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B An equivalent convex program

In many applications of rational inattention, a choice from among distributions of poste-
riors µ 2 M⇡ represents the acquisition of information. Studying such choice may not be
straightforward since distributions of posteriors are infinite dimensional objects. A com-
mon approach is to re-formulate the information acquisition problem as a choice from among
stochastic kernels �F 2 SF , which is a more tractable program. For example, in the leading
case of the entropy cost, Matejka and McKay (2015) study the program

max
�F2SF

X

f,✓

f(✓)�F (f |✓)⇡(✓)�
X

f,✓

�F (f |✓)⇡(✓) log
�F (f |✓)
�F (f)

. (34)

The program has two essential features: it is finite dimensional and it is convex. This
allows Matejka and McKay (2015) to use standard solution methods based on Lagrange
multipliers.

In this section we describe a generalization of (34) to all posterior separable costs. The
generalization we propose maintain the two essential features of (34): finite dimensionality
and convexity.

Let H : �(⇥) ! R be a concave measure of uncertainty. We generalize (34) by building
on the superlinear extension Ĥ : R⇥

+ ! R of the function H. Letting ⇥ = {1, . . . n} and
⇣ = (⇣1, . . . , ⇣n) 2 R⇥

+, the function Ĥ is given by

Ĥ(⇣1, . . . , ⇣n) =

8
<

:
(
Pn

i=1 ⇣i)H
⇣

⇣1Pn
i=1 ⇣i

, . . . ,
⇣nPn
i=1 ⇣i

⌘
if
Pn

i=1 ⇣i > 0,

0 otherwise.

The function Ĥ extends H: for all p 2 �(⇥), H(p) = Ĥ(p). Since H is concave and up-
per semicontinuous, the function Ĥ is superlinear and upper semicontinuous. “Superlinear”
means that for all ↵,� 2 R+ and ⇣, ⌘ 2 R⇥

+,

Ĥ(↵⇣ + �⌘) � ↵Ĥ(⇣) + �Ĥ(⌘).

It is easy to see that Ĥ is the only superlinear extension of H from �(⇥) to R⇥
+.

The next lemma generalizes (34). To state the result, given �F 2 SF and f 2 F , we
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denote by �(F,f) 2 R⇥
+ the vector (�F (f |✓))✓2⇥. We also denote by �(F,f)⇡ the pointwise

product of �(F,f) and ⇡:
�(F,f)⇡ = (�F (f |✓)⇡(✓))✓2⇥.

Lemma 9. Suppose the cost of information is posterior separable with concave uncertainty
measure H. If (µ, dF ) 2 M⇡ ⇥DF is an optimal solution of (1), then �(µ,dF ) is an optimal
solution of

max
�F2SF

X

f,✓

f(✓)�F (f |✓)⇡(✓)�

0

@Ĥ(⇡)�
X

f

Ĥ
�
�(F,f)⇡

�
1

A . (35)

Conversely, if �F 2 SF is an optimal solution of (35), then (µ�F , d�F ) is an optimal solution
of (1).

Proof. Let (µ, dF ) 2 M⇡ ⇥DF and �F 2 SF . Simple algebra shows that

X

f,✓

f(✓)�F (f |✓)⇡(✓) =
Z

�(⇥)

0

@
X

f

(f · p)d�F (f |p)

1

A dµ�F (p), (36)

X

f

Ĥ
�
�(F,f)⇡

�
=

Z

�(⇥)
H(p) dµ�F (p). (37)

In addition, by Lemma 1, if �F = �(µ,dF ) then

Z

�(⇥)

0

@
X

f

(f · p) d�F (f |p)

1

A dµ�F (p) =

Z

�(⇥)

0

@
X

f

(f · p)dF (f |p)

1

A dµ(p), (38)

Z

�(⇥)
H(p) dµ�F (p) �

Z

�(⇥)
H(p) dµ(p). (39)

Now, suppose that (µ, dF ) is an optimal solution of (1). Set �F = �(µ,dF ). By (38) and
(39), also (µ�F , d�F ) is an optimal solution of (1). Therefore, by (36) and (37), �F is an
optimal solution of (35).

Conversely, suppose that �F is an optimal solution of (35). By (36) and (37), the pair
(µ�F , d�F ) maximizes

Z

�(⇥)

0

@
X

f

(f · p)dF (f |p)

1

A dµ(p)�
 
H(⇡)�

Z

�(⇥)
H(p) dµ(p)

!

overall all (µ, dF ) 2 M⇡ ⇥DF such that (µ, dF ) = (µ⌧F , d⌧F ) for some ⌧F 2 SF . Therefore,
by (38) and (39), the pair (µ�F , d�F ) is an optimal solution of (1). ⇤

The program (35) generalizes (34); importantly, it preserves finite dimensionality and
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convexity. If H is entropy, then

X

f,✓

�F (f |✓)⇡(✓) log
�F (f |✓)
�F (f)

= Ĥ(⇡)�
X

f

Ĥ
�
�(F,f)⇡

�
.

As in (34), the choice variable is �F , a finite dimensional object. Since the function Ĥ is
superlinear—hence, in particular, concave—the program (35) is convex.

Next we use Lagrange multipliers to derive (necessary and sufficient) first order condi-
tions. To state the result, let @Ĥ(⇣) be the superdifferential of Ĥ at ⇣ 2 R⇥

+. Recall that
@Ĥ(⇣) is the set of all ⇣⇤ 2 R⇥ such that for all ⌘ 2 R⇥

+,

Ĥ(⇣)� ⇣ · ⇣⇤ � Ĥ(⌘)� ⌘ · ⇣⇤.

Lemma 10. A stochastic kernel �F 2 SF is an optimal solution of (35) if and only if there
exists a Lagrange multiplier �F 2 R⇥ such that for all f 2 F ,

�f � �F 2 @Ĥ
�
�(F,f)⇡

�
. (40)

Proof. By a change of variables, �F is an optimal solution of (35) if and only if
�
�(F,f)⇡

�
f2F

is an optimal solution of

max
(⇣f )f2F

X

f

f · ⇣f +
X

f

Ĥ(⇣f ) subject to
X

f

⇣f = ⇡. (41)

Since Ĥ is concave and upper semicontinuous, it follows from standard convex programming
(e.g., Rockafellar 1970, Theorem 28.2) that

�
�(F,f)⇡

�
f2F is an optimal solution of (41) if and

only there is a Lagrange multiplier �F 2 R⇥ such that
�
�(F,f)⇡

�
f2F is an optimal solution

of
max

(⇣f )f2F

X

f

(f + �F ) · ⇣f +
X

f

Ĥ(⇣f ). (42)

By separability of the objective function,
�
�(F,f)⇡

�
f2F is an optimal solution of (42) if and

only if for every f 2 F ,

�(F,f)⇡ 2 arg max
⇣2R⇥

+

(f + �F ) · ⇣ + Ĥ(⇣),

which is the same as saying that �f � �F is an element of @Ĥ
�
�(F,f)⇡

�
. ⇤

Lemmas 9 and 10 can be of interest for applications beyond the scope of this paper. The
solution method based on Lagrange multipliers complements the concavification technique
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originally proposed by Caplin and Dean (2013). The concavification technique is based
on the observation that when cost of information is posterior separable, the information
acquisition problem can be formulated as a concavification problem:

max
µ2M⇡

Z

�(⇥)
(�F (p) + (H(⇡)�H(p))) dµ(p).

