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A Optimal Linear Contract

A.1 Optimal Linear Contract when there is No Exclusion

In this section we solve for the optimal linear contract for the case where no physician types

are excluded in equilibrium, i.e., all physicians would choose strictly positive treatment

amounts. Although we allow for corner solutions for treatment amounts in our quantitative

results, in Section V, the current exercise is useful because our proof that the observed pay-

ment rate cannot be rationalized draws on this result (see Appendix B). Note that, while we

use the more general h notation for the health production function when it simplifies expres-

sions, results here were obtained using the quadratic-loss parameterization of h, specified in

Section IV.

Using interior physician’s treatment choice functions (10), the government’s problem can

be written as

max
{(p0,p1)∈R2}

α∫
α

z∫
z

[αgh(a)− p0 − p1a
∗(α, z; p1)] f(α, z)dzdα (O1)

s.t.

u(a∗(α, z; p1);α, z, p0, p1) ≥ u, ∀(α, z) VP

a∗(α, z; p1) =
τ − b

δ
+

p1 − z

δ2α
, ∀(α, z) IC.

We can eliminate the participation constraints for all types but

(α̈, z̈) ≡ arg min
(α,z)

u(a∗(α, z; p1);α, z, p0, p1),

i.e., the lowest-utility type given linear contract (p0, p1).
1 Setting up the Lagrangian based

on the remaining participation constraint, we have

L =

α∫
α

z∫
z

[
αg

[
H − [p1 − z]2

2δ2α2

]
− p0 − p1

[
[τ − b]

δ
+

p1 − z

δ2α

]]
f(α, z)dzdα

+ µ

[
α̈H +

[p1 − z̈]2

2δ2α̈
+

[τ − b][p1 − z̈]

δ
+ p0 − u

]
.

1If h > 0 then (α̈, z̈) = (α, z), by the envelope condition.
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First-order conditions with respect to p0 and p1 yield the following system of equations:

∂L
∂p0

=

α∫
α

z∫
z

[−f(α, z)dzdα] + µ∗ = 0 ⇒ µ∗ = 1

∂L
∂p1

=

α∫
α

z∫
z

[
−αg

[
p∗1 − z

δ2α2

]
−
[
[τ − b]

δ
+

p∗1 − z

δ2α

]
− p∗1

δ2α

]
f(α, z)dzdα+ µ∗

[
p∗1 − z̈

δ2α̈
+

τ − b

δ

]
= 0.

Using µ∗ = 1, from the first equation, the second equation can be simplified further to

solve for p∗1:

α∫
α

z∫
z

[
αg[p

∗
1 − z]

δ2α2
+

2p∗1
δ2α

− z

δ2α

]
f(α, z)dzdα =

p∗1 − z̈

δ2α̈

⇒p∗1 =
αg E

[
z
α2

]
+ E

[
z
α

]
− z̈

α̈

αg E
[

1
α2

]
+2E

[
1
α

]
− 1

α̈

. (O2)

If desired, one could then characterize p∗0 in terms of p∗1, using the binding participation

constraint of (α̈, z̈).

A.2 Optimal Linear Contract when there is Exclusion

Let z̃0(α; p1) ≡ αδ[τ − b] + p1 denote the cost type indifferent between providing treatment

and not, given altruism type α and payment rate p1.
2 The government’s problem, allowing

for exclusion, is:

max
{(p0,p1)∈R2}

E [ug(a(α, z; p1); p0, p1)] =

α∫
α

z̃0(α,p1)∫
z

[αgh(a
∗(α, z; p1))− p0 − p1a

∗(α, z; p1)] f(α, z)dzdα

+

α∫
α

z∫
z̃0(α,p1)

[αgh(0)− p0] f(α, z)dzdα (O3)

s.t.

u(a∗(α, z; p1);α, z, p0, p1) ≥ u, ∀(α, z) VP

a∗(α, z; p1) =

 τ−b
δ

+ p1−z
δ2α

, ∀{(α, z) : z < z̃0(α, p1)}

0, ∀{(α, z) : z ≥ z̃0(α, p1)}
IC.

2Note that z̃0 ≡ z̃(α; p1, a = 0), where z̃ is defined in equation (O6), in Appendix C.2.
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(Note that, while we use the more general h notation for the health production function when

it simplifies expressions, results here were obtained using the quadratic-loss parameterization

of h, specified in Section IV.)

Note that the equilibrium utility of excluded type (α, z) is u(0;α, z, p0, p1) = αh(0) + p0,

i.e., it does not depend on z and is increasing in α; this, combined with the fact that the

treatment amount is increasing in α when h′(a) > 0 (which is satisfied at a = 0), implies

that only the participation constraint for the lowest-altruism type will bind. Setting up the

Lagrangian based on the lowest-altruism-type’s participation constraint, we have

L =

α∫
α

z̃0(α,p1)∫
z

[αgh(a
∗(α, z; p1))− p0 − p1a

∗(α, z; p1)] f(α, z)dzdα+

α∫
α

z∫
z̃0(α,p1)

[αgh(0)− p0] f(α, z)dzdα

+ µ [αh(0) + p0 − u] .

Differentiating with respect to p0, we obtain µ∗ = 1 and p∗0 = u− αh(0). Differentiating

with respect to p1, and simplifying a good bit,3 we obtain the following implicit expression

for p∗1:

α∫
α

z̃0(α,p∗1)∫
z

[
z[αg + α]

α2

]
f(α, z)dzdα−δ[τ−b]

α∫
α

z̃0(α,p∗1)∫
z

f(α, z)dzdα = p∗1

α∫
α

z̃0(α,p∗1)∫
z

[
αg + 2α

α2

]
f(α, z)dzdα.

(O4)

B Rationalizability of Observed Payment Rate

The model parameters governing physician behavior are identified without assuming opti-

mality of the observed payment contract. Given our use of physicians’ revealed preference to

identify these parameters, it is natural to consider whether a revealed preference approach

could also inform our value for αg. In this section, we show that there does not exist a value of

αg such that the optimal linear contract equals the sample mean payment rate, $9.26/1000u
at any of the baseline hematocrit levels considered in our results section, given the estimated

parameters. Put differently, the fact that we cannot use the observed payment contract to

back out a value of αg implies that we reject optimality of the observed payment contract;

this is in contrast to early work in the empirical contracts literature, which needed to as-

sume optimality of the observed regime to identify model parameters (e.g., Wolak (1994))

but similar to more recent work (e.g., Abito (2019)).

3The details are tedious, and are available upon request.
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Unlike the case where there is no equilibrium exclusion under the optimal linear contract

(see Appendix A.1), the payment rate under the optimal linear contract when there are

excluded types is only characterized via a cumbersome implicit expression (see Appendix

A.2), which is not ideal because, without further guidance, one would have to exhaustively

search through all possible values of αg to prove the assertion that there did not exist a value

of αg that could rationalize the observed payment rate. Therefore, we adopt an alternative

approach, which is to obtain a tractable expression for an upper bound of the optimal linear

payment rate, which we then show is below that in the data. (Note that, while we use the

more general h notation for the health production function when it simplifies expressions,

results here were obtained using the quadratic-loss parameterization of h, specified in Section

IV.)

Let z̃0(α; p1) ≡ αδ[τ−b]+p1 denote the cost type indifferent between providing treatment

and not, given altruism type α and payment rate p1.
4 Let p∗1(αg; z̃

0(·, p∗1)) denote the solution
to (O4), where we assume p∗1(αg; z̃

0(·, p∗1)) > 0. The second argument indicates that the

correct cost type, which depends on p∗1, is used as the upper limit of integration for the inner

integral.

We first show in Proposition 1 that p∗1(αg; z̃
0(·, p∗1)) is increasing in αg. We then show

in Proposition 2 that p∗1(∞; z), i.e., the optimal linear payment rate with no exclusion and

infinite value of αg, bounds p
∗
1(∞; z̃0(·, p∗1)) from above. This is particularly useful because,

taking the limit of (O2) as αg → ∞, we have p∗1(∞; z) = E
[

z
α2

]
/E
[

1
α2

]
, which is a very

simple explicit expression that can be evaluated using only model primitives.

Proposition 1 (p∗1(αg; z̃
0(·, p∗1)) increasing in αg). The government’s choice of p∗1 will be

increasing in αg if p∗1 > 0 and the government’s objective exhibits complementarity between

αg and p1 (Vives, 2001, Theorem 2.3). Intuitively, if the government finds it worthwhile

to pay physicians to increase their treatment amounts, it does so due to the health benefit.

Increasing its valuation of this benefit, αg, would naturally increase the government’s “input”

choice, p1. Because the government’s objective is smooth, this complementarity takes the

form of a positive cross-partial derivative. We have

∂2 E [ug(α, z, p0, p1)]

∂αg∂p1
=

α∫
α

z̃0(α,p1)∫
z

[
∂h(a∗(α, z, p1))

∂a∗
∂a∗

∂p1

]
f(α, z)dzdα,

which is positive because the first-order condition of the government’s problem with respect

4Note that z̃0(α; p1) ≡ z̃(α; p1, a = 0), where z̃ is defined in equation (O6), in Appendix C.2. This is the
same definition as in Appendix A.2, and is reproduced here for convenience.
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to p1 returns (for p∗1 > 0)

αg

α∫
α

z̃0(α,p1)∫
z

[
∂h(a∗(α, z, p1))

∂a∗
∂a∗

∂p1

]
f(α, z)dzdα−

α∫
α

z̃0(α,p1)∫
z

[
a∗(α, z, p1) + p∗1

∂a∗

∂p1

]
f(α, z)dzdα = 0

⇒ αg

α∫
α

z̃0(α,p1)∫
z

[
∂h(a∗(α, z, p1))

∂a∗
∂a∗

∂p1

]
f(α, z)dzdα > 0

⇒
α∫

α

z̃0(α,p1)∫
z

[
∂h(a∗(α, z, p1))

∂a∗
∂a∗

∂p1

]
f(α, z)dzdα > 0,

where the second line obtains if p∗1 > 0 (as was assumed) and there is a positive measure of

non-excluded types.

