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OA.1 Omitted Proofs

Proof of Corollary 1

Let (σ, τ) be any optimal mechanism. By Theorem 1, (σ, τ) must be a ϕ-quasi-perfect mechanism and

induces ϕ-quasi-perfect price discrimination. Therefore, for any selection p̂ of P , for G-almost all c ∈ C and

for σ(c)-almost all D ∈ D, D(p) = 0 for all p > p̂D(c) and thus consumer surplus is∫
C

(∫
D

(∫
{v≥p̂D(c)}

(v − p̂D(c))D(dv)

)
σ∗(dD|c)

)
G(dc)

=

∫
C

(∫
D

(∫ v

p̂D(c)
D(z) dz

)
σ∗(dD|c)

)
G(dc)

=0,

as desired. ■

Proof of Lemma 4

Since PD0(c) is a singleton for (Lebesgue)-almost all c ∈ C and since G is absolutely continuous, consumer

surplus under uniform pricing does not depend which selection of P is used. Therefore, by Theorem 1, the
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difference between the data broker’s optimal revenue and the consumer surplus under uniform pricing is∫
C

(∫
{v≥ϕ(c)}

(v − ϕ(c))D0(dv)

)
G(dc)

−
∫
C

(∫
{v≥p0(c)}

(v − p0(c))D0(dv)

)
G(dc)− π̄

=

∫
C

(
(p0(c)− ϕ(c))D0(p0(c)) +

∫
[ϕ(c),p0(c))

(v − ϕ(c))D0(dv)

)
G(dc)− π̄

=

∫
C

(∫ c

c
D0(p0(z)) dz −

G(c)

g(c)
D0(p0(c))

)
G(dc)

+

∫
C

(∫
[ϕ(c),p0(c))

(v − ϕ(c))D0(dv)

)
G(dc)

=

∫
C

(∫
[ϕ(c),p0(c))

(v − ϕ(c))D0(dv)

)
G(dc)

≥0.

where the first equality follows from the fact that ϕ(c) < p0(c) if and only if ϕ(c) < p0(c), and the third

equality follows from changing the order of integrals. This completes the proof. ■

Proof of Lemma 5

To prove Lemma 5, first notice that by the revelation principle, it is without loss to restrict attention to

the collection of incentive feasible mechanisms (q, t), where q(c) stands for the quantity purchased for each

report c ∈ C and t(c) stands for the amount of payment from the exclusive retailer to the producer for each

report c ∈ C. (q, t) is incentive compatible if for any c, c′ ∈ C,

t(c)− cq(c) ≥ t(c′)− cq(c′) (IC**)

and is individually rational if for any c ∈ C,

t(c)− cq(c) ≥ πD0(c). (IR**)

Meanwhile, notice that given any quantity q ∈ [0, 1], it is optimal for the exclusive retailer to perfectly price

discriminate the consumers with values above D−1
0 (q).1 Together, the exclusive retailer’s problem is then to

choose (q, t) to maximize ∫
C

(∫ q(c)

0
D−1

0 (q) dq − t(c)

)
G(dc)

subject to (IC**) and (IR**).

Proof of Lemma 5. Consider the exclusive retailer’s problem. First notice that by standard arguments, (q, t)

is incentive compatible if and only if q is nonincreasing and there exists a constant t̄ such that

t(c) = cq(c) +

∫ c

c
q(z) dz − t̄,

1See the formal proof of this argument in Lemma OA.2 below.
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for all c ∈ C. Moreover, any incentive compatible mechanism must give the producer indirect utility

t̄+

∫ c

c
q(z) dz

when her cost is c ∈ C. Together, the exclusive retailer’s profit maximization problem can be written as

max
q∈Q

∫
C

(∫ q(c)

0
(D−1

0 (q)− ϕ(c)) dq

)
G(dc)

s.t. π̄ +

∫ c

c
q(z) dz ≥ π̄ +

∫ c

c
D0(p0(z)) dz, (OA.1)

where Q is the collection of nonincreasing functions that map from C to [0, 1]. Thus, by Lemma OA.3

below, the exclusive retailer’s profit maximization problem is equivalent to the price-controlling data broker’s

revenue maximization problem. This completes the proof. ■

Proof of Proposition 2

To solve for the price-controlling data broker’s optimal mechanism, it is useful to introduce the revenue-

equivalence formula for the price-controlling data broker.

Lemma OA.1. For the price-controlling data broker, a mechanism (σ, τ,γ) is incentive compatible if and

only if:

1. There exists some τ̄ ∈ R such that for any c ∈ C,

τ(c) =

∫
D

∫
R+

(p− c)D(p)γ(dp|D, c)σ(dD|c)

−
∫ c

c

∫
D

∫
R+

D(p)γ(dp|D, z)σ(dD|z) dz − τ̄ .

2. The function c 7→
∫
D
∫
R+
D(p)γ(dp|D, c)σ(dD|c) is nonincreasing.

The proof of Lemma OA.1 follows directly from the standard envelope arguments and therefore is

omitted.

In what follows, let Γ be the collection of transition kernels that map from D to ∆(R+). Let sVR ∈ S
denote the value-revealing segmentation and let σVR : C → S be the segmentation scheme such that

σVR(c) = sVR for all c ∈ C. Furthermore, for any q ∈ [0, 1], let ρq := D−1
0 (q). Notice that by definition of

D−1
0 ,

q ∈ [D0(ρ
+
q ), D0(ρq)].

If D0(ρq) = D0(ρ
+
q ), then let γ̃q : V → ∆(R+) be defined as

γ̃q(·|v) := δ{v}, ∀v ∈ V.

Meanwhile, if D0(ρq) > D0(ρ
+
q ), then define γ̃q : V → ∆(R+) as

γ̃q(·|v) :=

 δ{v}, if v ̸= ρq
q−D0(ρ

+
q )

D0(ρq)−D0(ρ
+
q )
δ{v} +

D0(ρq)−q
D0(ρq)−D0(ρ

+
q )
δ{v̄}, if v = ρq

, ∀v ∈ V.
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Finally, let γq ∈ Γ be defined as

γq(A|D) :=

∫
V
γ̃q(A|v)D(dv),

for any measurable A ⊆ V and for any D ∈ D. By construction, under the segmentation sVR and the

randomized price γq, all the consumers with values above the D−1
0 (q) buy the product by paying exactly

their values while the other consumers do not buy, so that the traded quantity is exactly q (if the consumers

with value v = D−1
0 (q) has a mass, then some of them buy and some of them do not buy, so that the total

quantity sold is exactly q). That is,∫
D

(∫
R+

D(p)γq(dp|D)

)
sVR(dD) = q. (OA.2)

With this notation, I now introduce another auxiliary lemma as follows:

Lemma OA.2. For any q ∈ [0, 1], let R̄(q) be the value of the maximization problem

sup
s∈S,γ∈Γ

∫
D

(∫
R+

pD(p)γ(dp)

)
s(dD)

s.t.

∫
D

(∫
R+

D(p)γ(dp)

)
s(dD) ≤ q. (OA.3)

Then

R̄(q) =

∫ q

0
D−1

0 (y) dy.

Moreover, (sVR, γq) is a solution of (OA.3).

Proof. Consider the dual problem of (OA.3). That is, for any ν ≥ 0, let

d(ν) := sup
s∈S,γ∈Γ

[∫
D

(∫
R+

D(p)γ(dp|D)

)
s(dD) + ν

(
q −

∫
D

(∫
R+

pD(p)γ(dp|D)

)
s(dD)

)]
= sup
s∈S,γ∈Γ

∫
D

(∫
R+

(p− ν)D(p)γ(dp|D)

)
s(dD) + νq.

Clearly, d(ν) ≥ R̄(q) for any ν ≥ 0. Thus, by weak duality, to solve (OA.3), it suffices to find ν∗ and (s∗, γ∗)

such that (s∗, γ∗) is feasible in the primal problem (OA.3), (s∗, γ∗) solves the dual problem

sup
s∈S,γ∈Γ

∫
D

(∫
R+

(p− ν∗)D(p)γ(dp|D)

)
s(dD) (OA.4)

and that the complementary slackness condition

ν∗
[
q −

∫
D

(∫
R+

D(p)γ∗(dp|D)

)
s∗(dD)

]
= 0 (OA.5)

holds. Since this would imply that

R̄(q) ≤ d∗ = inf
λ≥0

d(λ) ≤ d∗(ν∗) = R̄(q)

and hence (s∗, γ∗) must be a solution to (OA.3).
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To this end, let

ν∗ := D−1
0 (q).

and consider the pair (sVR, γq). Notice that by definition, (sVR, γq) perfectly price-discriminates all the

consumers with v > ν∗ and does not sell to any consumers with v < ν∗. Therefore,∫
D

(∫
R+

(p− ν∗)D(p)γ(dp|D)

)
sVR(dD) =

∫
V
(v − ν∗)+D0(dv)

Furthermore, notice that for any s ∈ S and any γ ∈ Γ∫
D

(∫
R+

(p− ν∗)D(p)γ(dp|D)

)
s(dD)

≤
∫
D
max
p∈R+

(p− ν∗)D(p)s(dD)

≤
∫
V
(v − ν∗)+D0(dv).

Therefore, (sVR, γq) solves the dual problem (OA.4). Meanwhile, by (OA.2),∫
D

(∫
R+

D(p)γq(dp|D)

)
sVR(dD) = q.

Thus, the complementary slackness condition (OA.5) holds and (sVR, γq) is feasible in the primal problem

(OA.3). Together, (sVR, γq) is a solution to the primal problem (OA.3).

Finally, notice that by the definition of D−1
0 and (sVR, γq),∫

D

(∫
R+

pD(p)γq(dp|D)

)
sVR(dD) =

∫ q

0
D−1

0 (y) dy.

This completes the proof. ■

Notice that since both prices and market segmentations can be contracted by the price-controlling data

broker, and since the producer’s private information is one-dimensional, the price controlling data broker’s

problem can effectively be summarized by a one-dimensional screening problem where the data broker

contracts on quantity (sold via perfect price discrimination), as stated in Lemma OA.3 below.

Lemma OA.3. There exists an incentive feasible mechanism that maximizes the price-controlling data bro-

ker’s revenue. Furthermore, the price-controlling data broker’s revenue maximization problem is equivalent

to the following:

sup
q∈Q

∫
C

(∫ q(c)

0
(D−1

0 (q)− ϕ(c)) dq

)
G(dc)− π̄ (OA.6)

s.t. π̄ +

∫ c

c
q(z) dz ≥ π̄ +

∫ c

c
D0(p0(z)) dz,

where Q is the collection of nonincreasing functions that map from C to [0, 1].
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Proof. By Lemma OA.1, the producer’s expected profit under an incentive compatible mechanism (σ, τ,γ)

of the price-controlling data broker can be written as

U(c) = U(c) +

∫ c

c

∫
D

(∫
R+

D(p)γ(dp|D, z)
)
σ(dD|z) dz.