The function p 7! �F (p) + (H(⇡)�H(p)) is the target of the concavification.
Caplin, Dean and Leahy (2017) also develops a Lagrangian approach to optimal infor-

mation acquisition when costs are posterior separable; the techniques they develop can be
seen as complementary to ours. The use of the superlinear extension of H is peculiar to
this paper.

The program (35) reveals a connection between posterior separable costs and perturbed
utility functions (Fudenberg, Iijima and Strzalecki, 2015). Perturbed utility functions are a
model of stochastic choice where the agent’s objective function is the sum of expected utility
and a non-linear perturbation. To illustrate, suppose that ⇥ is a singleton, so that an act
f is simply a real number. Let c : [0, 1] ! R be a strictly concave function. In Fudenberg,
Iijima and Strzalecki (2015), the agent’s behavior is the outcome of the optimization

max
�F2SF

X

f

f · �F (f) +
X

f

c (�F (f)) . (43)

The function c is a perturbation of the agent’s utility.
The main similarity between (35) and (43) is that both Ĥ and c are concave: the

agent is rewarded for randomizing. The main difference between (35) and (43) is that Ĥ

is positively homogenous (of degree one), while c is strictly concave. Since Ĥ is positively
homogenous, (35) does not reward the agent for randomizing independently of the state.
Since c is strictly concave, (43) rewards the agent also for noisy behavior. This distinguishes
a model of stochastic choice based on incomplete information (e.g., this paper) from a model
of stochastic choice based on trembles (e.g., Fudenberg, Iijima and Strzalecki, 2015).

C Computational complexity of Axiom 3

Despite its rich structure, Axiom 3 has reasonably low computational complexity. In prac-
tice, analysts can verify whether or not a dataset satisfies Axiom 3 by solving an equivalent
linear program, which we formalize next.

Proposition 5. Let F1, . . . , Fn be a finite sequence in F . Axiom 3 is satisfied if and only
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if the following linear program has non-negative value:

minimize
nX

i=1

X

fi2supp(�Fi
)

x(Fi,fi)�Fi

�
p(Fi,fi)

�
�

nX

i,j=1

X

fj2supp(�Fj
)

y(Fi,Fj ,fj)�Fi

⇣
p(Fj ,fj)

⌘

subject to x(Fi,fi) � 0 and y(Fi,Fj ,fj) � 0, i, j = 1, . . . n, fi 2 Fi, fj 2 Fj ,

nX

i=1

X

fi2supp(�Fi
)

x(Fi,fi) = 1, (44)

X

fi2supp(�Fi
)

x(Fi,fi)p(Fi,fi) =
nX

j=1

X

fj2supp(�Fj
)

y(Fi,Fj ,fj)p(Fj ,fj), i = 1, . . . , n,

(45)

x(Fj ,fj) =
nX

i=1

y(Fi,Fj ,fj), j = 1, . . . , n, fj 2 supp(�Fj ). (46)

To see the relation between the linear program and Axiom 3, let µi, ⌫i 2 M and ↵i � 0

as in Axiom 3. For simplicity, assume that the µFi have disjoint supports. Define

x(Fi,fi) = ↵iµi
�
p(Fi,fi)

�
and y(Fi,Fj ,fj) = ↵i⌫i

⇣
p(Fj ,fj)

⌘
.

It is easy to check that the constraints of the linear program are satisfied. In particular,
µ̄i = ⌫̄i implies (45) and

P
i ↵iµi =

P
i ↵i⌫i implies (46). The objective function is equal to

nX

i=1

↵i

Z
�Fi dµi �

nX

i=1

↵i

Z
�Fi d⌫i.

With finite datasets, one can simply take {F1, . . . , Fn} = F . Thus, for finite datasets,
verifying Axiom 3 is equivalent to solving one linear program. The result provides a recipe
to test Axiom 3 in practice.

Proof of Proposition 5. To simplify notation, assume that supp(�Fi) = Fi for all i =

1, . . . , n. The more general case easily follows.
“If.” Assume the linear program has non-negative value. For i = 1, . . . , n, let µi, ⌫i 2 M

and ↵i � 0 as in Axiom 3. Without loss of generality, assume that
Pn

i=1 ↵i = 1. Define
x(Fi,fi) � 0 and y(Fi,Fj ,fj) � 0 by

x(Fi,fi) = ↵iµi
�
p(Fi,fi)

�
and y(Fi,Fj ,fj) = ↵i⌫i

⇣
p(Fj ,fj)

⌘ ↵jµj

⇣
p(Fj ,fj)

⌘

Pn
k=1 ↵kµk

⇣
p(Fj ,fj)

⌘
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where we adopt the convention that 0
0 = 0. To follow more easily the proof, the reader may

want to keep in mind the simpler case in which the supports of the µi are disjoint, so that
y(Fi,Fj ,fj) = ↵i⌫i(p(Fj ,fj)).

Simple algebra shows that

nX

i=1

X

fi2Fi

x(Fi,fi) =
nX

i=1

↵i

X

fi2Fi

µi
�
p(Fi,fi)

�
=

nX

i=1

↵i = 1,

X

fi2Fi

x(Fi,fi)p(Fi,fi) = ↵iµ̄i = ↵i⌫̄i =
nX

j=1

X

fj2Fj

y(Fi,Fj ,fj)p(Fj ,fj),

x(Fj ,fj) = ↵jµj

⇣
p(Fj ,fj)

⌘
= ↵jµj

⇣
p(Fj ,fj)

⌘ Pn
i=1 ↵i⌫i

⇣
p(Fj ,fj)

⌘

Pn
k=1 ↵kµk

⇣
p(Fj ,fj)

⌘ =
nX

i=1

y(Fi,Fj ,fj).

Since the linear program has non-negative value,

nX

i=1

X

fi2Fi

x(Fi,fi)�Fi

�
p(Fi,fi)

�
�

nX

i,j=1

X

fj2Fj

y(Fi,Fj ,fj)�Fi

⇣
p(Fj ,fj)

⌘
.

It is easy to verify that

nX

i=1

X

fi2Fi

x(Fi,fi)�Fi

�
p(Fi,fi)

�
=

nX

i=1

↵i

Z
�Fi dµi,

nX

i,j=1

X

fj2Fj

y(Fi,Fj ,fj)�Fi

⇣
p(Fj ,fj)

⌘
=

nX

i=1

↵i

Z
�Fi d⌫i.

We conclude that
nX

i=1

↵i

Z
�Fi dµi �

nX

i=1

↵i

Z
�Fi d⌫i,

which implies that Axiom 3 is satisfied.
“Only if.” Suppose Axiom 3 is satisfied. For i, j = 1, . . . , n, fi 2 Fi, and fj 2 Fj , take

x(Fi,fi) and y(Fi,Fj ,fj) that satisfy the constraints of the linear program. Define ↵i � 0 by

↵i =
X

fi2Fi

x(Fi,fi). (47)
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Constraint (45) implies that

X

fi2Fi

x(Fi,fi) =
nX

j=1

X

fj2Fj

y(Fi,Fj ,fj).

