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A Methods for Finding Equilibria

In this Appendix we describe the two methods that we use to find equilibria for our analyses

in Sections 3, 4 and 5 (excepting Section 5.1).

A.1 Equation Solving.

One method for finding an equilibrium for a fixed set of parameters is to numerically solve

the 4,743 value, continuation probability and first-order condition equations in Section 2

using the fsolve tool in MATLAB.32 We specify tolerances of 1e-14 on the variables and on

the objective function.

We use equation solving to identify equilibria from which we can start homotopies, and

also, as we describe below, to fill in any gaps in a homotopy path that results from the

homotopy algorithm stalling.

A.2 Homotopies

This Appendix details of our implementation of the homotopy algorithm, using the example

of the bp-homotopies that we use in Section 3. The methods used for other homotopies

are similar. Our description of the homotopy algorithm follows the description in Besanko,

Doraszelski, Kryukov, and Satterthwaite (2010) closely, and our implementation is based on

the code of Besanko, Doraszelski, and Kryukov (2014) (BDK), and we use their numerical

tolerances.

32We have used this tool with both numerical and analytic derivatives, and using different algorithms.
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A.2.1 Overview.

An equilibrium for a given set of parameters is defined as the solution to the 4,743 equations

presented in Section 2 . We can write these equations collectively as

F (x; bp, ρ, σ) = 0, (A.1)

where x = (V∗,VINT∗,p∗, λ∗) (i.e., values, for buyers and sellers, and strategies) and we are

implicitly conditioning on other parameters that we hold fixed such as the discount factor

and the entry cost and scrap value distribution parameters. The objective of a bp-homotopy

is to explore the correspondence

F−1 = {x|F (x; bp, ρ, σ) = 0, bp ∈ [0, 1]}. (A.2)

To follow the correspondence, the homotopy method introduces an ancillary parameter

s, so that equation (A.2) becomes,

F−1 = {x(s)|F (x(s); bp(s), ρ, σ) = 0, bp ∈ [0, 1]}. (A.3)

Assuming that a vector x satisfies the equations, the following conditions must be satisfied

for the homotopy to remain on the correspondence

∂F (x(s); bp(s), ρ, σ)

∂x
x′(s) +

∂F (x(s); bp(s), ρ, σ)

∂bp
bp′(s) = 0 (A.4)

where ∂F (x(s);bp(s),ρ,σ)
∂x

is a (4,743 x 4,743) matrix, x′(s) and ∂F (x(s);bp(s),ρ,σ)
∂bp

are both (4,743 x

1) vectors and bp′(s) is a scalar. The solution to these differential equations will have the

following form, where y′i(s) is the derivative of the ith element of y(s) = (x(s), bp(s)),

y′i(s) = (−1)i+1 det

((
∂F (y(s); ρ, σ)

∂y

)
−i

)
(A.5)

where −i means that the ith column is removed from the (4,743 x 4,744) matrix ∂F (y(s);ρ,σ)
∂y

.
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A.2.2 Implementation.

The homotopy procedure is implemented using the FORTRAN routines FIXPNS and STEPNS

from HOMPACK90. Jacobians are computed numerically, although we specify which ele-

ments of the Jacobian are non-zero.33,34 The algorithm keeps track of the values of x and bp

at each step on the path, which we can then use to compute associated outcomes, such as

HHI∞ and P∞, which we do using the same code as BDK.

Restarting. A practical problem that arises is that a homotopy can stall or start taking an

apparently endless sequence of increasingly small steps. We use a few different approaches to

try to complete a path. One approach involves running homotopies in the opposite direction

(e.g., decreasing bp, rather than increasing bp) from equilibria that have already been found.

This often connects up sections of a path that have been found using different homotopy runs.

If this does not work, we try to identify an adjacent equilibrium by solving the equilibrium

equations for a close value of bp, and then use this value to start a new homotopy path. If

this path also does not progress, we solve the equations for additional small changes of bp.

Computational Burden. The time taken to run a homotopy is usually between one hour

and seven hours, when it is run on the University of Maryland’s Department of Economics

cluster. The servers on this cluster have the configurations of Dell PowerEdge R620 2x Intel

Xeon E5-2680 v2 384GB.

33STEPNS is a predictor-corrector algorithm where hermetic cubic interpolation is used to guess the next
point, and an iterative procedure is then used to return to the path.

34For details of the HOMPACK subroutines, please consult manual of the algorithm at https://users.
wpi.edu/~walker/Papers/hompack90,ACM-TOMS_23,1997,514-549.pdf.
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B Definition of SELPM Equilibria.

As explained in Section 2, we pay particular attention to one type of non-accommodative

equilibria which we call SELPM equilibria.

Definition A symmetric equilibrium has the“Some Exit Leads to Permanent Monopoly”

(SELPM) property if there is some state e∗1 > 1, where (i) λ1(e1, e2) = 1 for all e1 ≥ e∗1
35 and

∀e2, including e2 = 0; (ii) λ2(e
∗
1, e2) < 1 for some e2 where 0 < e2 < e∗1, and λ2(e1, 0) = 0

for all e1 ≥ e∗1.

After some additional discussion of this definition, Appendix C provides a classification

of the equilibria identified by the σ- and ρ-homotopies in Sections 4 into accommodative,

SELPM and two alternative types of non-accommodative equilibria. Appendix D details the

algorithm that we use to identify whether at least one SELPM equilibrium exists.

Discussion. The High and Mid-HHI baseline (bp = 0) equilibria in Table 1 (illustrative

parameters) are both SELPM: e∗1 = 30 satisfies the definition in both cases. In fact, it is

usually the case that e∗1 = M = 30 satisfies the definition if an equilibrium is SELPM.36

Note that our algorithm that tests whether a SELPM equilibrium exists will stop when at

the highest e1 that satisfies the criteria for e∗1.

Figures B.1 and B.2 provide examples of how play may move through the state space in

SELPM equilibria. The first figure shows two paths where we assume that the sellers use

the baseline High-HHI equilibrium strategies. The red line shows a path where both sellers

make a sale in the first two periods of the game, and the game then evolves to (M,M). The

black line shows a path where seller 1 makes the first M − 4 sales, and seller 2 then exits.

Once seller 1 has made a sale, there is no possibility of entry by a potential entrant seller 2,

and the games moves to (M, 0).

Figure B.2 provides a second (hypothetical) example where a potential entrant seller 2

could enter in some states. However, e1 = 30 satisfies the definition of e∗1, so the equilibrium

is SELPM.
35Note, that as we are only looking at symmetric equilibria, this condition implies that λ2(e1, e2) = 1 for

all e2 ≥ e∗1.
36Intuitively, a laggard will have the strongest incentive to exit, and a potential entrant the least incentive

to enter, when it is as far behind the leader as possible.
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Figure B.1: Baseline High-HHI Equilibrium: Examples of Possible Paths Through the State
Space For a Game Starting at (1,1). The numbers in each cell are seller 2’s continuation
probabilities. The circular arrows indicate no sale being made, due to the buyer choosing
the “outside option”.

e1
out 1 2 ... M−4 M−3 M−2 M−1 M

out 0.9583 0 0 0 0 0 0 0

1 1 0.9996 0.7799 0.7777 0.7777 0.7777 0.7777 0.7777

2 1 1 1 1 1 1 1 1

...

e2 M−4 1 1 1 1 1 1 1 1

M−3 1 1 1 1 1 1 1 1

M−2 1 1 1 1 1 1 1 1

M−1 1 1 1 1 1 1 1 1

M 1 1 1 1 1 1 1 1

The following are examples of strategies where the equilibrium would not be SELPM:

1. accommodative equilibria (i.e., λ2(e1, e2) = 1 for all e1, e2 ≥ 1);

2. an equilibrium where λ2(M, 0) > 0 (for example, due to a low lower bound on entry

costs);

3. an equilibrium where λ1(M,M) < 1 (for example, due to a high upper bound on scrap

values and/or intense duopoly competition); or,

4. an equilibrium where λ2(M, 0) = 0, λ1(M, e2) = 1 for e2 ≥ 2 or e2 = 0, but λ1(M, 1) <

1. If the state reaches (30, 2) the game will either proceed to (M,M) (permanent

duopoly) with no exit, or seller 2 may exit and seller 1 will be a permanent monopolist.