As such, an incentive compatible mechanism is individually rational if and only if

U(c) +

∫ c

c

∫
D

(∫
R+

D(p)γ(dp|D, z)
)
σ(dD|z) dz ≥ π̄ +

∫ c

c
D0(p0(z)) dz.

Also, for any incentive compatible mechanism (σ, τ,γ), the price-controlling data broker’s expected revenue

can be written as

E[τ(c)] =
∫
C

(∫
D

(∫
R+

(p− ϕ(c))D(p)γ(dp|D, c)
)
σ(dD|c)

)
G(dc)− U(c).

Therefore, the price-controlling data broker’s revenue maximization problem can be written as

sup
σ,γ

∫
C

(∫
D

(∫
R+

(p− ϕ(c))D(p)γ(dp|D, c)
)
σ(dD|c)

)
G(dc)− π̄

s.t. c 7→
∫
D

(∫
R+

D(p)γ(dp|D, c)
)
σ(dD|c) is nonincreasing,∫ c

c

∫
D

(∫
R+

D(p)γ(dp|D, z)
)
σ(dD|z) dz ≥

∫ c

c
D0(p0(z)) dz, ∀c ∈ C,

where the supremum is taken over all segmentation schemes σ : C → S and all measurable functions γ that

map from C to the collection of transition kernels from D to ∆(R+).

Now consider any incentive feasible mechanism (σ, τ,γ) for the price-controlling data broker, I will first

show that there exists q : C → [0, 1] such that the mechanism (σVR, τq,γq) generates weakly higher revenue

for the price-controlling data broker and is incentive feasible, where

γq(c) := γq(c), ∀ c ∈ C

and τq is the transfer determined by (σVR,γq) according to Lemma OA.1, with the constant being chosen so

that the producer with cost c obtains profit π̄ when reporting truthfully. Next, I will show that maximizing

revenue across the family of incentive feasible mechanisms (σVR, τq,γq) is equivalent to solving (OA.6).

Finally, the existence of the optimal mechanism can then be ensured by the existence of the solution of

(OA.6), which will be proved at the end.

To this end, for any c ∈ C, let

q(c) :=

∫
D

(∫
R+

D(p)γ(dp|D, c)
)
σ(dD|c).

By Lemma OA.1, incentive compatibility of (σ, τ,γ) implies that q : C → [0, 1] is nonincreasing and, by

(OA.2), for any c ∈ C,∫
D

(∫
R+

D(p)γq(dp|D, c)
)
σVR(dD|c) =

∫
D

(∫
R+

D(p)γq(c)(dp|D)

)
sVR(dD) = q(c).
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Thus, by Lemma OA.2, (σVR(c),γq(c)) solves the problem (OA.3) with the quantity constraint being q(c)

and hence, since (σ(c),γ(c)) is also feasible in this problem,∫
D

(∫
R+

pD(p)γ(dp|D, c)
)
σ(dD|c) ≤

∫
D

(∫
R+

pD(p)γq(dp|D, c)
)
σVR(dD|c) = R̄(q(c)). (OA.7)

As a result, ∫
C

(∫
D

(∫
R+

(p− ϕ(c))D(p)γ(dp|D, c)
)
σ(dx|c)

)
G(dc)

=

∫
C

(∫
D

(∫
R+

pD(p)γ(dp|D, c)
)
σ(dx|c)

)
G(dc)−

∫
C
ϕ(c)q(c)G(dc)

≤
∫
C
(R̄(q(c))− ϕ(c)q(c))G(dc)

=

∫
C

(∫
D

(∫
R+

pD(p)γq(dp|D, c)
)
σVR(dx|c)

)
G(dc)−

∫
C
ϕ(c)q(c)G(dc)

=

∫
C

(∫
D

(∫
R+

(p− ϕ(c))D(p)γq(dp|D, c)
)
σVR(dx|c)

)
G(dc),

where the first and the third equalities follows from the definition of q(c) and from (OA.2), and the inequality

and the second equality follows from (OA.7). Moreover, by (OA.2), since q is nonincreasing, the function

c 7→
∫
D

(∫
R+

D(p)γq(dp|D, c)
)
σVR(dD|c)

is nonincreasing. Together with Lemma OA.1 and individual rationality of (σ, τ,γ), for any c ∈ C,∫ c

c

(∫
D

(∫
R+

D(p)γq(dp|D, z)
)
σVR(dD|z)

)
dz =

∫ c′

c
q(z) dz

=

∫ c

c

(∫
D

(∫
R+

D(p)γ(dp|D, z)
)
σ(dD|z)

)
dz

≥
∫ c

c
D0(p0(z)) dz,

these imply that (σVR, τ q,γq) is incentive feasible.

Now notice that by (OA.2) and Lemma OA.2, for any q : C → [0, 1] and for any c ∈ C,∫
D

(∫
R+

(p− ϕ(c))D(p)γq(dp|D, c)
)
σVR(dD|c) = R̄(q(c))− ϕ(c)q(c) =

∫ q(c)

0
(D−1

0 (q)− ϕ(c)) dq.

Meanwhile, by (OA.2) and by Lemma OA.2, (σVR, τq,γq) is incentive feasible if and only if q is nonincreasing

and ∫ c

c
q(z) dz ≥

∫ c

c
D0(p0(z)) dz, ∀c ∈ C.

Therefore, maximizing revenue among all incentive feasible mechanism is equivalent to solving (OA.6).

Finally, notice that for the maximization problem (OA.6), endow the set of nonincreasing functions with

the L1 norm. Helly’s selection theorem and the Lebesgue dominated convergence theorem then imply that

this set is compact. Moreover, for any sequence {qn} ⊂ Q such that {qn} → q, consider any subsequence
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{qnk
} of {qn}, by the Riesz-Fischer theorem, there exists a further subsequence {qnk,l

} such that {qnk,l
} → q

pointwise. By the dominated convergence theorem,

lim
l→∞

∫
C

(∫ qnk,l
(c)

0
(D−1

0 (q)− ϕ(c)) dq

)
G(dc) =

∫
C

(∫ q(c)

0
D−1

0 (q)− ϕ(c) dq

)
G(dc)

and

lim
l→∞

∫ c

c
qnk,l

(z) dz =

∫ c

c
q(z) dz, ∀c ∈ C.

As a result, since every any subsequence of {
∫
C

∫ qn(c)
0 (D−1

0 (q)−ϕ(c)) dq G(dc)} ({
∫ c
c qn(z) dz}, resp.) has a

convergent subsequence that converges to
∫
C

∫ q(c)
0 D−1

0 (q)−ϕ(c) dq G(dc)} (
∫ c
c q(z) dz, resp.), it the follows

that

lim
n→∞

∫
C

(∫ qn(c)

0
D−1

0 (q)− ϕ(c) dq

)
G(dc) =

∫
C

(∫ q(c)

0
D−1

0 (q)− ϕ(c) dq

)
G(dc)

and

lim
n→∞

∫ c

c
qn(z) dz =

∫ c

c
q(z) dz, ∀c ∈ C.

Together, the feasible set of (OA.6) is compact and the objective is continuous (under the L1 norm) and

hence the solution must exist. This completes the proof. ■

With Lemma OA.1 and Lemma OA.3, the price-controlling data broker’s revenue maximization problem

can be solved explicitly.

Proof of Proposition 2. Let R∗ be the value of (OA.6) and consider the dual problem of (OA.6). By weak

duality, it suffices to find a Borel measure µ∗ on C and a feasible q∗ ∈ Q such that q∗ is a solution of

sup
q∈Q

[ ∫
C

(∫ q(c)

0
(D−1

0 (q)− ϕ(c)) dq

)
G(dc)− π̄

+

∫
C

(∫ c

c
(q(z)−D0(p0(z))) dz

)
µ∗(dc)

]
(OA.8)

and that ∫
C

(∫ c

c
(q∗(z)−D0(p0(z))) dz

)
µ∗(dc) = 0. (OA.9)

To this end, define M∗ : C → [0, 1] as the following:

M∗(c) := lim
z↓c

g(z)(ϕ(z)− p0(z))
+, ∀c ∈ C. (OA.10)

By definition, M∗ is right-continuous. Also, by Assumption 1, M∗ is nondecreasing and hence M∗ a CDF.

Let µ∗ be the Borel measure induced by M∗. Notice that supp(µ∗) = [c∗, c], where c∗ := inf{c ∈ C : ϕ(c) >

p0(c)}.
For any q ∈ Q, by interchanging the order of integrals and then rearranging, (OA.8) can be written as

sup
q∈Q

[∫
C

(∫ q(c)

0
(D−1

0 (q)− ϕ(c)) dq

)
G(dc)− π̄ −

∫
C
M∗(c)D0(p0(c)) dc

]
. (OA.11)
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To solve (OA.11), notice that for any q ∈ Q,∫
C

(∫ q(c)

0
(D−1

0 (q)− ϕ(c)) dq

)
G(dc)

≤
∫
C

(∫ D0(ϕ(c))

0
(D−1

0 (q)− ϕ(c)) dq

)
G(dc). (OA.12)

Thus, as ϕ is nondecreasing, D0◦ϕ is indeed a solution of (OA.11) and hence a solution of (OA.8). Moreover,

since ϕ ≤ p0, for all c ∈ C,
∫ c
c D0(ϕ(z)) dz ≥

∫ c
c D0(p0(z)) dz. Therefore, D0 ◦ϕ ∈ Q is feasible in the primal

problem (OA.6). Meanwhile, since M∗(c) = 0 for all c ∈ [c, c∗) and since ϕ(c) = p0(c) for all c ∈ (c∗, c], the

complementary slackness condition (OA.9) is also satisfied. Together, D0 ◦ϕ is indeed a solution of (OA.6).

Finally, by definition of D−1
0 , it then follows that

R∗ =

∫
C

(∫ D0(ϕ(c))

0
(D−1

0 (q)− ϕ(c)) dq

)
G(dc)− π̄

=

∫
C

(∫
{v≥ϕ(c)}

(v − ϕ(c))D0(dv)

)
G(dc)− π̄.

