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Appendix A: Monte-carlo study for comparison with

derounding approaches

Instead of omitting coarsely rounded observations, earlier studies such as Brodeur
et al. (2016) and Bruns et al. (2019) deround reported coefficients and standard
errors by assuming missing digits are drawn from a uniform distribution. Brodeur
et. al (2016) randomly draw a single derounded data set. Bruns et al. (2019)
reduce noise by repeating this derounding procedure several times. We adapt
that method as follows: We draw 100 derounding samples and take the median of
the estimated significance share and construct confidence intervals by taking the
median of the lower and upper bounds of the 100 confidence intervals.1

To compare the different approaches, we perform a Monte-Carlo study with
two scenarios. In the first scenario, the simulated true z-statistics are uniformly
distributed on the interval [0, 2 · 1.96]. In the second scenario, 35% of z-statistics
are uniformly distributed on [0, 1.96] and 65% uniformly on [1.96, 2 · 1.96], i.e. in
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1This construction is akin to a procedure proposed by of Chernozhukov et al. (2020). For
a different application they can establish that the resulting median of the 95% CI bounds has
a coverage of at least 90% taking into account the resampling noise. Taking into account the
promising results of the Monte-Carlo simulations for the case that the null hypothesis is satisfied,
we do not adapt the confidence intervals, however.
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Table A1: Results of Monte-Carlo simulations
Share significant: 50% Share significant: 65%

Approach Bias 95% CI Cover- RMSE Bias 95% CI Cover- RMSE
age age

No adjustment 0.039 0.515 0.562 10.2% 0.041 0.025 0.653 0.697 38.8% 0.028
Omit s < 37 0.000 0.471 0.529 95.0% 0.015 -0.001 0.621 0.676 95.1% 0.014

Derounding assuming uniform distribution of unobserved digits
Single sample 0.000 0.476 0.524 95.0% 0.012 -0.018 0.609 0.655 66.8% 0.021
Median 0.000 0.476 0.524 97.1% 0.011 -0.018 0.609 0.655 69.0% 0.021

Note: Different approaches to deal with rounding uncertainty are compared with
regard to their performance in two different simulation scenarios. The first scenario
corresponds to a research field without p-hacking or publication bias, while the second
scenario corresponds to a research field with substantial p-hacking or publication bias.
100,000 repetitions are used.

each window around 1.96, we would expect 65% of the tests to be significant. For
the numbers of observations and the distribution of significant digits and scaling,
we follow closely BCH’s pooled data set (see KP for details).

Table A1 shows the average results for 100,000 repetitions for a window with
half-width h = 0.2 around z = 1.96. Not performing rounding adjustment causes
a substantial upward bias in the estimated share of significant tests in both scenar-
ios. In contrast, our omission approach seems roughly unbiased and the confidence
intervals achieve 95% coverage probability in both scenarios.

The median derounding approach has the lowest root mean squared error
(RMSE) in the first scenario and achieves 97.1% coverage probability for the
95% confidence intervals. The rough intuition is that this derounding approach
makes the z-statistics more equally distributed, i.e. it causes the sample share of
significant tests to be closer to 50%. It thus allows a conservative test for the null
hypothesis of a 50% probability of significant tests. The single sample approach
of Brodeur et al. (2016) induces more noise that countervails the excess coverage
probability.

Unfortunately, both uniform derounding approaches can induce an attenuation
bias if the null hypothesis is violated. This bias can be seen in the second scenario,
where also the coverage probability of the 95% confidence intervals drops below
70%.

In KP we provide more intuition for those results and also propose derounding
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methods that alleviate the attenuation bias. Yet, those methods are more complex
and not clearly superior to the simpler omission approach. Thus, we only show
results for the omission approach in our main analysis. The more detailed analysis
in KP shows that applied to BCH’s data set all adjustments for the rounding
problem yield very similar results.

Appendix B: Power loss of omission approach

Table A2 provides some insight into the power loss from our rounding adjustment
that omits too coarsely rounded observations. On average the widths of the 95%
confidence intervals for the share of z-statistics above 1.96 increase by 25.4% in
the pooled data.

