
Appendix for Monopsony in Online Labor Markets

Arindrajit Dube, Jeff Jacobs, Suresh Naidu, Siddharth Suri

October 18, 2018

Appendix A Monopsony on Mechanical Turk

We assume a large number L of employers, denoted as i, who initially post Ni jobs, each worth pi only if

completed before time Ti. Jobs are completed instantaneously once accepted. Each job gets seen by λ myopic

workers, whose reservation values for that are job given by F (b). F (b) could arise from a variety of random

utility models. For example, if worker j’s utility over job posted by employer i is given by Uji = η ln(wj)+εji,

where ε is Gumbel, then F (w) ∝ wη, delivering a constant elasticity labor supply curve facing the firm.1

While we proceed with a random utility interpretation of the idiosyncratic shock, Fosgerau et al. (2016)

show a generic equivalence between rational inattention and random utility based discrete choice models

(in particular the logit can be expressed as a rational inattention model with a Shannon entropy cost of

information processing). While MTurk makes many work options available and easy to find, employers

may have outsized market power either due to idiosyncratic tastes of workers for particular tasks (random

utility) or due to costly information processing that makes it difficult to discern which task is best (rational

inattention).
∗Contact information: adube@econs.umass.edu, Department of Economics, 212 Crotty Hall, 411-417 North Pleasant St,

University of Massachusetts Amherst, Amherst, MA 01002. jpj2122@columbia.edu, Department of Political Science, Columbia

University, 422 West 118th Street, New York, NY, 10027, sn2430@columbia.edu, SIPA/Department of Economics, Columbia

University, 422 West 118th Street, New York, NY, 10027. suri@microsoft.com, Microsoft Research, 641 Avenue of the Americas,

7th Floor New York, NY 10011. We thank Gary Hsieh and Panos Ipeirotis for sharing data as well as Bentley Macleod, Aaron

Sojourner, and Glen Weyl for helpful comments.
1Gabaix et al. (2016) give conditions on the tail behavior of the distribution of ε such that, in a symmetric model with

pi = p, wages can increase towards p as L gets large (as would be intuitive). However they also given conditions under which
the markdown stays constant or even increases as L gets large. Fat-tailed distributions of idiosyncratic utility imply that
markdowns will remain substantial even in the presence of many firms.

21

Each employer posts a job and chooses a wage to maximize Π(w) =
∫ Ti

0 exp(−rt)N(w, t)(pi−w)F (w)λdt

subject to ˙N(w, t) = −λF (w)N(w, t).

When Ti is small, this profit function can be approximated (up to scale) by the static profit function:

Π(wi) ≈ (pi − wi)NiTiλF (wi) (7)

The rate at which a batch is filled is thus λF (w) and the average duration of a batch is thus di =

min(Ti, Ni

λF (wi)). The labor supply elasticity facing the firm is η. Taking a percent change approximation to

the log we get:

η ≈ dF (w)
d ln(w)

1
¯F(w)

(8)

In the general case, the first-order condition characterizing the wage is

pi − wi
wi

= 1
η −Ψ (9)

where Ψ = λwf(w)
(1
λF (w)+r −

T
exp(T (λf(w)+r)−1

)
Note that Ψ goes to 0 as r gets large or T gets small, and so equation 9 converges to the standard, static

Lerner condition in either of these cases, both of which generate impatient requesters. If T is large and r

small, the static approximation fails, and the gap between the marginal product and wage is larger than the

static case. This is because the cost of paying a low wage for a requester (rejection of the offer) is attenuated

by the fact that a rejection is potentially only temporary, as the job stays offered until filled or until time T .

Note that the assumption of a constant rate of offer arrival implies that the elasticity of the duration of

a HIT with respect to w identifies −η. The duration of a HIT batch will be the time until an agent who will

accept the offer sees the offer. Clearly if Ti is sufficiently large relative to 1
λF (w) (or we have enough controls

for Ti), then d ln(di)
d ln(wi) = −η.

Identification of η is obtained by a) using machine-learned functions to control for batch properties (e.g.