To see that any solution of the price-controlling data broker’s problem must induce ϕ(c)-quasi-perfect price

discrimination for G almost all c ∈ C, consider any optimal mechanism (σ, τ,γ) of the price-controlling

data broker. By optimality, it must be that E[τ(c)] = R∗ and that the indirect utility of the producer with

marginal cost c is π̄. Thus, by Lemma OA.3, it must be that∫
C

(∫
D

(∫
R+

(p− ϕ(c))D(p)γ(dp|D, c)
)
σ(dD|c)

)
G(dc)

=

∫
C

(∫
{v≥ϕ(c)}

(v − ϕ(c))D0(dv)

)
G(dc), (OA.13)

which is equivalent to∫
C

(∫
D×R+

(p− ϕ(c))D(p)γ(dp|D, c)σ(dD|c)
)
G(dc)

+

∫
C
(ϕ(c)− ϕ(c))qσγ(c)G(dc)

=

∫
C

(∫
{v≥ϕ(c)}

(v − ϕ(c))D0(dv)

)
G(dc) +

∫
C
(ϕ(c)− ϕ(c))D0(ϕ(c))G(dc), (OA.14)

where qσγ(c) :=
∫
D×R+

D(p)γ(dp|D, c)σ(dD|c) for all c ∈ C. Moreover, since for any c ∈ C,∫
D×R+

(p− ϕ(c))D(p)γ(dp|D, c)σ(dD|c)

≤
∫
D
max
p∈R+

[(p− ϕ(c))D(p)]σ(dD|c)

≤
∫
V
(v − ϕ(c))+D0(dv), (OA.15)
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it must be that ∫
C
(ϕ(c)− ϕ(c))qσγ(c)G(dc) ≥

∫
C
(ϕ(c)− ϕ(c))D0(ϕ(c))G(dc). (OA.16)

Furthermore, since ϕ(c) = p0(c) ≤ ϕ(c) for all c ∈ (c∗, c] and ϕ(c) = ϕ(c), for all c ∈ [c, c∗], by the

definition of M∗ given by (OA.10), together with integration by parts, (OA.16) is equivalent to∫
C

(∫ c

c

(
qσγ(z)−D0(p0(z)

)
dz

)
M∗(dc) ≤ 0 (OA.17)

Lastly, since (σ, τ,γ) is individually rational, for any c ∈ C,∫ c

c

(
qσγ(z)−D0(p0(z))

)
dz ≥ 0.

Thus, as M∗ is the CDF of a Borel measure, (OA.17) must hold with equality, which in turn implies that

(OA.16) must hold with equality. Together with (OA.14), (OA.15) must hold with equality for G-almost

all c ∈ C. Therefore, (σ, τ,γ) must induce ϕ(c)-quasi-perfect price discrimination for G-almost all c ∈ C, as

desired. ■

Proof of Theorem 3

By Lemma 5, it suffices to prove the outcome-equivalence between data brokership and price-controlling

data brokership. By Proposition 2 and Theorem 1, both the data broker and the price-controlling data

broker have optimal revenue R∗. Furthermore, for any optimal mechanism (σ, τ) of the data broker and

any optimal mechanism (σ̂, τ̂ , γ̂) of the price-controlling data broker, both of them must induce ϕ(c)-quasi-

perfect price discrimination for G-almost all c ∈ C. In particular, for G-almost all c ∈ C, all the consumers

with v ≥ ϕ(c) buy the product by paying their values and all the consumers with v < ϕ(c) do not buy the

product. Thus, the consumer surplus and the allocation of the product induced by (σ, τ) and (σ̂, τ̂ , γ̂) are

the same.

In addition, for any optimal mechanism (σ, τ) of the data broker, Theorem 1 implies that σ must be a

ϕ-quasi-perfect scheme and hence by assertions 3 and 4 of Lemma 6, and by Lemma 1, for Lebesgue almost

all c ∈ C, ∫
D
πD(c)σ(dD|c)− τ(c) =π̄ +

∫ c

c

(∫
D
D(pD(z))σ(dD|z)

)
dz

=π̄ +

∫ c

c
D0(ϕ(z)) dz. (OA.18)

Meanwhile, for the price-controlling data broker’s optimal mechanism (σ̂, τ̂ , γ̂), since, by Proposition 2, it

induces ϕ(c)-quasi-perfect price discrimination for almost all c ∈ C, it must be that qσ̂γ̂(c) = D0(ϕ(c)).

Together with Lemma OA.1, for any c ∈ C,∫
D

(∫
R+

(p− c)D(p)γ̂(dp|D, c)
)
σ̂(dD|c)− τ̂(c)

=π̄ +

∫ c

c
qσ̂γ̂(z) dz

=π̄ +

∫ c

c
D0(ϕ(z)) dz. (OA.19)

Thus, the producer’s profit under both (σ, τ) and (σ̂, τ̂ , γ̂) are the same. This completes the proof. ■
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Proof of Lemma 6

For any nondecreasing function ψ : C → R+ with c ≤ ψ(c) for all c ∈ C, since for any c ∈ C, σ(c) ∈ S is a

ψ(c)-quasi-perfect segmentation for c, by definition,∫
D
D(p)σ(dD|c) = D0(p), (OA.20)

for all p ∈ V , which proves assertion 1. Furthermore, since ψ is nondecreasing and is thus continuous except

at countably many points, σ : C → ∆(D) is measurable, which establishes assertion 2. For assertion 3,

notice that for any c ∈ C, since σ(c) ∈ S is a ψ(c)-quasi-perfect segmentation for c, for any D ∈ supp(σ(c))

such that D(pD(c)) > 0,

D(pD(c)) = D(max(supp(D))) = D(ψ(c)),

while for any D ∈ supp(σ(c)) such that D(pD(c)) = 0, it must be that D(ψ(c)) = 0 as well. Therefore,∫
D
D(pD(c))σ(dD|c) =

∫
D
D(ψ(c))σ(dD|c) = D0(ψ(c)),

where the last equality follows from (OA.20). This proves assertion 3. Finally, to prove assertion 4, consider

any c ∈ C. First notice that if D0(c) = 0, then assertion 4 clearly holds as both sides would be zero. Now

suppose that D0(c) > 0. The fact that σ(c) ∈ S is a ψ(c)-quasi-perfect segmentation for c ensures that

D0(ψ(c)) > 0. Then, for any v ∈ [ψ(c), v], let

H(v) := σ({D ∈ D : max(supp(D)) ≤ v}|c).

Since σ(c) is a probability measure, H is nondecreasing and right-continuous and hence induces a Borel

measure µH on [ψ(c), v]. Meanwhile, for any measurable sets A,B ⊆ [ψ(c), v], define

K(A|B) :=

∫
{D∈D:max(supp(D))∈A}

mD(B)σ(dD|c).

Notice that for any measurable set B ⊆ [ψ(c), v], K(·|B) is a measure and is absolutely continuous with

respect to µH and hence there exists a (essentially) unique Radon-Nikodym derivative v 7→ mv(B) such that

for any measurable A ⊆ [ψ(c), v],

K(A|B) =

∫
v∈A

mv(B)H(dv). (OA.21)

In particular, by definition of K and by (OA.20), for any measurable set B ⊆ [ψ(c), v],∫
[ψ(c),v]

mv(B)H(dv) = K([ψ(c), v]|B) =

∫
D
mD(B)σ(dD|c) = m0(B). (OA.22)

Moreover, since for any measurable set A ⊆ [ψ(c), v], K(A|·) is a measure on [ψ(c), v] and thus mv is also

a measure on [ψ(c), v] for µH -almost all v ∈ [ψ(c), v]. Furthermore, since σ(c) ∈ S is a ψ(c)-quasi-perfect

segmentation for c, for any measurable sets A,B ⊆ [ψ(c), c],

K(A|B) = m0(A ∩B) = K(B|A)

and hence, for any measurable sets A,B ⊆ [ψ(c), v],∫
A
mv(B)H(dv) =

∫
B
mv(A)H(dv). (OA.23)
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As a result, ∫
D
pD(c)D(pD(c))σ(dD|c) =

∫
D
pD(c)D(ψ(c))σ(dD|c)

=

∫
D
max(supp(D))mD([ψ(c), v])σ(dD|c)

=

∫
[ψ(c),v]

vK(dv|[ψ(c), v])

=

∫
[ψ(c),v]

vmv([ψ(c), v])H(dv)

=

∫
v∈[ψ(c),v]

∫
v′∈[ψ(c),v]

vmv(dv′)H(dv)

=

∫
v∈[ψ(c),v]

v

(∫
v′∈[ψ(c),v]

mv′(dv)H(dv′)

)

=

∫
[ψ(c),v]

vD0(dv),

where the second equality follows from the fact that σ(c) is a ψ(c)-quasi-perfect segmentation for c, the

third equality follows from the definition of K, the fourth equality follows from (OA.21), the sixth equality

follows from (OA.23), and the last equality follows from (OA.22). This completes the proof. ■

Proof of Lemma 7

Consider any optimal mechanism (σ, τ). As it is optimal and incentive compatible, by Lemma 1,

R∗ = E[τ(c)] =
∫
C

(∫
D
(p̂D(c)− ϕ(c))D(p̂D(c))σ(dD|c)

)
G(dc)− π̄. (OA.24)

for any selection p̂ of P . Meanwhile, since (σ, τ) is individually rational, by Lemma 1, it must be that∫ c

c

(∫
D
D(p̂D(z))σ(dD|z)

)
dz ≥

∫ c

c
D0(p0(z)) dz, ∀c ∈ C, (OA.25)

for any selection p̂ of P .

Now suppose that (σ, τ) is not a ϕ-quasi-perfect mechanism or it does not induce ϕ(c)-quasi-perfect

price discrimination for a positive G-measure of c, then there exists a selection p̂ of P , a positive G-measure

of c and a positive σ(c)-measure of D ∈ D such that either p̂D(c) < pD(c), or D(c) > 0 and either

#{v ∈ supp(D) : v ≥ ϕ(c)} ̸= 1 or max(supp(D)) /∈ PD(c), which imply that there is a positive G-measure

of c and a positive σ(c)-measure of D such that∫
{v≥ϕ(c)}

(v − ϕ(c))D(dv)

≥
∫
{v≥p̂D(c)}

(v − ϕ(c))D(dv)

=(p̂D(c)− ϕ(c))D(p̂D(c)) +

∫
{v≥p̂D(c)}

(v − p̂D(c))D(dv)

≥(p̂D(c)− ϕ(c))D(p̂D(c)),
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with at least one inequality being strict. Therefore,∫
C

(∫
D
(p̂D(c)− ϕ(c))D(p̂D(c))σ(dD|c)

)
G(dc)

<

∫
C

(∫
V
(v − ϕ(c))+D0(dv)

)
G(dc). (OA.26)

Meanwhile, since by (OA.24),∫
C

(∫
D
(p̂D(c)− ϕ(c))D(p̂D(c))σ(dD|c)

)
G(dc)

+

∫
C
(ϕ(c)− ϕ(c))

(∫
D
D(p̂D(c))σ(dD|c)

)
G(dc)

=

∫
D

(∫
D
(p̂D(c)− ϕ(c))D(p̂D(c))σ(dD|c)

)
G(dc)

=

∫
C

(∫
{v≥ϕ(c)}

(v − ϕ(c))D0(dv)

)
G(dc)

=

∫
C

(∫
V
(v − ϕ(c))+D0(dv)

)
G(dc) +

∫
C
(ϕ(c)− ϕ(c))D0(ϕ(c))G(dc),

(OA.26) implies that∫
C
(ϕ(c)− ϕ(c))

(∫
D
D(p̂D(c))σ(dD|c)

)
G(dc) >

∫
C
(ϕ(c)− ϕ(c))D0(ϕ(c))G(dc).