Table A2: Power loss induced by omission approach
Average width of 95% CI Average width

original sample adjusted sample increase
Pooled 0.046 0.059 25.4%
DID 0.085 0.118 36.5%
IV 0.093 0.103 11.3%
RCT 0.084 0.109 27.4%
RDD 0.136 0.183 32.5%

Note: We compute for every window half-width h ∈ {0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5}
considered by BCH the width of the 95% confidence interval (using exact binomial
test) for the share of z-statistics above 1.96. The table shows the average widths of the
confidence intervals (averaged over all h) for the original data set and our adjusted
data set where we drop all observations with s < 37. The last column shows the
average of the percentage increase of the confidence interval width when dropping
observations (averaged over all h).

The width of the confidence intervals increase strongest for DID (on average by
36.5%) which is consistent with the fact that the DID sample has the largest share
of observations with z = 2 and thus seems to be most affected by coarse rounding.
For the DID sample, the increases in the widths of the confidence intervals range
from 60.1% for h = 0.05 to 26.8% for h = 0.3.

Note that initial sample sizes differed substantially between methods with
RDD having less than half of the number of observations than RCT. Even before
our adjustment the confidence intervals for the RDD sample were wider than those
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of any other method before or after adjustment.
While our adjustment increases the width of the confidence intervals, recall

from the Monte-Carlo simulation in Appendix A that in both scenarios the ad-
justment leads to a more precise estimate in terms of RMSE than the biased
estimator without adjustment.

Appendix C: Proof of Lemma 1

Lemma 1. Assume reported standard error σ and coefficient µ are rounded to
the same number of decimal places. The true and reported z-statistics z̃ and z are
guaranteed not to lie on opposite sides of an arbitrary threshold τ if the significand
s of the standard error satisfies

s ≥ 1 + τ

2|z − τ |
.

Proof. The smallest and largest possible values of z̃ are given by

z̃min =
zs− 0.5

s+ 0.5
and z̃max =

zs+ 0.5

s− 0.5
.

If z ≥ τ , we need z̃min ≥ τ to guarantee z̃ ≥ τ , which can be rearranged to

s ≥ 1 + τ

2|z − τ |
.

In a similar spirit if z ≤ τ, the relevant condition is z̃max ≤ τ , which also can be
rearranged to the same condition.

Appendix D: Randomization tests and caliper tests

at 10% and 1% significance thresholds

Tables A3 and A4 show our replication results of the randomization tests using
the adjusted data set at the 10% and 1% significance threshold, respectively.
Following BCH, we report one-sided p-values at the 10% threshold (z = 1.65).
At the 1% threshold (z = 2.58) we report two-sided p-values because we find in
many instances that the share of z-statistics above the threshold is significantly
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below 50%.

Table A3: Randomization tests, 10% significance threshold z = 1.65
(1) (2) (3) (4) (5)
ALL DID IV RDD RCT

Window half-width 0.05
Proportion significant 0.556 0.512 0.62 0.5 0.552
(p-value) (0.025) (0.456) (0.010) (0.560) (0.179)
Observations 320 80 100 44 96
Window half-width 0.075
Proportion significant 0.54 0.562 0.573 0.456 0.531
(p-value) (0.040) (0.101) (0.047) (0.802) (0.240)
Observations 494 121 143 68 162
Window half-width 0.1
Proportion significant 0.553 0.569 0.591 0.466 0.543
(p-value) (0.004) (0.057) (0.007) (0.772) (0.112)
Observations 644 144 193 88 219
Window half-width 0.2
Proportion significant 0.555 0.585 0.584 0.503 0.53
(p-value) (0.000) (0.001) (0.001) (0.500) (0.102)
Observations 1,372 325 385 177 485
Window half-width 0.3
Proportion significant 0.561 0.61 0.575 0.518 0.534
(p-value) (0.000) (0.000) (0.000) (0.293) (0.039)
Observations 2,036 467 581 274 714
Window half-width 0.4
Proportion significant 0.566 0.617 0.602 0.501 0.525
(p-value) (0.000) (0.000) (0.000) (0.500) (0.065)
Observations 2,767 630 816 353 968
Window half-width 0.5
Proportion significant 0.561 0.618 0.603 0.493 0.514
(p-value) (0.000) (0.000) (0.000) (0.630) (0.172)
Observations 3,462 781 1,023 446 1,212

