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A Micro-Foundations for Political Institutions

We begin by discussing two examples that outline possible microfoundations for interpreting
our framework in Section 3 of the text as a model of democracy. Each example focuses on
one of the two main aspects of democratic institutions, namely open and free elections of the
executive, on the one hand, and constraints on the executive (once in power), on the other.
Both examples are highly stylized and can be considerably generalized.

Checks and balances The first example more nearly captures constraints on the execu-
tive. Here, we imagine that (a representative of) the incumbent group has proposal power
over how to split some (resource) rents xt across the two groups. This proposal will always
allocate all the rents to the incumbent group. Under autocracy – i.e., with Dt = 0 – this
proposal just goes through and we have

uI (xt, 0) = xt and uO (xt, 0) = 0.

Under democracy, Dt = 1, then instead with some exogenously given probability 2q < 1, the
opposition group can reject the proposal and impose an equal split of the rents with xt/2 to
each group. The expected rent allocation is thus

uI (xt, 1) = (1− q)xt and uO (xt, 1) = qxt.

Altogether, we have
Γ (x) = qx = γ (x) .

Open elections The second example more nearly captures open recruitment of the exec-
utive. Under autocracy, Dt = 0, a representative of the incumbent group faces no challenge
for power (but there may still be costly protests) and safely remains to the next period. But
under democracy, Dt = 1, this representative runs against a representative of the opposition
group in a stochastic electoral contest. The incumbent candidate wins this contest with
probability 1 − xt. Thus xt ∈ [0, 1] is the (relative) unpopularity of the incumbent leader.
We normalize the value of winning (which captures some unmodeled policy advantage) to 1.
With Dt = 0, we have

uI (xt, 0) = 1 and uO (xt, 0) = 0.

With Dt = 1,we instead have

uI (xt, 1) = 1− xt and uO (xt, 1) = xt.
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Altogether, we have
Γ (x) = x = γ (x) .

B Democratic Values

In this section, we discuss a possible microfoundation for the democratic values that appear
in (2) of Section 3 in the text.

The expression in (2) assigns an additional positive payoff if Dt = 1 and a negative one
if Dt = 0. It also assumes that democratic values are universal rather than particularistic.
That is, concerned citizens care about society-wide gains and losses from democratic rights,
and not only those which accrue to other concerned citizens. Assuming the latter would be
an alternative way to formulate the model and would tend to strengthen the main results.

The formulation in (2) can be derived from a reference-dependent social preference, with
one reference point for gains rg and one for losses rl

(B.1) S (rg, rl, D, x) = χmin
{
uO (x,D)− uO (x, rl) , 0

}
+ max

{
uO (x,D)− uO (x, rg) , 0

}
.

We set rg = 0 and rl = 1 so gains are measured relative to the worst institution and losses
relative to the best – i.e., concerned citizens evaluate social affairs against an institutional
benchmark. The idea of reference-dependent preferences is well-established, following Kah-
neman and Tversky (1979) and a range of psychological studies. Specifically, our formulation
follows Loomes and Sugden (1982), where an individual experiences either regret or rejoice
depending on her reference point for an outcome.

Applications of reference-dependent preferences to concrete phenomena are discussed,
e.g., in Kahneman et al (1991). (Koszegi and Rabin 2006 give a more recent theoretical
treatment of reference-dependent preferences.) The payoffs in (B.1) can be thought as re-
flecting a feeling of (in)justice among citizens, based on societal gains/losses relative to the
outcomes under the alternative institution, which embody their views about the right kind
of society. Democratic values are thus distinct from standard preferences, analogous to the
distinction between acquisition utility and transactions utility, which can also reflect a sense
of justice (Thaler 1999).

C Socialization

In this section, we show three possible microfoundations for the evolutionary model stated
in Section 3 of the main text.

Basic socialization model We first consider a model with successive generations, which
overlap only in so far as parents endow their children with values, as modeled in Besley
(2015). Children have two parents and – to keep the population balanced – all pairs have
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two children. We also assume that all marriage matching is random.1

Children are socialized into having democratic values. For simplicity, we model social-
ization as resulting from a form of osmosis rather than strategic behavior by parents.2 Two
parents of the same type simply pass along the values associated with their common type.
However, children whose parents have different types get their type depending on the ex-
pected utilities of being concerned with democratic values rather than passive. Let ∆ (µ)
be the expected utility difference between these types – their relative fitness – when the
proportion concerned in the population is µ. Moreover, let η ∈ (−∞,∞) be a couple-specific
idiosyncratic negative shock to this utility difference. Then, a child with mixed parentage
becomes concerned with democratic values, if and only if η ≤ ∆.