Ni as well as any other characteristics of the task that influence the distribution of worker reservation

values besides the wage) in the double-ML approach and b) using the “honeypot” design described below to

randomize wi holding the batch properties constant.

We can obtain a separate estimate of the labor supply elasticity, η, using the “retention” experiments

described in the text. The retention experiment involves a requester making a take it or leave it offer to a

worker who has already agreed to a HIT. In principle, the worker has the same distribution of other HITs or

22

outside options so that the distribution of reservation values should be the same F (b) as above, but we allow

for the possibility that this elasticity is different from the η estimated from recruitment. The assumption

of constant worker arrival rates, instantaneous job fulfillment, and no specific skills for a task suggests that

these should be quite close, as both are recovering the log-curvature of F .

Appendix B Other Experiments Surveyed

We surveyed a large number of MTurk experiments, shown in 4. However, we did not include those that

did not randomize the wage within the same batch. In a large number of MTurk studies, researchers will

issue batches of HITs sequentially, with each batch being given a different wage2. The majority of these are

not randomized and thus we cannot use them to recover even quasi-experimental requester’s labor supply

elasticities. See Table 4 for full explanations of the inclusion/exclusion criteria for each study.

2We examined the estimates in the following papers: Berinsky et al. (2012), Buhrmester et al. (2011), Crump et al. (2013),
Doerrenberg et al. (2016), Heer and Bostock (2010), Horton and Chilton (2010), Marge et al. (2010), Mason and Watts (2009),
Rogstadius et al. (2011), Sorokin and Forsyth (2008)

23

Study Included Reason
Berinsky et al. (2012) No HIT groups posted sequentially (not

randomized)
Buhrmester et al. (2011) No HIT groups posted sequentially (not

randomized)
Callison-Burch (2014) No Unable to obtain data
Chandler and Horton (2011) No Unable to obtain data
Crump et al. (2013) No HIT groups posted sequentially (not

randomized)
Doerrenberg et al. (2016) No Piecemeal wage, non-honeypot setup
Dube et al. (2017) Yes Replicated
Heer and Bostock (2010) No HIT groups posted sequentially (not

randomized)
Ho et al. (2015) Yes Randomized “honeypot” design
Horton and Chilton (2010) No Labor supply elasticity (0.34) imputed,

not estimated directly
Horton et al. (2011) Yes Replicated
Huang et al. (2010) No Unable to obtain data
Hsieh and Kocielnik (2016) Yes Randomized “honeypot” design
Marge et al. (2010) No HIT groups posted sequentially (not

randomized)
Mason and Watts (2009) No Piecemeal wage, non-honeypot setup
Rogstadius et al. (2011) No Common HIT pool creates non-

independence of accept/reject decisions
Sorokin and Forsyth (2008) No HIT groups posted sequentially (not

randomized)
Yin et al. (2018) Yes Randomized “honeypot” design

Table 4: All Experiments Surveyed

24

Appendix C Observational Data Appendix

A sample of the MTurk interface for workers can be found at the link http://textlab.econ.columbia.

edu/~snaidu/mturk.png. We use two different scraping strategies. Section Appendix C.1 describes data

from Ipeirotis (2010) obtained via the Mechanical Turk Tracker API3, and goes from January 2014 through

February 2016, when the account was ended by Amazon. Beginning in May 2016, we ran our own scraper,

which took snapshots of all HITs available to a worker with a US address every 30 minutes, though the

frequency was increased to every 10 minutes beginning in May 2017. Data from this latter scrape is described

in Section Appendix C.2.