However, it fails to meet our definition because seller 1 may exit in state (M, 1). We

require the condition that λ1(e1, e2) in all e1 ≥ e∗1 because it allows us to construct
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Figure B.2: Alternative SELPM Example with Possible Re-entry: Examples of Possible
Paths Through the State Space For a Game Starting at (1,1). The numbers in each cell are
seller 2’s continuation probabilities. The circular arrows indicate no sale being made, due to
the buyer choosing the “outside option”.

e1
out 1 2 ... M−4 M−3 M−2 M−1 M

out 0.958 0.758 0.643 0.123 0.042 0 0 0

1 1 1 0.945 0.689 0.675 0.672 0.669 0.666

2 1 1 1 0.695 0.689 0.686 0.683 0.681

...

e2 M−4 1 1 1 1 1 1 1 1

M−3 1 1 1 1 1 1 1 1

M−2 1 1 1 1 1 1 1 1

M−1 1 1 1 1 1 1 1 1

M 1 1 1 1 1 1 1 1

an algorithm that can check whether a SELPM equilibria exists or not under weaker

assumptions on the scale of problem for which we can find all equilibria. Of course, if

this equilibrium exists, it is also possible that a different equilibrium, where λ1(30, 1) =

1, will satisfy the SELPM definition.
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C Classification of Equilibria.

We now classify the equilibria identified in Section 4 into different types. Two mutually

exclusive types are accommodative (see definition in Section 2) and SELPM. For a complete

discussion of what we find, it is also useful to define two other types.

Definition An equilibrium has the“Any Exit Leads to Permanent Monopoly” (AELPM)

property if (i) λ1(e) = 1 for all e = (e1, e2) where e1 ≥ e2; (ii) there is some e = (e1, e2)

where e1 > e2 > 0 and λ2(e) < 1, and (iii) for any e = (e1, e2) where e1 > e2 > 0 and

λ2(e) < 1, λ2(e
′
1, 0) = 0 for e′1 ≥ e1.

In an AELPM equilibrium, the only exit from duopoly will be by a strict laggard and

there will be no re-entry once a laggard exits. Any AELPM equilibrium will be SELPM.37

But, SELPM equilibria may not be AELPM. For example, the High-HHI baseline equilibrium

in Table 1 is not AELPM because there is a chance that sellers exit in state (1,1), so that

there is a small probability that both sellers exit, in which case there may be re-entry.

We also consider equilibria that satisfy BDK’s definition of “aggressive” equilibria.

Definition An equilibrium is “aggressive”if p1(e) < p1(e1, e2+1), p2(e) < p2(e1, e2+1), and

λ2(e) < λ2(e1, e2 + 1) for some state e = (e1, e2) e1 > e2 > 0.

This definition depends on both prices and continuation strategies. Aggressive equilibria

are not accommodative, and they may or may not be AELPM or SELPM.

C.1 Classification for σ- and ρ-Homtopies for the Illustrative Pa-

rameters.

Figure C.1(a) and (b) shows a classification of the equilibria found by σ- and ρ-homotopies

for different values of bp. The other parameters are held at their baseline values. The HHI∞

is shown on the y-axis. The different line styles indicate the different type of equilibria.

Recall that all AELPM equilibria are SELPM. For these parameters we find that:

37In particular, the fact that a leader will never exit rules out the fourth type of non-SELPM equilibrium
above. Any value of e1 where there is some possibility that a laggard seller 2 exits will meet the e∗1 definition.
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� all identified equilibria are either accommodative or SELPM (i.e., this classification is

exhaustive for the equilibria that the homotopies identify for these parameters); and

� all identified aggressive equilibria are SELPM, although many SELPM equilibria are

not aggressive.

There is also an interesting pattern where the AELPM equilibria tend not to be the

equilibria with the highest implied values of HHI∞. Even though high HHI∞ equilibria

tend to have low duopoly prices, and it is not attractive for a potential entrant to enter

against a monopolist, there is usually some probability of exit in symmetric duopoly states,

particularly (1,1), so these equilibria do not meet the AELPM criteria.
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Figure C.1: Classification of Equilibria Identified by ρ- and σ-Homotopies for Various bp.
Other parameters at their illustrative values. See text Figures 4(a) and (c) for which line
corresponds to which bp. Equilibria indicated as “SELPM” or “AELPM” only do not satisfy
the definition of aggressive equilibria.

(a) ρ-Homotopy Paths (σ = 1)

(b) σ-Homotopy Paths (ρ = 0.75)
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D The Algorithm for Identifying if SELPM Equilibria

Exist.

A property of SELPM equilibria is that once the state e∗1 has been reached, state transitions

have the directional property that the state will evolve to (M,M) or (M, 0) without return-

ing to a previously visited state. As discussed by Iskhakov, Rust, and Schjerning (2016),

recursive algorithms, which solve for equilibria in a sequence of individual states, can be

used when states evolve directionally. However, the way that we use this idea is novel in

at least two ways. First, we consider a directional property that applies to a certain type

of equilibrium in part of the state space, rather than a property which has to apply to all

equilibria given primitives of the model. Second, we apply a recursive algorithm to find

whether this type of equilibrium exists, rather than trying to find all equilibria.

We proceed as follows. First, we describe how the algorithm proceeds through the state

space, and how it terminates in success or failure, without providing details of how we

solve for equilibrium strategies in any particular state. Instead, we make assumptions about

our ability to solve for all equilibria in a particular state given continuation values if the

state changes.38 Second, we provide the proof that, under these assumptions, our algorithm

will terminate in success if and only if a SELPM equilibrium exists. Finally, we detail the

mechanics of how we solve for equilibria in different types of states.

D.1 Overview of the Algorithm

The algorithm recursively solves for equilibrium strategies in each state until we either (i)

find an equilibrium path where there is an e1 state that meets the SELPM definition of e∗1

(“success”), or (ii) find that all paths are inconsistent with SELPM (“failure”). Notably,

either outcome may be achieved by going only through a small part of the state space.

Figure D.1 describes the recursive path that the algorithm takes through the state space.

The key feature is that we only construct and follow paths that are consistent with SELPM

in states e1 ≥ e∗1. For example, this implies that if the industry becomes a monopoly then

38As noted by Iskhakov, Rust, and Schjerning (2016), assumptions are needed as no algorithms are guaran-
teed to find all equilibria in particular states, outside of some special cases that do not apply here. However,
we explain why we are confident that, in practice, we are able to find all equilibria.
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Figure D.1: Outline of the Recursive Algorithm.

Main Program: 

Create matrix E that will contain strategies and values on the equilibrium 

path. 

Solve for equilibrium strategies and values in all states where (e1,0) for all 

e1>0 assuming that λ1(e1,0)=1 and λ2(e1,0)=0 for all such states.  Store these 

strategies and values in E. 