Note: Replicates Table A6 in BCH. We present for several windows centered around
z=1.65 the proportion of significant observations and test if it is statistically greater
than 0.5.
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Table A4: Randomization tests, 1% significance threshold z = 2.58
(1) (2) (3) (4) (5)
ALL DID IV RDD RCT

Window half-width 0.05
Proportion significant 0.462 0.351 0.514 0.406 0.527
(p-value) (0.217) (0.012) (0.847) (0.377) (0.728)
Observations 290 77 107 32 74
Window half-width 0.075
Proportion significant 0.474 0.404 0.51 0.438 0.514
(p-value) (0.306) (0.049) (0.871) (0.471) (0.847)
Observations 420 114 151 48 107
Window half-width 0.1
Proportion significant 0.464 0.412 0.487 0.422 0.503
(p-value) (0.093) (0.035) (0.776) (0.260) (1.000)
Observations 567 153 197 64 153
Window half-width 0.2
Proportion significant 0.432 0.411 0.44 0.387 0.463
(p-value) (0.000) (0.004) (0.023) (0.010) (0.225)
Observations 1,087 275 375 137 300
Window half-width 0.3
Proportion significant 0.417 0.41 0.416 0.396 0.432
(p-value) (0.000) (0.000) (0.000) (0.005) (0.005)
Observations 1,598 412 548 187 451
Window half-width 0.4
Proportion significant 0.408 0.422 0.4 0.399 0.409
(p-value) (0.000) (0.000) (0.000) (0.001) (0.000)
Observations 2,130 555 723 258 594
Window half-width 0.5
Proportion significant 0.388 0.416 0.386 0.375 0.37
(p-value) (0.000) (0.000) (0.000) (0.000) (0.000)
Observations 2,700 695 924 333 748

Note: Replicates Table A7 in BCH. We present for several windows centered around
z=2.58 the proportion of significant observations and test if it is statistically equal to
0.5. Thus, in contrast to Table A7 in BCH, two-sided p-values are shown.

Tables A5 and A6 show our replication results of the caliper tests using the
adjusted data set at the 10% and 1% significance threshold, respectively.
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Table A5: Caliper tests, 10% significance threshold z = 1.65

(1) (2) (3) (4) (5) (6)
DID 0.100 0.113 0.108 0.111 0.103 0.090

(0.044) (0.040) (0.041) (0.041) (0.047) (0.060)
IV 0.116 0.126 0.101 0.111 0.066 0.039

(0.036) (0.038) (0.040) (0.041) (0.043) (0.053)
RDD 0.015 0.009 0.004 0.005 -0.024 -0.069

(0.042) (0.041) (0.044) (0.045) (0.056) (0.062)
Top 5 0.060 -0.047

(0.049) (0.102)
Year=2018 0.003 0.010 0.020 0.024 0.078

(0.035) (0.034) (0.035) (0.037) (0.042)
Experience -0.002 -0.006 -0.007 -0.016 -0.011

(0.009) (0.009) (0.008) (0.008) (0.009)
Experience squared -0.003 0.008 0.009 0.032 0.020

(0.027) (0.026) (0.024) (0.023) (0.025)
Top institution -0.057 -0.044 -0.039 -0.006 -0.001

(0.049) (0.049) (0.048) (0.052) (0.063)
Top PhD institution -0.016 -0.032 -0.045 -0.059 -0.147

(0.045) (0.045) (0.043) (0.049) (0.061)
Reporting Method Y Y Y Y Y
Solo Authored Y Y Y Y Y
Share Female Authors Y Y Y Y Y
Editor Y Y Y Y Y
Field FE Y
Journal FE Y Y Y
Observations 3,470 3,470 3,470 3,469 2,377 1,363
Window [1.65±0.50] [1.65±0.50] [1.65±0.50] [1.65±0.50] [1.65±0.35] [1.65±0.20]
RCT sig rate .52 .52 .52 .52 .53 .54

