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I:  Proof of (A28a), (A28b), & (A28c) 

 We begin by proving (A28a) and (A28b), turning to (A28c) at the end.  We start by 

calculating expressions for f (cM-1) and f (c2M-2) using (A23) in the text and the Sherman-

Morrison formula: 

(I.1) 

We then use the spectral decomposition of V to create two key expressions: 

(I.2) 

where 
ski   ......1 are the ordered eigenvalues of V-1 and the ai the inner-products of the 

associated eigenvectors with βs, i.e., a = E′βs.  As noted earlier, the eigenvalues of V-1 are the 

inverse of those of V, while adding c times the identity matrix to a matrix increases all of its 

eigenvalues by c, so we know that: 

(I.3) 

where 
ski   ......1 are the ordered eigenvalues of ssssXX .  While the λi are in descending 

order, the corresponding γi are in ascending order, as the two are inversely related.  We note that 

the eigenvalues of V are bounded between Rtt ncs /)/1( 2 and Rttktt ncsscs /)/1()/( 2 ,1 so in 

manipulating limiting equations below we know that V-1 is bounded from above and strictly 

positive definite.  The eigenvector matrix E of V-1 is that of ssssXX and hence, conditional on a 

given value of ssssXX , not a function of tc, ts or Rn /2 .   
                                                 

1The latter found using the property that the maximum eigenvalue is less than the trace.  
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 Next we substitute the notation in (I.1) into the equation for asymptotic simple beliefs to 

find 

(I.4) 

Using this we see that when simple beliefs are proportional to βs asymptotically only one of the 

ai in (I.2) is non-zero, i.e., one of the eigenvectors in E is ½)/( sss βββ  and the rest are orthogonal 

to βs, as in this case: 

(I.5) 

so ½)/( sss βββ  is an eigenvector of V-1.  Alternatively, if λi = λ for all ai ≠ 0, then since a = E′βs, 

we have sskss s
ββEEEaaIEβEEΛβV   )(1 , so using (I.4) we again see that 

beliefs are proportional to βs 

(I.6) 

In this case we can express the eigenbasis of ssssXX in such a way that only one ai is non-zero.  

In sum, if beliefs are proportional to βs only one ai is non-zero, and if not then the eigenvalues 

cannot all be equal for all ai ≠ 0. 

 When the complex are in power tc is the only element that changes in V and hence the 

asymptotic effect on (I.2a) and (I.2b) can be calculated by simply looking at the implied changes 

in the eigenvalues in (I.3), as the eigenvectors remain those of ssssXX .  When the simple are in 

power, ts changes, with effects through eigenvalues similar to those of the complex, but 

ssssXX also changes, with effects on both the eigenvalues and eigenvectors, i.e., the ai terms in 

(I.2).  We first calculate the effects of changes in tc and ts, and then examine the effects of 

changes in ssssXX , showing that they move (I.2a) and (I.2b) in the same direction as implied by 

increases in ts. 

 Taking derivatives with respect to tc and ts, we have 

(I.7) 

From (I.7) we see that when the complex are in power tc increases and all of the eigenvalues of 

V-1 increase (with no change in the eigenvectors), so ss βVβ 1  increases and, consequently, so 
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does f (cM-1).  When the simple are in power ts increases, which lowers all of the eigenvalues of 

V-1 (without changing the eigenvectors) and hence lowers f (cM-1).   Taking the derivative of 

(I.2b) with respect to any eigenvalue, we find: 

(I.8) 

So,  

(I.9) 

as 

(I.10) 

with equality when 2
n = 0 or ai is non-zero for only one eigenvalue (i.e., the simple are on the 

level curve associated with the steady state with beliefs proportional to βs).  Similarly, 

(I.11) 

as 

(I.12) 

with, once again, equality when 2
n = 0 or when beliefs are proportional to βs and ai is non-zero 

for only one eigenvalue.  Intuition for why (I.9) and (I.11) are identical can be found by noting 

that while tc appears in the numerator of (I.3), this element implicitly cancels in the ratio (I.2b).  

Consequently, all that is left is the influence of tc and ts in the denominator of (I.3), where they 

are both multiplied by 2
n .  As time passes, regardless of which type is in power, random noise 

lowers the angle of the deviation of the simple's beliefs from the direction implied by the true 

parameter values.  
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 We now consider the impact of periods when the simple are in power through its effects 

on ssssXX .  f (cM-1) is monotonically increasing in ss βVβ 1 , with V as defined in (I.1).  Each 

period when the simple are in power and implement policies x generates a rank one update of V, 

so that ss βVβ 1 becomes 

(I.13) 

so this effect lowers f (cM-1) as does (as already proven) the increase in ts that accompanies 

periods when the simple are in power. 