Proposition 2 (p∗1(∞; z̃0(·, p∗1)) < p∗1(∞; z)). Taking the limit of (O4) as αg → ∞, and

after some manipulation and dropping the vanishing terms, we have

α∫
α

z̃0(α,p∗1)∫
z

z

α2
f(α, z)dzdα = p∗1

α∫
α

z̃0(α,p∗1)∫
z

1

α2
f(α, z)dzdα. (O5)

Treating z̃0 as a parameter, consider how an increase in z̃0 (towards z) would affect p∗1 defined

in (O5). The derivative of the left side with respect to z̃0 is
α∫
α

z̃0(α,p∗1)

α2 f(α, z̃0(α, p∗1))dα. The

derivative of the double-integral expression on the right side with respect to z̃0 is
α∫
α

1
α2f(α, z̃

0(α, p∗1))dα.

Because we have z̃0(·, ·) ≥ z > 1,5 the left side will increase more than the double integral on

the right side, meaning
∂p∗1
∂z̃0

> 0 and, therefore, p∗1(∞; z̃0(·, p∗1)) < p∗1(∞; z).

Table O1 shows that the upper bound derived above for the optimal linear payment rate

is lower than the observed payment rate, 9.26, for the median baseline HCT level in each

of the three baseline HCT intervals. Combining this with Propositions 1-2, there cannot

exist a value of αg that rationalizes the observed payment rate for any of these baseline

HCT levels. That is, p∗1(αg; z̃
0(·, p∗1)) ≤ p∗1(αg = ∞; z̃0(·, p∗1)) ≤ p∗1(αg = ∞; z̃0(·, p∗1) = z) =

E
[

z
α2

]
/E
[

1
α2

]
< 9.26.

5The lower bounds of the marginal cost type distribution for the low, medium, and high baseline HCT
intervals are, respectively, 6.81, 6.19, and 7.10 $/1000u EPO.
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Table O1: Upper bound for optimal linear payment rate

Baseline HCT interval
30-33 33-36 36-39

p∗1(∞; z) 8.96 9.10 8.96
Note: p∗1(∞; z) = E

[
z
α2

]
/E
[

1
α2

]
.

C Model Details

C.1 Restrictiveness of Linear Contracts

Figure O1 illustrates how the two-dimensional physician types map into treatment amounts,

under an arbitrary linear contract and an arbitrary nonlinear contract. With either contract,

the set of types that will provide the treatment amount a is a line in the support of (α, z):

see that (4) rearranges to z = p(a)+h′(a)α. The figure plots two such isoquants for amounts

a1 and a2, where a2 is medically excessive.6 The immediately apparent difference between

the linear and nonlinear contracts is that with a linear contract (panel a), the intercept

of the isoquants is fixed at p1, while it can change with the nonlinear contract (panel b)

because the marginal payment can vary (e.g., p(a1) > p(a2)).
7 This suggests the difficulty

of designing a linear contract that induces appropriate treatment amounts. For example,

a linear contract would have difficulty avoiding medically excessive amounts because the

payment rate (p1) would have to be below the marginal cost of the lowest-cost type (z) to

avoid downward slopes, which would likely exclude a nontrivial share of higher-cost types.

Nonlinear contracts can avoid this particular tension because, as illustrated by the isoquant

for a2 in the right panel, the marginal payments for medically excessive amounts (e.g., p(a2))

can be set below the marginal cost of the lowest-cost type (z), which places such isoquants

entirely outside the support of (α, z).

C.2 Details for Solution of Optimal Nonlinear Contract

We now show how to express S in terms of the joint density f(α, z). It will be convenient

to define the cost type indifferent about choosing treatment a (given p):

z̃(α; p, a) ≡ p+ αh′(a). (O6)

6That is, h′(a2) < 0. Also note that the slope of the isoquants is h′(a), so downward slopes correspond
to medically excessive amounts.

7We set α = 0 only for this illustration, to show the intercept on the plot.
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altruism type α

co
st

ty
p
e
z

z
z

α α

p1 + h′(a2)α

p1 + h′(a1)α

(a) Linear contract

altruism type α

co
st

ty
p
e
z

z
z

α α

p(a1) + h′(a1)α

p(a2) + h′(a2)α

(b) Nonlinear contract

Figure O1: Isoquants for example contracts.

Notes: Figure plots isoquant curves in the type space for an example linear contract (left), which has
a constant payment rate of p1, and an example nonlinear contract (right), which has a variable marginal
payment, given by the function p, where p1 = p(a1) > p(a2). The treatment amounts are such that h′(a1) > 0
and h′(a2) < 0.

Note that z̃ has intercept p and slope of h′(a), both of which must be non-negative at an

optimal solution p∗(a).8 We also define α̃(p, a) = z−p(a)
h′(a)

as the altruism type satisfying

z̃(α̃) = z. Suppose that z̃(α) ≥ z. As Figure O2 shows, there are two cases, corresponding

to α̃. If α̃ ≥ α, as depicted on the left, then

S(p, a) = Pr{αh′(a) + p︸ ︷︷ ︸
z̃(α;p,a)

≥ z} =

α∫
α

z̃(α;p,a)∫
z

f(α, z)dzdα, (O7)

where the types choosing at least a are in the green region. Otherwise, as depicted on the

right, we have α̃ ∈ [α, α), which means that all cost types with altruism types of at least α̃

8If p∗ < 0 then the government would not seek to induce the physician to increase their treatment
amount from autarky. If h′ < 0 at the optimum, the government could save money and improve health by
paying for a lower amount.
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Figure O2: α̃ cases

z̃(α)

z

z

α α

p(a) + αh′(a)

z̃(α)

z

z

α α

p(a) + αh′(a)

α̃

will choose at least the level of treatment under consideration.9 Thus, we have

S(p, a) =

α̃(p,a)∫
α

z̃(α;p,a)∫
z

f(α, z)dzdα + [1− Fα(α̃)], (O8)

where Fα denotes the marginal CDF of α.

To solve for p∗ using (8), we also need to differentiate S above with respect to (the

parameter) p. If α̃ ≥ α, we have

∂S(p, a)

∂p
=

α∫
α

f(α, z̃(α; p, a))
∂z̃(α; p, a)

∂p︸ ︷︷ ︸
1

dα. (O9)

If α̃ < α, we have

∂S(p, a)

∂p
=

α̃∫
α

f(α, z̃(α; p, a))dα. (O10)

Note that both S(p, a) and ∂S(p,a)
∂p

are continuous at α = α̃(p, a). The solution p∗ is then

obtained by solving (8) for p∗ for each a ∈ A.10

9There is a trivial third case, where α̃(p, a) < α; in this case, S(p, a) = 1 and ∂S(p,a)
∂p = 0.

10Although not depicted in Figure O2, when α̃(p, a) ≥ α, it is possible that z̃(α) < z. Here, the integration
limits for α must be adapted to account for z̃(α) crossing the α axis from below. Let α̌(p, a) ≡ z−p

h′(a) denote

the altruism type satisfying z̃(α̌) = z. (Note that the condition z̃(α) < z is equivalent to α̌(p, a) > α.) There
are two subcases. First, if α̌(p, a) > α, then even the most altruistic physician type would not provide the

level of treatment under consideration at marginal transfer p, meaning S(p, a) = 0 and ∂S(p,a)
∂p = 0. Second,
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C.3 Intuition and Normative Aspects of the Optimal Contract

We can divide both sides of (8) by p∗(a) and ∂S(p∗(a),a)
∂p

to obtain the expression

αgh
′(a)− p∗(a)

p∗(a)
=

1

η(a)
, (O13)

where η(a) ≡ ∂S(p∗(a),a)
∂p

p∗(a)
S(p∗(a),a)

is the elasticity of supply at a. Note the similarity of the

expression in (O13) to the Lerner Index for monopoly pricing, i.e., p−c′

p
= 1

η
, where p and

c′ are, respectively, the marginal price and marginal cost and η is the elasticity of demand.

Our expression differs from that because the government is a monopsonist and, instead of a

marginal cost of production c′, the government has a marginal valuation of treatment, αgh
′.

Intuitively, the principal’s objective is lower (i.e., it extracts less surplus) where supply is

more responsive to price changes (i.e., the elasticity of supply is larger).

We now turn to the normative properties of the second-best allocation. To analyze this,

let i index a type that is marginal at a, i.e., αih
′(a)− zi + p∗(a) = 0. Using this type’s first

order condition to eliminate p∗(a) from (8) and rearranging, we obtain

αgh
′(a)︸ ︷︷ ︸

Principal’s MB

= zi − αih
′(a)︸ ︷︷ ︸

Agent’s net MC

+
S(p∗(a), a)
∂S(p∗(a),a)

∂p︸ ︷︷ ︸
distortion

, (O14)

i.e., at the second-best equilibrium allocation, the principal’s marginal benefit of providing

a equals the agent’s marginal net cost plus a term representing the distortion from the

first-best.

We can use (O14) to show that the allocation under the optimal nonlinear contract

will be downward-distorted from the first-best for all but the highest-amount type, (α, z).11

Equivalently, for any amount a < a∗FI, fewer types choose a in the second-best because they

if α̌(p, a) ∈ (α, α] then, if α̃ ≥ α then (O7) becomes

S(p, a) =

α∫
α̌

z̃(α;p,a)∫
z

f(α, z)dzdα, (O11)

and if, instead, α̃ ∈ [α, α), then (O8) becomes

S(p, a) =

α̃(p,a)∫
α̌

z̃(α;p,a)∫
z

f(α, z)dzdα+ [1− Fα(α̃)]. (O12)

11Recall that at an interior solution under the optimal linear contract a∗ is increasing in α and decreasing
in z when the regularity condition holds.
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are being distorted downwards. To see this, first recall that S(p(a), a) is the probability the

physician would choose at least a. Hence, the numerator of the distortion, S(p∗(a), a), is

strictly positive for all but the maximum treatment amount, which is only provided by the

highest-amount type (which has a measure of zero). Also the denominator of the distortion,
∂S(p∗(a),a)

∂p(a)
, is positive because the probability in (6) increases with p(a). Hence the right side

of (O14) is larger than the right side of (3) for all but the highest-amount type. Because

h is strictly concave, the second-best treatment amount is therefore below the first-best

amount for all but the maximum treatment amount. S(p∗(a), a) increases as we consider

lower dosages, and the distortion typically increases, as well.