Appendix C.1 Data for January 2014 – February 2016

Ipeirotis (2010) introduces the Mechanical Turk Tracker, a web interface allowing researchers to view hourly

market data (e.g., number of HITs available) and demographic information (e.g., proportion of workers

who identify as male/female or who are from India/the United States) for the Amazon Mechanical Turk

marketplace. An Application Programming Interface (API) is provided alongside the web interface, allowing

for programmatic queries to be issued to the database. Using this API, we downloaded both “cross-sectional”

data (e.g., requester name, title, description, keywords) and “time series” data (number of HITs available

in the group for each run of the scraper) for 410,284 HIT groups. Of these, 125,337 were either posted

to the marketplace after February 1st, 2017 or had observations after this date, the date Amazon changed

its interface and the scraper ceased working, and thus were dropped from our analysis. Of the remaining

284,947, we dropped any that had

• Zero-valued reward,

• Only one observation (since we are unable to compute durations for these groups), or

• Rewards or durations greater than the 99.5th percentile of their respective distributions (approx. 90,000

minutes for durations and $10.00 for rewards),

leaving us with 258,352 “final” observations, as seen in the leftmost panel of Table 5.
3https://crowd-power.appspot.com/#/general

25

http://textlab.econ.columbia.edu/~snaidu/mturk.png
http://textlab.econ.columbia.edu/~snaidu/mturk.png
https://crowd-power.appspot.com/#/general

2014-2016 Scrape 2016-2017 Scrape 2017 Scrape
Mean Std Dev Mean Std Dev Mean Std Dev

Duration (Minutes) 3370.360 9414.101 3519.257 9721.523 2293.174 8375.199
Reward (Cents) 38.014 63.741 70.397 92.420 61.774 87.358
Log Reward ML Prediction 2.639 1.229 3.431 1.416 3.286 1.362
Log Duration ML Prediction 5.210 2.642 6.223 1.414 5.301 1.589
Log Duration ML Residuals -0.004 0.892 -0.013 1.432 0.003 1.466
Log Reward ML Residuals -0.001 0.679 -0.003 0.483 -0.001 0.459
Time Allotted (Minutes) 77.793 204.495 595.510 2916.676 434.435 2102.791
Max No. of HITs in Batch 83.413 1303.061 59.867 1627.825 53.539 931.335

Observations 258352 292746 93775

Table 5: The leftmost panel presents summary statistics from scraping MTurk between Jan. 2014 and Feb.
2016. The middle panel presents analogous numbers using data obtained from May. 2016 through May 2017
(30 minute interval scrape). The last panel presents the same information for the May-August 2017 scrape
at 10 minute intervals.

Appendix C.2 Data for May 2016 – August 2017

At the beginning of the project in May 2016, we set up a scraper which would log in to MTurk as a user with

a US address and download all available information about each HIT group listed in the web interface. The

scraper ran every 30 minutes (on the hour and on the half-hour) starting at midnight EST on May 31st 2016,

though this was increased to every 10 minutes beginning at midnight EST on May 31st 2017. The scraper

was finally banned by Amazon on August 21st 2017 at 7:30pm EST. The every-30-minute scrapes from May

2016 to May 2017 produced 363,181 total observations (292,746 after cleaning, as seen in the center panel of

Table 5), while the every-10-minute scrapes from May 2017 to August 2017 produced 110,732 (93,775 after

cleaning, as seen in the rightmost panel of Table 5).

Figure C.2 show how the distributions of log durations differ among the samples. The observed truncation

is to be expected as the scraping windows for the 2016-2017 samples are different and will mechanically miss

durations shorter than 30 and 10 minutes.

Appendix C.3 Heterogeneity Across Task Types

We can examine heterogeneity across task types using the classification of tasks developed by Gadiraju et

al. (2014). Note that tasks are not uniquely categorized, as the same task can be in multiple categories,

and many tasks fall in none of these categories. Figure C.3 shows the double-ML elasticity separately for

each type of task plotted against our best proxy for the real wage, Log(Reward/Time Allotted). As would

be expected if employers were using their monopsony power, higher wages would be associated with higher

elasticities. Further, as is intuitive, (slightly) higher elasticities are found in HIT types with more posted

26

0

.1

.2

.3

.4

D
en

si
ty

0 2 4 6 8 10 12

Log Duration

2014-2016 Scrape

2016-2017 Scrape

2017 Scrape

Figure C.1: Kernel density plots of log duration for the 3 different samples used in the analysis, described
in Table 5.