Thus we also have

↵i =
nX

j=1

X

fj2Fj

y(Fi,Fj ,fj). (48)

Define µi 2 M and ⌫i 2 M by

µi
�
p(Fi,fi)

�
=

x(Fi,fi)

↵i
and ⌫i (p) =

nX

j=1

X

fj2Fj

y(Fi,Fj ,fj)

↵i
1n

p(Fj,fj)

o(p).

By (47) and (48), µi and ⌫i are well defined. If ↵i = 0, we adopt the convention that
µi = ⌫i = µFi . To follow more easily the proof, the reader may want to keep in mind the
simpler case in which the supports of the µFi are disjoint, so that ⌫i(p(Fj ,fj)) = y(Fi,Fj ,fj)/↵i.

By construction, µi(PFi) = 1. In addition, constraint (45) implies that µ̄i = ⌫̄i. Con-
straint (46) implies that

P
i ↵iµi =

P
i ↵i⌫i. Since Axiom 3 is satisfied, we obtain that

nX

i=1

↵i

Z
�Fi dµi �

nX

i=1

↵i

Z
�Fi d⌫i.

It is clear that

nX

i=1

X

fi2Fi

x(Fi,fi)�Fi

�
p(Fi,fi)

�
=

nX

i=1

↵i

Z
�Fi dµi,

nX

i,j=1

X

fj2Fj

y(Fi,Fj ,fj)�Fi

⇣
p(Fj ,fj)

⌘
=

nX

i=1

↵i

Z
�Fi d⌫i.

We deduce that

nX

i=1

X

fi2Fi

x(Fi,fi)�Fi

�
p(Fi,fi)

�
�

nX

i,j=1

X

fj2Fj

y(Fi,Fj ,fj)�Fi

⇣
p(Fj ,fj)

⌘
.

This proves that the linear program has non-negative value. ⇤

Axiom 3 is an all-or-nothing condition, a common feature of Afriat-style axioms. We may
be interested also in the degree to which the axiom is violated. We can use the equivalence
between Axiom 3 and a linear program to provide a tractable measure of the severity of a
violation.
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To simplify notation, assume that for all F 2 F , supp(�F ) = F . For every F 2 F and
f 2 F , let ✏(F,f) 2 [0, 1]. Setting

✏ =
�
✏(F,f) : F 2 F , f 2 F

�
,

we say that Axiom 3 is ✏-satisfied if the following linear program has non-negative value:

minimize
X

F2F

X

f2F
x(F,f)�F

�
p(F,f)

�
�

X

F,G2F

X

g2G
y(F,G,g)�F

�
p(G,g)

�

subject to x(F,f) � 0 and y(F,G,g) � 0, F,G 2 F , f 2 F, g 2 G,
X

F2F

X

f2F
x(F,f) = 1,

X

f2F
x(F,f)p(F,f) =

X

G2F

X

g2G
y(F,G,g)p(G,g), F 2 F ,

x(G,g) =
X

F2F
y(F,G,g), G 2 F , g 2 G, (49)

y(F,F,f) � x(F,f) � ✏(F,f), F 2 F , f 2 F. (50)

If ✏ = 1–that is, if ✏(F,f) = 1 for all F 2 F and f 2 F–then (50) is redundant: Axiom 3 is
1-satisfied if and only if it is satisfied in the usual sense (see Proposition 5). If ✏ = 0–that
is, if ✏(F,f) = 0 for all F 2 F and f 2 F–then (49) and (50) imply that y(F,F,f) = x(F,f)

for all F 2 F and f 2 F , which in turn implies that the value of the linear program is
zero: Axiom 3 is always 0-satisfied. Intuitively, as ✏ ranges from 0 and 1, more and more
reallocations of revealed posteriors are tested. If Axiom 3 is ✏-satisfied for ✏ close to 1 but
not exactly 1, then the violation of the axiom is not too severe.

To aggregate the different dimensions of the vector ✏, we can build a consistency index
in the spirit of Afriat and Varian (see, e.g., Chambers and Echenique, 2016, ch. 5). For
every F 2 F and f 2 F , let ↵(F,f) 2 (0, 1) such that

X

F2F ,f2F
↵(F,f) = 1.

Given ↵ =
�
↵(F,f) : F 2 F , f 2 F

�
, we can use the quantity

max

8
<

:
X

F2F ,f2F
↵(F,f)✏(F,f) : Axiom 3 is ✏-satisfied

9
=

;

as a consistency index for Axiom 3. The vector of weights ↵ aggregates the the different
dimensions of the vector ✏. Computing the index boils down to a linear program.
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A limitation of the consistency index is that it does not distinguish between violations
of Axioms 2 and 3. It could be interested to try to separate the two types of violations, in
the spirit of Halevy, Persitz and Zrill (2018).

D Uniform posterior separability

In this section, we extend the analysis to cost functions that are uniformly posterior separa-
ble. So far, the agent’s prior has been fixed. Uniform posterior separability, due to Caplin,
Dean and Leahy (2017), is an hypothesis on the cost of information across priors.

Let M+ be the set of distributions over posteriors whose barycenters have full support:

M+ = {µ 2 M : µ̄(✓) > 0 for all ✓ 2 ⇥} .

Definition 8. A cost function C : M+ ! (�1,1] is uniformly posterior separable if there
is an upper semicontinuous function H : �(⇥) ! R such that for all µ 2 M+,

C(µ) = H(µ̄)�
Z

�(⇥)
H(p) dµ(p).

A cost function is uniformly posterior separable if it is posterior separable and the mea-
sure of uncertainty is the same across priors. Uniform posterior separability is a strength-
ening of posterior separability that is often assumed in rational inattention; for example,
it is often assumed that H is entropy regardless of the prior beliefs of the decision maker.
Uniform posterior-separable costs have shown some limitations–e.g., in settings where the
prior is endogenous (Ravid, 2020; Denti, Marinacci and Rustichini, 2021)–hereby motivating
the need for tests.

If the analyst observes the behavior of the agent only for a fixed prior, then uniform
posterior separability is observationally equivalent to posterior separability. To characterize
the additional implications of uniform posterior separability, we allow the analyst to observe
the agent’s behavior across menus and across priors. Each decision problem is now identified
by a finite menu of acts F ✓ R⇥ and by the agent’s (full support) prior ⇡ 2 �(⇥). The
prior may vary across decision problems.

Let D be a finite collection of decision problems for which the analyst observes the
behavior of the agent. For every decision problem (⇡, F ) 2 D, a stochastic kernel �(⇡,F ) :

⇥ ! �(F ) describes the probability �(⇡,F )(f |✓) 2 [0, 1] that the agent selects act f from
menu F in state ✓. The analyst’s dataset consists of a rule that associates to every decision
problem (⇡, F ) 2 D a stochastic kernel �(⇡,F ) 2 SF .
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Let �(µ,dF ) 2 SF be the stochastic kernel induced by a pair (µ, dF ) 2 M+ ⇥DF :

�(µ,dF )(f |✓) =
Z

�(⇥)

dF (f |p)p(✓)
µ̄(✓)

dµ(p).