As noted by Goldman et al. (1984), this result is very similar to that of Ramsey (1927),

who studies a government tasked with raising a certain amount of revenue via distortionary

taxation of a variety of commodities. As is well known, the optimal second-best tax rates

are set in proportion to the inverse of the elasticity of demand, and the lower the elasticity

of demand, the closer to the first-best allocation for that commodity. Analogously here, the

lower the elasticity of supply, the smaller the distortion.

D Computational Details

D.1 Computation of Optimal Linear Contract

In practice, we numerically compute (p∗0, p
∗
1) by using the COBYLA algorithm in the R

implementation of the NLopt library (Powell, 1994; Johnson, 2018; R Core Team, 2019),

which allows for constrained optimization computation of the government’s problem under

a linear contract, where we embed exclusion into the physician’s choice of treatment amount

to solve:

max
{(p0,p1)∈R2}

E [ug(a(α, z; p1); p0, p1)] =

α∫
α

z∫
z

[αgh(a
∗(α, z; p1))− p0 − p1a

∗(α, z; p1)] f(α, z)dzdα

(O15)

s.t.

u(a∗(α, z; p0, p1);α, z, p0, p1) ≥ u, ∀(α, z) VP

a∗(α, z; p1) = max

{
0,

τ − b

δ
+

p1 − z

δ2α

}
, ∀(α, z) IC.

(Note that, while we use the more general h notation when it simplifies expressions, these

results were obtained using the quadratic-loss parameterization of h, in Section IV.) We
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evaluate the participation constraints on a grid of (α, z), where there are 700 points of

support for α, spanning [α, α], and 400 points of support for z, spanning [z, z].

D.2 Computation of Optimal Nonlinear Contract

We compute the optimal nonlinear contract by solving (8), the details of the constituent

parts of which are described in Appendix C.2, using the BBoptim subroutine contained in

the BB package in R (Varadhan and Gilbert, 2009). We solve (8) for a grid of 100 amounts.

The lowest value of the grid is zero because we allow for optimal exclusion via the nonlinear

contract. The maximum value of the grid is 0.01 below the full-information amount for

the highest-treatment-choice type; we use this as the maximum point due to the numerical

issues incumbent in evaluating derivatives at the upper corner of the treatment amount space

(which is the same as the upper bound of the full-information treatment amount space, due

to the downwards-distortion of equilibrium amounts under the optimal nonlinear contract).

Finally, we fit a spline to the grid of treatment amounts, which is what we use for our

quantitative results.

E Identification

Here we discuss the identification of the health function, h, and the joint distribution of

provider altruism and marginal cost functions. Identification is done separately for each

baseline hematocrit interval k; we suppress the k subscript in this appendix. The number

of time periods is fixed, but both the number of providers and the number of patients per

provider go to infinity. For an arbitrary provider i, there is rich variation in (b, x, p1, a), where

patient characteristics (b, x) vary between patients and over time, the (constant) marginal

reimbursement rate p1 varies over time, and observed treatment choices a are the sum of

a provider’s equilibrium treatment choice a∗i (p1, b, x) and an econometric error, η, which is

mean-independent of (b, x, p1): E(η|b, x, p1) = 0.12

We start by studying identification of more general specifications for the health function

and the provider type distribution than we use in our empirical implementation (specified in

Section IV). We maintain the assumption of quasilinear utility for providers. We also allow

for provider-level heterogeneity in the intercept of marginal cost functions, though here we

also allow for (homogeneous) convexity in marginal cost functions, which allows for cost

functions with heterogeneous convexity. We show that the marginal product of treatment

on health, h′(a; b, x), is identified to scale under a single-index specification for the arguments

12This is the same as in our empirical specification; see eq. (11).
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of h′,13 and, therefore, that the sign of the marginal effect of treatment on health is identified.

The scale parameter is the mean of provider altruism, µα.
14 We provide a test for µα > 0

and also show identification of the joint distribution of altruism (given the scale µα) and

marginal cost functions. Finally, we also show that the choice of µα has no bearing on our

main, normative, results (Section E.2).

In Section E.3, we show the nonparametric identification of F (α, z), given the quadratic

specification of h and constant marginal cost function we use in our empirical specification.

E.1 Identification of h′, and Joint Distribution of Costs and Al-

truism

Consider the following general model of utility for arbitrary provider i:

Ui(h(a; b), P (a; p1), ci(a)),

where ∂Ui

∂h
≥ 0, ∂Ui

∂P
> 0, and ∂Ui

∂c
≤ 0, i.e., utility is weakly increasing in health, increasing

in money, and weakly decreasing in cost.15 The production function h and reimbursement

function P are common across providers, but the other functions may differ across providers.

The observed contract is linear in a, so we have P (a; p1) = p0 + p1a.
16 We also assume that

h is strictly concave in a and that ci is weakly convex in a. Based on our application, we

make two further assumptions. We assume that h′(0; b) > 0; if this condition did not hold

there would be no reason for the government to incentivize any provision of treatment at b.

We also assume ∂2h(a;b)
a

b < 0, i.e., the marginal product of dosage is lower, the higher is the

baseline hematocrit level.17

Our goal is to see what about utility and its argument functions (h, P , ci) is identified

from a∗i (p1, b) (which we sometimes write as a∗i for brevity), using the interior solution for

the provider’s optimal dosage and our assumptions about shape restrictions, i.e., about the

signs of first and second derivatives.

13If not explicit, all derivatives are with respect to the dosage a, e.g., h′ = ∂h
∂a .

14In a slight abuse of notation, µα denotes the mean of α in this section. This is in contrast to when we
describe our empirical specification or estimation results, where it refers to the mean of lnα.

15The identification of the effect of x on health is identical to identification of the effect of a on health,
so we suppress x for the remainder of this section.

16The intercept, p0 does not vary in the data so we do not specify it explicitly as an argument of P (·).
Also note that the observed payment contract does not vary with patient characteristics (in contrast to the
optimal payment contract), so we do not include those as arguments of P (·) here.

17This is consistent with our index specification, wherein both a and b affect the index entering h.
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The first order condition to maximize utility is

∂Ui

∂P
p1 = − ∂Ui

∂c

∂ci(a
∗
i )

∂a
− ∂Ui

∂h

∂h(a∗i ; b)

∂a
,

which, when we divide by ∂Ui

∂P
> 0 to get a marginal rate of substitution, becomes

p1 = −
∂Ui

∂c
∂Ui

∂P

∂ci(a
∗
i )

∂a
−

∂Ui

∂h
∂Ui

∂P

∂h(a∗i ; b)

∂a
.

The utility level or the levels of any of the functions (h, P , ci) are not identified from the

optimality condition. Our approach will be to use a combination of assumptions and (pure)

normalizations to obtain values for ∂Ui

∂h
, ∂Ui

∂P
, ∂Ui

∂c
and then see what is identified about the

derivatives of the arguments to utility. Now we add one more assumption and three pure

normalizations. Assume quasilinear utility in P , which means we can normalize ∂Ui

∂P
= 1,

giving

p1 = − ∂Ui

∂c

∂ci(a
∗
i )

∂a
− ∂Ui

∂h

∂h(a∗i ; b)

∂a
.

Note that ∂Ui

∂c
is not separable from ∂ci

∂a
, so without loss of generality we can normalize

∂Ui

∂c
= −1. Similarly, ∂Ui

∂h
is not separable from

∂h(a∗i ;b)

∂a
, so we can normalize ∂Ui

∂h
= αi ≥ 0.18

With the normalizations, we now have

p1 =
∂ci(a

∗
i )

∂a
−αi

∂h(a∗i ; b)

∂a
,

which says that an interior treatment choice, a∗i (p1, b) equates the marginal reimbursement

rate p1 with the provider’s “net marginal cost of treatment”, i.e., their marginal cost of

treatment, net the provider’s marginal benefit from treatment coming from any improvement

in patient health (which may be negative if h′(a∗i ; b) < 0).

Polynomial approximation We show identification using a polynomial approximation to

the above FOC. Specifically, we approximate the marginal cost and marginal health benefit

using polynomials:

p1 =
[
c0i + c1i·a∗i + c2i·(a∗i )2 + · · ·

]︸ ︷︷ ︸
≈

∂ci(a
∗
i
)

∂a

−αi

[
h0 + h1a·a∗i + h1b·b+ h2a·(a∗i )2 + h2b·b2 + h2ab·a∗i ·b+ · · ·

]︸ ︷︷ ︸
≈αi

∂h(a∗
i
;b)

∂a

.

(O16)

For concreteness, consider the case in which both polynomials were of degree two. Higher-

18Note too that b is excluded from the cost function. This a natural assumption, because without it one
could not separate the cost and health functions.
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degree polynomials would also be identified (as would be lower-degree ones, like those we

use in our empirical implementation). We assume c′i(a) = c0i + c1a + c2a
2, i.e., we allow

for heterogeneity in the intercept of marginal costs and also allow for non-constant marginal

costs within provider.19

With an infinite number of patients per provider and the mean-independence of η, the

equilibrium treatment choices a∗i (p1, b) are identified for each observed value of (p1, b). With

the observed variation in (p1, b), this directly identifies the reduced-form parameters (θi, γi)

listed in braces under the rearranged version of (O16) below:

p1 = (c0i − αih0)︸ ︷︷ ︸
θi0

+(c1 − αih1a)︸ ︷︷ ︸
θi1

a∗i+(c2 − αih2a)︸ ︷︷ ︸
θi2

(a∗i )
2+(−αih1b)︸ ︷︷ ︸

γi
1

b+(−αih2b)︸ ︷︷ ︸
γi
2

b2+(−αih2ab)︸ ︷︷ ︸
γi
2a

a∗i b

(O17)

Given our polynomial approximation, our goal is to identify the parameters {c0i, αi} for

each provider, and the common parameters c1, c2, h0, h1a, h2a, h1b, h2b, h2ab.