Note: Replicates Table A16 in BCH. The shown coefficients are marginal effects at the
means. For dummy variables we measure the effect of a change from 0 to 1. Standard
errors in parentheses are clustered at article level. Observations are weighted by the
inverse of the number of tests conducted in the same article.
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Table A6: Caliper tests, 1% significance threshold z = 2.58

(1) (2) (3) (4) (5) (6)
DID 0.050 0.040 0.021 0.010 0.027 -0.062

(0.049) (0.045) (0.048) (0.048) (0.054) (0.063)
IV 0.019 0.009 -0.017 -0.039 -0.023 -0.016

(0.042) (0.039) (0.040) (0.042) (0.046) (0.060)
RDD -0.082 -0.083 -0.094 -0.092 -0.071 -0.122

(0.068) (0.062) (0.062) (0.065) (0.069) (0.096)
Top 5 0.029 -0.101

(0.056) (0.101)
Year=2018 0.010 0.008 0.022 0.018 0.013

(0.041) (0.041) (0.041) (0.043) (0.047)
Experience 0.018 0.016 0.013 0.013 0.004

(0.009) (0.009) (0.009) (0.011) (0.013)
Experience squared -0.049 -0.044 -0.037 -0.038 -0.020

(0.030) (0.029) (0.028) (0.039) (0.047)
Top institution 0.003 0.006 0.006 -0.008 0.064

(0.062) (0.063) (0.062) (0.066) (0.073)
Top PhD institution -0.051 -0.053 -0.038 0.030 0.010

(0.053) (0.054) (0.056) (0.063) (0.069)
Reporting Method Y Y Y Y Y
Solo Authored Y Y Y Y Y
Share Female Authors Y Y Y Y Y
Editor Y Y Y Y Y
Field FE Y
Journal FE Y Y Y
Observations 2,689 2,689 2,689 2,689 1,850 1,079
Window [2.58±0.50] [2.58±0.50] [2.58±0.50] [2.58±0.50] [2.58±0.35] [2.58±0.20]
RCT sig rate .37 .37 .37 .37 .42 .46

Note: Replicates Table A18 in BCH. The shown coefficients are marginal effects at the
means. For dummy variables we measure the effect of a change from 0 to 1. Standard
errors in parentheses are clustered at article level. Observations are weighted by the
inverse of the number of tests conducted in the same article.

Appendix E: Additional figures

Figure A1 replicates Figure 5 in BCH using our adjusted data set. It presents
the distribution of first stage F-statistics (top panel) and associated second stage
z-statistics (lower panels) from IV analyses, the latter split by relatively weak and
relatively strong instruments. The results are similar to BCH, only the distribu-
tion of test statistics for IVs with relatively low F-statistics (bottom left panel)
exhibits a slightly more pronounced peak just above 1.96. Put differently, IV
studies with comparatively weak instruments have an even higher proportion of
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z-statistics in the second stage that are around or above conventional significance
thresholds.
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Figure A1: Instrumental variables: first stage F-statistics and associated second
stage z-statistics

Note: Replicates Figure 5 in BCH. The upper panel displays the distribution of first stage
F-statistics of instrumental variables for F ∈ [0, 50]. Histogram bins have a width of 2.
A reference line is provided at the conventional threshold of 10 for “weak” instruments.
The bottom left panel displays the distribution of second stage z-statistics for IVs with
a relatively low first stage F-statistic (below 30), while the bottom right panel displays
the distribution of second stage z-statistics for IVs with a F-statistic above 30. A total
of 1,082 statistics are used in this analysis. The bottom left panel contains 531 tests,
while the bottom right contains 551 tests.