Definition 9. A cost function C : M+ ! (�1,1] rationalizes the dataset
�
�(⇡,F ) : (⇡, F ) 2 D

�

if for every (⇡, F ) 2 D, there is a solution (µ, dF ) 2 M⇡ ⇥ DF of (1) such that �(⇡,F ) =

�(µ,dF ).

An extension of our main axioms characterizes the cost functions that are uniformly
posterior separable. To illustrate, let p(⇡,F,f) be the revealed posterior for an act f 2 F in a
decision problem (⇡, F ) 2 D. Denote by P(⇡,F ) the set of revealed posteriors and by µ(⇡,F )

the distribution of revealed posteriors.

Axiom 4. For every (⇡, F ) 2 D, f 2 supp(�(⇡,F )), and g 2 F ,

f · p(⇡,F,f) � g · p(⇡,F,f) 8g 2 F.

Axiom 5. For every i = 1, . . . , n, let (⇡i, Fi) 2 D, ↵i 2 R+, and µi 2 M such that
µi(P(⇡i,Fi)) = 1. For every reallocation of posteriors ⌫1, . . . , ⌫n 2 M,

nX

i=1

↵i

Z
�Fi dµi �

nX

i=1

↵i

Z
�Fi d⌫i.

Axiom 4 is the same as Axiom 1. Axiom 5, instead, is a substantial strengthening
of Axiom 3: by Axiom 5, the agent’s total utility cannot be improved by reallocating
revealed posteriors across menus and across priors. Axioms 4 and 5 characterize the revealed
preference implications of uniform posterior separability:

Theorem 4. A dataset (�(⇡,F ) : (⇡, F ) 2 D) satisfies Axioms 4 and 5 if and only if it is
rationalized by a cost function that is uniformly posterior separable. In addition, we can
choose H to be concave.

The proof (omitted) follows the exact same steps of the proof of Theorem 2. With
suitable data, experimental tests of Axiom 4 can be conducted in the same fashion as the
tests for Axiom 3 we describe in Section 4. Next we provide an example:

Example 2. Modify the setting of Section 4.2as follows: as the index i increases, not only
the stakes increase, but also the prior becomes more dogmatic:

1/2  ⇡1 < ⇡2 < ⇡3 < ⇡4 < 1.
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As i increases, it becomes ex-ante more likely that there are more red dots on the screen.
As the index i increases, the change in the incentive to acquire information is ambiguous.

On one hand, the stakes increase; this suggests that the incentive to acquire information
is higher for higher indices. At the same time, as the index i increases, the prior becomes
more dogmatic; this suggests that the incentive to acquire information is lower for higher
indices. It is up to the decision maker to aggregate these countervailing factors.

It is easy to modify the proof of Proposition 1 to obtain the following result: Given a
pair of decision problems i and j with i < j and ⇡i = 1/2 < ⇡j , Axiom 5 is satisfied if and
only if for all p 2 P(⇡j ,Fj),

�
p(⇡i,Fi,fi) � p

� �
p� p(⇡i,Fi,gi)

�
 0. (51)

Thus, Axiom 5 is satisfied if and only if as the index i increases, the revealed posterior
beliefs become more extreme.

Condition (51) can be quite demanding. Fox example, take i = 3 and j = 4, so that
the stakes increase by a relatively small amount. Imagine that given decision problem
(⇡3, F3), the agent finds it optimal to acquire full information, that is, p(⇡3,F3,f3) = 1 and
p(⇡3,F3,g3) = 0. Then, no matter how close ⇡4 is to one, (51) requires that p(⇡4,F4,f4) = 1 and
p(⇡4,F4,g4) = 0: Given decision problem (⇡4, F4), the agent must acquire full information.
This seems counterintuitive since almost dogmatic prior beliefs could dissuade the agent to
acquire any information at all.

Condition (51) shows that, in this context, testing Axiom 5 is equivalent to testing a
system of moment inequalities. Thus, with suitable data, one could test Axiom 5 using the
same method of inference we use in the empirical application of Section 4. The experimental
design of Dean and Neligh (2019) is flexible enough to accommodate heterogenous priors.26

E Rich datasets: identification and comparative statics

In this section we drop the hypothesis that F is finite to study identification and comparative
statics in rich datasets. Among the results in the main text, Theorems 1 and 3 easily extend
to the case where F is infinite: the extension of Theorem 1 to infinite datasets is discussed
by Caplin, Dean and Leahy (2017); The proof of Theorem 3 extends verbatim to the case
where F is infinite.

The extension of Theorem 2 to infinite datasets is less straightforward. The proof of
Theorem 2 invokes a finite-dimensional version of the theorem of the alternative (i.e., Farkas’

26One of the experiments run by Dean and Neligh (2019) feature heterogenous priors. Such experiment,
however, cannot be used to test Axiom 5 because the menu is constant across decision problems. If F1 =
. . . = Fn, then Axiom 5 is trivially satisfied, even if ⇡1 6= . . . 6= ⇡n.
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lemma). For infinite datasets, one would need to consider either an infinite-dimensional
version of the theorem of the alternative, which usually comes with additional technical
conditions, or a different proof strategy.

E.1 Test functions

Test functions, in the spirit of Lu (2016), are the tool we need to study identification and
comparative statics in rich datasets. For F 2 F , act g 2 R⇥, and ↵ 2 (0, 1), define the
menu ↵F + (1� ↵)g by

↵F + (1� ↵)g = {↵f + (1� ↵)g : f 2 F}.

Definition 10. Let F 2 F and g 2 R⇥ such that for every ↵ 2 (0, 1), ↵F + (1� ↵)g 2 F .
The (F, g)-test function is the function T(F,g) : (0, 1) ! R+ given by

T(F,g)(↵) =
1

↵

 Z

�(⇥)
�(↵F+(1�↵)g)(p) dµ(↵F+(1�↵)g)(p)� �(↵F+(1�↵)g)(⇡)

!
.

Test functions address the following question: How does the value of the agent’s infor-
mation changes as the incentive to acquire information changes? The term

Z

�(⇥)
�(↵F+(1�↵)g)(p) dµ(↵F+(1�↵)g)(p)� �(↵F+(1�↵)g)(⇡)

is the value of the revealed information structure µ(↵F+(1�↵)g) for the menu ↵F + (1�↵)g.
Changing ↵ means changing the incentive to acquire information. Intuitively, as ↵ decreases
toward zero, the mixture menu ↵F + (1� ↵)g becomes more similar to the singleton menu
{g}, for which information is useless.

The next lemma describes the main properties of test functions. To state the result,
given a cost function C and a menu F , we denote by VC(F ) the value that, ex ante, the
agent assigns to menu F :

VC(F ) = max
µ2M⇡

Z

�(⇥)
�F (p) dµ(p)� C(µ).