First, the derivative of αih
′ with respect to b (which is approximated using the terms

αih1b, αih2b, and αih2ab) is identified from γi
1 and γi

2, because of the exclusion restriction

that b does not affect costs ci.

Our approach to identify the remaining parameters is to assume an index assumption on

the arguments of h(·), which links the derivative of h with respect to a to the derivative of

h with respect to b.20

We denote means of the reduced-form parameters taken across providers using ·: e.g.,

γ1 = −µαh1b (we use µα to denote the mean of α and µc0 to denote the mean of c0). Thus

we have

θ0 = µc0 − µαh0 (O18)

θ1 = c1 − µαh1a

θ2 = c2 − µαh2a

γ1 = −µαh1b

γ2 = −µαh2b

γ2a = −µαh2ab.

19 Heterogeneity in the “intercept” of the marginal cost is fairly flexible. Regardless, it is not clear how to
separately identify heterogeneity in higher-degree terms of the marginal cost function (e.g., provider-specific
c1i); intuitively, we take averages across providers and c1i and a∗i would be correlated due to the optimality
of a∗i . Note that if c1 and other higher-order terms in the cost function are all equal to zero, then we have
c0i = zi (the latter being the constant marginal cost we use in our empirical implementation).

20There may be other sets of assumptions yielding identification; for example, identification may be
obtained by restricting c′(a) to be lower order. Therefore our approach should be viewed as sufficient but
not necessary.
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Identification then proceeds as follows:

1. Test any of the restrictions γ1 = 0, γ2 = 0, or γ2a = 0. If we reject then we can set the

scale of α by choosing a positive value for µα.
21 We have identified (up to the scale of

µα) the parameters

h1b = −γ1/µα, h2b = −γ2/µα, h2ab = −γ2a/µα, αi = µαγ
i
1/γ1 for i = 1, . . . , n.

2. Invoke the single-index assumption, which means we can write h(a; b) = g(κaba + b),

where κab is a constant to be identified. As is standard in single-index models (see,

e.g., Ichimura, 1993; Härdle et al., 2004), the scale and location of the index are not

identified. Setting the coefficient on b equal to one fixes the scale and gives the index

a natural interpretation, in the units of the hematocrit level. We have set the location

to zero; note that this nonidentification means the intercept of τ ′x in our empirical

specification is identified from functional form.

The single-index assumption implies that

∂2h(a; b)

∂a2
= κab

∂2h(a; b)

a
b. (O19)

For example, in our empirical specification we have κab = δ.22 With our 2nd-degree

polynomial approximation, we have

∂2h(a; b)

∂a2
≈ h1a + 2h2a · a+ h2ab · b

∂2h(a; b)

a
b ≈ h1b + 2h2b · b+ h2ab · a,

so, with the index assumption we have at an optimum

[h1a + 2h2a · a∗i + h2ab · b] = κab [h1b + 2h2b · b+ h2ab · a∗i ] . (O20)

Step 1 identified the parameters on the right of (O20), other than κab. We then need

to observe at least three vectors of (b, p1, a
∗
i (b, p1)) to exactly identify h1a, h2a, κab;

more than three would yield overidentification and, thus, better estimates. (The same

argument holds with higher-degree polynomials, but the number of points required

increases.)

We have now identified all of the parameters of h′ to scale, except for h0.

21Recall that αi is non-negative.
22In our empirical specification, we have h′(a; b, x) = δ [τ ′x− b− δa], so h1a = −δ2 and h1b = −δ.

18



3. Using the second and third lines of (O18), we can identify c1 and c2:

c1 = θ1 + µαh1a

c2 = θ2 + µαh2a.

Note that these parameters are identified (and not just to scale).

4. Next, we use the average marginal cost µz (obtained from external data) to identify the

average intercept of the marginal cost function, µc0 , which combined with the average

intercept also identifies h0 to scale. The mean marginal cost (over providers, patients,

and time periods) is E [c0i + c1a
∗
i (b, p1) + c2(a

∗
i (b, p1))

2] = µc0 + c1a + c2a2. Equating

this with µz, we can solve for µc0 given that we have identified c1 and c2:

µc0 = µz −
[
c1a+ c2a2

]
.

Then, using the first line of (O18), we have

h0 =
µc0 − θ0

µα

,

i.e., h0 is identified to scale.

5. Finally, we identify c0i via the provider-specific intercept:

c0i = θi0+αih0 = θi0+
µαγ

i
1

γ1

µz −
[
θ0 + c1a+ c2a2

]
µα

= θi0+
γi
1

γ1

[
µz −

[
θ0 + c1a+ c2a2

]]
,

where all the terms on the right have been identified (and not just to scale).

Identification of the sign of h′ Here we note that the identification of the sign of h′

(i.e., whether treatments are health improving or health damaging on the margin) does not

rely on the scale normalization. Rearranging (O16), we have

c′i(a
∗
i (p1, b))− p1 = αih

′(a∗i (p1, b); b),

where (b, p1) are data varying within provider i and we have shown identification of c′i and

(trivially) a∗i (p1, b). Then if (as we find), αi > 0, we have

sign(c′i(a
∗
i (p1, b))− p1) = sign(h′(a∗i (p1, b); b)),
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i.e., we have identified the sign of h′ at a∗i (p1, b). In particular, consider the triplet (i, b, p1)

such that c′i(a
∗
i (p1, b)) = p1. For any such triplet, a∗i (p1, b) identifies the health-maximizing

treatment amount (i.e., where h′ = 0).

E.2 Invariance to the Choice of the Scale of α

We now show how the choice of µα does not affect the optimal contract or any of our

normative results.

For simplicity suppose we have a one-degree polynomial for health (this is not necessary

but makes the exposition cleaner):

h′(a; b) = h0 + h1aa+ h1bb =
πo

µα

+
π1a

µα

a+
π1b

µα

b,

where π· are all identified and µα > 0 is the scale of α. Our calibration of αg uses the change

in h(a; b) when we increase the treatment from a lower to a higher level, respectively, aL and

aH . We first definitely integrate our (identified-to-scale) h′ to return the (identified-to-scale)

health level:

h(a; b) = H +
πo

µα

a+
π1a

µα

a2

2
+

π1b

µα

ab,

where H is the integration constant. The difference in which, given b = bcal can be written

as

∆hcal ≡ h(aL; bcal)− h(aH ; bcal) =

[
πo

µα

+
π1b

µα

b

]
[aH − aL] +

π1a

µα

a2H − a2L
2

=
qcal
µα

,

where qcal is identified because aL = 0, aH is based on an experimental intervention, and

bcal = −π0/π1b, which cancels out the intercept term (and is in any case identified).

We then calibrate αg from the expression

αg∆hcal = χ → αg =
χ

qcal
µα,

where χ is another known constant based on the experimental intervention. Therefore, αg

perfectly scales with µα.

Now consider the government’s problem, cast in terms of the demand profile:

max
P (a)

∫
A

S(p(a), a)[αgh
′(a; b)− p(a)]da

s.t.

S(p(a), a) = Pr{p(a) ≥ c′(a; z)− αh′(a; b)},
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where p(a) = ∂P (a)
∂a

and P (a) contains a constant that satisfies voluntary participation for

all providers. We have shown the invariance of αgh
′(a; b) and αh′(a; b) to the choice of

µα > 0, and have also shown that c′(a, z) (where, c′(a; zi) = c′i(a) used above) is identified

independently from µα. This means that changing the value of µα does not affect the

government’s problem, meaning it does not affect the optimal contract (unrestricted or

constrained) or any of the normative results.

E.3 Special Case: Identification of F Given Quadratic h

Here we show how the joint distribution of provider types, F , is nonparametrically iden-

tified given the quadratic specification of the health function, h.23 Recall that η is mean-

independent of (b, x, p1) and that the number of observations per provider goes to infinity.

Then OLS estimation of the reduced form (11), separately for each provider, yields consistent

estimates of β1, β2i, β3, and νi for each provider.

The structural parameters and provider types are continuous functions of reduced-form

parameters and variables, as follows:

δ = −(β1)
−1

τ = −(β1)
−1β3

αi = (β1)
2(β2i)

−1

zi = µz − νi(β2i)
−1

Hence the structural parameters and provider types are identified by and can be consistently

estimated from the reduced-form coefficients of the provider-specific regressions. Finally, the

joint distribution F is identified from the consistent estimates of (αi, zi) for each provider i.

Thus it is in concept possible to estimate the reduced form for each provider and then

use nonparametric density estimation to recover F . However, we do not however pursue this

approach because it would be computationally intensive and the resulting estimates would

be much noisier.

F Recovery of F (α, z)

As noted in Section IV.B, we recover Fk(α, z) under a distributional assumption, where lnα

and z have a joint normal distribution. Here we show how we estimate the parameters

of that distribution, which are recovered from the first and second moments of the random

23We continue to suppress the k denoting the baseline hematocrit interval.
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coefficient (βk
2 ) and random effect (νk) in the reduced form (11). First we present an auxiliary

regression of the residuals of (11) that yields the second moments of βk
2 and νk (while the

mean of βk
2 comes directly from (11), and the mean of νk is zero). Then we derive closed-form

expressions for the parameters of Fk(α, z) as functions of these moments.