We assume that η has a symmetric single-peaked distribution with c.d.f. K and p.d.f. k.
This implies that a mixed-marriage child holds democratic values with probability K (∆ (µ))
at utility difference ∆ (µ) . By the law of large numbers, this is also the proportion among
those with mixed parentage. By definition, K (·) is monotonically increasing, and by sym-
metry K (0) = 1/2.

The evolution of democratic values becomes:

(C.2) µt+1 = µt + 2µt (1− µt) [K (∆ (µt+1))− 1/2] .

This corresponds to (4) with ςP,C = µ [K (∆ (µt+1))− 1/2] and ςC,P = − (1− µ) [K (∆ (µt+1))− 1/2] .

Strategic socialization We now show that the key equation (4) can be derived from a
model, in which matching is assortative and socialization is purposeful. This follows the
approach of Cavalli-Sforza and Feldman (1981) as adapted by Bisin and Verdier (2001).
Socialization would then have two parts:

1. Direct Socialization: A parent may directly socialize a child into being a concerned
citizen, depending on parental effort.

2. Oblique Socialization: If this is unsuccessful, the child may become socialized by society
at large becoming a concerned citizen with probability µt.

We focus on the case where marriages are perfectly assortative and each pair of parents
has two kids. Let e ∈ {0, 1} be the effort put into socializing kids as concerned at cost C.
Also, let the probability of successful socialization depend on e + ϕ where ϕ is a stochastic
socialization shock uniformly distributed on

[
− 1
L
, 1
L

]
. Then, we have:

Prob[concerned: e] =
1

2
+ Le.

1For the results to go through, we only require that there is at least some element of random matching.
With full assortative matching, there would be no socialization as all offspring would have parents of the
same type.

2This makes the model simpler and does not fundamentally affect the insights compared to the strategic
socialization model of Bisin and Verdier (2001). .
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Finally, as in our canonical model, let η be an idiosyncratic shock to parental preferences.
They now choose socialization effort:

e∗ = arg max

{(
1

2
+ Le

)
[∆ (µ) + η]− Ce

}
.

This defines a threshold
η̂ = ν −∆ (µ) ,

where ν = C/L such that e∗ = 1 if and only η ≥ η̂.
For the children of concerned parents, the probability of a child being socialized as con-

cerned is K (∆ (µt+1)− ν) . For those who are not directly socialized, the probability of
oblique socialization into being concerned is (1−K (∆ (µt+1)− ν))µt.

Adding these expressions, the overall probability that the kids of concerned parents are
concerned is:

(C.3) K (∆ (µt+1)− ν) + (1−K (∆ (µt+1)− ν))µt.

If a child is born to passive parents, we assume she is never directly socialized into being
concerned. However, she is socialized as passive with probability (1−K (∆ (µt+1)− ν)).
The fraction of such children who are obliquely socialized as concerned is therefore:

(C.4) K (∆ (µt+1)− ν)µt.

The overall fraction of concerned citizens in the next generation becomes

µt+1 = µt [K (∆ (µt+1)− ν) + (1−K (∆ (µt+1)− ν))µt] + (1− µt) [K (∆ (µt+1)− ν)µt]

= (µt)
2 + 2 (1− µt)µtK (∆ (µt+1)− ν) ,

which corresponds to (4) with ςP,C = µt
[
K (∆ (µt+1)− ν)− 1

2

]
and

ςC,P = − (1− µt)
[
K (∆ (µt+1)− ν)− 1

2

]
. The only difference is that costly effort of being

socialized as passive reduces the probability of concerned citizens in the population relative
to our basic model, which has ν = 0. This is the special case when C = 0 – i.e., when the
effort by parents into socializing their child is costless.

In this setting, the candidate for an interior steady state is:

∆ (µ̂) = ν,

but when ∆µ(µ) ≥ 0 this is unstable and the basic thrust of the basic-model analysis goes
through unscathed.

A replicator dynamics Suppose that concerned and passive citizens are two behavioral
types in the population and that members of each young generation adopts their types to
the relative success of the ”cultural parents” they encounter. This kind of imitation will give
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rise to a standard replicator dynamics:

µt+1 − µt = µt
[(Utility Concerned:µt)− (Average Utility:µt)]

(1 + χ) γ (x̄) + ρc

= µt (1− µt)
[(Utility Concerned:µt)− (Utility Passive:µt)]

(1 + χ) γ (x̄) + ρc
,

where we have chosen to normalize by the maximum utility gain from democratic institutions
so that the relevant expressions is bounded in the unit interval. Let π (x, µ) be the probability
that D = 1 given {x, µ}. This expression boils down to

µt+1 − µt = µt (1− µt)
∫ x̄
x

[π (x, µt) γ (x)− (1− π (x, µt)L (x, λ (x, µ)))] dH (x)

(1 + χ) γ (x̄) + ρc

= µt (1− µt)
∆ (µt)

(1 + χ) γ (x̄) + ρc
.