Solve for equilibrium prices (which will equal static Nash prices) and values 

in state (30,30) assuming that λ1(30,30)=λ2(30,30)=1. If implied βV1
S(30, 30) <

(X̅ + ∆X), i.e., a seller may exit, then there are no SELPM equilibria, and the 
program terminates. Otherwise, add these strategies to E. 

Set e1==30, e2==29, call [fail,success] = recursion_function(e1,e2,E) 

If success==1, there is a SELPM equilibrium. 

If fail==1, there is no SELPM equilibrium.  

Program terminates. 

Recursive Function 

function [fail,success] = recursion_function(e1start,e2start,E) 

% Initialize variables 

Set success=0 

Set fail=0 

Set e1=e1start 

Set e2=e2start 

 

% Outer loop, decreasing over the states of the leader 

While success==0 && fail==0 && e1>=1, 

 

% Initialize 

e2=e2start 

 

% Inner loop, decreasing over the states of the laggard 

While success==0 && fail==0 && e2>=0, 

   

% In a state where firm 2 is a potential entrant, determine whether we 

have identified an e1 state satisfying the SELPM definition, or whether 

the equilibrium path is inconsistent with SELPM 

 

If e2==0, 

Given the continuation values in E, check whether firm 2 would 

want to enter in state (e1,0) if λ1(e1,0)=1.  

 

If yes, this is not a SELPM path, set fail=1. 

 

If no, check whether firm 1 would want to continue with 

probability 1 if λ2(e1,0)=0. 

 If no, this is not a SELPM path, set fail=1. 

 If yes, check whether this path involves some positive 

probability of laggard exit when the leader state is e1.  

  If yes, a SELPM path is identified, set success=1. 

   

Else % states where both firms are active 

If e1==e2, % symmetric state 
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Figure D.1: Outline of the Recursive Algorithm cont.

Find assumed-to-be unique state-specific symmetric 

equilibrium prices and values in (e1, e2), using 

continuation values from E, assuming λ2(e1,e1)=λ1(e1,e2)=1. 

 

Check that these values imply that the leader will want to 

continue with probability 1.   

 If no, this is not a SELPM path, set fail=1. 

If yes, record the prices and values for (e1,e2) in E. 

 

If e1==1 && no exit from any e1 states, an accommodative 

equilibrium has been identified, set fail=1. 

else, % e1>e2 

 

Find all pricing and seller 2 continuation probability 

state-specific equilibria for (e1,e2), using continuation 

values from E, when assume λ1(e1,e2)=1.   

 

Identify state-specific equilibria where λ2(e1,e2)<1-(e-10) 

as equilibria with laggard exit. 

 

Remove any state-specific equilibria that imply the leader 

might want to exit from consideration. 

 

For the remaining equilibria: 

If there are none, set fail=1. 

If there is exactly one, record the prices and values 

for (e1,e2) in E. 

If there are multiple, set local_fail==1, and then 

while success==0 and local_fail==1,  

for each state-specific equilibrium in turn 

add the state-specific equilibrium to E to 

create E’, 

 set e2’=e2-1 and call 

[local_fail,success]= 

recursion_function(e1,e2’,E’) 

 

end (while) 

Set fail=local_fail. 

end (the if e1==e2 condition) 

end (the e2==0 condition) 

Set e2=e2-1. 

end (inner loop) 

Set e1=e1-1. 

Set e2start=e1. 

end (outer loop) 

 

end (function) 
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it will remain so. We therefore solve for equilibrium prices and values in duopoly states

assuming that this will be what happens in monopoly states, before verifying that, in fact,

potential entrants would not want to enter. The SELPM-consistent equilibrium strategies

and values on the current path (including for monopoly states that the algorithm has not

yet reached) are stored in a set of matrices, that, for ease of description, we collective label

as E.39

To understand the process, consider the illustrative parameters with bp = 0. The al-

gorithm solves for equilibria in monopoly states when seller 1 and the buyer assumes that

the potential entrant will not enter. Consistent with Table 1, this implies the incumbent

will set prices of 8.54 in state (30,0), and for example, 8.72 in state (2,0), although this

price will only be relevant if the search for an e∗1 continues back to e1 = 2. It then solves

for the SELPM-consistent equilibrium in state (30,30), where neither seller will exit, before

progressing through the states (30,29), (30,28),...,(30,2), using the continuation values in the

states that the game could move to in a SELPM equilibrium (including (30,0)) in order to

solve the game in a particular state. In these states, we find that the only SELPM-consistent

equilibria have λ2 = 1. In state (30,1) we find three equilibria with λ2 = 0.7777, 0.9577 and

1. The algorithm selects the 0.9577 (Mid-HHI) equilibrium to try first. In this case, it only

needs to check if λ1(30, 0) = 1 and λ2(30, 0) = 0 given the implied V S
1 (30, 1) and V S

2 (30, 1).

Both checks are passed so the criteria for e∗1 are satisfied by e1 = 30 and the algorithm

terminates in success. If, counterfactually, we had found multiple equilibria in state (30,2),

then algorithm would have selected one path, extended that path to find an equilibrium in

state (30,1) and then performed the check on continuation probabilities in state (30,0). If

the SELPM conditions are rejected on one path, the next path, if one is available, is chosen.

D.2 Properties of the Algorithm

We make two claims about the property of the algorithm.

Claim 1 If the algorithm terminates in success, then a SELPM equilibrium exists.

39Our code also assumes that seller 2 is the leader, rather than seller 1. We present our description with
seller 1 as the leader as it is easier to follow.
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Proof. Inspection reveals that if the algorithm terminates in success for e1 = e′1 then (i)

λ1(e1, e2) = 1 for all e1 ≥ e′1 and all e2, including e2 = 040, and (ii) λ2(e
′
1, e2) < 1 for some

0 < e2 < e′1 and λ2(e1, 0) = 0 for all e1 ≥ e′1.

Therefore, the path that terminates in success has equilibrium strategies and values

consistent with SELPM for all states where e1 ≥ e′1, and e′1 satisfies the criteria for e∗1 in the

definition.41

It remains to show that a set of equilibrium strategies and values in earlier states must

exist that, when combined with these strategies and values, would form an equilibrium in the

whole game. In a SELPM equilibrium, once state e∗1 has been reached, play will only move

through states where equilibrium strategies and values have been calculated by the algorithm.

Therefore, we only require that an equilibrium exists in a reduced game where the states are

e1 = 1, ..., e∗1 − 1 and the terminal payoffs of players if a buyer purchases from seller 1 in a

state (e∗1 − 1, e2) are V S,INT
i (e∗1, e2) and V B,INT (e∗1, e2). Existence of an equilibrium in this

reduced game follows from the arguments in Doraszelski and Satterthwaite (2010).

To prove that the algorithm will terminate in success if a SELPM equilibrium exists, we

make three additional assumptions.

Assumption 1 There is a unique state-specific equilibrium (i.e., values of p1, V
S
1 , V S,INT

1 ,

V B, V B,INT satisfying the monopoly state version of the equilibrium equations in Section 2)

in a monopoly state (e1, 0) with e1 < M , given fixed buyer and seller continuation values if

the buyer purchases from seller 1, if λ1(e1, 0) = 1 and λ2(e1, 0) = 0.