To develop the auxiliary regression, let β̄k
2 denote the mean of βk

2 , and decompose the

random coefficient as βk
2 = β̄k

2 + β̃k. Then (11) can be rearranged as

aijt = βk
1 bjt + β̄k

2 p̃t + βk′
3 xjt + β̃k

i p̃t + νk
i + ϵkijt︸ ︷︷ ︸

rkijt

(for bjt in interval k). The OLS coefficient on p̃t is a consistent estimate of the mean of the

random coefficient, E(βk
2 ), under the assumptions discussed in Section IV.B. The auxiliary

regression then uses the composite residual, rkijt, times the provider-level mean residual, r̄ki

(taken within interval k), as its dependent variable. This yields consistent estimates of the

second moments, V(βk
2 ), V(ν

k), and Cov(βk
2 , ν

k), as we show next.24

First expand the product of the composite residual and the provider-level mean residual

as follows:

rkijtr̄
k
i = (β̃k

i p̃t + νk
i + ϵkijt)

(
1

nk
i

∑
l,s:bls∈k

β̃k
i p̃s + νk

i + ϵkils

)
= (β̃k

i p̃t)β̃
k
i p̃

k

i + (β̃k
i p̃t)ν

k
i + (β̃k

i p̃t)ϵ̄
k
i

+ νk
i β̃

k
i p̃

k

i + νk
i ν

k
i + νk

i ϵ̄
k
i

+ ϵkijtβ̃
k
i p̃

k

i + ϵkijtν
k
i + ϵkijtϵ̄

k
i .

(The variables of the form z̄ki denote means taken among the observations for provider

i where the patient’s baseline hematocrit is in interval k, and nk
i is the number of such

observations.) The expectation of this product conditional on the payment rates and the

number of observations is as follows:

E[rkijtr̄
k
i |p̃t, p̃

k

i , n
k
i ] = V (β̃k)p̃tp̃

k

i + Cov(β̃k, νk)p̃t + 0

+ Cov(β̃k, νk)p̃
k

i + V (νk) + 0

+ 0 + 0 + E[ϵkijtϵ̄
k
i ]

= V (β̃k) · p̃tp̃
k

i + Cov(β̃k, νk) · [p̃t + p̃
k

i ] + V (νk) + V (ϵk) · 1

nk
i

.

24This assumes that the second moments of the unobservables (β̃k
i , ν

k
i , ϵ

k
ijt) are independent of the ob-

servables, while OLS estimation of (11) assumes their first moments are independent of the observables.
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This assumes that the error terms ϵkijt are orthogonal to β̃k
i and νk

i and are uncorrelated

across observations. Last, note that V(βk
2 ) = V(β̃k) and Cov(βk

2 , ν
k) = Cov(β̃k, νk). Thus,

we can consistently estimate the desired variances and covariance of βk
2 and νk by performing

a regression of rijtr̄i on p̃tp̃i, p̃t + p̃, a constant, and 1
ni
, within each interval k.

Now we show how these reduced-form moments are mapped to the parameters of Fk(α, z).

The joint normal distribution of lnα and z is specified as follows:(
lnα

z

)
∼ N

((
µα,k

µz

)
,

[
σ2
α,k σαz,k

σαz,k σ2
z,k

])

The value of µz is treated as known from our external information on costs, which leaves four

parameters to recover for each hematocrit interval: µα,k, σ
2
α,k, σαz,k, and σ2

z,k. The expressions

for these parameters as functions of the reduced-form moments are derived below. These

parameters are recovered separately for each interval k, so we omit that index here to simplify

the derivations.

a) First we obtain µα and σ2
α from E(β2) and V(β2), using the following properties of the

log-normal distribution:

(i) If X has a log-normal distribution, where lnX ∼ N(µ, σ2), then

µ = ln

(
(E(X))2√

V(X) + (E(X))2

)
and σ2 = ln

(
1 +

V(X)

(E(X))2

)
,

(ii) and if Y = X−1, then lnY ∼ N(−µ, σ2).

Hence, because α is log-normal, and α−1 = δ2β2, we have

µα = − ln

(
δ2(E(β2))

2√
V(β2) + (E(β2))2

)
and σ2

α = ln

(
1 +

V(β2)

(E(β2))2

)
.

(Also recall that δ comes directly from β1 in (11).)

b) Next we obtain σαz from Cov(β2, ν), along with E(β2) and V(β2). First, we use the

definitions β2 ≡ δ−2α−1 and ν ≡ −(z − µz)β2 to put the reduced-form covariance in terms

of the structural parameters:

Cov(ν, β2) = Cov(−(z − µz)δ
−2α−1, δ−2α−1) = δ−4Cov(−(z − µz)α

−1, α−1).
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Then we use the definitional relationship between the covariance and expectations:

δ−4Cov(−(z − µz)α
−1, α−1) = δ−4E[−(z − µz)α

−2]− δ−4E[−(z − µz)α
−1] · E[α−1].

Now we apply Stein’s lemma (Stein, 1981) to the terms E[−(z−µz)α
−1] and E[−(z−µz)α

−2].

We use a version of the lemma for two variables, stated as follows: if X1 and X2 are jointly

normally distributed, g is differentiable, and the relevant expectations exist, then

E[(X1 − µ1)g(X2)] = Cov(X1, X2) · E[g′(X2)].

Let X1 = −z, X2 = − lnα, and g(X2) = eX2 or g(X2) = e2X2 as appropriate.25 Then we

have

E[−(z − µz)α
−1] = σαzE[α

−1] = σαzδ
2E(β2);

E[−(z − µz)α
−2] = σαz2E[α

−2] = σαz2δ
4E(β2

2) = σαz2δ
4[V(β2) + E(β2)

2].

The first equality in each line above applies the lemma, and the second equality uses α−1 =

δ2β2 (by definition). The last equality in the second line uses the definitional relationship

between the variance and expectations. Finally we insert these results into the expression

for Cov(ν, β2):

Cov(ν, β2) = δ−4
(
σαz2δ

4[V(β2) + E(β2)
2]− σαzδ

2E(β2) · δ2E(β2)
)

= σαz

(
2V(β2) + E(β2)

2
)
.

Therefore,

σαz =
Cov(ν, β2)

2V(β2) + E(β2)2
.

c) Last, we obtain σ2
z from V(ν), and the other moments, as follows. As with the

covariance in part (b), we first put the reduced-form variance in terms of the structural

parameters, and then use the relationship between the variance and expectations:

V(ν) = V(−(z − µz)δ
−2α−1) = δ−4V(−(z − µz)α

−1)

= δ−4E[(−(z − µz))
2α−2]− δ−4E[−(z − µz)α

−1]2.

From the derivations in part (b), we have E[−(z−µz)α
−1] = σαzδ

2E(β2) in the second term,

25Note that for g(X2) = eX2 then g(X2) = α−1 and g′(X2) = α−1, or for g(X2) = e2X2 then g(X2) = α−2

and g′(X2) = 2α−2.
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so we must now derive the result for E[(−(z − µz))
2α−2] in the first term.

We start by integrating out z via the use of iterated expectations. First,

E[(−(z − µz))
2α−2] = E[α−2E[(−(z − µz))

2|α]].

Then, using the relationship between the variance and expectations on the inner conditional

expectation,26

E[(−(z − µz))
2|α] = V[−(z − µz)|α] + E[−(z − µz)|α]2

Because z and lnα are joint normal (as are −z and − lnα), we have

V[−(z − µz)|α] = V[−z| − lnα] = σ2
z −

σ2
αz

σ2
α

E[−(z − µz)|α]2 = (E[−z| − lnα] + µz)
2 =

(
σαz

σ2
α

(− lnα + µα)

)2

.

Substituting these back into the outer (unconditional) expectation, we have

E[(−(z − µz))
2α−2] =

(
σ2
z −

σ2
αz

σ2
α

)
E[α−2] +

(
σαz

σ2
α

)2

E[α−2(− lnα + µα)
2].

In part (b) we showed that E[α−2] = δ4[V(β2) + E(β2)
2], so we must now derive a result for

E[α−2(− lnα + µα)
2] in the second term.

To do this we apply Stein’s lemma to − lnα, although to simplify the expressions, here

we write X in place of − lnα. In the univariate case the lemma is stated as follows: if X

is normally distributed, g is differentiable, and the relevant expectations exist, then E[(X −
µX)g(X)] = V(X) · E[g′(X)]. This must be applied twice, as follows:

E[α−2(− lnα + µα)
2] = E[e2X(X − µX)

2] =

(i) E[(X − µX) · e2X(X − µX)︸ ︷︷ ︸
g(X)

] = σ2
XE[2e

2X(X − µX) + e2X︸ ︷︷ ︸
g′(X)

] =

(ii) σ2
XE[(X − µX) · 2e2X︸︷︷︸

g(X)

] + σ2
αE[e

2X ] = (σ2
X)

2E[4e2X︸︷︷︸
g′(X)

] + σ2
XE[e

2X ]

= (4(σ2
X)

2 + σ2
X)E[e

2X ] = (4(σ2
α)

2 + σ2
α)E[α

−2]

26Note this is not simply the conditional variance of z because µz is not the conditional mean.
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Substituting this in above, we have

E[(−(z − µz))
2α−2] =

(
σ2
z −

σ2
αz

σ2
α

)
E[α−2] +

(
σαz

σ2
α

)2

(4(σ2
α)

2 + σ2
α)E[α

−2]

=
(
σ2
z + 4(σαz)

2
)
E[α−2]

=
(
σ2
z + 4(σαz)

2
)
δ4[V(β2) + E(β2)

2].

where the last equality uses E[α−2] = δ4[V(β2)+E(β2)
2] from part (b). Finally, bringing the

results together, we have

V(ν) = δ−4
(
(σ2

z + 4(σαz)
2)δ4[V(β2) + E(β2)

2]− (σαzδ
2E[β2])

2
)

= (σ2
z + 4(σαz)

2)[V(β2) + E(β2)
2]− (σαz)

2E(β2)
2

Therefore

σ2
z =

V(ν) + (σαz)
2E(β2)

2

V(β2) + E(β2)2
− 4(σαz)

2.

□

Thus we have closed-form expressions for the structural parameters µα,k, σ
2
α,k, σαz,k, and

σ2
z,k as functions of the reduced-form moments E(βk

2 ), V(β
k
2 ), V(ν

k), and Cov(βk
2 , ν

k). This

establishes that the parameters of Fk(α, z) are uniquely identified by these moments (along

with δ and the external information on µz). Furthermore these expressions are continuous,

so the consistent estimates of the reduced-form moments from the OLS estimation of (11)

and the auxiliary regression above yield consistent estimates of the structural parameters.

