slope condition. In this simulation setup we set β1 = .3 and α1 = .2. Using a
simulated sample size of n = 1, 000, we perform our test for several choices of ω be-
tween zero and one, and examine how the test’s power depends on ω in the few-judge

25



case (J = 2) and the many-judge case (J = 20). The simulation results show that
in the few-judge case, power is greatest when ω = 0, since the fit component of the
test has no power in this case. The upper panel of Figure 16 shows that the test’s
power is over 80 percent when ω = 0, and drops to zero when ω = 1. The situation
is reversed in the many-judge case. The lower panel of Figure 16 shows that power
is very poor (around 10 percent) when ω = 0, and increases for higher values of ω.
Typical instances of the judge fixed effects design, including our application below,
involve relatively many judges. These simulation results suggest choosing ω to be
high in these cases. In the application we set ω = 1.
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Table 1: Test Results

5 knots 10 knots 15 knots 20 knots

Test statistic 440 368 315 244
d.f. (248) (243) (238) (233)
P-value [0.000] [0.000] [0.001] [0.601]

Note: This table displays the test statistics, degrees of freedom, and associated p-values from the
proposed semiparametric testing procedure. Each column shows results using a different number
of knots in the spline function.

Table 2: Simulated rejection rate by number of judges and average cases per judge

Number of judges 50 100 500 1000
10 0.0595 0.0545 0.0465 0.0550
50 0.0550 0.0695 0.0500 0.0560

100 0.0575 0.0590 0.0560 0.0660
256 0.0670 0.0700 0.0645 0.0590

Average cases/judge

Notes: Monte Carlo simulation rejection rates from the nonparametric test 
for instrument validity given the number of judges listed in the left column 
and the average number of cases per judge in the column headings. The 
nominal size of the tests is .05. Based on 2000 iterations. The data 
generating process is calibrated to the NYC empirical example as 
described in the text.
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Figure 1: Exact and approximate cumulative distribution functions for the judge-level

test statistic
∣∣∣T̂j∣∣∣. The parameters, using notation defined in the Appendix, are as

follows: K = 1, pj = .4, wj = .31, vj = .39, and nj is as indicated in each panel’s
title.
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Figure 2: Exact and approximate 95th percentiles of the judge-level test statistic,∣∣∣T̂j∣∣∣, as a function of the number of cases per judge, nj. The top panel is calibrated

to the empirical example and sets pj = .4, wj = .31, vj = .39. The middle panel
sets parameters less favorable to the normal approximation: pj = .1, wj = .05, vj =
.9. The bottom panel sets parameters more favorable to the normal approximation:
pj = .5, wj = .25, vj = .25.
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Figure 3: Illustrations of hypothetical relationships between true judge propensities
to assign treatment and expected outcomes. Each dot represents a single judge.
The pattern in Panel A is consistent with the exclusion restriction and monotonicity,
because all the dots lie on a continuous function whose slope is nowhere larger in
magnitude than the largest possible treatment effects, given a binary outcome. The
pattern in Panel B could only arise if one or more of the assumptions were violated.
The judge labeled “A” has exactly the same propensity as another judge, but different
expected outcomes. The judge labeled “B” lies on a segment of the curve whose slope
is larger than one, implying an impossibly large treatment effect.

30



0
.0

5
.1

.1
5

.2

0 10 20 30 40 50
minimum cases per judge

Nonparametric test, nominal size = .05
Rejection rate by minimum cases per judge

Figure 4: Monte Carlo simulation rejection rates from the nonparametric test for
instrument validity as a function of the minimum cases per judge. The nominal size
of the tests is .05. Based on 999 iterations. The data generating process is calibrated
to the NYC empirical example as described in the text.
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Figure 5: Monte Carlo simulation rejection rates from the nonparametric test for in-
strument validity as a function of the degree of violation of the assumptions measured
by the standard deviation of the judge effects. Each curve corresponds to the average
caseload indicated. The nominal size of the tests is .05. Based on 999 iterations. The
data generating process is calibrated to the NYC empirical example as described in
the text.
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Figure 6: Monte Carlo simulation rejection rates from the nonparametric test for in-
strument validity as a function of the degree of violation of the assumptions measured
by the standard deviation of the judge effects. Each curve corresponds to the number
of judges indicated. The nominal size of the tests is .05. Based on 999 iterations.
The data generating process is calibrated to the NYC empirical example as described
in the text.
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Figure 7: Monte Carlo simulation rejection rates from the nonparametric test for
instrument validity as a function of the degree of violation of the assumptions mea-
sured by the standard deviation of the judge effects. Each curve corresponds to the
minimum caseload indicated. The nominal size of the tests is .05. Based on 999
iterations. The data generating process is calibrated to the NYC empirical example
as described in the text.
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Figure 8: Monte Carlo simulation rejection rates from the nonparametric test for in-
strument validity as a function of the degree of violation of the assumptions measured
by the standard deviation of the judge effects. Each curve corresponds to the value
of K indicated. The nominal size of the tests is .05. Based on 999 iterations. The
data generating process is calibrated to the NYC empirical example as described in
the text.
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Figure 9: Monte Carlo simulation rejection rates from the nonparametric test for
instrument validity as a function of the degree of violation of the assumptions, λ (x-
axis) for the number of judges indicated. The nominal size of the tests is .05. Based
on 999 iterations.
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Figure 10: Monte Carlo simulation rejection rates from the nonparametric test for
instrument validity as a function of the degree of violation of the assumptions, λ
(x-axis) for the number of cases per judge indicated. The nominal size of the tests is
.05. Based on 999 iterations.
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Figure 11: Monte Carlo simulation rejection rates from the semiparametric test for
instrument validity as a function of the severity of the exclusion restriction violation,
as measured by the standard deviation of the direct judge effects (x-axis). Data
generating process calibrated to the empirical application as described in the appendix
text. The nominal size of the tests is .05. Based on 999 iterations.
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Figure 12: Monte Carlo simulation rejection rates from the semiparametric test for
instrument validity as a function of the sample size (x-axis). The nominal size of the
tests is .05. Based on 999 iterations.
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Figure 13: Monte Carlo simulation rejection rates from the semiparametric test for
instrument validity as a function of the severity of the exclusion restriction viola-
tion, as measured by the standard deviation of the direct judge effects (x-axis). The
nominal size of the tests is .05. Based on 999 iterations.
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Figure 14: Monte Carlo simulation rejection rates from the semiparametric test for
instrument validity as a function of the severity of the monotonicity violation, as
measured by the fraction of defendants for whom judges disagree on the ordering.
The nominal size of the tests is .05. Based on 999 iterations.
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Figure 15: Monte Carlo simulation rejection rates from the Kitagawa (2015) test
and the semiparametric test for instrument validity as a function of the sample size.
Data-generating process based on four judges satisfies LATE conditions, as described
in text. The nominal size of the tests is .05. Based on 999 iterations.
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Figure 16: Monte Carlo simulation rejection rates from the semiparametric test for
instrument validity as a function of the weight given to the fit component of the test.
The upper panel sets J = 2. The lower panel sets J = 20. The nominal size of the
tests is .05. Based on 999 iterations. 43