Lemma 11. Suppose that the dataset (�F )F2F is rationalized by a canonical cost function
C. Then every test function T(F,g) is non-decreasing and satisfies

VC(F ) = �F (⇡) +

Z 1

0
T(F,g)(↵) d↵.

In addition, every two test functions T(F,g) and T(F,g0) are equal almost everywhere.
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The lemma highlights three important properties of test functions. First, test functions
are non-decreasing: if ↵ � � then T(F,g)(↵) � T(F,g)(�). For the ratio

T(F,g)(↵) =

R
�(⇥) �(↵F+(1�↵)g)(p) dµ(↵F+(1�↵)g)(p)� �(↵F+(1�↵)g)(⇡)

↵

to be non-decreasing in ↵, the numerator must increase faster than the denominator. This
is evidence that the agent is responsive to the incentive to acquire information.

Second, test functions allow us to recover the ex ante preferences of the agent over
menus. Imagine that, before acquiring any information, the agent is given the opportunity
to choose between the menus F and G. The agent would prefer F to G if and only if
VC(F ) � VC(G). These preferences over menus are studied by de Oliveira, Denti, Mihm
and Ozbek (2017); we will build on their identification result.

Third, fixing a menu F , every two test functions T(F,g) and T(F,g0) are equal almost
everywhere. This reflects the fact that the menus ↵F +(1�↵)g and ↵F +(1�↵)g0 generate
the same incentive to acquire information. It would not be true if the utility function and
the cost of information were not additively separable, as in the model of Chambers, Liu and
Rehbeck (2020).

Proof. Let C(�(⇥)) be the space of continuous functions � : �(⇥) ! R. Define the
functional WC : C(�(⇥)) ! R by

WC(�) = max
µ2M⇡

Z
� dµ� C(µ).

The functional WC is convex and continuous in the sup-norm topology. Moreover, for every
menu F , WC(�F ) = VC(F ).

Let F 2 F and g 2 R⇥ such that for every ↵ 2 (0, 1), ↵F + (1 � ↵)g 2 F . Define the
function  (F,g) : R ! R by

 (F,g)(↵) = WC
�
↵�F + (1� ↵)�{g}

�
.

Since WC is convex, the function  (F,g) is convex.
Let  +

(F,g) and  �
(F,g) be the right and left derivatives of  (F,g). Observe that for all

↵ 2 (0, 1),
↵�F + (1� ↵)�{g} = �(↵F+(1�↵)g).

Since C is monotone and rationalizes the dataset, it follows from Lemma 3 that for all
G 2 F ,

µG 2 arg max
µ2M⇡

Z
�G dµ� C(µ).
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Thus, by an envelope theorem (e.g, Milgrom and Segal 2002, Theorem 1), we have that for
all ↵ 2 (0, 1),

 �
(F,g)(↵) 

Z
�F � �{g} dµ(↵F+(1�↵)g)   +

(F,g)(↵).

Simple algebra shows that
Z
�F � �{g} dµ(↵F+(1�↵)g) = T(F,g)(↵) + �F (⇡)� �{g}(⇡).

We deduce that

 �
(F,g)(↵)  T(F,g)(↵) + �F (⇡)� �{g}(⇡)   +

(F,g)(↵). (52)

By Rockafellar (1970, Theorem 24.1), if ↵ < � then  +
(F,g)(↵)   �

(F,g)(�). Putting
this together with (52), we obtain that T(F,g) is increasing. In addition, Rockafellar (1970,
Theorem 25.3) guarantees that  +

(F,g) =  
�
(F,g) almost everywhere. It follows from (52) that

for almost all ↵ 2 (0, 1),

 +
(F,g)(↵) = T(F,g)(↵) + �F (⇡)� �{g}(⇡). (53)

By Rockafellar (1970, Corollary 24.2.1) we have that

VC(F )� �{g}(⇡) =  (F,g)(1)� (F,g)(0) =

Z 1

0
 +

(F,g)(↵) d↵.

We conclude that
VC(F ) = �F (⇡) +

Z 1

0
T(F,g)(↵) d↵.

Let g0 2 R⇥ such that for every ↵ 2 (0, 1), ↵F + (1�↵)g0 2 F . Note that for all ↵ 2 R,

 (F,g)(↵)� (1� ↵)�{g}(⇡) =  (F,g0)(↵)� (1� ↵)�{g0}(⇡).

This implies that
 +

(F,g)(↵) + �{g}(⇡) =  
+
(F,g0)(↵) + �{g0}(⇡).

We conclude from (53) that T(F,g) = T(F,g0) almost everywhere. ⇤
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E.2 Rich datasets

Test functions allows us to uniquely identify canonical costs when the dataset is “rich.” Next
we formalize a notion of richness. Let co(F ) be the convex hull of menu F = {f1, . . . , fn}:

co(F ) =

(
nX

i=1

↵ifi : ↵1, . . . ,↵n � 0 and
nX

i=1

↵i = 1

)
.

Let d(co(F ), co(G)) be the Hausdorff distance of the convex hulls of menus F and G:

d(co(F ), co(G)) = max

⇢
max

f2co(F )
min

g2co(G)
kf � gk, max

g2co(G)
min

f2co(F )
kg � fk

�
.

Definition 11. The collection of menus F is rich if the following conditions hold:

(i) For every ✏ > 0 and G ✓ R⇥, there is F 2 F such that

d(co(F ), co(G))  ✏.

(ii) For every F 2 F , there is g 2 R⇥ such that for every ↵ 2 (0, 1),

↵F + (1� ↵)g 2 F .

By (i), the collection of menus in the dataset is dense in the collection of all menus. The
distance between menus is the Hausdorff distance between the convex hulls. The convex
hull of a menu represents the set of feasible payoffs, provided that mixing is allowed.

Condition (ii) guarantees that for every menu F , we are able to construct a test function
T(F,g) for some act g. The identity of g is irrelevant since every two test functions T(F,g)

and T(F,g0) are equal almost everywhere (see Lemma 11). For example, g could simply be
an element of F . An example of a rich dataset is, of course, the collection of all menus.

E.3 Unique identification

The next theorem shows that a rich dataset can be rationalized by one and only one canon-
ical cost function.

Theorem 5. Suppose that the dataset (�F )F2F is rationalized by a cost function C. If F
is rich, then the dataset is rationalized by a unique canonical cost function C

⇤ given by

C
⇤(µ) = sup

(Z
�Fn dµ+

n�1X

i=1

Z
�Fi dµFi+1 �

nX

i=1

Z
�Fi dµFi

)
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where the supremum is taken over all finite sequences F1, . . . , Fn in F{0}.

If the dataset is rich, then there is a unique canonical cost function that rationalizes the
dataset. We emphasize that identification is achieved by focusing on canonical costs. There
could be other cost functions that are not canonical, that rationalize the dataset, and that
are different from C

⇤. As for Theorem 3, the hypothesis that the cost is canonical can be
seen as a normalization to achieve identification.

The proof of Theorem 5 builds on the identification result for menu choices obtained
by de Oliveira, Denti, Mihm and Ozbek (2017). The next lemma immediately follows from
their work.