G Calibrations

G.1 Calibration of µz

As described in the paper, we use external information on the costs of acquiring and ad-

ministering EPO to calibrate the value of the mean per-unit cost, µz. For the acquisition

cost, we use the median across facilities of the per-unit cost of purchasing the drug from a

distributor (net of discounts and rebates), computed from Renal Dialysis Facility Cost Re-

port Data, which is equal to $7.53 per 1,000 units. For the administration cost, we compute

an average per-unit cost of staff time and non-drug supplies based on results from Schiller

et al. (2008), as follows. Schiller et al. (2008) reports an average cost for EPO administration

of $3.63 per dialysis session, and an average of 13.0 sessions per month, for a total cost of
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$47.19 per month. From our claims data, the median dosage per month is about 45,000

units.27 (We refer to the median rather than the mean because the former is not sensitive

to large dosages that occur with low probability, which were unlikely in the smaller sample

used by the Schiller et al. (2008) study.) Dividing $47.19 by 45,000, we arrive at an average

administration cost of $1.05 per 1,000 units. Adding this to the acquisition cost, we obtain

a value of µz equal to $8.58 per 1,000 units.

G.2 Calibration of αg

We use information on the relationship between hematocrit levels and mortality risk from a

large clinical trial (Singh et al., 2006) and an estimate of the value of a statistical life-year

(VSLY) from Aldy and Viscusi (2008) to calibrate the value of αg. The parameter expresses

the conversion (i.e., marginal rate of substitution) in the government’s objective function

between health—specified as a quadratic function of the dosage of EPO—and dollars. The

clinical trial gives estimates of the mortality risk associated with different hematocrit levels

(which result from different dosages), so under certain assumptions (described below), we

can find a value of αg that equates the difference in a quadratic function of the hematocrit

levels with the difference in mortality risks multiplied by the VSLY.

The clinical trial (Singh et al., 2006) compared outcomes between patients with chronic

kidney disease who were randomly assigned to target levels of hemoglobin equal to 11.3

g/dl and 13.5 g/dl. The lower target group achieved a mean hemoglobin level of 11.3 g/dl,

comparable to a 33.9% hematocrit level, while the higher target group only achieved a mean

hemoglobin level of 12.6 g/dl, comparable to a 37.8% hematocrit level. The cumulative

probability of death or serious cardiovascular event (e.g., heart attack, stroke) was 0.175 for

the higher target group and 0.135 for the lower target group (p. 2090), over a period of about

30 months (Figure 3, p. 2093). Assuming a uniform distribution of these events over time,

the difference in the probability of death or serious cardiovascular event over one year would

be 0.016 between the higher and lower target groups. Thus we have a relationship between

hematocrit levels and the annual risk of death or a debilitating health event, at two points

in the distribution of hematocrit.

If we assume how the targets used in the trial relate to the true point where health is

maximized (i.e., where h′(a; b, x) = 0), we can compute the difference in health from the

two targets, as defined by our quadratic specification. We assume that the lower target used

in the trial is equal to τ , where health is maximized, implying that the difference in health

27This is the median without restricting to the three main hematocrit intervals.
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from the two targets is equal to 7.6, as follows:(
−1

2
(33.9− τ)2

)
−
(
−1

2
(37.8− τ)2

)
=

1

2
(33.9− 33.9)2 +

1

2
(37.8− 33.9)2 = 7.6.

Multiplying this by αg will give the government’s value of this difference in health, in terms

of dollars.

If we further assume that the government’s value of this difference in health comes entirely

from the difference in the risk of death or a debilitating health event, we can find the

monetary value of this difference in health by multiplying a VSLY estimate by the difference

in these risks from the two target levels. Aldy and Viscusi (2008) provides VSLY estimates

of approximately $300,000 (p. 580), so the annual value of the difference in risks would be

0.016×$300, 000 = $4, 800. Finally, because the time periods in our model are months, this

would equal the government’s value of the above difference in health over twelve periods.

Therefore, we have

12× 7.6αg = 0.016× $300, 000,

which yields our calibrated value of αg = 52.6.

H Posterior Means of α and z

Given the estimated distributions of α and z, posterior distributions can be computed for

each provider by applying Bayes’ Theorem, as follows. Let g(a|b, p, x;α, z) denote the density
function for the dosage conditional on the patient’s covariates (b, p, x) and the provider’s type

(α, z). To fully specify this density function, a distribution for the error term η (equivalently,

ϵ) in the reduced form (11) is needed (note that the reduced form shows how a is a function

of η and the other variables and parameters). Accordingly, let η have a normal distribution

with mean zero and variance σ2
η, and denote its density as ϕ(η;σ2

η).

For a provider i with a set of patient-month observations JT (i), the posterior density of

(α, z) is proportional to ∏
jt∈JT (i)

g(aijt|bjt, pt, xjt;α, z) · fk(α, z)

(see, e.g., Train, 2009, Chapter 11). We use this to compute posterior means of α and z for

each provider (in each hematocrit interval k) via Monte Carlo integration. First we draw

values of (α, z) from the estimated distribution Fk(α, z). Then with each draw, (α̂s
ik, ẑ

s
ik), we
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calculate the value of the error term for each observation, jt ∈ JT (i), as follows:

η̂sijt = aijt −
[
−1

δk

]
bjt +

[
1

α̂s
ikδ

2
k

]
p1t +

[
τ ′k
δk

]
xjt +

[
−ẑsik
α̂s
ikδ

2
k

]
(O21)

(this comes from rearranging the reduced form). The conditional density of the dosage

for each observation, g(aijt|bjt, pt, xjt; α̂
s
ik, ẑ

s
ik), is equal to the density of this error term,

ϕ(η̂sijt;σ
2
η,k). Finally, the posterior mean of α for provider i (in hematocrit interval k) is

equal to ∑S
s=1 α̂

s
ik

∏
jt∈JT (i) ϕ(η̂

s
ijt;σ

2
η,k)∑S

s=1

∏
jt∈JT (i) ϕ(η̂

s
ijt;σ

2
η,k)

,

and similarly for the posterior mean of z. To complete these computations, the estimated

parameters are used in (O21), and the variance σ2
η,k is set equal to the variance of the

reduced-form residuals in that interval.

Table O2 presents summary statistics on these provider-level posterior means, by owner-

ship type and by chain affiliation. Among for-profit dialysis centers, for example, the median

of the center-specific posterior means of α is 31.8 and the mean is 36.3, in the bottom interval

of baseline hematocrit. By comparison, among non-profit and governmental centers, the me-

dian is 34.8 and the mean is 41.0 in that interval, indicating somewhat greater weight placed

on patient health, on average. The posterior means of z, the marginal cost, are noticeably

lower among for-profit centers, with medians and means below $8.60 in all intervals, while

the medians and means among non-profit and governmental centers are mostly above $8.70.
However the distributions of α and z also overlap substantially between these two groups

of providers. In all intervals, the standard deviations of the provider-level posterior means

within each group are much larger than the differences between the medians or means of the

two groups.

We see similar patterns comparing providers in the two large chains against all other

providers. In almost all cases, the posterior means of α are somewhat lower in DaVita and

Fresenius centers, compared to all other centers. The marginal costs are also consistently

lower for centers in the two large chains, compared to other centers. The variation in marginal

costs is lower within the large chains as well, typically by one quarter to one third. This is

broadly consistent with the variation in acquisition costs observed in Medicare cost report

data (see footnote 32 in the paper).
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Table O2: Distribution of Provider-Level Posterior Means

Altruism (α) Marginal Cost (z)

Interval of Baseline Hematocrit Interval of Baseline Hematocrit
> 30 to 33, > 33 to 36, > 36 to 39 > 30 to 33, > 33 to 36, > 36 to 39

I) Ownership Type

a) Non-profit and governmental
Median 34.8 15.1 21.1 8.70 8.71 8.61
Mean 41.0 16.5 28.0 8.88 8.96 8.74
Std. Dev. 82.7 23.3 61.2 0.60 0.83 0.40

b) For-profit
Median 31.8 15.3 20.5 8.55 8.50 8.58
Mean 36.3 17.3 27.3 8.55 8.55 8.59
Std. Dev. 59.3 25.3 63.6 0.39 0.64 0.28

II) Chain Affiliation

c) DaVita
Median 28.8 15.7 22.1 8.50 8.44 8.58
Mean 33.3 17.5 26.3 8.44 8.43 8.58
Std. Dev. 57.0 24.6 42.6 0.30 0.56 0.22

d) Fresenius
Median 30.7 14.4 18.6 8.55 8.47 8.56
Mean 35.7 16.7 26.2 8.55 8.51 8.53
Std. Dev. 55.2 24.6 73.0 0.34 0.59 0.24

e) Other/Indep.
Median 35.6 16.6 20.5 8.61 8.65 8.60
Mean 40.0 17.5 28.1 8.72 8.80 8.68
Std. Dev. 66.5 26.0 69.1 0.51 0.75 0.36

Posterior means computed in each interval for each facility using estimated model parameters, as described
in Appendix H. Ownership type and chain affiliation of each facility taken from Medicare cost report data.

30



I Check of Regularity Condition

Figure O3 plots the supply curves (dashed, grey lines) of physician types providing each

treatment amount for a patient with the median baseline hematocrit level in the lowest,

middle, and highest baseline hematocrit intervals, and shows that none intersect the marginal

payment curve (solid, black line) more than once.

J Sensitivity Analyses and Other Assessments

J.1 Robustness of the Reduced Form

Table O3 presents estimates of the reduced form using fixed effects for either the provider,

physician, or patient. The sample sizes for the regressions with physician fixed effects are

slightly smaller because some observations do not include a physician identifier. The re-

gressions with patient fixed effects omit patient characteristics because they have limited

variation within patients over time. Table O4 provides the full estimation results for the

alternative specifications of the reduced form reported in Table 3, columns 4 to 9. Table O5

provides the results for the main specification with asymptotic standard errors clustered on

chains rather than facilities.