Furthermore, since ϕ(c) = ϕ(c) for all c ∈ [c, c∗] and ϕ(c) = p0(c) for all c ∈ (c∗, c], it then follows that∫ c

c∗
(ϕ(c)− p0(c))

(∫
D
D(p̂D(c))σ(dD|c)

)
G(dc) <

∫ c

c∗
(ϕ(c)− p0(c))D0(p0(c))G(dc),

Using integration by parts, this is equivalent to∫ c

c∗

(∫ c

c

(∫
D
D(p̂D(z))σ(dD|z)

)
dz

)
M∗(dc) <

∫ c

c∗

(∫ c

c
D0(p0(z)) dz

)
M∗(dc),

whereM∗ is defined in (OA.10). However, by (OA.25) and by the fact thatM∗ is a CDF of a Borel measure,

which is due to Assumption 1,∫ c

c∗

(∫ c

c

(∫
D
D(p̂D(z))σ(dD|z)

)
dz

)
M∗(dc) ≥

∫ c

c∗

(∫ c

c
D0(p0(z)) dz

)
M∗(dc),

a contradiction. Therefore, σ must be a ϕ-quasi-perfect scheme and must induce ϕ(c)-quasi-perfect price

discrimination for G-almost all c ∈ C. Together with Lemma 1, and the fact that U(c) = π̄ under any

optimal mechanism, (σ, τ) must be a ϕ-quasi-perfect mechanism. This completes the proof. ■

OA.2 Extension: General D0

In the paper, I assume that D0 is a continuously differentiable decreasing function on V and induces

decreasing marginal revenue. It is noteworthy that none of these assumptions are necessary. It can be
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verified that, given Lemma 3, all other proofs remain valid even without these assumptions, as long as D0

is a nonincreasing upper-semicontinuous function and D−1
0 is defined as

D−1
0 (q) := sup{p ∈ V : D0(p) ≥ q},

for all q ∈ [0, 1]. Therefore, the results can be immediately extended to the case where D0 is any nonincreas-

ing and upper-semicontinuous function (jointly satisfying Assumption 1 with G), provided that Lemma 3

can still be established. The proof is provided below.

Proof of Lemma 3 (General D0)

The proof of Lemma 3 relies on the following technical lemma

Lemma OA.4. Consider any function ψ : C → R+ with c ≤ ψ(c) for all c ∈ C. Given any {Dn} ⊂ D
and {σn} such that σn : C → SDn is measurable for all n ∈ N. Suppose that {σn} → σ pointwise and

{Dn} → D0 for some σ : C → ∆(D) and D0 ∈ D. Then σ is measurable and σ(c) ∈ SD0 for all c ∈ C.

Moreover, suppose further that σn is a ψ-quasi-perfect scheme for all n ∈ N. Then σ is a ψ-quasi-perfect

scheme.

Proof. First notice that since for all n ∈ N and for all c ∈ C, σn(c) ∈ SDn and since {σn} → σ pointwise, σ

is measurable. Moreover, since {Dn} → D0 and {σn} → σ, for any bounded continuous function f : V → R
and for any c ∈ C, ∫

V
f(v)

(∫
D
D(dv)σ(dD|c)

)
=

∫
D

(∫
V
f(v)D(dv)

)
σ(dD|c)

= lim
n→∞

∫
D

(∫
V
f(v)D(dv)

)
σn(dD|c)

= lim
n→∞

∫
V
f(v)

(∫
D
D(dv)σn(dD|c)

)
= lim
n→∞

∫
V
f(v)Dn(dv)

=

∫
V
f(v)D0(dv),

where the first and the third equality follow from interchanging the order of integrals, the second equality

follows from the fact that the integrand in the parentheses is a bounded continuous function of D and from

weak-*convergence of {σn(c)}, the fourth equality is due to the fact that σn(c) ∈ SDn , and the last equality

follows from the weak-* convergence of {Dn}. Thus, by the Riesz representation theorem,∫
D
D(p)σ(dD|c) = D0(p), ∀p ∈ V, c ∈ C.

This proves that σ(c) ∈ SD0 for all c ∈ C.

Now suppose that σn is a ψ-quasi-perfect scheme for all n ∈ N and suppose that, by way of contradiction,

σ : C → SD0 is not a ψ-quasi-perfect scheme. Then there exists a positive G-measure of c and a positive σ(c)-

measure of D ∈ D such that D(c) > 0 and either #{v ∈ supp(D) : v ≥ ψ(c)} ≠ 1 or max(supp(D)) /∈ PD(c)
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(i.e., D(pD(c)) > 0). As such, there is a positive G-measure of c and a positive σ(c)-measure of D such that∫
{v≥ψ(c)}

(v − ψ(c))D(dv) ≥
∫
{v≥pD(c)}

(v − ψ(c))D(dv)

=(pD(c)− ψ(c))D(pD(c)) +

∫
{v≥pD(c)}

(v − pD(c))D(dv)

≥(pD(c)− ψ(c))D(pD(c)),

with at least one inequality being strict. Thus, there exists a positive G-measure of c ∈ C such that∫
D
(pD(c)− ψ(c))D(pD(c))σ(dD|c) <

∫
V
(v − ψ(c))+D0(dv).

However, by Theorem 12 of Hart and Reny (2019) and Corollary 2 of Yang (2020a), for Lebesgue almost all

c ∈ C, ∫
D
(pD(c)− ψ(c))D(pD(c))σ(dD|c)

=

∫
D
πD(c)σ(dD|c)− (ψ(c)− c)

∫
D
D(pD(c))σ(dD|c)

≥ lim
n→∞

∫
D
πD(c)σn(dD|c)− lim inf

n→∞
(ψ(c)− c)

∫
D
D(pD(c))σn(dD|c)

= lim sup
n→∞

[∫
D
πD(c)σn(dD|c)− (ψ(c)− c)

∫
D
D(pD(c))σn(dD|c)

]
(OA.27)

= lim sup
n→∞

∫
V
(v − ψ(c))+Dn(dv)

= lim
n→∞

∫
V
(v − ψ(c))+Dn(dv)

=

∫
V
(v − ψ(c))+D0(dv),

a contradiction. Here, the first inequality follows from the fact that {σn(c)} → σ(c), Theorem 12 of Hart and

Reny (2019) and Corollary 2 of Yang (2020a); the second equality follows from the properties of the lim inf

and lim sup operators;2 the third equality follows from the fact that σn(c) ∈ SDn and is a ψ(c)-quasi-perfect

segmentation for c; and the last two equalities follow from the fact that the function (v−ψ(c))+ is bounded

and continuous in v and that {Dn} → D0. Therefore, σ must be a ψ-quasi-perfect scheme. ■

Proof of Lemma 3 (general D0). I first prove the lemma for D0 being a step function with finitely many

steps. Consider any step function D ∈ D with |supp(D)| <∞ and any nondecreasing function ψ : C → R+

such that c ≤ ψ(c) ≤ pD(c) for all c ∈ C and fix any c ∈ C, let

V + := {v ∈ supp(D) : v ≥ ψ(c)}
2 More precisely, this follows from the following properties: For any real sequences {an}, {bn},

− lim inf
n→∞

bn = lim sup
n→∞

(−bn).

Moreover, if {an} is convergent, then

lim sup
n→∞

(an + bn) = lim
n→∞

an + lim sup
n→∞

bn.
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and let

ĉ := inf{z ∈ C : pD(z) ≥ ψ(c)}.

Since pD is nondecreasing, it then follows pD(z) ≥ ψ(c) for all z ∈ [ĉ, c] and pD(z) ≤ ψ(c) for all z ∈ [c, ĉ).

Moreover, since ψ(c) ≤ pD(c), ĉ ≤ c. Furthermore, by definition of ĉ, it must be either ĉ = c or ĉ > c and

p
D
(ĉ) < ψ(c) ≤ pD(ĉ), where pD(ĉ) := minPD(ĉ), since otherwise, if ĉ > c and p

D
(ĉ) ≥ ψ(c), then for ε > 0

small enough, as |supp(D)| <∞, pD(ĉ− ε) = p
D
(ĉ) ≥ ψ(c), contradicting the definition of ĉ. Consider first

the case where ĉ > c. In this case, for each v ∈ V +, define m̂v recursively as the following

m̂v(v′) :=


0, if v′ ≥ ψ(c) and v′ ̸= v

mD(v′), if v′ = v

β∗(v|v′)mD(v′), if p
D
(ĉ) ≤ v′ < ψ(c)

α∗(v)mD(v′), if v′ < p
D
(ĉ)

, ∀v′ ∈ supp(D), ∀v ∈ V +,

where for all v ∈ V + and all v′ ∈ supp(D) s.t. p
D
(ĉ) ≤ v′ < ψ(c),

β∗(v|v′) :=
(v − ĉ)mD(v)− (v′ − ĉ)

∑
v̂>v′ m̂

v(v̂)∑
v≥ψ(c)

[
(v − ĉ)mD(v)− (v′ − ĉ)

∑
v̂>v′ m̂

v(v̂)
] ,

and for all v ∈ V +,

α∗(v) :=

∑
v̂≥p

D
(ĉ) m̂

v(v̂)∑
v̂≥p

D
(ĉ)m

D(v̂)
.