Lemma 12. If C is canonical and F is rich, then

C(µ) = sup
F2F

Z
�F dµ� VC(F ).

Proof. By de Oliveira, Denti, Mihm and Ozbek (2017, Theorem 2),

C(µ) = sup

⇢Z
�F dµ� VC(F ) : F is a finite subset of R⇥

�
.

Since F is rich, for every finite subset F of R⇥ and ✏ > 0, there is F✏ such that

d (co(F ), co(F✏))  ✏.

By Schneider (2014, Lemma 1.8.14),

max
p2�(⇥)

|�F (p)� �F✏(p)|  ✏.

The desired result follows from the continuity of VC . ⇤

Proof of Theorem 5. In view of Theorem 3, it is enough to show that the dataset is repre-
sented by a unique canonical cost function. Let C1 and C2 be two canonical cost functions
representing the dataset. By Lemma 11, we have that for every F 2 F ,

VC1(F ) = �F (⇡) +

Z 1

0
T(F,g)(↵) d↵ = VC2(F ).

Thus, by Lemma 12, we obtain that for every µ 2 M⇡,

C1(µ) = sup
F2F

Z
�F dµ� VC1(F ) = sup

F2F

Z
�F dµ� VC2(F ) = C2(µ).

⇤
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Applied to posterior separable costs, Theorem 5 allows us to identify the measure of
uncertainty, up to affine translations.

Corollary 2. Let (�F )F2F be a dataset of stochastic choices, with F rich. Let C1 and C2

be two posterior separable costs, with concave information measures H1 and H2. If C1 and
C2 both rationalize the dataset, then there is ⇣ 2 R⇥ such that for all p 2 �(⇥),

H1(p) = H2(p) + ⇣ · p.

To prove the result, one only need to combine Lemma 2 and Theorem 5.

E.4 Comparative statics

Test functions also allow us to characterize the behavioral implications of increasing the
cost of information. We compare two agents with costs given by C1 and C2, respectively.
We assume that both C1 and C2 are canonical.

Definition 12. Agent 1 has a higher cost of information than agent 2 if C1 � C2.

If we specialize the definition to posterior separable costs, we obtain a statement about
the relative concavity of the measures of uncertainty:

Definition 13. A function  : �(⇥) ! R satisfies Jensen’s inequality at ⇡ if for all finite
sequences p1, . . . , pn in �(⇥) and ↵1, . . . ,↵n in [0, 1] such that

Pn
i=1 ↵ipi = ⇡,

nX

i=1

↵i (pi) �  (⇡).

Lemma 13. Assume that C1 and C2 are posterior separable with concave uncertainty mea-
sures H1 and H2. Agent 1 has higher cost of information than agent 2 if and only if the
function  = H2 �H1 satisfies Jensen’s inequality at ⇡.

Proof. “If.” Assume that  satisfies Jensen’s inequality at the prior. If µ has finite support,
then

C1(µ)� C2(µ) =
X

p

µ(p) (p)�  (⇡) � 0.

⇤

By Winkler (1988, Theorem 2.1), the extreme points of M⇡ have finite support. Thus, by
the Krein-Milman theorem (Aliprantis and Border, 2006, Theorem 7.68), every µ 2 M⇡ is
the limit of a sequence (µn) in M⇡ such that each µn has finite support. We conclude that,
by continuity of the cost functions, the inequality C2(µ) � C1(µ) extends to all µ 2 M⇡.
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“Only if.” Assume that C2 � C1. Let p1, . . . , pn in �(⇥) and ↵1, . . . ,↵n in [0, 1] such
that

Pn
i=1 ↵ipi = ⇡. Define µ 2 M⇡ such that µ =

P
i ↵�pi . Then

X

i

↵i (pi)�  (⇡) = C1(µ)� C2(µ) � 0.

This shows that  satisfies Jensen’s inequality at the prior.
A concrete example of the comparative statics we study here often appears in applica-

tions of rational inattention.

Example 3. Let H be a measure of uncertainty. Given ↵1,↵2 � 0, define H1 = ↵1H and
H2 = ↵2H. Suppose that agents 1 and 2 have posterior separable costs with uncertainty
measures H1 and H2. Then agent 1 has higher cost of information than agent 2 if and only
if ↵1 � ↵2.

Next we use test functions to provide a behavioral characterization of increasing the
cost of information. Let T

1
(F,g) and T

2
(F,g) be the (F, g)-test functions of agents 1 and 2.

Definition 14. The test function T
1
(F,g) second-order stochastically dominates T

2
(F,g) if for

all ↵ 2 (0, 1], Z ↵

0
T
2
(F,g)(�) d� �

Z ↵

0
T
1
(F,g)(�) d�.

Theorem 6. Suppose that F is rich. The following statements are equivalent:

(i) Agent 1 has higher cost of information than agent 2.

(ii) For every F 2 F , T 1
(F,g) second-order stochastically dominates T

2
(F,g).

Thus, increasing the cost of information means increasing the test function, in the sense
of second-order stochastic dominance. From Lemma 11, test functions are non-decreasing
non-negative functions from the interval (0, 1) into the real line. Test functions, therefore,
can be seen as cumulative distribution functions and ranked by second-order stochastic
dominance. Intuitively, an increase in second-order stochastic dominance for test functions
reveals a decrease in sensitivity to the incentive to acquire information, hence a higher cost
of information.

Proof. “(i) implies (ii).” Conditions (i) implies that for all F 2 F ,

VC2(F ) � VC1(F ).

By Lemma 11, we have that for all F 2 F ,

Z 1

0
T
1
(F,g)(↵) d↵ �

Z 1

0
T
2
(F,g)(↵) d↵. (54)
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Observe that for all F 2 F , ↵ 2 (0, 1], and � 2 (0, 1),

�(↵F + (1� ↵)g) + (1� �)g = ↵�F + (1� ↵�)g.

As a result, with a change of variable we get that

Z 1

0
T
i
(↵F+(1�↵)g,g)(�) d�

=

Z 1

0

1

�

✓Z
�(↵�F+(1�↵�)g) dµ(↵�F+(1�↵�)g) � �(↵�F+(1�↵�)g)(⇡)

◆
d�

=
1

↵

Z ↵

0

1

�

✓Z
�(�F+(1��)g) dµ(�F+(1��)g) � �(�F+(1��)g)(⇡)

◆
d�

=
1

↵

Z ↵

0
T
i
(F,g)(�) d�. (55)

Then (ii) follows from (54) and (55).
“(ii) implies (i).” By Lemma 11, condition (ii) implies that for all F 2 F ,

VC2(F ) � VC1(F ).

By Lemma 12, we conclude that C1 � C2. ⇤

E.5 Related literature

Lu (2016) inspired us to use test functions to study identification and comparative statics.
Lu takes the perspective of an analyst who observes the behavior of an agent across menus
F ⇢ R⇥. In his paper, the analyst’s dataset is a rule (�̄F )F2F that associates to each menu
F 2 F a state-independent stochastic choice �̄F 2 �(F ). The stochastic choice �̄F can be
seen as the average of an underlying state-dependent stochastic choice �F : ⇥! �(F ):

�̄F (f) =
X

✓

�F (f |✓)⇡(✓).