 Turning to the ratio f (c2M-2)/ f (cM-1)2, equal to 2111 )/( ssss βVββVVβ   as shown in 

(I.1), we again calculate the effects of the rank-one update of V 

(I.14) 

We wish to show this is ≤ 1122111 /)/(
ssssss

mmmssss βββββββVββVVβ 
  , with equality only when 

sβ is proportional to βs, i.e., when simple beliefs lie along the lowest level curve where f (c2M-2) 

= f (cM-1)2/β′sβs.  If sβ is proportional to βs, then so is policy implemented by the simple.  Say x 

= αβs, then we have ii mm
sss ββxβ   and (I.14) simplifies to: 

(I.15) 

as desired.  Our next task is to show that (I.14) is asymptotically strictly less than 112 /
ssssss

mmm ββββββ   

if beliefs are not proportional to βs. 

 We begin by using sss R βββx  / and (I.4) to find that 
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(I.16) 

(I.16) tells us that all im xβs and im xx can be expressed as a combination of j

s
m ββs terms.  Each 

j

ss
m ββ is asymptotically bounded, as  

(I.17) 

where we have made use of the definition of V from (I.1).  Added to that the fact that (I.4) 

implies that ssss ββββ  , and we can see that all im xβs and im xx are bounded from above and the 

limit of (I.14) as tc goes to infinity is 112 /
ssssss

mmm ββββββ  , as should be expected since the rank one 

updates of V, x/(tcR)½, get smaller and smaller.  

 With the preceding in mind, consider (I.14) as a function of tc, g(tc), with2 

(I.18) 

Substituting using (I.16), we have 

(I.19) 

where we once again use the Cauchy-Schwarz inequality.  We are unable to sign c1, but since c2  

                                                 
2We ignore the effect of tc on V as we are trying to prove the sign of the rank one update x given V. 
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> 1 and c3 ≥ 0, if c1 is strictly positive it follows that g′(tc) is strictly positive and consequently 

g(tc) is strictly less than 112 /
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mmm ββββββ  for finite tc as long as simple beliefs are not proportional 

to βs.  Going forward, we assume this is not the case, i.e., that c1 ≤ 0. 

 Using the work above, we formally note the upper bounds on ssR ββ/ , 1
xβ s

m   and the 

maximum eigenvalue of V-1  

(I.20) 
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where we have used the fact that the λi are ordered in decreasing order, with λ1 ≥ ... ≥ λi ... ≥ 
sk .   

The last line of (I.23) holds with strict inequality whenever there exists a difference between the 

maximum and minimum eigenvalues corresponding to non-zero ai, i.e., simple beliefs are not 

proportional to βs .  Consequently, we may conclude that for all tc > t*, as long as simple beliefs 

are not proportional to βs, g′(tc) is strictly positive and hence g(tc) is strictly less than 
112 /

ssssss
mmm ββββββ  .  This concludes our proof that the rank one update of ssssXX when the simple 

are in power lowers the ratio f (c2M-2)/ f (cM-1)2 as long as simple beliefs are not proportional to 

βs, i.e., as long as the economy is not on the (lowest) level curve in Figure A2 associated with the 

steady state. 

 To summarize, when the complex are in power, tc increases in the formula for M, which 

increases f (cM-1) and lowers the ratio f (c2M-2)/ f (cM-1)2.  When the simple are in power, ts 

increases and there is also a rank-one update of M based upon implemented simple policy.  Both 

of these lower both f (cM-1) and f (c2M-2)/ f (cM-1)2.  These are the results stated in (A28a) and 

(A28b).  Turning to (A28c), we begin by noting that since the sum of the eigenvalues of a matrix 

equals the trace, the individual eigenvalues γi of ssssXX are bounded from above by Rts.  

Consequently, we can bound the derivatives in (I.7) and prove that their limit is zero 

 (I.24) 
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(I.25) 

However, as shown in (I.16) and (I.17), all im xβs and im xx are bounded from above, while we 

established much earlier above that tc goes to infinity (outside of equilibrium paths of probability 

measure zero which we are not examining).  Consequently, the change in f (cM-1) through this 

mechanism goes to zero as well.  This proves (A28c) and completes the proof of the convergence 

of iβ and θi = ti/t in this appendix. 
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II:  Random Outcomes and the Political Cycle 

 As noted in the paper, a characteristic of political life seems to be that random outcomes 

benefit or harm incumbent parties.  In this appendix we show that this feature arises in our model 

through the fully rational Bayesian updating of beliefs.  Random shocks change estimates of the 

effectiveness of policy, but these effects are stronger for the incumbent party which is 

implementing its desired policy combination. Consequently, although the long run equilibrium 

involves cycles with each type on average in power for a determinate share of the time, a random 

negative shock to y lowers the voting intensity of incumbent groups relative to their opposition, 

hastening regime change, while random positive shocks to y strengthen the political position of 

incumbents, lengthening their stay in power in the current political cycle.  The proof below 

shows that these statements, which form Proposition 1 in the text, are true in the probability 

limit. 