By construction, ∑
v∈V +

α∗(v) =
∑
v∈V +

β∗(v|v′) = 1 (OA.28)

for all v′ ∈ supp(D) with p
D
(ĉ) ≤ v′ < ψ(c). As such,∑

v∈V +

m̂v(v′) = mD(v′), ∀v′ ∈ supp(D). (OA.29)

Notice that since ĉ ≤ p
D
(ĉ) < ψ(c) ≤ pD(ĉ), it must be that∑

v≥ψ(c)

(v − ĉ)mD(v) ≥
∑

v≥pD(ĉ)

(v − ĉ)mD(v) ≥ (pD(ĉ)− ĉ)D(pD(ĉ)) = (p
D
(ĉ)− ĉ)D(p

D
(ĉ)). (OA.30)

Now consider any v′ ∈ supp(D) such that p
D
(ĉ) ≤ v′ < ψ(c). Notice first that

∑
v≥ψ(c)

[
(v − ĉ)mD(v)− (v′ − ĉ)

∑
v̂>v′

m̂v(v̂)

]

=
∑

v≥ψ(c)

(v − ĉ)mD(v)− (v′ − ĉ)
∑
v̂>v′

mD(v̂)

≥(p
D
(ĉ)− ĉ)D(p

D
(ĉ))− (v′ − ĉ)

∑
v̂>v′

mD(v̂)

≥(v′ − ĉ)
∑
v̂≥v′

mD(v̂)− (v′ − ĉ)
∑
v̂>v′

mD(v̂)

=(v′ − ĉ)mD(v′)

≥0,
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where the first equality follows from (OA.29), the first inequality follows from (OA.30), the second inequality

follows from the fact that p
D
(ĉ) ∈ PD(ĉ), and the last inequality follows from p

D
(ĉ) ≥ ĉ. As such, for any

v′ ∈ supp(D) with p
D
(ĉ) ≤ v′ < ψ(c) and for any v ∈ V +, if

(v − ĉ)mD(v)− (v′ − ĉ)
∑
v̂>v′

m̂v(v̂) ≥ 0,

then β∗(v|v′) ≥ 0 and

m̂v(v′) ≤
(v − ĉ)mD(v)− (v′ − ĉ)

∑
v̂>v′ m̂

v(v̂)

(v′ − ĉ)mD(v′)
mD(v′)

⇐⇒ (v′ − ĉ)m̂v(v′) + (v′ − ĉ)
∑
v̂>v′

m̂v(v̂) ≤ (v − ĉ)mD(v)

⇐⇒ (v′ − ĉ)
∑
v̂≥v′

m̂v(v̂) ≤ (v − ĉ)m̂v(v),

which in turn implies that

(v − ĉ)mD(v)− (v′′ − ĉ)
∑
v̂>v′′

m̂v(v̂) > (v − ĉ)mD(v)− (v′ − ĉ)
∑
v̂≥v′

m̂v(v̂) ≥ 0,

where v′′ ∈ supp(D) is the largest element of {v̂ ∈ supp(D) : p
D
(ĉ) ≤ v̂ < v′}. Moreover, if v′ = max{v̂ ∈

supp(D) : p
D
(ĉ) ≤ v̂ < ψ(c)}, then clearly, for all v ∈ V +,

(v − ĉ)mD(v)−
∑
v̂>v′

m̂v(v′) = (v − v′)mD(v) ≥ 0.

Therefore, by induction, for any v′ ∈ supp(D) such that p
D
(ĉ) ≤ v′ < ψ(c), it must be that β∗(v|v′) ≥ 0 for

all v ∈ V + and that

(v′ − ĉ)
∑
v̂≥v′

m̂v(v̂) ≤ (v − ĉ)m̂v(v). (OA.31)

Together with (OA.28), this also ensures that

α∗ ∈ ∆(V +) (OA.32)

and

β∗(v′) ∈ ∆(V +), (OA.33)

for all v′ ∈ supp(D) such that p
D
(ĉ) ≤ v′ < ψ(c).

Meanwhile, for any v′ ∈ supp(D) with v′ ≤ p
D
(ĉ) and any v ∈ V +, notice that by the definition of α∗,∑

v̂≥v′
m̂v(v̂) = α∗(v)

∑
v′≤v̂<p

D
(ĉ)

mD(v̂) +
∑

v̂≥p
D
(ĉ)

m̂v(v̂) = α∗(v)
∑
v̂≥v′

mD(v̂). (OA.34)

Thus, for any v′ ∈ supp(D) with v′ < p
D
(ĉ) and any v ∈ V +,

(v′ − ĉ)
∑
v̂≥v′

m̂v(v̂) =α∗(v)(v′ − ĉ)D(v′)

≤α∗(v)(p
D
(ĉ)− ĉ)D(p

D
(ĉ))

=(p
D
(ĉ)− ĉ)

∑
v̂≥p

D
(ĉ)

m̂v(v̂) (OA.35)

≤(v − ĉ)m̂v(v),
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where both equalities follow from (OA.34), the first inequality follows from the fact that p
D
(ĉ) ∈ PD(ĉ),

and the last inequality follows from (OA.31) by taking v′ = p
D
(ĉ).

Moreover, by (OA.34), for any z ∈ [c, ĉ), and any v ∈ V +, since pD(z) ≤ p
D
(ĉ), it must be that for all

v′ ≤ pD(z),

(v′ − z)
∑
v̂≥v′

m̂v(v̂) =α∗(v)(v′ − z)D(v′)

≤α∗(v)(p
D
(z)− z)D(p

D
(z)) (OA.36)

=(p
D
(z)− z)

∑
v̂≥p

D
(z)

m̂v(v̂).

Finally, if ĉ = c, then define {m̂v}v∈V + as

m̂v(v′) :=


mD(v′), if v′ = v

0, if v′ ≥ ψ(c) and v′ ̸= v

α∗(v)mD(v′), if v′ < ψ(c)

, ∀v′ ∈ V, v ∈ V +, v ≥ pD(c)

and

m̂v(v′) :=

{
mD(v′), if v′ = v

0, if v′ ̸= v
, ∀v′ ∈ V, v ∈ V +, ψ(c) ≤ v < pD(c)

where

α∗(v) :=
mD(v)∑

v′≥pD(c)m
D(v′)

.

Again, ∑
v≥pD(c)

α∗(v) = 1 (OA.37)

and hence ∑
v∈V +

m̂v(v′) = mD(v′), ∀v′ ∈ V. (OA.38)

Then, for any v ≥ pD(c) and any v′ ∈ supp(D) with v′ < ψ(c),

(v′ − c)
∑
v̂≥v′

m̂v(v′) = α∗(v)(v′ − c)D(v′) ≤ α∗(v)(pD(c)− c)D(pD(c)) ≤ (v − c)m̂v(v). (OA.39)

Together, in both of the cases above, from the constructed {m̂v}v∈V + , for each v ∈ V +, let

mv(v′) :=
m̂v(v′)∑
v̂∈V m̂

v(v̂)
, ∀v′ ∈ supp(D)

and let Dv(p) := mv([p, v]) for all p ≥ 0, by (OA.32), (OA.33) and (OA.37), in each case, Dv ∈ D for all

v ∈ V +. Now define σ(c) ∈ ∆(D) by

σ(Dv|c) :=
∑
v′∈V

m̂v(v′), ∀v ∈ V +.

By (OA.29) and (OA.38), in each case, σ(c) ∈ SD. Furthermore, since mv is proportional to m̂v for all

v ∈ V +, (OA.31), (OA.35) and (OA.39) ensure that in each case, σ(c) is a ψ(c)-quasi-perfect segmentation
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for ĉ. Meanwhile, since ĉ ≤ c ≤ ψ(c), σ(c) is also a ψ(c)-quasi-perfect segmentation for c. Finally, since mv

is proportional to m̂v, (OA.36) implies that for any z ∈ [c, ĉ),

pD′(z) ≥ pD(z), ∀D′ ∈ supp(σ(c)).

Meanwhile, by the conclusion that σ(c) is a ψ(c)-quasi-perfect segmentation for ĉ ≤ c, for any z ∈ [ĉ, c],

since c ≤ ψ(c) and since pD is nondecreasing for any D′ ∈ D,

pD′(z) ≥ pD′(ĉ) ≥ ψ(c), ∀D′ ∈ supp(σ(c)).

Together with the fact that ψ is nondecreasing and that ψ ≤ pD, it then follows that for any z ∈ [c, c] and for

any D ∈ supp(σ(c)), ψ(z) ≤ pD(z). Since c ∈ C is arbitrary, this ensures that there exists a ψ-quasi-perfect

scheme σ : C → SD that satisfies (12).

Now consider any D0 ∈ D and any nondecreasing ψ : C → R+ with c ≤ ψ(c) ≤ p0(c) for all c ∈ C. I

first construct a sequence of step functions {Dn} ⊆ D such that {Dn} → D0 and that c ≤ ψ(c) ≤ pDn(c)

for all c ∈ C and for all n ∈ N. To this end, for each n ∈ N, first partition V by v = v0 < v1 < . . . < vn = v

and let Vk := [vk−1, vk]. Then define Dn by Dn(p) := D0(vk), for all p ∈ Vk, for all k ∈ {1, . . . , n} (i.e., by

moving all the masses on interval Vk to the top vk). By construction, it must be that pDn(c) ≥ p0(c) for all

c ∈ C and for all n ∈ N and hence c ≤ ψ(c) ≤ pDn(c) for all c ∈ C and for all n ∈ N. Also, by construction,

{Dn} → D0, as desired.

As such, for each n ∈ N, there exists a ψ-quasi-perfect scheme σn such that for all c ∈ C,

ψ(z) ≤ pD(z)

for all D ∈ supp(σn(c)) and for all z ∈ [c, c]. Furthermore, according to Helly’s selection theorem, by

possibly taking a subsequence,3 {σn} → σ for some σ : C → ∆(D). By Lemma OA.4, σ(c) ∈ S for all c ∈ C

and σ is a ψ-quasi-perfect scheme.

It then remains to show that σ satisfies (12). To this end, fix any c ∈ C and consider any D ∈ supp(σ(c)),

by definition, for any δ > 0, σ(Bδ(D)|c) > 0.4 Furthermore, since σ(c) has at most countably many atoms,

there exists a sequence {δk} ⊂ (0, 1] such that {δk} → 0, σ(Bδk(D)|c) > 0 and σ(∂Bδk(D)|c) = 0 for all k ∈ N.
As a result, since {σn(c)} → σ(c) under the weak-* topology, limn→∞ σn(Bδk(D)|c) = σ(Bδk(D)|c) > 0 for

all k ∈ N. Thus, for each k ∈ N, there exists nk ∈ N such that σnk
(Bδk(D)|c) > 0. Moreover, since σn(c)

has finite support as Dn is a step function and σn(c) ∈ SDn , there must be some Dnk
∈ Bδk(D) such that

Dnk
∈ supp(σnk

(c)). Notice that for the subsequence {nk}, {Dnk
} → D and Dnk

∈ supp(σnk
(c)) for all

k ∈ N. As a result, since D 7→ pD(c) is upper-semicontinuous (see Proposition 6 of Yang (2020a)) and since

σnk
satisfies (12) for all k ∈ N, for Lebesgue almost all z ∈ [c, c],

ψ(z) ≤ lim sup
k→∞

pDnk
(z) ≤ pD(z).

Since c ∈ C and D ∈ supp(σ(c)) are arbitrary, this completes the proof. ■
3See, for instance, Porter (2005) for a generalized version of Helly’s selection theorem. To apply this theorem, notice that

the family of functions {σn} is of bounded p-variation due to the quasi-perfect structure. Furthermore, for any c ∈ C, the set

cl({σn(c)}) is closed in a compact metric space ∆(D) and hence is itself compact. As such, there exists a pointwise convergent

subsequence of {σn}.
4Bδ(D) is the δ-ball around D under the Lévy-Prokhorov metric on D.
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OA.3 Extension: Restricted Market Segmentations

Thus far, it has been assumed that the data broker is able to create any market segmentation, including the

value-revealing segmentation that perfectly discloses consumers’ values. Although it is not implausible—

given the advancement of information technology—that a data broker is (or at least will soon be) able to

almost perfectly predict consumers’ values, it is still crucial to explore the economic implications when the

data broker does not have perfect information about consumers’ values. This section extends the baseline

model in the paper and restricts the data broker’s ability in creating market segmentations.