Assumption 2 There is a unique symmetric state-specific equilibrium (i.e., values of p1, p2,

V S
1 , V S

2 , V S,INT
1 , V S,INT

2 , V B, V B,INT satisfying the duopoly state equations in Section 2)

in a symmetric duopoly state (e1, e1) with e1 < M , given fixed buyer and seller continuation

values if the buyer purchases from sellers 1 or 2, when λ1(e1, e1) = λ2(e1, e1) = 1.

40One may notice that the algorithm does not solve for strategies in a state where seller 2 is the leader,
e.g., (29,30). However, under the restriction that we are only solving for symmetric equilibria, then for the
algorithm to be looping through e2 states for e1 = 29 it must be the case that λ2(30, 29) = 1 on the path
that is being tracked, so it follows that λ1(29, 30) = 1.

41Of course, the strategies found in monopoly states where e1 < e′1 may not be consistent with equilibrium
behavior, but they would have been consistent if, in search of an e1 state meeting the SELPM-criteria, the
algorithm had visited these states.
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Assumption 3 We are able to find all state-specific equilibria (i.e., values of p1, p2, λ2,

V S
1 , V S

2 , V S,INT
1 , V S,INT

2 , V B, V B,INT satisfying the duopoly state version of the equations

in Section 2) in an asymmetric duopoly state (e1, e2) with e1 > e2, given fixed buyer and

seller continuation values if the buyer purchases from seller 2 or seller 1 (if e1 < M), when

λ1(e1, e2) = 1.

Assumption 1 concerns states (e1, 0) with e1 < M . In state (M, 0), a more general

property must hold.

Property 1 There is a unique state-specific equilibrium (i.e., values of p1, V
S
1 , V S,INT

1 , V B,

V B,INT satisfying the monopoly state version of the equilibrium equations in Section 2) in a

monopoly state (M, 0) if λ1(M, 0) = 1 and λ2(M, 0) = 0.

Proof. If λ1(M, 0) = 1 and λ2(M, 0) = 0, then it is certain that the game will remain

in state (M, 0) whatever purchase decision the buyer makes. Therefore, from text equation

(8), buyer demand will be identical to the demand of an atomistic buyer, whatever the value

of bp, and the monopolist’s price choice can also not affect its future value. Therefore, the

unique equilibrium will involve the seller setting the static monopoly price.

Assumption 2 concerns states (e1, e1) with e1 < M . In state (M,M), a more general

property must hold.

Property 2 There is a unique state-specific equilibrium (i.e., values of p1, V
S
1 , V S,INT

1 , V B,

V B,INT satisfying the monopoly state version of the equilibrium equations in Section 2) in a

monopoly state (M,M) if λ1(M,M) = λ2(M,M) = 1.

Proof. If λ1(M,M) = λ2(M,M) = 1, then it is certain that the game will remain in

state (M,M) whatever purchase decision the buyer makes. Therefore, from text equation

(8), buyer demand will be identical to the demand of an atomistic buyer, whatever the value

of bp. The price choice of either seller will not affect their future values, so the number of

equilibria consistent with Markov Perfect behavior will correspond to the number of equilibria

in a one-shot game where sellers have the same marginal costs. The multinomial logit form

of demand implies that the equilibrium will be unique (e.g., Mizuno (2003)).
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As noted below, we have never found examples under which either of Assumptions 1 or

2 are violated. We detail below the procedures that we use to find equilibria in any state,

and we provide evidence that explains why we believe all these assumptions hold, although,

like BDK, we find that it can be challenging to find any equilibrium for low values of σ. For

this reason, we do not report results for σ < 0.5.

Claim 2 Under assumptions 1-3, if a SELPM equilibrium exists, then our algorithm will

terminate in success.

Proof. The assumptions and Properties 1 and 2 imply that the algorithm will follow, and

evaluate, every possible SELPM-consistent equilibrium path before terminating in failure.

Therefore if a SELPM-consistent state e∗1 exists, the algorithm will find it.

D.3 Methods for Solving for Equilibria in Specific States

We now describe how we solve for equilibria that are consistent with SELPM in specific

states. We describe our routines assuming that σ = 1 to reduce notation. Our examples

assume the illustrative parameters, with ρ = 0.75 and σ = 1, unless otherwise stated.

D.3.1 Solving for Equilibria in Monopoly States (e1, 0) assuming λ1(e1, 0) = 1
and λ2(e1, 0) = 0.

Consider a state (e1 < M, 0). Assuming λ1(e1, 0) = 1 and λ2(e1, 0) = 0, the following

equations determine the equilibrium values of V B, V B,INT , V S
1 ,V S,INT

1 and p1 where seller

1’s marginal cost is c,

V B = bp ln(exp(V B,INT ) + exp(v − p1 + V B,INT (e1 + 1, 0)))+ (D.1)

(1− bp)(D1V
B,INT (e1 + 1, 0) + (1−D1)V

B,INT )

V S
1 = (p1 − c+ V S,INT

1 (e1 + 1, 0))D1 + V S,INT
1 (1−D1) (D.2)

D1 + (p1 − c+ V S,INT
1 (e1 + 1, 0)− V S,INT

1 )
∂D1

∂p1
= 0 (D.3)

V B,INT = βV B (D.4)

V S,INT
1 = βV S

1 (D.5)
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where D1 =
exp(v1−p1+V B,INT (e1+1,0))

exp(v1−p1+V B,INT (e1+1,0))+exp(V B,INT )
assuming, following BDK, that v0 = p0.

We could solve these sets of equations recursively for different monopoly states. However,

we find it quicker to solve the equations for all of the monopoly states simultaneously in

MATLAB using fsolve. We also reduce the number of variables by solving for V B, V S
1 and

p1 and using these values to solve for V B,INT and V S,INT
1 as needed.

Discussion of the Uniqueness Assumption. We have performed an analysis to check whether

Assumption 1 is likely satisfied. Specifically, we can look at whether two equilibrium curves

intersect more than once. The first curve solves the value of V B as a function of p1, reflecting

equation (D.1). The second curve solves for the value of p1 that maximizes the seller’s value,

given V B, as determined by the first-order condition (D.3).

Figure D.2 presents examples of what these curves look like for state (10, 0) using the

illustrative parameters when bp = 0.25, 0.5, 0.75 and 1. The black curves denote the value

of V B given p1, and the red curves reflect the value-maximizing choices of p1 given values

of V B. The curves cross only once in every case, consistent with a single equilibrium. We

have verified that there is only one intersection for a very large number of different values of

ρ, σ, bp, V S(e1 + 1, 0) and V B(e1 + 1, 0).42

D.3.2 Solving for Equilibrium in Absorbing Duopoly State (M,M).

(M,M) is an absorbing state in a SELPM equilibrium. This implies that there is a unique

SELPM-consistent equilibrium where prices are the same as static Nash prices with non-

strategic buyers (uniqueness of these prices follows from the multinomial logit form of demand

(e.g., Mizuno (2003))).

We find equilibrium prices by solving static pricing first-order conditions,

Di + (pi − c)
∂Di

∂pi
= 0,

and then calculating the implied buyer and seller values (V S). We verify that βV S is greater

42Specifically, we use bp values on a grid [0.2,0.4,0.6,0.8,1], ρ values [0,0.1,0.2,..,0.9,1], σ values
[0.5,0.6,..,1.1,1.2], V S(e1 + 1, 0) values [60,65,..,95,100] and V B(e1 + 1, 0) values bp∗[20,25,30,35,40]. This
gives a total of 19,800 combinations that we check. We have also experimented with other values.
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Figure D.2: Monopoly State Equations in State (10, 0): black curve is the value of V B as a
function of p1, red curve is the optimal p1 given V B. There is an equilibrium where the lines
intersect.
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than the maximum possible scrap value, so that exit is not optimal. If exit could be optimal,

there is no SELPM equilibrium.