Figure A2 compares the test statistics in working papers and the respective
journal versions.2 The figure looks very similar to Figure 6 in BCH with a slightly

2The working paper data does not include information on trailing zeros in reported standard
errors. To heuristically recover trailing zeros when computing the significand s of the standard
error, we exploit the convention that the coefficient and associated standard error are usually
reported with the same number of decimal places. If the reported coefficient has more decimal
digits than the reported standard errors, zeros are appended to the standard errors until the
number of decimals of the associated coefficient is reached. For Figure A2 we apply this heuristic
for both the working papers and published articles and then drop in both data sets about 31%
of tests by applying our omission approach. To validate the procedure, we tested it on the
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more pronounced peak just above 1.96 for the working paper statistics when ap-
plying the omission approach.
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Figure A2: Instrumental variables: first stage F-statistics and associated second
stage z-statistics

Note: Replicates Figure 6 in BCH. The figure displays distributions of test statistics
for z ∈ [0, 10]. The left panel restricts the sample to journal articles for which working
papers could be found, while the right panel contains the z-statistics from the respective
working papers. The vertical lines indicate the the critical z-statistics at the 10%, 5%
and 1% significance levels. The histograms have bin size 0.1. The black lines are density
estimates based on a Epanechnikov kernel with bandwidth 0.1.

Figure A3 shows a variant of Figure 6 in our comment using kernel density
estimators that correct the negative bias at z = 0.

complete article data set of BCH in which trailing zeros are specified. Our heuristic led in 96%
of cases to the same decision to either keep or drop an observation.
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Figure A3: Excess test statistic plots (bias corrected)

Note: This is a version of Figure 6 in our comment (Figure 4 in BCH) that corrects for
the downward bias of the kernel density estimator at z = 0. We adjust the kernel density
estimates by imposing the assumption that the distribution is symmetric for positive and
negative z-statistics. This kernel density estimator matches the high empirical density
of z-statistics close to zero that can also be observed in the histograms in Figure 4.

Appendix F: Proposition 1 and discussion of alter-

native calibration based on conditional tail proba-

bilities

BCH calibrate the degrees of freedom and non-centrality parameters of t-distributions
by matching the probability mass in the tails (z > 5) with those of the empirical
distributions, assuming the empirical distributions to be free of p-hacking and
publication bias for z > 5. The following Proposition shows that BCH’s calibra-
tion approach is not able to recover the true distribution of z-statistics absent
publication bias, even if the correct functional form is assumed.
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Proposition 1. Let F ∗(z) be a distribution function of absolute z-statistics absent
publication bias. Let p(z) ∈ [0, 1] be the publication probability of a test with
z-statistic z. Let F (z) denote the resulting distribution function of observed z-
statistics. We assume publication bias is present, i.e. for some z ≥ 0, we have
F (z) < F ∗(z). Assume there is a threshold z̄ > 0 such that p(z) = 1 for all z ≥ z̄.
Then for every z ≥ z̄ we find

1− F (z) = µ (1− F ∗(z))

with µ > 1. This means that the tails of the distribution of observed z-statistics
starting at a z-statistic above which no publication bias takes place have a higher
probability mass than the corresponding tails in the latent distribution.

Proof. Let F̃ (z) =
∫ z
0
p(z)dF ∗(z). Let M = limz→∞ F̃ (z). Note that M is strictly

below 1. Let µ = 1/M . The distribution function of observed z statistics is
given by F (z) = µF̃ (z). For any pair z1 ≥ z̄ and z2 ≥ z1 we have F ∗(z2) −
F ∗(z1) = F̃ (z2)− F̃ (z1) since p(z) = 1 for all z ≥ z̄. This implies F (z2)−F (z1) =

µ(F ∗(z2) − F ∗(z1)). The proposition follows from setting z1 = z and taking the
limit z2 →∞.

Technically, under BCH’s assumptions the parameters of the latent distribu-
tion can be identified and estimated via maximum likelihood from the condi-
tional tail distribution conditioning on z ≥ 5. Let Fθ describe the cumulative
distribution function and fθ the density function of a non-central t-distribution
characterized by a parameter vector θ comprising the degrees of freedom (df)
and the non-centrality parameter (ncp). In this alternative approach, we choose
the parameter vector θ that maximizes the log likelihood function based on the
conditional tail densities

l(θ|Z̃) =
∑
zi∈Z̃

log
fθ(zi)

1− Fθ(5)
,

where Z̃ contains the observed z-statistics in the tail. The practical problem of
this approach is that the conditional tail densities can look very similar for very
different combinations of the df and ncp parameters. This makes it very hard
to get sufficiently precise estimates. To illustrate the problem, we perform that
maximum likelihood estimation for different subsamples. We distinguish by the
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causal identification strategy and either use all z-statistics in the tail or omit very
large z-statistics above the thresholds 1000, 100 or 10.3 The results are shown in
Table A7.