27

Content Access

Interpretation

Survey

New Content

Data ValidationInfo. Finding

-4.5

-4

-3.5

-3

-2.5
Lo

g
R

ew
ar

d/
Ti

m
e

Al
lo

tte
d

.04 .06 .08 .1 .12

Double ML Elasticity

Figure C.2: Correlation Between Elasticity and Reward Per Minute Allotted. Dot size is proportional to the
number of HIT batches of each type. N = 235, 940.

batches, that is, higher volume, which could be the result of either more competition or more familiarity

with workers.

28

Appendix D Full Double-ML Procedure

Appendix D.1 Data Loading/Merging

For each of our three datasets, the initial data processing proceeded as follows. First, a scraped panel dataset

is loaded which contains, for each HIT group, the number of HITs available and the timestamp of each scrape

in which the group was observed. This panel data then gets collapsed into a cross-sectional dataset consisting

of several features derived from the distribution of the timestamps and HITs available – for example, into

min(timestamp), max(timestamp), min(hits_available), and max(hits_available) for each HIT group. Then,

a separate cross-sectional metadata file (containing, for example, the titles, descriptions, and requester names

for each HIT group) is merged into the collapsed panel dataset via the unique Amazon-supplied group ID4.

Appendix D.2 Data Cleaning

All observations with a reward greater than $5 or duration greater than 90,000 minutes (approximately two

months) are dropped5. Then all observations with 0 reward or 0 duration values (only occurring in the

2014-2016 scrape data) are dropped, to allow transformation of the dependent variables into log space. This

produces the final set of observations used in the machine learning procedure itself, which are summarized

in Table 5.

Appendix D.3 Feature Selection and Test/Training Split

We transform the text scraped with each HIT batch into a large number of text features as follows:

• N-grams: An n-gram is an ordered sequence of n words. For example, if the full description for a

HIT is “quick transcription task,” this will produce three 1-grams “quick,” “description” and “task”;

two 2-grams “quick description” and “description task”; and a single 3-gram “quick description task.”

We use sliding windows of 1 to 3 words over all words within the title, HIT description and keyword

list to form 1, 2 and 3-grams. The frequency of these n-grams in each HIT is then a feature used by

the ML algorithm. We use the standard English stopword list in Scikit-learn to eliminate stopwords.

• Topic Distributions: Besides ordered sequence of words, sometimes sets of particular words (“topic”)

convey important information. A topic model is essentially an algorithm which searches for sets of words
4This final cross-sectional file contains 411,196 observations for the Jan 2014 - Feb 2016 data, 363,181 for the May 2016 -

May 2017 data, and 110,732 for the May 2017 - Aug 2017 data, as described in the previous section.
5These values correspond approximately to the 99.5th percentiles of the original distribution.

29

that tend to occur together in a corpus. For example, one of our topics identifies the words “image,”

“text,” and “transcribe” as its top words. HITs requesting transcription of text from an image will tend

to have high feature values for this topic and lower values for other topics. The resulting features for

each HIT is then the distribution over topics found in that HIT’s title, description, and keyword list.6

We use the NLTK English stopword corpus to drop stopwords. The top 5 words for each topic model

run with K ∈ {5, 10, 15, 20} are available online at textlab.econ.columbia.edu/topicwords.pdf.

• Doc2Vec Embeddings: Unlike LDA which tries to generate features by splitting documents into

discrete human-interpretable topics, the goal of Doc2Vec is to generate a vector space in which vectors

for words which are semantically similar are close together, and then infer a document-level vector

within this same vector space via amalgamation of the learned vectors for its constituent words. For

example, since “survey” and “questionnaire” are semantically similar in the sense that they are used in

similar contexts (“a short [survey/quetionnaire]”, “fill out this [survey/questionnaire]”), their vectors

will be close together in the constructed vector space, and this will “pull” the document-level vectors

for descriptions containing either word closer together. 7

• Hand-Engineered Features: Finally, we use a set of custom regular-expression-based features,

which are generally binary variables describing the presence or absence of certain salient keywords