D.3.3 Solving for Equilibria in Other Duopoly States (e1, e2), e1 ≥ e2 > 0, e2 < M .

In a duopoly state we want to solve for all SELPM-consistent values of

� prices (p1, p2)

� values (V S
1 , V S

2 , V S,INT
1 , V S,INT

2 , V B, V B,INT )

� continuation probability for seller 2 (λ2), although SELPM implies that λ2 = 1 if

e1 = e2 for e1 ≥ e∗1.

The continuation probability for seller 1 must be 1. The nine variables must satisfy the

following nine equations

V S
i −Di(p1, p2, V

B)(pi − ci(ei))−
∑

k=0,1,2

Dk(p1, p2, V
B)V S,INT

i (e′k) = 0 for i = 1, 2 (D.6)

where V S,INT
i (e′0) = V S,INT

i ,

V S,INT
1 = β

(
λ2V

S
1 + (1− λ2)V

S
1 (e1, 0)

)
and V S,INT

2 = βλ2V
S
2 + (1− λ2)E(X|λ2) (D.7)

Di(p1, p2, V
B)+

∑
k=0,1,2

∂Dk(p1, p2, V
B)

∂pi
V S,INT
i (e′k)+(pi − ci(ei))

∂Di(p1, p2, V
B)

∂pi
= 0 for i = 1, 2

(D.8)

λ2−Fscrap(βV
S
2 ) = 0 (D.9)

V B = bp log

( ∑
k=0,1,2

exp
(
vk − pk + V B,INT (e′k)

))
− (1− bp)

∑
k=0,1,2

Dk(p1, p2, V
B)V B,INT (e′k),

(D.10)

where V B,INT (e′0) = V B,INT ,

V B,INT = β
(
λ2V

B + (1− λ2)V
B(e1, 0)

)
, (D.11)

where e′k is the state that the game transitions to when the buyer purchases from k, and
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E(X|λ2) is the expected scrap value when seller 2 exits with probability 1 − λ2. When

this involves a change of state, we take the continuation values as given. For example, if

e1 < M43,

V S,INT
1 (e′1) = β

(
λ2(e1 + 1, e2)V

S
1 (e1 + 1, e2) + (1− λ2(e1 + 1, e2))V

S
1 (e1 + 1, 0)

)
(D.12)

V S,INT
2 (e′1) = β

(
λ2(e1 + 1, e2)V

S
2 (e1 + 1, e2) + (1− λ2(e1 + 1, e2))E(X|λ2(e1 + 1, e2))

)
,

(D.13)

where E(X|λ2(e1 + 1, e2)) is the expected scrap value if seller 2 exits with probability 1 −

λ2(e1 + 1, e2).

V B,INT (e′2) = β
(
λ2(e1, e2 + 1)V B(e1, e2 + 1) + (1− λ2(e1, e2 + 1))V B(e1, 0)

)
, (D.14)

V B,INT (e′1) = β
(
λ2(e1 + 1, e2)V

B(e1 + 1, e2) + (1− λ2(e1 + 1, e2))V
B(e1 + 1, 0)

)
(D.15)

If e1 = e2 ≥ e∗1 then a SELPM-consistent equilibrium must have λ2 = λ1 = 1. Therefore,

for these states, we solve for equilibrium prices and values assuming that λ2 = 1, and then

we verify that the solution implies that βV S
2 is greater than the highest possible scrap value,

implying that λ2 = 1 is optimal. In practice, we solve for V S
i , V B and pi for i = 1, 2,

substituting in for V S,INT
i and V B,INT .

If e1 > e2 ≥ e∗1 then a SELPM-consistent equilibrium may have λ2 < 1, and we may

find multiple equilibria. Our method for identifying the set of SELPM-consistent equilibria

assumes that there is a unique equilibrium for a given value of λ2.
44 We specify a grid of

values of λ2, with steps of 0.01, and for each of these values we solve the equations (D.6),

(D.8) and (D.10) for pi, V
S
i and V B, substituting into equations (D.7) and (D.11) for the

values of V S,INT
i and V B,INT .45 We then calculate the best response value of λ2, λ

BR
2 (λ2),

given V S
2 using equation (D.9).

43Alternatively, if e1 = M , V S,INT
1 (e′1) = β

(
λ2V

S
1 + (1− λ2)V

S
1 (M, 0)

)
and V S,INT

2 (e′1) =

β
(
λ2V

S
2 + (1− λ2)E(X|λ2)

)
and V B,INT (e′1) = β

(
λ2V

B + (1− λ2)V
B
2 (e1, 0)

)
, so they depend on the en-

dogenous λ2, V
B and V S

1 , because a sale by seller 1 does not change the state.
44Given that equilibrium prices directly affect V S

2 and λ2 is a strictly increasing function of V S
2 for λ2 < 1,

we regard this assumption as weak for λ2 < 1.
45Occasionally the equations do not solve using the starting values chosen, in which case we use a Pakes-

McGuire type of routine to find alternative starting values.
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Figure D.3: Best Response Continuation Probability Functions for Seller 2 Given Endoge-
nous Pricing Choices by Both Sellers. Intersections with the 450-degree line are equilibria.

Figure D.3 shows examples of the function λBR
2 (λ2) for the illustrative parameters, for

states (30,1) and (30,5), with bp = 0 and bp = 0.2. There are equilibria at the points where the

functions cross the 45-degree line. We find the precise intersection using locations between

gridpoints either side of an intersection as starting points, before verifying that the solution

is consistent with the leader continuing with probability 1, as required for SELPM.46,47

Discussion of the Uniqueness Assumption. As noted, our approach assumes that there

is a unique pricing equilibrium given an assumed value of λ2 when λ1 = 1. There are

46We initially try to find the intersection by starting at the neighboring gridpoints, but if this fails, we use
convex combinations of the gridpoints as starting values until the intersection is identified.

47As the figure suggests, it is possible that we would miss an intersection where the function is close to
forming a tangent with the 45-degree line. We have found that gridpoints of 0.01 are adequate to identify
whether SELPM equilibria exist, in the sense that our results do not change if we use a finer grid. This is
partly because even if we do just miss an intersection in one particular state (e1, e2), there will often be a
clearer intersection for state (e1, e2 − 1) that we will capture, which may allow us to show that a SELPM
equilibrium exists.
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two types of evidence that support this presumption. First, we have never identified an

instance of multiple equilibria for any of the parameters that we have considered, even when

using multiple different starting points or alternative solution algorithms. Second, we have

investigated whether there could be multiple equilibria by using a reaction function-type of

analysis.

Specifically, for a given value of λ2 and the continuation values, we solve the equations

for V B, V S
1 and the first-order condition for p1 for a grid of alternative values of p2. We then

solve the equations for V B, V S
2 and the first-order condition for p2 for a grid of alternative

values of p1. We can then draw curves p∗1(p2) and p∗2(p1), which reflect optimal behavior of

buyers and the other seller to the assumed price. The intersections correspond to equilibria,

and we can test whether they intersect more than once. Figures D.4 presents some examples

of these curves for the illustrative parameters, bp = 0 or bp = 1 and e1 = 30 and e2 = 1.