Table A7: Estimated parameters of non-central t-distributions using conditional
tail probabilities

unadjusted sample adjusted sample
(1) (2) (3) (4) (5) (6) (7) (8)
DID IV RCT RDD DID IV RCT RDD

Sample: all z ≥ 5
df 1.4 1.8 1.6 1.2 1.5 2 1.4 2.1
ncp -5.6 1.6 -4.5 -5.3 2.1 2.8 -5.7 1.7
Observations 902 706 713 380 386 386 376 157

Sample: 5 ≤ z ≤ 1000
df 1.4 1.9 1.6 1.3 1.9 2 1.5 2.1
ncp -4.7 2.3 -4.3 -0.8 4.2 2.8 -4.4 1.7
Observations 901 705 710 377 385 386 373 157

Sample: 5 ≤ z ≤ 100
df 1.6 2 1.7 1.5 1.9 2.2 1.5 3.2
ncp 1.7 2.8 -0.1 3.2 4.2 3.5 -4.7 4.9
Observations 887 703 707 370 385 384 371 155

Sample: 5 ≤ z ≤ 10
df 12.1 11.6 13.2 15.8 12.3 10.5 15.4 17.3
ncp 5.8 5.7 5.8 6.3 5.9 5.5 6 6.1
Observations 573 492 493 229 246 269 254 119

Note: Columns (1)-(4) show results for the original sample without rounding adjust-
ment and columns (5)-(8) use our sample with adjustment for coarse rounding. The log
likelihood function based on the conditional tail densities has been maximized using the
Nelder-Mead method.

We see that the estimated values for the non-centrality parameter (ncp) vary
hugely depending on which very large z-statistics are included. For example, for

3Excluding large outliers is a common practice. For example, BCH only consider z-statistics
below 10 when deriving the latent distribution using the approach of Andrews and Kasy (2019).
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DID without rounding adjustment (column 1) our estimate for the ncp ranges
from a negative -5.6 if all z ≥ 5 are included to a positive 5.8 if only all z ∈ [5, 10]

are considered. The corresponding latent distributions are very different. More-
over, comparing the first and second sample, we see that just a single additional
observation changes the estimate of the ncp parameter by a substantial amount of
0.9 units; in column 5 a single observation changes the ncp estimate even by 2.1
units. Also for the other identification strategies estimates vary largely across the
different samples. Likewise, our rounding adjustment sometimes strongly changes
the estimated parameters. This exemplifies the practicial difficulties to precisely
calibrate the coefficients of the tail distributions using this alternative approach
based on conditional tail probabilities.

Appendix G: Results of specification test for An-

drews and Kasy (2019) approach

Table A8: Specification test for Andrews and Kasy (2019) approach
DID IV RCT RDD

Complete sample:
Panel A 0.92 0.90 0.92 0.92

[0.92, 0.93] [0.88, 0.91] [0.90, 0.94] [0.91, 0.93]
Panel B 0.92 0.89 0.92 0.92

[0.91, 0.93] [0.88, 0.91] [0.90, 0.94] [0.91, 0.93]
Sample adjusted for coarse rounding:
Panel A 0.92 0.90 0.92 0.91

[0.91, 0.93] [0.88, 0.91] [0.89, 0.94] [0.89, 0.92]
Panel B 0.92 0.89 0.92 0.91

[0.90, 0.93] [0.88, 0.91] [0.89, 0.94] [0.89, 0.92]

Note: The table shows the inverse probability weighted correlations between logµ and
log σ as explained in Section 3E. We compute the correlations for each method and
for the two specifications of the Andrew and Kasy approach corresponding to Panel A
and B in BCH’s Table 5. In brackets below the correlations are the bootstrapped 95%
confidence intervals for the correlation. For each of the 500 bootstrap samples, we re-
apply Andrews and Kasy’s (2019) procedure to estimate publication probabilities before
computing the inverse probability weighted correlations.
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