The Culture of Overconfidence Online Appendix

V Bhaskar^{*} Caroline Thomas[†]

A Appendix

A.1 When the leader is concerned about beliefs about her ability

In Holmström (1999) and much subsequent work on career concerns, the leader's reputational payoff is a linear function of her expected ability. We now show that this assumption yields a model formally equivalent to the one analyzed in the text of the paper, where the leader's payoff is linear in the observer's belief about project quality. The leader's ability is $\tau \in$ $\{H, L\}$, and project quality is $\omega \in \{G, B\}$. Let λ denote the prior probability that the leader is of type H. Let $p_{\tau} := \Pr(\omega = G | \tau)$ denote the probability with which type τ has a good project, with $p_H > p_L$. The common prior on project quality is $p := \lambda p_H + (1 - \lambda) p_L$. Let β be the observer's posterior belief, at date two, regarding project quality. Let $\nu(\beta)$ denote the observer's posterior belief at date two that the leader is of type H, given β . The relation between ν and β is as follows. When the project succeeds, $\beta = 1$ and

$$\nu(1) = \frac{\lambda p_H}{\lambda p_H + (1 - \lambda) p_L}$$

^{*}Department of Economics, University of Texas at Austin. v.bhaskar@austin.utexas.edu.

[†]Department of Economics, University of Texas at Austin. caroline.thomas@austin.utexas.edu.

When the project fails, $\beta = 0$ and

$$\nu(0) = \frac{\lambda (1 - p_H)}{\lambda (1 - p_H) + (1 - \lambda) (1 - p_L)} < \nu(1).$$

Both ν and β must satisfy the martingale property for a (hypothetical) experiment which perfectly reveals the project's quality, hence

$$\nu(\beta) = \beta \,\nu(1) + (1 - \beta) \,\nu(0).$$

Let $\delta := \nu(1) - \nu(0) < 1$. Then,

$$\nu(\beta) = \nu(0) + \delta\beta.$$

Suppose that the observer takes an action in [0,1] to match ν , and the leader's total payoff equals $\tilde{\theta}V + \nu$, where V denotes the social payoff from the project, and $\tilde{\theta} > 0$ is a constant parameter reflecting the intensity of the leader's social concerns. Thus the leader's payoff equals

$$\tilde{\theta}V + \nu(0) + \delta\beta.$$

If we let $\theta := \tilde{\theta}/\delta$, then the above payoff is identical to the one analyzed in the text, except for a constant term, $\nu(0)/\delta$, which accrues to both actions, stop and continue, and therefore does not affect the analysis.

A.2 Proof of Lemma 1

The derivative of $\pi^{\dagger}(\mu)$ is

$$\frac{\gamma + 1}{(\gamma \mu + 1)^2} > 0. \tag{A.1}$$

The numerator in the above expression does not depend on μ , and the denominator is increasing in μ when $\gamma > 0$. Thus the derivative of π^{\dagger} is strictly decreasing in μ . Since π^{\dagger} is strictly concave in μ , with $\pi^{\dagger}(0) = 0$ and $\pi^{\dagger}(1) = 1$, it follows that $\pi^{\dagger}(\mu) > \mu$ for every $\mu \in (0, 1)$. In the case of underconfidence, i.e. when $\gamma < 0$, π^{\dagger} continues to be increasing, since $\gamma > -1$, but the denominator in A.1 is strictly decreasing, so that π^{\dagger} is strictly convex, and $\pi^{\dagger}(\mu) < \mu$ for every $\mu \in (0, 1)$.

References

HOLMSTRÖM, B. (1999): "Managerial Incentive Problems: A Dynamic Perspective," *Review* of Economic Studies, 66(1), 169–182.