(e.g., “survey”, “transcribe”), but also real-valued variables capturing (for example) time estimates

given in the titles/descriptions (e.g., “5-minute survey”). The bulk of these features are derived from

the explicit features described in Difallah et al. (2015), and the HIT taxonomy scheme developed in

Gadiraju et al. (2014). The hand-engineered features are as follows:

– Based on common patterns we observed in HIT titles, descriptions, and keywords, dummy

variables were created indicating the presence or absence of the following regular expressions:

easy, transcr* (capturing, e.g., “transcription” or “transcribe”), writ* (capturing, e.g., “written”,

“write”, or “writing”), audio, image|picture, video, bonus, copy, search, ident* (capturing, e.g.,

“identify”), text, date, fun, simpl*, summar*, only, improve, five|5, ?, and !.

– Based on the HIT taxonomy scheme developed in Gadiraju et al. (2014), a numerical category

was assigned to each HIT group via the following regular expressions:
6We run a Latent Dirichlet Allocation (LDA) topic model model (Blei et al. (2003)) on all descriptions. LDA requires the

choice of a parameter K which determines how many topics the algorithm should try to discover: we estimate models with
K ∈ {5, 10, 15, 20} .

7We run Doc2Vec model Le and Mikolov (2014) on all titles, descriptions, and keywords in the data, producing a 50-
dimensional semantic information vector for each.

30

textlab.econ.columbia.edu/topicwords.pdf

∗ Information Finding (IF): find

∗ Verification and Validation (VV): check, match

∗ Interpretation and Analysis (IA): choose, categor*

∗ Content Creation (CC): suggest, translat*

∗ Surveys (S): survey

∗ Content Access (CA): click, link, read

– The following numeric features were extracted, some of which were derived from features used in

Difallah et al. (2015):

∗ time_allotted: The time a worker is given to complete a given HIT

∗ time_left: The time remaining before the HIT group expires (expired HIT groups are re-

moved from the marketplace)

∗ first_hits: The number of HITs initially posted to the marketplace

∗ last_hits: The number of HITs remaining to be completed in the group at the time it was

last observed

∗ min_hits: The minumum number of HITs available observed for the group across all scrapes

∗ max_hits: The maximum number of HITs available observed for the group across all scrapes

∗ avg_hitrate: The average rate (per hour) at which HITs within the group were filled by

workers

∗ avg_hits_completed: The average change in available HITs between subsequent observations

of the group

∗ med_hits_completed: The median change in available HITs between subsequent observations

of the group

∗ min_hits_completed: The minimum change in available HITs between subsequent observa-

tions of the group

∗ max_hits_completed: The maximum change in available HITs between subsequent observa-

tions of the group

∗ num_zeros: The number of observations for which the number of available HITs in the group

was listed as 0

∗ req_mean_reward: The average reward over all HITs posted by the requester

31

∗ req_mean_dur: The average duration of all HIT groups posted by the requester

∗ title_len: The length of the HIT group’s title

∗ desc_len: The length of the HIT group’s description

∗ keywords_len: The sum of the lengths of the HIT group’s keywords

∗ num_keywords: The number of keywords given for the HIT group

∗ title_words: The number of words in the HIT group’s title

∗ desc_words: The number of words in the HIT group’s description

∗ minutes_title: The number of minutes if a phrase including “X minutes” appears in the

title

∗ minutes_desc: The number of minutes if a phrase including “X minutes” appears in the

description

∗ minutes_kw: The number of minutes if a phrase including “X minutes” appears in the key-

word list

∗ qual_len: The length of the string given in the HIT group’s description which lists the

qualifications

∗ num_quals: The number of qualifications required for the HIT group

∗ custom_not_granted: The number of custom qualifications required for the HIT group for

which our “blank” account (an account which had never accepted or completed a HIT) was

not qualified

∗ custom_granted: The number of custom qualifications required for the HIT group for which

our “blank” account (an account which had never accepted or completed a HIT) was qualified

∗ any_loc: A dummy variable representing whether or not the HIT group had a location

restriction (e.g., US only)