This is a special case of (??) if

ςP,C =
µt max {∆, 0}

(1 + χ) γ (x̄) + ρc

and

ςC,P =
(1− µt) max {−∆, 0}

(1 + χ) γ (x̄) + ρc
.

Then the tipping point for the dynamics would be ∆ (µ̂) = 0, which would be similar to our
analysis. Moreover, as long as ∆µ(µ) ≥ 0, the dynamics would be qualitatively the same as
in the canonical model.

D Steps 2 and 3 and Proposition 1

In this section, we analyze the optimal fighting decisions by the incumbent and the oppo-
sition, define the equilibrium functions V (xt, µt) , U(xt) and λ(x, µ) mentioned in the text,
analyze their properties, and prove Proposition 1.

Protests and payoffs – step 3 All citizens observe the level of fighting f chosen at step
2 and protest if the benefit exceeds the cost. Given (3), passive citizens never protest as their
private benefit is always lower than the cost. Therefore, the only issue is whether concerned
citizens find it worthwhile to protest, given the realization of ct. To determine this, define a
threshold ĉ (µ, f, x) from the condition

µp (f) [uO (x, 1)− uO (x, 0) + s (xt, 1)− s (xt, 0)] = ĉ,
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i.e., the expected benefit from protesting equals the cost of protesting. Using (1) and (2) in
the text, we can rewrite this condition as:

ĉ (µ, f, x) = µp (f) [2 + χ] γ (x) .

Note that c̄ > ĉ (µ, f, x) for all x ∈ [x, x] by (3). If c ≤ ĉ (µ, f, x), there is an equilibrium
where all concerned citizens protest when ct = c and the probability of a protest is therefore
ρ. It is straightforward to see that a larger share of concerned citizens, µ, and/or a higher
gain to democracy, x, increases the incidence of protests, while more incumbent fighting, f ,
reduces it.3

Now consider what happens when Dt = 0. The expected payoff to the incumbent leader
with his preferred institution is uI (xt, 0)+ λ̂ (µ, f) Γ (x)−wft , where λ̂ (µ, f) = [1− ρµp(f)]
is the probability of successfully enforcing Dt = 0 when devoting f units of labor to fighting.4

With democracy Dt = 1, we can write the leader’s payoff as

(D.5) Ũ(xt, ft) = uI (xt, 1)− wft,

which takes into account the fact that no protest occurs in this case.

Choice of f – step 2 There is no incentive to fight when Dt = 1 and hence the payoff
function under democracy is

(D.6) U(xt) = Maxf Ũ(xt, f) = uI (xt, 1) .

With autocracy, i.e. Dt = 0, fighting increases (via p(f)) the probability that an occurring
protest is successfully defeated. The maximized expected payoff of an incumbent under
autocracy (Dt = 0) is

(D.7) V (xt, µt) = uI (xt, 0) + max
f≥0

{
λ̂ (µt, f) Γ (x)− wf

}
.

Let f ∗(x, µ) denote the optimal choice of fighting by the incumbent at stage 2 and define

the survival function λ(x, µ) = λ̂ (µ, f ∗(x, µ)).

3There is always an equilibrium where nobody protests. This has the possibility that protests can occur
as “sunspot” phenomenon. Here, we assume that the concerned citizens can coordinate on the protest
equilibrium when it exists.

4This objective function supposes that a passive incumbent-group citizen chooses the level of fighting. If
we instead supposed that the decisions were made to maximize the average payoff in the incumbent group,
then this would weaken their willingness to fight. Moreover, it would add an additional complementarity
between democratic values and institutions, since a larger group of concerned citizens in the incumbent group
would imply fewer resources devoted to fighting.
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Properties of the equilibrium payoff and survival functions If none of the concerned
citizens protest then f ∗ (x, µ) = 0. Given (3) there exists µ̃ such that

γ (x) µ̃ (x) p (0) [2 + χ] = c.