To model this restriction, let Θ be a finite set of consumer characteristics that can be disclosed by the

data broker. Suppose that among the consumers, their characteristics θ ∈ Θ are distributed according to

β0 ∈ ∆(Θ). These characteristics are informative of the consumers’ values but there may still be variations

in values among the consumers who share the same characteristics. Specifically, given any θ ∈ Θ, suppose

that among the consumers who share characteristic θ, their values are distributed according a demand

Dθ ∈ D (i.e., Dθ(p) denotes the share of consumers with values above p among those with characteristic θ).

Moreover, suppose that {supp(Dθ)}θ∈Θ forms a partition of V and that supp(Dθ) is an interval for all θ ∈ Θ.

In other words, the available consumer characteristics is only partially informative of the consumers’ values

in a way that any particular characteristic can only identify which interval a particular consumer’s value

belongs to. As a result, even when θ is perfectly revealed, the producer would still be unable to perfectly

identify each consumer’s value. For any p ∈ V , let

D0(p) :=
∑
θ∈Θ

Dθ(p)β0(θ).

D0 ∈ D then describes the market demand in this environment.

In this environment, a market segmentation is defined by s ∈ ∆(∆(Θ)) such that∫
∆(Θ)

β(θ)s(dβ) = β0(θ),

for all θ ∈ Θ. A market segmentation s induces market segments {Dβ}β∈supp(s) and∫
∆(Θ)

Dβ(p)s(dβ) = D0(p),

for all p ∈ V , where Dβ(p) :=
∑

θ∈ΘDθ(p)β(θ) for any β ∈ ∆(Θ) and any p ∈ V .

When the consumers’ values can never be fully disclosed, it is clear that their surplus will increase. After

all, it is no longer possible for the producer to charge the consumers their values as the additional variation

in values given by Dθ always allows some consumers to buy the product at a price below their values.

Nevertheless, as shown in Theorem OA.1, under any optimal mechanism, consumer surplus must be lower

than the case when all the information about θ is revealed to the producer. That is, the main implication of

Corollary 1— for the consumers, the presence of a data broker is no better than a scenario where their data

is fully revealed to the producer—is still valid even when the consumers retain some private information.

Theorem OA.1. For any ({Dθ}θ∈Θ, β0) and for any cost distribution G, an optimal mechanism always

exists. Furthermore, the consumer surplus under any optimal mechanism of the data broker is lower than

the case when θ is fully disclosed.
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Proof. For each θ ∈ Θ, write supp(Dθ) as [l(θ), u(θ)]. Also, for any p ∈ V , let θp be the unique θ such

that p ∈ (l(θ), u(θ)]. Notice that since {(l(θ), u(θ))}θ∈Θ is disjoint, for any β ∈ ∆(Θ), any θ ∈ Θ, and any

p ∈ supp(Dβ),

Dβ(p) =
∑

{θ′:u(θ′)≥u(θp)}

Dθ′(p)β(θ
′) = Dθ(p)β(θ) +

∑
{θ′:u(θ′)>u(θp)}

β(θ′).

In particular, different prices set in supp(Dθ) do not affect the probability of trade through θ′ ∈ Θ such that

u(θ′) > u(θ).

As a result, the construction in the proof of Lemma 3 given above is still valid, with the demands being

replaced by Dβ. Specifically, for any β ∈ ∆(Θ) and any c ∈ C, there exists {βi}ni=1 ⊆ ∆(Θ) such that:

1. β ∈ co({βi}ni=1).

2. For each i ∈ {1, . . . , n}, the set

{θ ∈ supp(βi)|u(θ) ≥ pDβi
(c)}

is nonempty and is a singleton.

3. For each i ∈ {1, . . . , n},
PDβi

(c)
⋂

supp(Dθ̄βi
) ̸= ∅,

where θ̄βi := max{u(θ) : θ ∈ supp(βi)}.

4. For each i ∈ {1, . . . , n} and any z ∈ [c, c],

pDβi
(z) ≥ pDβ

(z).

This further implies that, by Lemma 6, and by the same argument as in the proof of Lemma 3, for any

β ∈ ∆(Θ), there exists σβ : C → ∆(∆(Θ)) such that

5. For any c ∈ C, ∑
β′∈supp(σβ(c))

(pDβ′ (c)− pDβ
(c))Dβ′(pD′

β
(c))σβ(β′|c)

=
∑

{θ:u(θ)≥θ(pDβ
(c))}

(pDθ
(c)− pDβ

(c))Dθ(pDθ
(c))β(θ).

6. For any c ∈ C,
∑

β′∈supp(σβ(c))Dβ′(pDβ′ (c))σ
β(β′|c) = Dβ(pDβ

(c)).

7. For any c ∈ C,
∑

β′∈supp(σβ(c)) β
′σβ(β′|c) = β.

8. For any β′ ∈ supp(σβ(c′)),

pDβ′ (c) ≥ pDβ
(c),

for any c, c′ ∈ C such that c < c′ and∑
β′∈supp(σβ(c))

Dβ′(pDβ′ (c))σ
β(β′|c) ≥ D(pDβ

(c)),

for any c, c′ ∈ C such that c > c′.
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Now consider any mechanism (σ, τ). Suppose that there is a selection p̃ of P and a positive G-measure

of c such that there exists some β ∈ supp(σ(c)) and with

{θ ∈ supp(β) : u(θ) > u(θp̃Dβ
(c))} ≠ ∅. (OA.40)

Then, for such p̃, c ∈ C and β ∈ supp(σ(c)), there exists σβ(c) ∈ ∆(∆(Θ)) such that assertions 5 through

8 above hold. In particular, assertions 5 and 6 imply that∑
β′∈supp(σβ(c))

(pDβ′ (c)− ϕ(c))Dβ′(pDβ′ (c))σ
β(β′|c)

=
∑

β′∈supp(σβ(c))

(pDβ′ (c)− pDβ
(c))Dβ′(pDβ′ (c))σ

β(β′|c) + (pDβ
(c)− ϕ(c))Dβ(pDβ

(c))

≥
∑

{θ:u(θ)≥u(θpDβ
(c))}

(pDθ
(c)− pDβ

(c))Dθ(pDθ
(c))β(θ) + (p̃Dβ

(c)− ϕ(c))Dβ(pDβ
(c))

>(p̃Dβ
(c)− ϕ(c))Dβ(p̃Dβ

(c)),

where the second equality follows from 5 and 6 and the inequality is strict due to (OA.40).

As such, together with assertion 7, σβ(c) induces another segmentation σ̂(c) through

σ̂(β̂|c) :=
∑

β∈supp(σ(c))

σβ(β̂|c)σ(β|c), ∀β̂ ∈
⋃

β∈supp(σ(c))

supp(σβ(c))

As (OA.40) holds with positive G-measure of c ∈ C, the induced segmentation scheme σ̂ : C → ∆(∆(Θ))

strictly improves the data broker’s revenue. Finally, by the revenue equivalence formula,5 assertions 6 and

8 above and Lemma 1 ensure that there exists a transfer τ̂ such that (σ̂, τ̂) is incentive compatible and

individually rational and strictly improves the data broker’s revenue.

Together, any optimal mechanism (σ, τ) must be such that for G-almost all c ∈ C and for all β ∈
supp(σ(c)),

{θ ∈ supp(β) : u(θ) > u(θp̃Dβ
(c))} = ∅.

which, together with the fact that
∑

β∈supp(σ(c)) σ(β|c) = β0 for all c ∈ C, implies that for G-almost all

c ∈ C, the consumer surplus must be lower than the case when all the information about θ is revealed. ■

In addition to the surplus extraction result, the characterization of the optimal mechanisms can be

generalized as well. With proper regularity conditions, there is an optimal mechanism analogous to the

canonical ϕ-quasi-perfect mechanism introduced in the paper. To state this result, given any ({Dθ}θ∈Θ, β0),
for each θ ∈ Θ, write supp(Dθ) as [l(θ), u(θ)]. For any p ∈ V , let θp ∈ Θ be the unique θ such that

p ∈ (l(θ), u(θ)]. For any c ∈ C, let p̂0(c) be the largest optimal price for the producer with marginal cost

c ∈ C under the demand whose support contains p0(c).
6 Also, let ϕ̂(c) := min{ϕ(c), p̂0(c)} for all c ∈ C.

Furthermore, given any function ψ : C → R+, say that a mechanism (σ, τ) is a canonical ψ-quasi-perfect

5See more detailed arguments in the proof of Theorem S1 of an earlier version of this paper (Yang, 2020b)
6That is, p̂0(c) := pDθp0(c)

(c). Notice that p̂0(c) ≤ p0(c) for all c ∈ C. Moreover, in the case where the data broker can

disclose all the information about the value v, p̂0(c) = p0(c) for all c ∈ C.
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segmentation if the producer with marginal cost c, when reporting truthfully, receives π̄, and if for any

c ∈ C, and for any β ∈ supp(σ(c)), either

β(θ′) = βθψ(c)(θ
′) :=


β0(θ

′), if u(θ′) < ψ(c) and u(θ) ≥ ψ(c)∑
{θ̂:u(θ̂)≥ψ(c)} β0(θ̂), if u(θ′) ≥ ψ(c) and θ′ = θ

0, otherwise

, (OA.41)

for any θ, θ′ ∈ Θ; or

supp(β) = {θ′ : l(θ′) ≤ ψ(c)} ∪ {θ} (OA.42)

for some θ ∈ Θ with l(θ) ≥ ψ(c) and

β(θ′) = β0(θ
′). (OA.43)

for all θ′ ∈ Θ such that u(θ′) < ψ(c).

With these definitions, Theorem OA.2 below prescribes an optimal mechanism for the data broker.

Theorem OA.2. For any ({Dθ}θ∈Θ, β0) and any distribution of marginal cost G such that the function

c 7→ max{g(c)(ϕ(c)− p̂0(c)), 0} is nondecreasing and that D0 is regular, there is a canonical ϕ̂-quasi-perfect

mechanism that is optimal.

To prove Theorem OA.2, I first introduce two useful lemmas.