 To allow an examination of period by period beliefs, we introduce notation with respect 

to time, with the t x k matrix Ht denoting the history of policy up to time t, the vector th  the tth 

row thereof, and Hit and ith  the corresponding histories and tth period policies that type i deems 

relevant.  We focus on outcomes in the vicinity of the steady state and, to simplify the analysis, 

with negligible amounts of policy noise.  The analysis below is in the context of the generalized 

model described in the appendix of the paper and makes use of the Lemmas and methods of 

proof therein.   

 The formula for mean Bayesian beliefs, based as it is upon regression coefficients, allows 

a simple representation of the updating of beliefs from period t to t +1  

(II.1) 

 

where in the second line we make use of the Sherman-Morrison formula for the rank one update 

of a matrix inverse.  The term in brackets [] in the last line is the period t + 1 prediction error  

based upon beliefs at the end of period t.   
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 Asymptotically, the change in intensity of each type,   itititit ββββ 11  

)()( 11 itititit ββββ   , almost surely converges to ),(2 1 ititit βββ    since, using (II.1) 

(II.2) 

 

The almost sure limit on the last line follows from the fact that for j = 1 or 2 

(II.3) 

 

For the denominator of (II.3a) we use Lemma (A1) of the appendix to see that 

(II.4) 

For the remaining terms we use the fact that policies x and beliefs iβ converge almost surely to 

finite constants while, with vt denoting either εt+1 or any element of nit or nit+1 divided by t , we 

have 2
4

4 /)( tvE t  , where, following the assumption given in the paper's appendix, μ4 is the 

bounded fourth moment of εt+1 or any of the iid elements of nit.  Consequently, applying 

Markov's Inequality we have for any a > 0 

(II.5) 

so, as discussed in the paper's appendix, from the Borel-Cantelli Lemma we know that vt almost 

surely converges to 0. 

 Using (II.2) and (II.1), we can say that asymptotically the change in intensity of type i is 

given by: 
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Since beliefs almost surely converge, it is of course easily shown that the term on the right-hand 

side converges almost surely to 0.  Instead of examining this degenerate case, we shall consider 

the probability limit of t times the change in intensity.  The shift in emphasis from almost sure to 

probability limit comes from the fact that if for random variables a, b and c we have bca
sa ..

  and 
*

..

bb
sa

 , it is not necessarily true that cba
sa

*
..

 if c is unbounded, but it is true that cba
p

*  if the 

second moment of c is bounded.  To see this, note that if bca
sa ..

  and *
..

bb
sa

  then outside of 

paths of probability measure zero for every ε > 0 and δ > 0 there exists a tε,δ sufficiently large 

such that |a - bc| < ε/2 and )(/)2/(|| 2* cEbb   for all t > tε,δ.  We can then say that for all t 

> tε,δ along such paths 

(II.7) 

 

where in the last we use Markov's Inequality.  Since the remaining paths are of probability 

measure zero, this establishes that cba
p

* .3 

 We now consider the limits of various elements on the right-hand side of (II.6).  As 

shown in (II.3a), the quadratic form in the denominator of (II.6) almost surely converges to zero.  

As for the term 1)/(  tititHH in the numerator, we use the fact that policies and the share of time 

each type spends in power almost surely converge to steady state values, and the almost sure 

limits of Lemma (A1), to say that 

(II.8) 

 

where we use the subscript ~i  to denote policies that each type deems irrelevant, subscript b to 

denote the policies both deem relevant, k~i and kb the number of such policies, and make use of 

the fact that simple beliefs and policies in areas the complex deem irrelevant (~c) converge to the 

true parameter values of 0.  With regards to the prediction error, since beliefs and policies 

                                                 
3To understand the distinction between this result and the almost sure limit, note that if c is an unbounded 

iid random variable and b does not converge to b* quickly enough, then for every ε > 0 on a positive measure of 
paths there occur an infinite, albeit increasingly rare, number of events were a deviates from b*c by more than ε, and 
hence a does not converge almost surely to that limit.  If it can be established that b converges sufficiently rapidly to 
b*, then with an appeal to the Borel-Cantelli Lemma and bounds on the higher moments of c it is possible to 
establish almost sure convergence, but the probability limit is sufficient for our purposes.   
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converge almost surely, and the second moments of the noise and output shocks are bounded, we 

can say that: 

(II.9) 

These results allow us to express the asymptotic change in intensity as 

(II.10) 

  

 Finally, we note the formula for a block matrix inverse and calculate the limits of some 

useful quadratic forms as policy noise goes to zero: 

(II.11) 

  

Since we are considering the limit as the variance of policy noise goes to zero, we also take ht+1 

in (II.10) as equal to xt+1, the intentional policy vector of that time period. 