∗ us_only: A dummy variable which is 1 if the HIT group is restricted to US workers, and 0

otherwise

∗ appr_rate_gt: The lower bound on approval rate required for workers to be eligible for the

HIT, coded as -1 if no lower bound was enforced

∗ rej_rate_lt: The upper bound on rejection rate required for workers to be eligible for the

HIT, coded as 101 if no upper bound was enforced

32

∗ appr_num_gt: The lower bound on number of approvals required for workers to be eligible

for the HIT, coded as -1 if no lower bound was enforced

∗ rej_num_lt: The upper bound on number of rejections required for workers to be eligible for

the HIT, coded as 999 if no upper bound was enforced

∗ adult_content: A dummy variable which is 1 if the HIT group indicated that it contained

adult content, and 0 otherwise

To save on computation time, we utilized a “two stage” double ML procedure as outlined in Section 3.3.

Given the initial split of the data into A and B sets, and the subsequent split of these sets into Atrain, Aval,

Btrain, and Bval, a given run of our procedure (A→ B or B → A; here we describe the A→ B run without

loss of generality) proceeds as follows. First, in the “feature selection” phase, the full set of n-gram features

were generated as described above, and a “preliminary” run of the learning algorithm was performed using

only these n-gram features as the feature matrix for Atrain, with the goal of predicting the reward and

duration values in Aval. Upon completion of this stage, we “threw away” all but the top 100 most predictive

n-gram features for reward and top 100 most predictive n-gram features for duration, and for the remainder

of the run only those n-gram features were included. For illustration, the top 100 most predictive reward and

duration features for the A→ B run on the Jan 2014 - Feb 2016 data are available online at textlab.econ.

columbia.edu/top100_text_reward.pdf and textlab.econ.columbia.edu/top100_text_duration.pdf,

respectively.

Once this feature selection phase was complete, a second “full data” phase was performed, as outlined

in Section 3.3. In this phase, the top 200 n-gram features from the feature selection phase are included

in the feature matrix for A along with the LDA, Doc2Vec, and hand-engineered features, with the goal of

predicting the reward and duration values in B.

Appendix D.4 Regression via Random Forests

Before computing predictions on the test set, the validation set was used to tune not only hyperparameters

but also which learning method was chosen. Random forest regression, implemented by RandomForestRe-

gressor in scikit-learn, greatly outperformed the other classifiers we employed: {AdaBoostRegressor, Bag-

gingRegressor, ExtraTreesRegressor, GradientBoostingRegressor, RandomForestRegressor, SVR (Support-

VectorRegressor)}, and thus a trained random forest regression was our choice for computing predictions for

the test data. The random forest method constructs a series of individual decision tree estimators, where

each regressor is trained on a subset of the full feature set, and then reports the mean prediction over all

33

textlab.econ.columbia.edu/top100_text_reward.pdf
textlab.econ.columbia.edu/top100_text_reward.pdf
textlab.econ.columbia.edu/top100_text_duration.pdf

Jan 2014 - Feb 2016 May 2016 - May 2017 May 2017 - Aug 2017
A→ B B → A A→ B B → A A→ B B → A

Reward 0.7716 0.7764 0.8951 0.8949 0.8982 0.8984
Duration 0.8968 0.8980 0.4379 0.4404 0.5085 0.5035

Table 6: R2 scores for each run of the Double-ML regressions

regressors. Based on two additional cross-validation procedures, for the first-stage feature selection an ran-

dom forest regression with 40 decision tree estimators was used (with the number of estimators optimized

over {10, 20, . . . , 100}) while for the second-stage ML the model was run with 600 estimators (optimized

over {100, 200, . . . , 1000}, with the increased order of magnitude made feasible due to the fact that in the

second stage all but 200 of the approximately 800,000 total n-gram features are dropped).

Appendix D.5 Computing the Double-ML estimate

Once the ML algorithm has finished its runs and the predicted log duration and log reward values have been

generated for each fold of the data, the estimated η value is computed straightforwardly via Equation 5 with

n = 2.

34