Recall that in the state (30,1), if the buyer purchases from seller 1, the state remains

(30,1), whereas if seller 2 makes a sale, the state transitions to (30,2), where, for these

parameters, there is always a unique equilibrium. If seller 2 is setting a much lower price

in state (30,1) than in state (30,2), a strategic buyer will have an incentive to shift demand

towards seller 1 in order to keep the state the same in future periods. As a result, seller

1’s optimal price is less sensitive to seller 2’s price in this state when bp = 1, which accounts

for the change in the slope of the reaction functions. However, in all cases, the reaction

functions only intersect once, and there is a single equilibrium.48

In practice, it is prohibitive to perform this check for all values of λ2 for all states for

all parameters. However, our checking algorithm does perform this check in states where

e1 = M for λ2 =0.55, 0.65, 0.75, 0.85 and 0.95. We have never found parameters where

there is ever more than one intersection. This is also the case when we have solved games

for many different sets of arbitrary continuation values and parameters.

48Note that in a state (e1, e2) where e1 < M , the buyer cannot keep the state the same by buying from
seller 1. Therefore, for all values of bp, reaction functions tend to look more like the case where bp = 0.
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Figure D.4: Pricing Best Response Functions in State (30,1) for Different Assumed Contin-
uation Probabilities for Seller 2 (λ2).

(a) bp = 0

(b) bp = 1
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E Algorithm for Establishing Existence of an Accom-

modative Equilibrium

Definition An equilibrium is accommodative if λ1(e1, e2) = λ2(e1, e2) = 1 for all states

(e1, e2) where e1 > 0 and e2 > 0.

In an accommodative equilibrium there is no exit by active sellers. If the industry starts

off in state (1,1), it is guaranteed to arrive in state (M,M) in an accommodative equilibrium.

This definition is the same as in BDK (2019), Appendix B.

E.1 Existence of an Accommodative Equilibrium

We establish whether an accommodative equilibrium exists by solving, using fsolve in

MATLAB, for equilibrium prices and values assuming that there is no exit from any duopoly

state, and then verifying that it is always optimal for each duopolist to continue in every

duopoly state by checking that βV S(e1, e2) is greater than the highest possible scrap value.

E.2 Are Accommodative Equilibria Likely to Be Unique?

In an accommodative equilibrium the game is guaranteed to eventually end up in state

(M,M), and remain there, and once a state has been left, because one of the sellers has

made a sale and increased its know-how, it is guaranteed that the game will not return to

it. This feature would guarantee a unique equilibrium if it is the case that there is a unique

pricing equilibrium in any state given continuation values if the state changes. However,

even though it can be shown that there is a unique price equilibrium in a one-shot Nash

pricing game with a multinomial logit demand and an outside good that has a fixed price

(e.g., Mizuno (2003)), this result is not sufficient in our model where the prices in the stage

game affect sellers’ continuation values (and a strategic buyer’s continuation value if bp > 0)

if no sale is made.49 The intuition for multiplicity would be that “at a low price equilibrium,

each seller has a low opportunity cost of making a sale (when the other seller does not make

a sale) as the state is unprofitable, whereas at a high price equilibrium, the opportunity

49The result is sufficient for state (M,M) as, whatever the buyer does, the state will be (M,M) in the
next period. Therefore, the seller’s pricing incentives in a Markov Perfect Equilibrium, will be the same as
in a one-shot game.
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cost of making a sale is higher”. Note that this logic would tend to unravel with a strategic

buyer, who would recognize that the possibility of them being the chosen buyer in the next

period, which would make them keener to buy from one of the sellers when prices are high,

lowering the probability that the state remains the same.

However, in practice, we have not found any examples of states with more than one ac-

commodative pricing equilibrium despite extensive attempts to find an example for different

values of bp. One likely explanation for this is that the assumed value of vi = 10 implies that

the probability of the state remaining the same at prices that are close to equilibrium prices

is small. For example, for all of the duopoly prices shown in text Table 1 the probability

that the outside good is chosen is less than 0.02, and typically less than 0.01.
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F Additional Results

F.1 Equilibrium Buyer and Seller Incentives on bp-Homotopy Paths
for the Illustrative Parameters

Figure F.1(a) shows the equilibrium advantage-building and denying incentives for seller 1 in

state (3,1). The decline in seller 1’s demand and the falling probability that seller 2 will exit

causes seller 1’s advantage-denying incentive to fall sharply as we move from the High-HHI

baseline equilibrium.

Figure F.1(b) shows the equilibrium dynamic incentives of a strategic buyer in state

(3,1), measured by the change in the chosen buyer’s continuation values when, compared to

not buying, it buys from seller 1 (V B,INT (4, 1) − V B,INT (3, 1)) or seller 2 (V B,INT (3, 2) −

V B,INT (3, 1)). These incentives are zero in all of the equilibria when bp = 0. As bp rises, the

dynamic incentive to buy from seller 2 increases sharply in the non-accommodative equilibria,

while there is an increasing dynamic disincentive to buy from seller 1. In an accommodative

equilibrium there is a positive dynamic incentive to buy from the laggard as this lowers

future prices, and, for bp > 0.2 an incentive to buy from the leader which, relative to no

purchase, lowers future costs.
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Figure F.1: Equilibrium Dynamic Incentives Along bp-Homotopy Paths for the Illustrative
Parameters. H = High-HHI, M = Mid-HHI and A = Accommodative Baseline Equilibria,
and AB=Advantage-Building and AD=Advantage-Denying Incentives.

(a) Seller 1 Equilibrium Incentives

(b) Buyer Equilibrium Incentives
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F.2 Additional Welfare Results for the Illustrative Parameters

Text Figure 3 shows that, for bp = 0, the present value of consumer surplus (PV CS) is

highest in the Mid-HHI equilibrium and lowest in the High-HHI equilibrium, whereas the

present value of total surplus (PV TS) is highest in the accommodative equilibrium and

lowest in the High-HHI equilibrium. As bp increases, both measures of surplus fall in the

accommodative equilibrium as prices tend to increase.

The game will be in states (M,M) or (M, 0) in the long-run, so that long-run expected

consumer surplus will be higher in the accommodative equilibrium where (M,M) is the

certain long-run outcome. PV CS is therefore higher in Mid-HHI equilibrium only because

initial prices are lower, while the probability that the industry becomes a monopoly is not

too large. To illustrate what happens to welfare in the first part of the game, Figure F.2(a)

and (b) show the expected surplus measures for the first ten periods of a game beginning at

(1,1). Note that the reported numbers are sums and there is no discounting.

During the first ten periods, consumer surplus is highest in the High-HHI equilibrium

due to the very low duopoly prices when one firm has not made a sale. This also tends

to increase total surplus. Total surplus is also increased by the reduction in production

costs which results from one seller tending to make most of the sales. This is illustrated in

Figure F.2(c), which shows the sum of production costs over the first ten periods. The effect

that strategic buyer behavior increases prices in the accommodative equilibrium causes both

measures of surplus to fall in the accommodative equilibrium as bp is increased.

The NPV of total surplus is affected by the number of sales that are made and the costs

of production. Figure F.3(a) shows that the expected discounted production cost per sale is

highest in the accommodative equilibrium, due to slower early learning, and it is lowest in

the High-HHI equilibrium, where learning will tend to be quickest.50 Figure F.3(b) shows

the discounted total number of sales that are made. Even though low prices mean that more

sales are made at the very beginning of the game in the High-HHI and Mid-HHI equilibria,

the discounted number of sales is highest in the accommodative model as, despite higher

average production costs, long-run margins are low.