It should be noted that Lu does not assume that the analyst knows the agent’s utility or
his prior. For ease of exposition, we do no emphasize this difference between the papers.

Lu considers a choice model where the agent’s private information is exogenous. The
agent’s information is represented by a fixed µ

⇤ 2 M⇡. Given a menu F of feasible acts,
the agent chooses dF 2 DF to maximize

Z

�(⇥)

0

@
X

f

(f · p)dF (f |p)

1

A dµ⇤(p).
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The pair (µ⇤
, dF ) induces the state-independent stochastic choice �̄(µ⇤,dF ) 2 �(F ) given by

�̄(µ⇤,dF )(f) =
X

✓

�(µ⇤,dF )(f |✓)⇡(✓).

The choice model of Lu is a special case of ours: take cost function C given by

C(µ) =

8
<

:
0 if µ⇤ ⌫ µ,

1 otherwise.

Lu focuses on identification and develops a notion of test function. To illustrate, suppose
that F is the collection of all finite subsets of [0, 1]⇥. For every ↵ 2 [0, 1], let f↵ be the
constant act that takes value ↵ in every state. To each menu F 2 F , Lu associates the test
function JF : [0, 1] ! [0, 1] given by

JF (↵) = �̄F[{f↵}(f↵).

The quantity JF (↵) is the probability that act f↵ is selected from menu F [ {f↵}. Note
that, as ↵ increases, the act f↵ becomes more attractive. Intuitively, the speed at which f↵

becomes more attractive reveals the agent’s private information.
Motivated by the different setup, we have developed a different notion of test function

with respect to Lu. There are, however, important analogies. In particular, in both papers
test functions allow to recover the agent’s ex ante preference over menus.

Lin (2019) adopts Lu’s test functions to study rational inattention. Lin considers a
dataset (�̄F )F2F of state-independent stochastic choices (as Lu does), and studies a choice
model with endogenous information acquisition (as we do). In a “rich” dataset, Lin exploits
Lu’s test functions to identify the minimal canonical cost function that rationalizes the
dataset. For Lin, a dataset is “rich” if F consists of all finite subsets of a given compact
convex set K ✓ R⇥.

Overall, Lin’s and our identification results complement each other. With respect to
our setting, Lin does not require the analyst to know the state of nature. Lin also does not
require the analyst to know the utility function and the prior of the agent. At the same time,
however, we are able to identify the minimal canonical cost function in arbitrary datasets
(which can be finite), while Lin requires rich datasets (which are necessarily infinite). In
rich datasets, we are able to identify the unique canonical cost function.

Caplin, Csaba, Leahy and Nov (2020) also propose a methodology to identify the cost of
information, on the basis of an analogy between rational inattention and production theory;
they also provide an implementation on experimental data. Similarly to Lin (2019), their
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analysis requires a suitably rich dataset of stochastic choices. The distinctive feature of
our methodology is that it is fully non-parametric and can be implemented on arbitrary
datasets. Focusing on a specific class of cost functions, Dewan and Neligh (2020) also
estimate features of the cost of information from experimental data.

F Proofs omitted from the main text

Proposition 6. In Experiment 1, given a pair of decision problems i and j with i < j,
Axiom 2 is satisfied if and only if

���Fj (fj |r)� �Fj (fj |b)
�� � |�Fi(fi|r)� �Fi(fi|b)| .

Proof. Define zi = fi(r) and zj = fj(r). We claim that
Z
�Fj dµFi =

zj

2
(1 + |�Fi(fi|r)� �Fi(fi|b)|) . (56)

If µFi(p(Fi,fi)) 2 {0, 1}, then

Z
�Fj dµFi =

zj

2
and |�Fi(fi|r)� �Fi(fi|b)| = 0.

It follows that (56) holds. Suppose now that µFi(p(Fi,fi)) 2 (0, 1). Simple algebra shows
that Z

�Fj dµFi =
zj

2
(max {�Fi(fi|r),�Fi(fi|b)}+max {�Fi(gi|b),�Fi(gi|r)}) .

Note that �Fi(fi|r) � �Fi(fi|b) if and only if �Fi(gi|b) � �Fi(gi|r). Thus
Z
�Fj dµFi =

zj

2
max {�Fi(fi|r) + �Fi(gi|b),�Fi(fi|b) + �Fi(gi|r)}

=
zj

2
max {�Fi(fi|r) + 1� �Fi(gi|r),�Fi(fi|b) + 1� �Fi(gi|r)} .

It follows from simple algebra that (56) holds.
By definition, Axiom 2 holds if and only if

Z
�Fi dµFi +

Z
�Fj dµFj �

Z
�Fi dµFj +

Z
�Fj dµFi .

By (56), an equivalent condition is

zi (|�Fi(fi|r)� �Fi(fi|b)|) + zj
����Fj (fj |r)� �Fj (fj |b)

���

� zi
����Fj (fj |r)� �Fj (fj |b)

���+ zj (|�Fi(fi|r)� �Fi(fi|b)|) ,
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which in turn simplifies to

(zi � zj) (|�Fi(fi|r)� �Fi(fi|b)|) � (zi � zj)
����Fj (fj |r)� �Fj (fj |b)

��� ,

which, becuase zi < zj , is equivalent to

���Fj (fj |r)� �Fj (fj |b)
�� � |�Fi(fi|r)� �Fi(fi|b)| .

⇤

Proposition 7. In each treatment of Experiment 2, Axiom 2 is satisfied if and only if

X

f2

max {�F2(f2|r)� �F2(f2|b), 0} �
X

f1

max {�F1(f1|r)� �F1(f1|b), 0} .

Proof. For all i, j = 1, 2, we have that
Z
�Fj dµFi =

X

p1/2

�Fj (p)µFi(p) +
X

p>1/2

�Fj (p)µFi(p)

=
X

p1/2

�F1(p)µFi(p) +
X

p>1/2

�Fj (p)µFi(p).

Thus, Axiom 2 is satisfied if and only if

X

p>1/2

�F1(p)µF1(p) +
X

p>1/2

�F2(p)µF2(p) �
X

p>1/2

�F1(p)µF2(p) +
X

p>1/2

�F2(p)µF1(p).

For all p > 1/2, �F1(p) = 50 and �F2(p) = 100p. Hence, the above inequality simplifies to

X

p>1/2

✓
p� 1

2

◆
µF2(p) �

X

p>1/2

✓
p� 1

2

◆
µF1(p).

Notice that

X

p>1/2

✓
p� 1

2

◆
µFi(p) =

X

p

max

⇢
p� 1

2
, 0

�
µFi(p)

=
X

fi

max

⇢
p(Fi,fi)µFi

�
p(Fi,fi)

�
� 1

2
µFi

�
p(Fi,fi)

�
, 0

�

=
1

4

X

fi

max {�Fi(fi|r)� �Fi(fi|b), 0} .
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Putting everything together, we obtain that Axiom 2 is satisfied if and only if

X

f2

max {�F2(f2|r)� �F2(f2|b), 0} �
X

f1

max {�F1(f1|r)� �F1(f1|b), 0} .