J.2 Variability of Hematocrit within Patients over Time

Table O6 describes the variability of hematocrit levels within patients over time, by showing

the distribution of hematocrit values reported on patients’ prior monthly claims given the

values on their current monthly claims. Each column shows this distribution for a one-

percentage-point interval in the current hematocrit. For example, among patients with

current hematocrit greater than 34 and less than or equal to 35 (the column labeled “>34

- 35”), 16.4% had hematocrit in that same interval reported on their prior monthly claim,

while 11.2% and 5.5% had hematocrit levels of >33 - 34 and >31 - 32, respectively (the

corresponding rows in that column).

The prior monthly claim is defined as the claim with a start date of its claim period

between 25 and 34 days before the start date of the current claim period. (In rare cases

where multiple such claims are found, the claim with the lowest encrypted claim ID number

is used.) Such a prior monthly claim could not be found for about one-fifth of the current

monthly observations, which mostly reflects new beneficiaries without prior claims.
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(a) Lowest baseline hematocrit interval
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(b) Middle baseline hematocrit interval
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(c) Highest baseline hematocrit interval

Figure O3: Regularity condition check, for patients with different severities of anemia.

Notes: Figure plots marginal payment curve (solid, black line) and physician supply curves (dashed, grey
lines) for patients with median baseline hematocrit and mean target hematocrit in the lowest (panel a),
middle (panel b), and highest (panel c) baseline hematocrit intervals.
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Table O3: Fixed Effects Estimates of the Reduced Form

Interval: > 30 to 33,> 33 to 36,> 36 to 39 > 30 to 33,> 33 to 36,> 36 to 39 > 30 to 33,> 33 to 36,> 36 to 39

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9)

Hematocrit -9.22 -6.51 -4.00 -9.25 -6.44 -3.90 -6.10 -4.72 -3.90

(0.19) (0.13) (0.12) (0.20) (0.12) (0.12) (0.15) (0.08) (0.09)

Reimb. rate 9.42 5.99 4.67 7.34 6.95 4.29 9.90 7.15 11.99

(3.00) (1.95) (1.85) (2.99) (1.93) (1.86) (2.17) (1.18) (1.28)

Age in years -0.37 -0.33 -0.24 -0.37 -0.33 -0.24

(0.02) (0.01) (0.01) (0.02) (0.01) (0.01)

Female sex -1.53 1.21 2.37 -1.25 1.38 2.56

(0.49) (0.38) (0.33) (0.51) (0.40) (0.34)

Charlson=1 7.95 7.06 6.49 8.00 7.12 6.58

(0.86) (0.65) (0.59) (0.87) (0.65) (0.58)

Charlson=2 10.28 9.70 7.92 10.35 9.32 7.58

(0.81) (0.63) (0.57) (0.82) (0.63) (0.56)

Charlson=3 12.58 11.08 8.72 12.55 11.06 8.44

(0.88) (0.70) (0.58) (0.90) (0.71) (0.59)

Charlson=4 15.03 13.76 10.63 15.28 13.37 10.72

(1.05) (0.82) (0.70) (1.06) (0.84) (0.72)

Charlson=5 16.18 14.51 11.26 16.07 14.94 11.72

(1.26) (1.01) (0.89) (1.28) (1.05) (0.89)

Charlson=6 17.79 18.03 13.43 18.41 19.01 13.66

(1.61) (1.35) (1.14) (1.62) (1.35) (1.13)

Charlson=7 23.43 24.35 19.94 23.61 24.71 19.83

(2.61) (2.30) (2.12) (2.83) (2.42) (2.17)

Charlson=8 22.99 21.98 15.69 20.84 21.82 15.16

(3.56) (3.09) (2.50) (3.44) (2.95) (2.53)

Charlson=9 31.52 32.94 23.43 33.38 31.48 24.26

(4.97) (4.08) (3.98) (4.99) (4.19) (3.94)

Charlson=10 22.54 27.63 29.77 19.85 27.83 27.59

(6.16) (6.46) (6.76) (7.08) (6.35) (6.82)

Charlson=11 40.89 40.81 39.64 35.09 40.68 38.61

(8.45) (8.04) (7.07) (8.24) (8.08) (7.17)

Charlson=12 27.80 27.21 16.09 32.19 27.89 22.44

(10.18) (7.17) (10.17) (9.61) (7.51) (8.46)

Observations 231,702 405,019 283,024 230,455 402,811 281,411 231,702 405,019 283,024

R-squared 0.029 0.027 0.021 0.029 0.026 0.020 0.085 0.056 0.044

RMSE 65.78 55.05 46.29 66.05 55.15 46.34 48.45 38.40 33.61

Each column is a separate regression.  Regressions also include month and year dummies.

Robust standard errors in parentheses, clustered on panel unit for facility and physician fixed effects.

Provider (Facility) Fixed Effects Physician Fixed Effects Patient Fixed Effects
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Table O4: Alternative Specifications of the Reduced Form

Interval: > 30 to 33, > 33 to 36, > 36 to 39 > 30 to 33, > 33 to 36, > 36 to 39

Variable (1) (2) (3) (4) (5) (6)

Hematocrit -9.61 -6.39 -3.46 -9.25 -6.32 -3.56

(0.24) (0.15) (0.13) (0.24) (0.15) (0.13)

Reimb. rate 9.81 6.13 4.26 9.39 6.07 4.07

(3.20) (2.04) (1.92) (3.20) (2.03) (1.91)

Age in years -0.41 -0.37 -0.27

(0.02) (0.02) (0.01)

Female sex -0.70 1.62 2.95

(0.55) (0.40) (0.34)
Myocardial inf. -0.65 0.28 -0.74

(1.09) (0.88) (0.74)

Cong. hrt. failure 9.23 9.07 7.04

(0.80) (0.59) (0.50)

Periph. vasc. dis. 4.10 3.60 3.11

(1.01) (0.78) (0.66)

Cerebro vasc. dis. -2.41 -0.26 -0.44

(1.19) (0.98) (0.74)

Dementia -2.86 0.10 0.19

(2.73) (1.96) (1.58)

Chron. pulm. dis. 3.51 3.04 1.97

(0.88) (0.65) (0.58)

Rheumatic dis. 6.30 8.44 5.30

(2.18) (1.81) (1.50)

Peptic ulcer dis. 9.50 7.24 6.33

(2.15) (1.71) (1.41)

Mild liver dis. 6.57 4.05 3.30

(2.23) (1.62) (1.37)

Diabetes w/out comp. 4.69 4.48 3.62

(0.73) (0.56) (0.48)

Diabetes w/chron. comp. 1.47 0.83 0.72

(0.80) (0.59) (0.51)

Hemi/para-plegia 3.44 2.95 0.93

(3.25) (2.38) (2.03)

Any malignancy 12.62 10.73 8.29

(1.95) (1.57) (1.38)

Mod/severe liver dis. 18.14 21.82 17.08

(5.17) (3.77) (3.47)

Metastatic tumor 14.65 10.90 11.07

(4.55) (3.60) (3.45)

AIDS/HIV 20.55 21.82 18.14

(3.99) (3.22) (2.96)

Observations 231,702 405,019 283,024 231,702 405,019 283,024

R-squared 0.014 0.009 0.005 0.031 0.030 0.022

RMSE 71.98 59.01 49.40 71.37 58.40 48.98

Each column is a separate regression.  Regressions also include month and year dummies.

Robust standard errors in parentheses, clustered on dialysis centers.

No Patient Observables Comorbidity Indicators
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Table O5: Alternative Clusters for the Standard Errors

Interval: > 30 to 33, > 33 to 36, > 36 to 39 > 30 to 33, > 33 to 36, > 36 to 39

Variable (1) (2) (3) (4) (5) (6)

Hematocrit -9.29 -6.32 -3.56 -9.29 -6.32 -3.56

(0.24) (0.15) (0.13) (0.46) (0.98) (0.40)

Reimb. rate 9.53 6.39 3.92 9.53 6.39 3.92

(3.19) (2.03) (1.91) (7.83) (6.52) (4.26)

Age in years -0.41 -0.37 -0.26 -0.41 -0.37 -0.26

(0.02) (0.02) (0.01) (0.03) (0.02) (0.02)

Female sex -0.88 1.55 2.89 -0.88 1.55 2.89

(0.55) (0.40) (0.34) (1.14) (0.54) (0.54)

Charlson=1 9.03 8.03 7.36 9.03 8.03 7.36

(0.96) (0.69) (0.60) (1.26) (1.05) (0.67)

Charlson=2 10.73 10.23 8.20 10.73 10.23 8.20

(0.90) (0.67) (0.59) (1.49) (0.99) (0.63)

Charlson=3 13.84 11.85 8.57 13.84 11.85 8.57

(0.94) (0.72) (0.60) (1.74) (1.04) (0.64)

Charlson=4 15.52 13.91 10.82 15.52 13.91 10.82

(1.22) (0.86) (0.73) (2.50) (1.65) (0.94)

Charlson=5 16.53 15.00 11.88 16.53 15.00 11.88

(1.40) (1.08) (0.93) (2.96) (1.95) (1.31)

Charlson=6 18.61 18.50 13.83 18.61 18.50 13.83

(1.87) (1.48) (1.21) (2.86) (3.20) (1.51)

Charlson=7 26.20 26.00 20.38 26.20 26.00 20.38

(3.02) (2.48) (2.19) (3.99) (3.97) (3.90)

Charlson=8 23.92 24.24 14.50 23.92 24.24 14.50

(3.94) (3.06) (2.51) (3.48) (2.95) (2.53)

Charlson=9 31.98 32.42 22.85 31.98 32.42 22.85

(4.98) (4.17) (3.81) (5.78) (5.84) (2.72)

Charlson=10 23.88 28.45 32.23 23.88 28.45 32.23

(7.02) (6.71) (6.96) (5.31) (7.77) (5.02)

Charlson=11 39.10 43.62 39.80 39.10 43.62 39.80

(11.01) (8.79) (7.31) (8.76) (7.06) (6.64)

Charlson=12 38.39 33.50 25.66 38.39 33.50 25.66

(12.51) (8.06) (9.82) (12.21) (6.21) (9.20)

Observations 231,702 405,019 283,024 231,702 405,019 283,024

R-squared 0.029 0.028 0.021 0.029 0.028 0.021

RMSE 71.43 58.46 49.01 71.43 58.46 49.01

Each column is a separate regression.  Regressions also include month and year dummies.