 Asymptotically the simple implement policies βββ /* Rs  for the policies they believe 

are relevant and 1~ xk s
0  for those they believe are irrelevant, so using the preceding results the 

change in the intensity of both types when the simple are in power is 
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(II.12) 

The first term for the simple represents the systematic tendency for their intensity to decline 

when in power, as they respond to the overprediction of average outcomes.  The εt+1 term, for the 

simple and the complex, represents the effect of random shocks to y.  Here, a negative shock 

reduces the intensity of the simple, as their belief in the effectiveness of the policies they deem 

relevant falls.  Complex beliefs in these same policies also fall, but the complex belief in the 

efficacy of policies the simple deem irrelevant, and hence do not implement, rises, as the poor 

outcome under simple rule convinces the complex that these neglected policies are more 

effective than previously thought.  These two effects offset each other, and complex intensity 

remains constant.  In sum, a negative shock lowers the relative political intensity of the simple, 

hastening the transfer of power, with positive shocks having the opposite effect.  

 When the complex are in power asymptotically they implement policies βββ /Rc  for 

the policies they believe are relevant and 1~ xk c
0  for those they believe are irrelevant, so the 

changes in intensity are seen to be 
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(II.13) 

Once again, the change in simple beliefs contains a systematic component, this time consisting of 

the gradual increase in bias and intensity as outcomes under the complex are consistently better 

than expected.  Both simple and complex respond to the realization of the output shock ε, but the 

impact on the intensity of the complex is greater as, given that */  sc  as 02 n , we have  

(II.14) 

A negative shock reduces the belief in the effectiveness of policies of both types, but the effects 

on intensity are greater for the complex, for whom intensity depends upon a wider range of 

policies, all of which are seen to be failing.  Consequently, negative shocks accelerate regime 

change, ushering in further negative outcomes as the simple implement misguidedly narrow and 

intense policies, while positive shocks lengthen the time the complex hold onto power and the 

polity continues to benefit from a full range of moderate policy actions.  These results are those 

described in the paper and at the beginning of this appendix. 
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III: Results and Proofs on Berk-Nash Equilibria 

 We continue to use the notation and modelling framework established at the beginning of 

the paper's Appendix.  We now define a Berk-Nash equilibrium adapted to our environment: 

 Definition 1: A Berk-Nash equilibrium consists of beliefs for },{ CSi with mean iβ , a 

policy choice xi, and a probability that type S is in power, ]1,0[s , such that: 

(1a) Optimal actions: xi, is the optimal action given mean beliefs iβ  and so .*
ii xx   

(1b) Power sharing according to intensity: θs = 1 (0) if ccss ββββ  )( ; if  ccss ββββ  , 

]1,0[s . 

(1c) Beliefs minimize Kullback-Leibler distance: Given actions xc, xs and θs, each vector in 

the support of i's beliefs solves, according to their subjective model: 
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 Proposition III.1: For small enough 
2
n  there exists a unique Berk-Nash equilibrium.  In 

equilibrium, sscc ββββ *,  and )1/()/1( *2*   Rns . 

 Proof of Proposition III.1:  First, it is easy to see that the unique KL minimiser for the 

belief of C is cc ββ  , as c~β is a vector of 0s.  Next, given the optimal policies, we solve for the 

minimiser of S's KL condition.  Taking the FOC of the term in (1c) with respect to sβ , we have: 

(III.1) 

where in moving to the second line we make use of the assumption that f is the density of a mean 

zero normal, and we follow the notation established earlier that a single subscript i denotes the 

policies deemed relevant by type i and a double subscript ij denotes these policies in periods of j 

rule, so that **
iii xx  are the optimal policies of type i but *

ijx are the optimal policies of j deemed 

relevant by type i.  
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 Arguments similar to those in Section II.A of the paper and continuity can be used to 

show that when 
2
n  is sufficiently small in equilibrium *

s is interior and so we have equal 

intensity, 

(III.2) 

Moreover, arguments similar to those in Section II.C can be used to show that optimal policies 

must be colinear when 
2
n  is sufficiently small.  Plugging the colinear optimal action and equal 

intensity into the FOC of the KL, we get the unique solution stated in the Proposition. 
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