Lemma OA.5. For any c ∈ C, any ν ≥ c and any segmentation s ∈ ∆(∆(Θ)),∫
∆(Θ)

(pDβ
(c)− ν)Dβ(pDβ

(c))s(dβ) ≤
∫
{θ:pDθ

(c)≥ν}
(pDθ

(c)− ν)Dθ(pDθ
)β0(dθ),

Proof. I first show that for any segmentation s ∈ ∆(∆(Θ)), there must exist another segmentation ŝ such

that for any β ∈ supp(ŝ), either β({θ : u(θ) < c}) = 1 or pDβ
(c) = pDθ̄β

(c) and∫
∆(Θ)

(pDβ
− ν)D(pDβ

(c))s(dβ) ≤
∫
∆(Θ)

(pDβ
− ν)D(pDβ

(c))ŝ(dβ),

where θ̄β := max(supp(β)). Indeed, consider any segmentation s ∈ ∆(∆(Θ)). For any β ∈ supp(s), by

definition, it must be that supp(β) ∩ {θ ∈ Θ : u(θ) ≥ pDβ
(c)} ≠ ∅. Now define β̂θ as

β̂θ(θ′) :=


β(θ), if θ′ ≤ pDβ

(c)∑
{θ̂:u(θ̂)≥pDβ

(c)} β(θ̂), if θ′ = θ

0, otherwise

,

for any θ′ ∈ supp(β) and for any θ ∈ supp(β) with u(θ) ≥ pDβ
(c). Notice that by construction, β ∈

co({β̂θ}θ≥pDβ
(c)) and hence there exists Kβ ∈ ∆(∆(Θ)) such that β =

∑
β̂K

β(β̂). Therefore, by splitting

every β according to Kβ, and by the same arguments as in the proof of Lemma 3, the resulting segmentation

ŝ ∈ ∆(Θ) must be such that for any β̂ ∈ supp(ŝ), pDβ̂
(c) is in the interval described by max(supp(β̂)).

Moreover, since {(l(θ), u(θ))}θ∈Θ is disjoint, it follows that pDθ̄
β̂

(c) = pDβ̂
(c). Furthermore, since for any
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β ∈ supp(s),

(pDβ
(c)− ν)Dβ(pβ(c)) =(pDβ

(c)− ν)
∑

{θ:u(θ)≥pDβ
(c)}

Dθ(pDβ
(c))β(θ)

≤
∑

{θ:u(θ)≥pDβ
(c)}

(pDθ
(c)− ν)Dθ(pDθ

(c))β(θ)

=
∑

β̂∈supp(Kβ)

(pDβ̂
(c)− ν)Dβ̂(pDβ̂

(c))Kβ(β̂).

As a result, since ŝ(β̂) =
∑

βK
β(β̂)s(β), it then follows that∫

∆(Θ)
(pDβ

(c)− ν)Dβ(pDβ
(c))s(dβ) ≤

∫
∆(Θ)

(pDβ
(c)− ν)Dβ(pDβ

(c))ŝ(dβ).

Finally, since for any β ∈ supp(ŝ), either β({θ : u(θ) < c}) = 1 or pDβ
(c) = pDθ̄β

(c), it must be that∫
∆(Θ)

(pDβ
(c)− ν)Dβ(pDβ

(c))ŝ(dβ) ≤
∫
{θ:pDθ

(c)≥ν}
(pDθ

(c)− ν)Dθ(pDθ
(c))β0(dθ),

as desired. ■

Lemma OA.6. Suppose that D0 is regular. For any c ∈ C and for any ν ∈ [c,p0(c)],

D0(p0(c)) ≤
∑

{θ:u(θ)≥ν}

Dθ(pDθ
(c))β0(θ) (OA.44)

and

D0(p0(c)) ≥
∑

{θ:l(θ)≥p0(c)}

Dθ(pDθ
(c))β0(θ). (OA.45)

Proof. Consider any c ∈ C. I first show that for any θ ∈ Θ such that l(θ) ≥ p0(c), pDθ
(c) = l(θ). Indeed,

since D0 is regular, for any θ ∈ Θ such that l(θ) ≥ p0(c) and for any p ∈ (l(θ), u(θ)],

(p− c)

Dθp(p)β0(θp) +
∑

{θ′:l(θ′)≥p}

β0(θ
′)


=(p− c)

∑
{θ′:u(θ′)≥p}

Dθ′(p)β0(θ
′)

=(p− c)D0(p)

≤(l(θ)− c)D0(l(θ))

=(l(θ)− c)

 ∑
{θ′:u(θ′)≥l(θ)}

Dθ′(l(θ))β0(θ
′)


=(l(θ)− c)

Dθ(l(θ))β0(θ) +
∑

{θ′:l(θ′)≥l(θ)}

β0(θ
′)

 .
As such, since p ∈ (l(θ), u(θ)] and u(θp) = u(θ), it must be that

(p− c)Dθ(p) < (l(θ)− c)Dθ(l(θ)),
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which then implies that pDθ
(c) = l(θ).

Now, I show that p0(c) ≥ p̂0(c) := pDθp0(c)
(c). Indeed, by definition,

=(p̂0(c)− c)

Dθp0(c)
(p̂0(c))β0(θp0(c)) +

∑
{θ′:l(θ′)≥p̂0(c)}

β0(θ
′)


=(p̂0(c)− c)D0(p̂0(c))

≤(p0(c)− c)D0(p0(c))

=(p0(c)− c)

Dθp0(c)
(p0(c)) +

∑
{θ′:l(θ′)≥p0(c)}

β0(θ
′)

 ,
and

(p0(c)− c)Dθp0(c)
(p0(c)) ≤ (p̂0(c)− c)Dθp(c)(p̂0(c)).

As a result, it must be that p̂0(c) ≤ p0(c).

Consequently, ∑
{θ:l(θ)≥p0(c)}

Dθ(pθ(c))β0(θ) =
∑

{θ:l(θ)≥p0(c)}

β0(θ)

≤
∑

{θ:l(θ)≥p0(c)}

β0(θ) +Dθp0(c)
(p0(c))β0(θp0(c))

≤D0(p0(c)),

which proves (OA.45). On the other hand, for any ν ∈ [c,p0(c)]∑
{θ:u(θ)≥ν}

Dθ(pDθ
(c))β0(θ)

=
∑

{θ:ν≤u(θ)<p0(c)}

Dθ(pDθ
(c))β0(θ) +

∑
{θ:u(θ)≥p0(c)}

Dθ(pDθ
(c))β0(θ)

≥
∑

{θ:u(θ)≥p0(c)}

Dθ(pDθ
(c))β0(θ)

=Dθp0(c)
(p̂0(c)) +

∑
{θ′:l(θ′)≥p0(c)}

Dθ′(l(θ
′))β0(θ

′)

≥Dθp0(c)
(p0(c)) +

∑
{θ′:l(θ′)≥p0(c)}

β0(θ
′)

=D0(p0(c)),

which proves (OA.44) ■

With Lemma OA.5 and Lemma OA.6, the proof of Theorem OA.2 is as below.

Proof of Theorem OA.2. To prove Theorem OA.2, first notice that Lemma 1 still applies and hence the data
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broker’s maximization problem can be written as

max
σ

∫
C

(∫
∆(Θ)

(pDβ
(c)− ϕ(c))Dβ(pDβ

(c))σ(dβ|c)

)
G(dc)

s.t.

∫ c′

c

(
Dβ(pDβ

(z))(σ(dβ|z)− σ(dβ|c′))
)
dz ≥ 0, ∀c, c′ ∈ C (OA.46)

π̄ +

∫ c

c

(∫
∆(Θ)

Dβ(pDβ
(z))σ(dβ|z)

)
dz ≥ π̄ +

∫ c

c
D0(p0(z)) dz, ∀c ∈ C,

where the maximum is taken over all σ : C → ∆(∆(Θ)) such that σ(c) is a segmentation for all c ∈ C.

Consider first a relaxed problem of (OA.46) where the first constraint is relaxed to Dσ : C → [0, 1] being

nonincreasing, where

Dσ(c) :=

∫
∆(Θ)

Dβ(pDβ
(c))σ(dβ|c),

for all c ∈ C. By the same duality argument as in the proof of Lemma OA.3, it suffices to find a feasible σ∗

and a Borel measure µ∗ on C such that

σ∗ ∈ argmax
σ∈Σ

[ ∫
C

(∫
∆(Θ)

(pDβ
(c)− ϕ(c))Dβ(pDβ

(c))σ(dβ|c)

)
G(dc)

+

∫
C

(∫ c

c

(∫
∆(Θ)

Dβ(pDβ
(z))σ(dβ|z)−D0(p0(z))

)
dz

)
µ∗(dc)

]
,

where Σ is the collection of segmentation schemes such that Dσ is nonincreasing, and that∫
C

(∫ c

c

(∫
∆(Θ)

Dβ(pDβ
(z))σ∗(dβ|z)−D0(p0(z))

)
dz

)
µ∗(dc) = 0.

To this end, let M∗ be defined as

M∗(c) := lim
c′↓c

g(c)(ϕ(c)− p̂0(c))
+.

Since c 7→ g(c)(ϕ(c)−p̂0(c))
+ in nondecreasing,M∗ is nondecreasing and right-continuous and hence induced

a Borel measure µ∗ with supp(µ∗) = [c∗, c] for some c∗ ≤ c. Then, by the same arguments as in the proof

of Proposition 2,

max
σ∈Σ

[ ∫
C

(∫
∆(Θ)

(pDβ
(c)− ϕ(c))Dβ(pDβ

(c))σ(dβ|c)

)
G(dc)

+

∫
C

(∫ c

c

(∫
∆(Θ)

Dβ(pDβ
(z))σ(dβ|z)−D0(p0(z))

)
dz

)
µ∗(dc)

]
is equivalent to

max
σ∈Σ

∫
C

(∫
∆(Θ)

(pDβ
(c)− ϕ̂(c))Dβ(pDβ

(c))σ(dβ|c)

)
G(dc). (OA.47)

To solve (OA.47), notice that for any c ∈ [c, c∗),∑
{θ:u(θ)≥ϕ̂(c)}

Dθ(pDθ
(c)) > D0(p0(c)),
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which is due to ϕ̂(c) = ϕ(c) ≤ p̂0(c) ≤ p0(c) and (OA.45). Meanwhile, for any c ∈ (c∗, c], there exists a

unique λ(c) such that

λ(c)Dθ
ϕ̂(c)

(p̂0(c)) +
∑

{θ:l(θ)≥ϕ̂(c)}

Dθ(pDθ
(c)) = D0(p0(c)),

which is due to the fact that ϕ̂(c) = p̂0(c) for all c ∈ (c∗, c] and (OA.44). Furthermore, Since D0 is regular,

for any θ ∈ Θ such that u(θ) ≥ ϕ̂(c) and for any p ≤ l(θ
ϕ̂(c)

),

(p− c)Dβθ
ϕ̂(c)

(p) =
∑

{θ′:u(θ′)≥u(θp)}

(p− c)Dθ′(p)β
θ
ϕ̂(c)

(θ′)

=(p− c)D0(p)

≤(l(θ
ϕ̂(c)

)− c)D0(l(θϕ̂(c)))

≤(l(θ)− c)D0(l(θϕ̂(c))) (OA.48)

=(l(θ)− c)
∑

{θ′:u(θ′)≥ϕ̂(c)}

βθ
ϕ̂(c)

(θ′)

=(l(θ)− c)Dβθ
ϕ̂(c)

(l(θ))

=(pDθ
(c)− c)Dβθ

ϕ̂(c)

(pDθ
(c)),

where βθ
ϕ̂(c)

is defined in (OA.41). In addition, by the same construction as in the proof of Lemma 3, for

any c ∈ (c∗, c], there exists a segmentation σ̃(c) ∈ ∆(∆(Θ)) such that supp(σ̃(c)) = {β̃θp̂0(c)
: l(θ) ≥ p̂0(c)},

with β̃θp̂0(c)
satisfying (OA.42) and (OA.43) and that

(p− c)Dβ̃θ
p̂0(c)

(p) ≤ (l(θ)− c)Dθ(l(θ)) = (pDθ
(c)− c)Dθ(pDθ

(c)) (OA.49)

for all θ ∈ Θ such that l(θ) ≥ p0(c), as well as

pD
β̃θ
p̂0(c)

(z) ≥ pD0(z) ≥ p̂0(z) (OA.50)

for all z ∈ [c, c] and for all θ ∈ Θ such that l(θ) ≥ p0(c).