⇤

G Relation with Caplin, Dean and Leahy (2017)

In a dataset of state-dependent stochastic choices, Caplin, Dean and Leahy (2017) study
the testable implications of the entropy cost cost (Matejka and McKay, 2015). Among
other results, they propose characterizations of posterior separability and uniform posterior
separability, and results on identification and recoverability in rich datasets. Overall, the
two papers use different techniques and provide different insights: the two analyses can
be seen as complementary. In the rest of the section, we discuss in detail similarities and
differences.

As we do in Section D, Caplin, Dean, and Leahy (CDL, for short) take the perspective
of an analyst who observes the behavior of an agent across finite menus F ⇢ R⇥ and priors
⇡ 2 �(⇥). Denote by D the set of all decision problems (⇡, F ) for which the analyst observes
the behavior of the agent.

A first distinctive feature of CDL is that the analyst observes the behavior of the agent
across all decision problems. To illustrate, denote by F⇤ the collection of all finite subsets of
R⇥. CDL assume that D = �(⇥)⇥F⇤. By contrast, our representation theorem (Theorems
2 and 4) apply to arbitrary finite datasets.27 We study identification and estimation for
arbitrary (finite or infinite) datasets. We assume rich datasets only in Section E to achieve
unique identification.

A second distinctive feature of CDL is that the analyst observes when the agent is
indifferent among alternatives. Specifically, their choice dataset is a rule that associates
a set S(⇡,F ) ✓ SF of stochastic choices to each (⇡, F ) 2 �(⇥) ⇥ F⇤. A cost function
C : M ! [0,1] rationalizes the dataset if for every decision problem (⇡, F ),

S(⇡,F ) =
�
�(µ,dF ) : (µ, dF ) is a solution of (1)

 
.

If (1) has multiple solutions, then S(⇡,F ) is not a singleton and the analyst observes when
the agent is indifferent among alternatives. By contrast, our dataset assigns to each decision
problem (⇡, F ) 2 D a single stochastic choice �(⇡,F ) 2 SF .

Indifferences often emerge when the cost of information is posterior separable. When
27They do not apply to infinite datasets, as we discuss in the context of Theorem 3.
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the cost of information is posterior separable, the objective function of (1) is affine in µ.
The affinity of the objective function leads to multiple optimal solutions in a number of
settings. Matejka and McKay (2015) provide examples for the case in which H is entropy.

A third distinctive feature of CDL is that the analyst observes the agent making a wide
range of choices. Let �r

⇡ be the collection of all revealed posteriors from decision problems
with prior ⇡:

�r
⇡ =

n
p(�(⇡,F ),f) : F 2 F⇤

,�(⇡,F ) 2 S(⇡,F ), and f 2 F

o
.

Let Mr
⇡ be the collection of all distributions of revealed posteriors from decision problems

with prior ⇡:
Mr

⇡ =
n
µ�(⇡,F )

: F 2 F⇤ and �(⇡,F ) 2 S(⇡,F )

o
.

CDL assume that, for every prior ⇡, the analyst’s dataset satisfies the following “complete-
ness” conditions:

(i) If p 2 �(⇥) is such that supp(p) = supp(⇡), then p 2 �r
⇡.

(ii) If µ 2 M⇡ is such that supp(µ) ✓ �r
⇡, then µ 2 Mr

⇡.

By (i), every interior posterior is revealed in some decision problem. By (ii), every distri-
bution over interior posteriors is revealed in some decision problem. Condition (i) and (ii)
impose restrictions on the behavior of the agent that have not counterpart in our paper.

Next is the main axiom that CDL proposes for posterior separable costs:

Axiom 6. For every ⇡ 2 �(⇥), every F 2 F⇤, every �(⇡,F ) 2 S(⇡,F ), and every µ 2 Mr
⇡,

if supp
⇣
µ�(⇡,F )

⌘
\ supp(µ) 6= ? then there exist G 2 F⇤ and �(⇡,G) 2 S(⇡,G) such that

(i) µ�(⇡,G)
= µ;

(ii) for every f 2 F [G and p 2 supp
⇣
µ�(⇡,F )

⌘
\ supp(µ),

d�(⇡,F )
(f |p) = d�(⇡,G)

(f |p).

CDL interpret the axiom as a separability condition. As they put it, if two distribu-
tions of revealed posteriors have overlapping supports, then “we must be able to find deci-
sion problems that produce both distributions using common actions at shared posteriors”
(Caplin, Dean and Leahy, 2017, p. 31). Overall, Axioms 3 and 6 provide complementary
perspectives on posterior separability. A distinction is that Axiom 6 features an existential
quantifier that may complicate testing. Axiom 6 instead has low computation complexity:
checking the axiom is equivalent to solving a linear program (see Section C).
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To characterize uniform posterior separability, CDL proposes the following condition, in
addition to Axiom 6:

Axiom 7. Let ⇡ 2 �(⇥), F 2 F⇤, �(⇡,F ) 2 S(⇡,F ), and ↵ 2 �(F ) such that ↵(f) = 0

implies
P

✓ �(⇡,F )(f |✓)⇡(✓) = 0. Define ⇡0 2 �(⇥) by

⇡
0(✓) =

X

f2F
↵(f)p(�(⇡,F ),f)(✓).

For the decision problem (⇡0, F ), consider the stochastic choice �(⇡0,F ) : ⇥! �(F ) given by

(i)
P

✓ �(⇡0,F )(f |✓)⇡0(✓) = ↵(f);

(ii) µ�(⇡0,F )
(p) =

Pn
↵(f) : p(�(⇡,F ),f) = p

o
;

(iii) if p(�(⇡,F ),f) = p, then d�(⇡0,F )
(f |p) = ↵(f)/µ�(⇡0,F )

(p);

(iv) if p(�(⇡,F ),f) 6= p, then d�(⇡0,F )
(f |p) = 0.

Then we must have �(⇡0,F ) 2 S(⇡0,F ).

CDL interpret the axiom as an invariance condition. As they put it, the axiom “conveys
the idea that, given �(⇡,F ) 2 S(⇡,F ), the resulting action-posterior pairs are invariant to
various changes in ⇡ and F ” (Caplin, Dean and Leahy, 2017, p. 34). As they explain, the
axiom is connected to the result Locally Invariant Posteriors from Caplin and Dean (2013).
We use such result also in our analysis (see Lemma 4). A subtlety is that we use Locally
Invariant Posteriors already in the context of posterior separability, even if the prior is
fixed (see the discussion following Lemma 4).

Finally, CDL also provide an identification result for the cost of information in rich
dataset. Their assumptions and methods are quite different from ours. First, as described
above, they assume that (i) F = F⇤, (ii) the analyst observes when the agent is indifferent
among alternatives, and (iii) the analyst observes the agent making a wide range of choices.
Under these assumptions, for every prior ⇡, they identify the cost of information on the
restricted domain Mr

⇡. By contrast, for every prior ⇡, we identify the cost of information
on the whole domain M⇡, solely under the assumption that F is rich with respect to F⇤.
CDL do not discuss test functions.
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