50The reported number is the expected discounted total sum of production costs divided by the expected
discounted total number of sales.
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Figure F.2: Equilibrium Expected Consumer Surplus, Total Surplus and Production Costs
Over the First 10 Periods for a Game Starting in State (1, 1) Along bp-Homotopy Paths for the
Illustrative Parameters. The black line traces the homotopy path from the Accommodative
(A) baseline equilibrium. The red line traces the overlapping paths from the High-HHI (H)
and Mid-HHI (M) baseline equilibria.

(a) Consumer Surplus

(b) Total Surplus
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Figure F.2: cont.

(c) Expected Production Costs Over the First 10 Periods of the Game
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Figure F.3: Expected Present Value of Per-Sale Production Costs and the Expected Present
Value (i.e., Discounted) Number of Sales for a Game Starting in State (1, 1) Along bp-
Homotopy Paths for the Illustrative Parameters.

(a) Expected Discounted Per-Sale Production Costs

(b) Expected Discounted Number of Sales
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F.3 ρ and σ-Homotopy Paths for bp = 0

Text Figure 4(a)-(d) show ρ and σ homotopy paths for 11 different values of bp. We reproduce

the HHI∞ plots for bp = 0 in Figure F.4 for clarity, and so they can be compared with the

figures in BDK1, Figure 2, panels A and B.
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Figure F.4: Expected Long-Run HHI (HHI∞) for Equilibria Identified by ρ- and σ-
Homotopies when bp = 0 and the Other Parameters are at their Illustrative Values.

(a) σ-Homtopies (ρ = 0.75)

(b) ρ-Homotopies (σ = 1)
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F.4 NPV of Consumer and Total Surplus on σ-Homotopy Paths

for Multiple bp = 0.

Text Figures 4(e) and (f) show the present value of consumer (PV CS) and total surplus

(PV TS) for equilibria on ρ-homotopy paths for 11 different values of bp. Here we provide

similar plots for the σ-homotopies.
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Figure F.5: Expected Present Value of Consumer and Total Surplus for Equilibria Along
σ-Homotopy Paths for Multiple bps with Other Parameters are at their Illustrative Values.

(a) Consumer Surplus

(b) Total Surplus
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G Extensions

Section 5 adapts our model in four ways to investigate how small changes to our very stylized

assumptions affect our results. In this Appendix we detail these extensions and present some

additional results.

G.1 Extension 1: Mixture of Strategic and Non-Strategic Buyers.

In this extension we assume that there are two types of buyers:

1. a mass of atomistic (A) buyers who, if they are chosen to the buyer, assume that they

will never be in the market again (i.e., they act as if bp = 0); and,

2. a group of 4 symmetric, strategic (NA, non-atomistic) buyers.

Each period nature picks a strategic buyer with probability γ, in which case each of

the four strategic buyers is chosen with equal probability. Otherwise, an atomistic buyer

is chosen. The sellers observe the chosen buyer’s type before they set prices. If γ = 0, all

buyers are atomistic and equilibrium play corresponds to play in the original BDK model.

We run γ-homotopies, for the illustrative parameters, from the three γ = 0 equilibria.

G.1.1 Equilibrium Equations.

Values of the sellers and the strategic buyers are defined before nature has selected the chosen

buyer’s type (or the chosen buyer’s identity). The values of atomistic buyers are equal to

zero, so the only additional set of equations that we have to solve are the pricing first-order

conditions of the sellers when selling to atomistic buyers.

Beginning of period value for seller 1 (V S
1 ):

V S
1 (e)− (1− γ)DA

1 (p
A(e), e)(pA1 (e)− c1(e1))− γDNA

1 (pNA(e), e)(pNA
1 (e)− c1(e1))− (G.1)∑

k=0,1,2

((1− γ)DA
k (p

A(e), e) + γDNA
k (pNA(e), e))V S,INT

1 (e′k) = 0
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where

DA
k (p

A, e) =
exp(vk − pAk )∑

j=0,1,2 exp(vj − pAj )
, DNA

k (pNA, e) =
exp(vk − pNA

k + V INT,NA(e′k))∑
k=0,1,2 exp(vj − pNA

j + V INT,NA(e′j))
,

(G.2)

e′1 = (min(e1 + 1,M), e2), e
′
2 = (e1,min(e2 + 1,M)) and e′0 = (e1, e2), i.e., the states that

the game will transition to if there is a purchase from seller 1 or seller 2, or no purchase,

respectively.

Value for seller 1 before entry/exit stage (V S,INT
1 ) :

V S,INT
1 (e)−

 βλ1(e)λ2(e)V
S
1 (e) + βλ1(e)(1− λ2(e))V

S
1 (e1, 0)+

(1− λ1(e))E(X|λ1(e))

 = 0 (G.3)

for e = (e1, e2) where e1, e2 > 0, with similar equations when one or both sellers is a potential

entrant. E(X|λ1(e)) is the expected scrap value when seller 1 chooses to exit with probability

1− λ1(e).

First-order condition for seller 1’s price to non-strategic buyers (pA1 ) if e1 > 0:

DA
1 (p

A(e), e)+
∑

k=0,1,2

∂DA
k (p

A(e), e)

∂pA1
V S,INT
1 (e′k)+

(
pA1 (e)− c1(e1)

) ∂DA
1 (p

A(e), e)

∂pA1
= 0 (G.4)

First-order condition for seller 1’s price to strategic buyers (pNA
1 ) if e1 > 0:

DNA
1 (pNA(e), e)+

∑
k=0,1,2

∂DNA
k (pNA(e), e)

∂pNA
1

V S,INT
1 (e′k)+

(
pNA
1 (e)− c1(e1)

) ∂DNA
1 (pNA(e), e)

∂pNA
1

= 0

(G.5)

Seller 1’s continuation probability in entry/exit stage (λ1):

λ1(e)− Fenter(β
[
λ2(e)V

S
1 (1, e2) + (1− λ2(e))V

S
1 (1, 0)

]
) = 0 if e1 = 0 (G.6)

λ1(e)− Fscrap(β
[
λ2(e)V

S
1 (e1,max(1, e2)) + (1− λ2(e))V

S
1 (e1, 0)

]
) = 0 if e1 > 0 (G.7)

Value for strategic buyer before entry/exit stage (V INT,NA) :
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V INT,NA(e)− β

(∑
e′

Pr(e′|e, λ1(e), λ2(e))V
NA(e′)

)
= 0. (G.8)

where the sum is over the states that the game may transition to given entry/exit

choices. Seller symmetry implies that, for buyers, V INT,NA(e1, e2) = V INT,NA(e2, e1) and

V NA(e1, e2) = V NA(e2, e1).

Beginning of period strategic buyer value (V NA) :

V NA(e)− 1

4
γ log

( ∑
k=0,1,2

exp
(
vk − pNA

k + V INT,NA(e′k)
))

− (1− γ)
∑

k=0,1,2

DA
k (p

A(e), e)V INT,NA(e′k)−

(G.9)

γ(1− 1

4
)
∑

k=0,1,2

DNA
k (pNA(e), e)V INT,NA(e′k) = 0

where 1
4
is the probability that a given strategic buyer is chosen when one of them is selected.

G.2 Extension 2: Buyers with Persistent Preferences Over Sellers.