Robust standard errors in parentheses, clustered on dialysis centers or chains as indicated.

Clustered on Dialysis Centers Clustered on Chains
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Table O6: Distribution of Hematocrit on Current and Prior Month Claims

Current HCT

Lagged HCT =,< 30 >30 - 31 >31 - 32 >32 - 33 >33 - 34 >34 - 35 >35 - 36 >36 - 37 >37 - 38 >38 - 39 > 39

=,< 30 0.363 0.210 0.155 0.109 0.076 0.056 0.041 0.035 0.031 0.029 0.029

>30 - 31 0.088 0.116 0.080 0.064 0.048 0.036 0.027 0.022 0.019 0.016 0.017

>31 - 32 0.088 0.103 0.125 0.088 0.070 0.055 0.043 0.034 0.029 0.026 0.024

>32 - 33 0.107 0.137 0.149 0.168 0.134 0.112 0.090 0.073 0.062 0.055 0.048

>33 - 34 0.081 0.106 0.120 0.133 0.157 0.129 0.108 0.089 0.076 0.068 0.056

>34 - 35 0.067 0.089 0.106 0.124 0.141 0.164 0.137 0.121 0.102 0.090 0.073

>35 - 36 0.069 0.088 0.102 0.126 0.149 0.174 0.205 0.184 0.171 0.155 0.131

>36 - 37 0.040 0.049 0.055 0.066 0.082 0.097 0.120 0.151 0.139 0.135 0.118

>37 - 38 0.031 0.035 0.039 0.046 0.056 0.069 0.090 0.111 0.145 0.136 0.128

>38 - 39 0.028 0.030 0.033 0.037 0.045 0.055 0.074 0.097 0.118 0.156 0.159

> 39 0.037 0.035 0.036 0.040 0.042 0.052 0.065 0.083 0.108 0.134 0.218

Matched 75,275 37,391 50,978 90,691 93,551 103,853 134,913 89,221 73,106 67,450 66,975

(Pct) 62.8% 73.3% 76.5% 79.5% 81.4% 81.9% 82.6% 81.9% 81.2% 80.2% 76.5%

Unmatched 44,513 13,595 15,667 23,380 21,307 22,895 28,500 19,652 16,929 16,666 20,620

(Pct) 37.2% 26.7% 23.5% 20.5% 18.6% 18.1% 17.4% 18.1% 18.8% 19.8% 23.5%

Total 119,788 50,986 66,645 114,071 114,858 126,748 163,413 108,873 90,035 84,116 87,595

Each column shows the distribution of hematocrit levels reported on the prior monthly claim, given the level
on the current monthly claim. The proportions are among those claims where a prior claim could be found,
defined as a claim with a start date between 25 and 34 days before the current start date. The numbers of
current claims with (Matched) and without (Unmatched) prior month claims are reported at the bottom.

J.3 Distributions of Facility Residuals and Test of Unimodality

Figure O4 shows the distributions of the facility-level mean residuals (r̄ki , defined in Appendix

F) in each hematocrit interval. We formally test the null hypothesis of unimodality for these

three distributions using a “dip test” (Hartigan and Hartigan, 1985), implemented with the

user-written command diptest in Stata (Cox, 2009). The test statistics (p-values) in each

interval are as follows: 0.0033 (0.9930), 0.0035 (0.9930), and 0.0029 (1.0000). Thus the null

hypothesis of unimodality is not rejected in any interval; indeed, the test statistics are quite

small with p-values quite close to one.

J.4 Downstream Medical Costs

We combine estimates of the effects of EPO on transfusions and hospitalizations from Eliason

et al. (2022) with estimates of the average costs of transfusions and hospitalizations from

other sources noted below, to calculate a rough estimate of the the change in downstream

medical costs under the optimal nonlinear contract.

The exact sources and values are as follows:

• Effect of 1,000u of EPO on monthly transfusion rate: -0.000586 (Eliason et al. (2022),

Table 7, column 4 – IV estimate of the effect on transfusions)
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• Effect of 1,000u of EPO on monthly hospitalization rate: 0.000205 (Eliason et al.

(2022), Table 8, column 2 – IV estimate of the effect on hospitalization for any cause)

• Mean expenditure per outpatient transfusion episode among a sample of chronic dial-

ysis patients: $854 (Gitlin et al., 2012, Table 2)

• Mean per-person per-year Medicare inpatient expenditures for ESRD patients in 2009:

$25,244 (United States Renal Data System, 2020, Figure 9.6)

• Mean per-person per-year number of hospitalizations for ESRD patients in 2009: 1.82

(United States Renal Data System, 2020, Figure 4.1)

• Mean Medicare inpatient expenditures per hospitalization: $25,244 / 1.82 = $13,870
(derived from above)

With these values, we calculate the change in downstream costs that would result from

the change in the mean monthly dosage of EPO under the optimal nonlinear contract, equal

to -11.4 thousand units, as follows:

−11.4×
[
(−0.000586× $854) + (0.000205× $13, 870)

]
= −$26.71 per patient per month.

K Forcing Contract

This section describes how we compute the forcing contract implementing the maximum

dosage under the full-information allocation, a∗FI, and associated gains to the government

over the observed contract for the middle hematocrit interval.

Let P force(a) denote the forcing payment contract, where

P force(a) =

{
P for a = a∗FI

−∞ else
. (O22)

Solving the principal’s problem then amounts to finding the value of P that maximizes its

objective, subject to the usual voluntary participation constraint and an adapted incentive

compatibility constraint that reflects the forcing nature of the contract. This is accomplished

by making the participation constraint of the type (α, z) bind (note that the payment amount

for a ̸= a∗FI is relevant only for off-equilibrium behavior, and, as such, doesn’t matter so long

as it’s less than P ). The solution is P
∗
= u−αh(a∗FI)+ za∗FI and the principal’s associated

objective is αgh(a
∗FI)− P

∗
.
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The results for the middle baseline hematocrit interval are presented in the bottom row

of Table O7. While there are no medically excessive treatments under this forcing contract,

the payment is larger than even under the observed payment contract, leaving massive

information rents to better types. Indeed, the gain in the government objective over the

observed contract (presented in the last column) is a fifth of that under the optimal nonlinear

contract. This makes sense, as this (and any other) forcing contract was in the set of contracts

considered by the principal when solving for the optimal unrestricted contract. Intuitively,

while this forcing contract does implement a desired treatment amount for one particular

agent type (highest altruism, lowest cost), the cost of getting the vast majority of agents

to implement this amount is larger than the principal’s valuation of any associated health

benefit.

Table O7: Summary of Outcomes under Forcing and other Contracts for Patients with
Median Severity of Anemia

Mean Mean Std. Dev. Share Gain in
Payment Dosage Dosage above τ Govt. Obj.

Observed 542 58.6 9.8 75
Optimal Linear 396 50.4 11.8 19 $ 98
Optimal Nonlinear 393 47.1 7.2 0 $ 125
Forcing Contract 582 54.6 0 0 $ 24
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L Importance of Both Dimensions of Heterogeneity

One of the strengths of our framework is that we are not beholden to an assumption that

there is only one dimension of heterogeneity (or, for that matter, that there exists multidi-

mensional heterogeneity). Rather, the model can recover the variation in different dimensions

and we can quantify the importance of different types of unobserved heterogeneity. Given

that we found altruism heterogeneity to be more substantial than heterogeneity in marginal

costs, a natural question is whether the latter type of heterogeneity matters, from a norma-

tive perspective. Accordingly, we have examined the importance of heterogeneity in z by

reducing the variance of z from its estimated value of 0.858 (which is different from zero at

standard significance levels) to 0.10, and then solving for the optimal nonlinear contract in

this counterfactual environment.28

The contracts are shown in Figure O5, for dosages of 40,000 units of EPO and greater

(this corresponds to over 90% of treatment amounts). Figure O5 plots the marginal payment

rates of the optimal nonlinear contract under our baseline parameterization (solid, blue, line)

and when the variance of z is reduced (dashed, red, line). The main difference is that the

marginal payment is higher for dosages up to about 48,000 units. This reflects an increase in

the marginal costs of formerly low-cost providers, when z is shrunk toward the mean. (Note

that very high-cost providers are not pictured here because they provide treatment amounts

lower than 40,000 units.) The dosages above 48,000 units come from types with sufficiently

high altruism that their behavior is not substantially affected by changes in marginal costs.

We have also computed how the optimal nonlinear contract based on the counterfactual

parameterization featuring less heterogeneity in z would affect the gains to the government

from better contracting. We compute that the government would on average gain $125 per

patient/month from moving to the optimal nonlinear contract from the observed contract.29

Using instead the optimal nonlinear contract resulting from misspecifying the model with

less heterogeneity in z, the government would gain $113 per patient-month. Some of the

reduction in the gain comes directly from the higher payments under the misspecified nonlin-

ear contract, which do not outweigh the government’s valuation of the resulting increases in

patient health. Thus, taking into account the full extent of the variation in z would improve

the government’s gain by just over 10%.

28We retain a positive value for σ2
z to avoid re-writing our algorithm to solve for the optimal nonlinear

contract. Because we found non-trivial heterogeneity in both altruism and marginal costs, we wrote our
algorithm assuming there was nonzero variance in each dimension; this means the results we present below
likely understate the importance of heterogeneity in z.

29We do this for the set of comparable types, i.e., those choosing treatment levels common to the baseline
distribution and the distribution under reduced σ2

z ; as this set comprises 99.8% of provider types, the value
presented here is virtually identical to the value presented in our baseline results in Table 5.
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