Now define σ∗ as follows.

σ∗(c) :=

{
σ1(c), if c ∈ [c, c∗]

σ2(c), if c ∈ (c∗, c]
,

where

σ1(β
θ
ϕ(c)|c) :=

β0(θ)∑
{θ′:u(θ′)≥ϕ(c)} β0(θ

′)

for all c ∈ [c, c∗] and for all θ ∈ Θ such that u(θ) ≥ ϕ(c), whereas

σ2(β|c) :=


λ(c) β0(θ)∑

{θ′:u(θ′)≥p̂0(c)}
β0(θ′)

, if β = βθp̂0(c)
, u(θ) ≥ p̂0(c)

(1− λ(c))σ̃(β̃θp̂0(c)
|c), if β = β̃θp̂0(c)

, l(θ) ≥ p̂0(c)

0, otherwise

,
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for all c ∈ (c∗, c]. It then follows that, by (OA.48) and (OA.49),∫
C

(∫
∆(Θ)

(pDβ
(c)− ϕ̂(c))Dβ(pDβ

(c))σ∗(dβ|c)

)
G(dc)

=

∫
C

 ∑
{θ:pDθ

(c)≥ϕ̂G(c)}

(pDθ
(c)− ϕ̂(c))Dθ(pDθ

(c))β0(θ)

G(dc),

which, together with Lemma OA.5, implies that σ∗ is a solution of (OA.47).

Furthermore, for any c > c∗, by the definition of σ2(c) and λ(c), by (OA.48) and (OA.49), and by the

fact that ϕ̂(c) = p̂0(c), ∫
∆(Θ)

Dβ(pDβ
(c))σ∗(dβ|c) = D0(p0(c)).

Therefore, ∫
C

(∫ c

c

(∫
∆(Θ)

Dβ(pDβ
(z))σ∗(dβ|z)−D0(p0(z))

)
dz

)
µ∗(dc) = 0.

Finally, by definition of ϕ̂ and by Lemma OA.6,∫
∆(Θ)

Dβ(pDβ
(c))σ∗(dβ|c) ≥ D0(p0(c))

for all c ∈ [c, c∗). Together with monotonicity of ϕ̂, σ∗ ∈ Σ and σ∗ is a solution of the relaxed problem of

(OA.46).

It then suffices to show that σ∗ is implementable. Notice that for any c ∈ C and for any z ∈ [c, c] and

for any βθ
ϕ̂(c)

∈ supp(σ∗(c)), if

PD
βθ
ϕ̂(c)

(z) ∩ supp(Dθ) = ∅,

then it must be that

(p− z)D0(p) =(p− z)Dβθ
ϕ̂(c)

(p)

≤(pD
βθ
ϕ̂(c)

(z)− z)Dβθ
ϕ̂(c)

(pD
βθ
ϕ̂(c)

(z))

=(pD
βθ
ϕ̂(c)

(z)− z)D0(pD
βθ
ϕ̂(c)

(z)),

for all p ≤ pD
βθ
ϕ̂(c)

(z). Therefore,

pD
βθ
ϕ̂(c)

(z) ≥ p0(z) ≥ p̂0(z) ≥ ϕ̂(z),

for all z ∈ [c, c]. Together with (OA.50), by the same argument as the proof of Lemma 3, σ∗ is indeed

implementable. This completes the proof. ■
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OA.4 Counterexample: Producer’s Profit Is Not Single-Crossing

This example demonstrates the fact that the producer’s profit, as a function of market segmentation and

marginal cost, does not exhibit the single-crossing property—even when restricting the domain to the set of

quasi-perfect segmentations and ordering them by the cutoff κ. Formally, let ≥B denote the Blackwell order

on S.7 Meanwhile, define the following two orders over the family of quasi-perfect segmentations. Let s be

a κ-quasi-perfect segmentation for c ≥ 0, and let s′ be a κ′-quasi-perfect segmentation for c′ ≥ 0. Say that

s ≥QP s
′ if κ ≤ κ′, and that s ≥∗

QP s
′ if κ ≤ κ′ and c ≤ c′. That is, ≥QP is a (total) order on the family of

quasi-perfect segmentations (regardless of cost, and hence regardless of pricing incentives) implied by their

cutoffs κ; whereas ≥∗
QP is a (partial) order on the same family when costs (and hence pricing incentives) are

further taken into account. Note that for any nondecreasing function ψ : C → R+ with ψ(c) ≥ c for all c, a

ψ-quasi-perfect scheme σ is monotone in both ≥QP and ≥∗
QP.

Below, I show that there exists a market demand D0, two costs cL < cH , and two market segmentations

sL and sH such that sL ≥B sH , sL ≥QP sH , sL ≥∗
QP sH ,∫

D
πD(cH)sL(dD) >

∫
D
πD(cH)sH(dD)

and yet ∫
D
πD(cL)sL(dD) =

∫
D
πD(cL)sH(dD).

This means that the producer’s profit is not single-crossing in general, neither under the the Balckwell order,

nor when restricting attention to quasi-perfect segmentations (even when the pricing incentives are correct

so that the producer induces quasi-perfect price discrimination on path).

Let the market demand D0 be defined as

D0(p) :=


1, if p ∈ [0, 1]
1
4 , if p ∈ (1, 2]
1
8 , if p ∈ (2, 3]

0, if p > 3

.

Now consider two costs, cL = 1/2 and cH = 3/2, and consider two market segmentations sL and sH ,

where sH = δ{D0} is the degenerate segmentation that does not segment D0, while sL induces two segments,

D2
L and D3

L, where

D2
L(p) :=


1, if p ∈ [0, 1]
1
3 , if p ∈ (1, 2]

0, if p > 2

; D3
L(p) :=


1, if p ∈ [0, 1]
1
5 , if p ∈ (1, 3]

0, if p > 3

,

and sL({D2
L}) = 3/8, sL(D

3
L) = 5/8. Clearly sL ≥B sH .

Direct calculation shows P0(cH) = {3}, P0(cL) = {1}, PD2
L
(cL) = {1, 2}, and PD3

L
(cL) = {1, 3}, which

in turn implies PD2
L
(cH) = {2} and PD3

L
(cH) = {3}. Together, it follows that for any κL and κH such

that 1 ≤ κL ≤ 2 < κH ≤ 3, sL is a κL-quasi-perfect segmentation for cL, and sH is a κH -quasi-perfect

segmentation for cH . Therefore, sL ≥QP sH and sL ≥∗
QP sH .

7That is, s ≥B s′ if and only if s is a mean preserving spread of s′.
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However,∫
D
πD(cL)sL(dD) =

3

8
·
(
1− 1

2

)
·D2

L(1)+
5

8
·
(
1− 1

2

)
·D3

L(1) =
1

2
=

(
1− 1

2

)
·D0(1) =

∫
D
πD(cL)sH(dD),

where the first equality follows from 1 ∈ PD2
L
(cL) ∩ PD3

L
(cL), and the third equality follows from P0(cL) =

{1}. Meanwhile,∫
D
πD(cH)sL(dD) =

3

8
·
(
2− 3

2

)
·D2

L(2)+
5

8
·
(
3− 3

2

)
D3
L(3) =

1

4
>

3

16
=

(
3− 3

2

)
D0(3) =

∫
D
πD(cH)sH(dD),

where the first equality follows from PD2
L
(cH) = {2} and PD3

L
(cH) = {3}, and the third equality follows

from P0(cH) = {3}. Thus, the producer’s profit, as a function of market segmentation and cost, is not

single-crossing in general.

In fact, this example implies that the producer’s profit function does not satisfy monotone difference in

general. To see this, let cM := 3/4. Then P0(cM ) = {2}, PD2
L
(cM ) = {2}, and PD3

L
(cM ) = {3} and thus∫

D
πD(cM )sL(dD) =

3

8
·
(
2− 3

4

)
D2
L(2) +

5

8
·
(
3− 3

4

)
D3
L(3) =

7

16
,

and ∫
D
πD(cM )sH(dD) =

(
2− 3

4

)
D0(2) =

5

16
.

Together, it follows that cL < cM < cH , and yet∫
D
πD(cL)sL(dD)−

∫
D
πD(cL)sH(dD) = 0 <

1

8
=

∫
D
πD(cM )sL(dD)−

∫
D
πD(cM )sH(dD)

while ∫
D
πD(cM )sL(dD)−

∫
D
πD(cM )sH(dD) =

1

8
>

1

16
=

∫
D
πD(cH)sL(dD)−

∫
D
πD(cH)sH(dD).

Furthermore, this example also implies that any segmentation scheme σ : C → S with σ(cL) = sL and

σ(cH) = sH is not implementable, even if it is monotone under ≥B, ≥QP, and ≥∗
QP. Indeed, if σ can be

implemented by τ , then the incentive constraint for cL,∫
D
πD(cL)σ(dD|cL)− τ(cL) ≥

∫
D
πD(cL)σ(dD|cH)− τ(cH),

implies τ(cL) ≤ τ(cH). However, from the incentive constraint for cH ,∫
D
πD(cH)σ(dD|cH)− τ(cH) ≥

∫
D
πD(cH)σ(dD|cL)− τ(cL),

it follows that

0 <

∫
D
πD(cH)σ(dD|cL)−

∫
D
πD(cH)σ(dD|cH) ≤ τ(cL)− τ(cH),

a contradiction. In particular, for any nondecreasing function ψ on C = [0, cH ] such that ψ(c) ≥ c for all

c, and that 1 < ψ(cL) ≤ 2 < ψ(cH) ≤ 3, any ψ-quasi-perfect scheme σ with σ(cL) = sL and σ(cH) = sH

is not implementable. This demonstrates that monotonicity of the cutoff function ψ is not sufficient for

implementability of a ψ-quasi-perfect scheme.

Finally, it is noteworthy that the exact values of D0, cL, cH , sL and sH are not essential for this

counterexample. The crucial part is the fact that cL has multiple optimal prices under both segments D2
L

and D3
L. This suggests the example here is generic.
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