The Section 2 model also assumes that buyers always have identical preferences over sellers up

to iid preference shocks. In reality, buyers may have systematic preferences for a particular

seller (for example, because of geographic location or greater compatibility with existing

equipment). We therefore extend the Section 2 model by assuming that there are equal

numbers of two types of buyers. Type 1’s indirect utility when it purchases from sellers 1

and 2 respectively are v1 +
θ
2
− p1 + ϵ1 and v2 − θ

2
− p2 + ϵ2 respectively. For type 2 buyers,

the signs on the θ
2
terms are reversed. Sellers recognize the type of the buyer before setting

prices. The model is equivalent to the Section 2 model when θ = 0. Intuitively, it will

become more attractive for a seller to remain in the market as θ increases, even when it has

a marginal cost disadvantage, as it will have an increasing advantage when selling to half of

the market.
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G.2.1 Equilibrium Equations.

To the equations of the Section 2 model are added type-specific first-order conditions for

prices, and equations for the values and intermediate values.51 For example,

First-order condition for seller 1’s price (ptype11 ) if e1 > 0:

Dtype1
1 (ptype1(e), e)+

∑
k=0,1,2

∂Dtype1
k (p(e), e)

∂ptype11

V S,INT
1 (e′k)+

(
ptype11 (e)− c1(e1)

) ∂Dtype1
1 (ptype1(e), e)

∂ptype11

= 0

(G.10)

Value for type 1 buyer before entry/exit stage (V type1,INT ) :

V type1,INT (e)− β

(∑
e′

Pr(e′|e, λ1(e), λ2(e))V
type1(e′)

)
= 0. (G.11)

Type 1 buyer value (V type1) :

V type1(e)− bp log

( ∑
k=0,1,2

exp

(
vk + [I(k = 1)− I(k = 2)]

θ

2
− ptype1k + V type1,INT (e′k)

))
−

(G.12)

(
1

2
− bp)

∑
k=0,1,2

Dtype1
k (ptype1(e), e)V type1,INT (e′k)−

1

2

∑
k=0,1,2

Dtype2
k (ptype2(e), e)V type1,INT (e′k) = 0

with similar equations for type 2 buyers. Note that bp is equal to the unconditional proba-

bility that the buyer will be the buyer in a future period, so the value of bp with a single,

rational buyer of each type would be bp = 0.5.

Values for sellers then come from adding across the two types of buyers.

51The assumed functional forms imply that there will be symmetry across types, e.g., the price set by
seller 1 to a type 1 buyer in state (4,1) will be the same as the price set by seller 2 to a type 2 buyer in state
(1,4).
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Beginning of period value for seller 1 (V S
1 ):

V S
1 (e)− 1

2
Dtype1

1 (ptype1(e), e)(ptype1(e)− c1(e1))−
1

2

∑
k=0,1,2

Dtype1
k (ptype1(e), e)V S,INT

1 (e′k)−

(G.13)

1

2
Dtype2

1 (ptype2(e), e)(ptype2(e)− c1(e1))−
1

2

∑
k=0,1,2

Dtype2
k (ptype2(e), e)V S,INT

1 (e′k) = 0

where

Dtype1
i (p, e) =

exp(vi + [I(i = 1)− I(i = 2)] θ
2
− ptype1i + V type1,INT (e′i))∑

k=0,1,2 exp(vk + [I(k = 1)− I(k = 2)] θ
2
− ptype1k + V type1,INT (e′k))

. (G.14)

e′1 = (min(e1 + 1,M), e2), e
′
2 = (e1,min(e2 + 1,M)) and e′0 = (e1, e2), i.e., the states that

the game will transition to if there is a purchase from seller 1 or seller 2, or no purchase,

respectively.

G.3 Extension 3: Bargaining as a Constraint on Monopoly Power.

We consider a permutation of the model where we assume that, in the event that the industry

becomes a monopoly, the buyer and seller engage in Nash bargaining rather than the seller

simply setting a price. This formulation is somewhat ad-hoc because the Nash bargaining

approach assumes that the buyer and seller have complete information about their values

(i.e., the buyer’s ϵs are publicly observed) whereas, to keep the model as similar to the BDK

model as possible, we maintain the assumption that a buyer’s ϵs are private information in

duopoly states. However, the advantage of the Nash bargaining formulation is that it allows

us to vary a single parameter, τ , that measures the buyer’s share of the surplus from trade

in monopoly states.

G.3.1 Details.

The equations for states with two active sellers are the same as for the Section 2 model. The

following are the equations for a monopoly state e = (e1 < M, 0).
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Probability of trade when seller 1 is the monopolist

D1 =
exp(v1 + V S,INT (e′1) + V B,INT (e′1)− c(e1)) exp(v1 + V S,INT (e′1) + V B,INT (e′1)− c(e1))+

exp(V S,INT (e) + V B,INT (e))

 (G.15)

Beginning of period value for seller 1 (V S
1 ):

V S
1 (e)−D1(e)(p(e)− c1(e1))−D1(e)V

S,INT
1 (e′1)− (1−D1(e))V

S,INT
1 (e) = 0 (G.16)

Intermediate value for seller 1 (V S,INT
1 ) :

V S,INT
1 (e)−

 βλ1(e)λ2(e)V
S
1 (e1, 1) + βλ1(e)(1− λ2(e))V

S
1 (e)+

(1− λ1(e))E(X|λ1(e))

 = 0 (G.17)

Value for buyer before entry/exit stage (V B,INT ) :

V B,INT (e)− β
(
λ1(e)λ2(e)V

B(e1, 1)+λ1(e)(1− λ2(e))V
B(e)

)
= 0 (G.18)

Beginning of period buyer value (V B) :

V B(e)− bp
(
D1(e)(v1 − p(e, τ)− log(D1) + V B,INT (e′1)) + (1−D1(e))(− log(1−D1) + V B,INT (e))

)
(G.19)

−(1− bp)
(
D1(e)V

B,INT (e′1) + (1−D1(e))V
B,INT (e)

)
= 0
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Expected price in the event of trade is

p(e) = τ(c(e1) + V S,INT (e)− V S,INT (e′1)) + (1− τ)( v1 − log(D1)︸ ︷︷ ︸
exp. value of v+ε1 given trade

+ V B,INT (e′1)−

(G.20)

(1−D1) log(1−D1)

D1︸ ︷︷ ︸
exp. value of ε0when trade occurs

− V B,INT (e)) for e = (ei, 0) and e′1 = (e1 + 1, 0)

G.4 Extension 4: Buyer Discount Factors.

We investigate whether variation in bp has a similar effect to variation in buyer patience using

a model where bp = 1 (i.e., monopsony) but the buyer’s discount factor, βB ≤ β = 1
1.05

, the

assumed discount factor of the sellers. The equations are the same as for the Section 2 model

except that β in the V B,INT equation is replaced by βB.

G.4.1 Effect of Variation on βB on Seller 2 Demand Given Baseline Equilibrium

Seller Strategies.

Figure G.1 shows the demand curve for seller 2 in state (3,1) when we assume that sellers use

their baseline equilibrium seller strategies in all states, but we assume that there is a single

strategic buyer (bp = 1) with different discount factors. When sellers use accommodative

equilibrium strategies, an increase in buyer patience tends to move demand towards seller

2 (the laggard), in the same way that an increase in bp moved demand towards seller 2 in

text Figure 2(a). However, in the Mid- and High-HHI equilibria, increases in βB actually

shift demand away from seller 2 until βB > 0.5 in the High-HHI case, and until βB > 0.7 in

the Mid-HHI case, reflecting the fact that in these equilibria prices in state (4,1) are lower

than in state (3,2) and that the loss that the buyer will experience from monopoly is likely

to occur further into the future.
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Figure G.1: Seller 2 Demand in State (3,1) as a Function of βB.
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