For µ ≥ µ̃ (x) all concerned citizens protest when c = c and given the condition on p (f) as
f goes to zero. In this case, f ∗(x, µ) solves

−ρµp′(f ∗(x, µ))Γ (x)− w = 0

The implicit-function theorem implies that

(D.8)
∂f ∗(x, µ)

∂µ
=
−p′ (f ∗(x, µ))

p′′ (f ∗(x, µ))µ
> 0

and

(D.9)
∂f ∗(x, µ)

∂x
=
−p′ (f) Γ′ (x)

p′′ (f) Γ (x)
> 0.

Now, we can substitute f ∗(x, µ) into λ̂ (x, µ, ·) to define the incumbent’s expected prob-
ability of successful enforcing Dt = 0 when fighting optimally:

λ(x, µ) = [1− ρµp(f ∗(x, µ))] .

It follows that

λx(x, µ) =

{
−ρµp′(f ∗(x, µ))∂f

∗(x,µ)
∂x

> 0 if µ ≥ µ̃ (x)
0 otherwise.

Assume that

λµ(x, µ) = −ρµp′(f ∗(x, µ))
∂f ∗(x, µ)

∂µ
− ρp(f ∗(x, µ))

= −ρ
[
µp′(f ∗(x, µ))

∂f ∗(x, µ)

∂µ
+ p(f ∗(x, µ))

]
= −ρ

[
− [p′ (f ∗(x, µ))]2

p′′ (f ∗(x, µ))
+ p(f ∗(x, µ))

]
,

which is negative if log(p (f)) is convex. Thus

(D.10) λµ(x, µ) =

{
−ρ
[
−[p′(f∗(x,µ))]2

p′′(f∗(x,µ))
+ p(f ∗(x, µ))

]
< 0 if µ ≥ µ̃ (x)

0 otherwise.
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Moreover, we can write

(D.11) V (x, µ)− U (x) = Γ (x)λ (x, µ)− wf ∗(x, µ).

We can use this expression to derive

(D.12)
∂ [V (x, µ)− U (x)]

∂x
= Γ′ (x)λ (x, µ) + λx(x, µ)Γ (x) > 0

and
∂ [V (x, µ)− U (x)]

∂µ
=

{
λµ(x, µ)Γ (x) < 0 if µ ≥ µ̃ (x)
0 otherwise.

Hence we have shown that, as stated in the main text of Section 3, for all µ ∈ [0, 1] and
x ∈ [x, x]

1. A higher x increases λ (x, µ) and V (x, µ)− U (x) .

2. A higher µ decreases λ (x, µ) and V (x, µ)− U (x) .

Proof of Proposition 1 Assumption 1 stated in the text requires that

Γ (x)λ
(
x, µ

)
− wf ∗(x, µ) = 0,

which will hold only if
γ (x)µp

(
f ∗(x, µ)

)
[2 + χ] ≥ c.

Hence there is both citizen protest by all concerned citizens when ct = c and f ∗(x, µ) > 0.
Moreover, since γ (x) is increasing then citizens protest for all µ ≥ µ and x ≥ x. The
decision rule used by the incumbent is

(D.13) Dt =

{
0 if V (x, µ)− U (x) ≥ 0
1 otherwise.

Let µL = µ as defined in Assumption 1. Then, for all µ ≤ µL and x ∈ [x, x], we will have
D (µ, x) = 0. Since V (x, 1)− U (x) < 0 for all x ∈ [x, x], there exists

V
(
x̄, µH

)
− U (x̄) = 0.

Since V (x, µ) − U (x) is increasing, it follows that µH > µL. And for for all µ ≥ µH , and
x ∈ [x, x], D (x, µ) = 1. Given that f ∗(x, µ) > 0, V (x, µ) − U (x) is a continuous function

of µ and x for all µ ∈
[
µL, 1

]
and x ∈ [x, x]. Thus, for µ ∈

[
µL, µH

]
, the intermediate value

theorem implies that there must be a value x̂ (µ) ∈ [x, x] such that

(D.14) V (x̂ (µ) , µ)− U (x̂ (µ)) = 0.
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E Dynamic Stability

This final section discusses the dynamic stability of the model.

The signs of ∆µ (µ) and dx̂ (µ) /dµ To rule out a stable interior steady state below it is
sufficient that ∆µ (µ) ≥ 0. This, in turn, is the case if dx̂ (µ) /dµ > 0. To see this, use (5) to
compute:

(E.15) ∆µ (µ) =



∫ x
x
γ (x) dH (x) µ ≥ µH

−
∫ x
x̂(µ)

Lλ (x, λ (x, µ))λµ (x, µ) dH (x) +

[γ (x̂ (µ)) + L (x̂ (µ) , λ (x̂ (µ) , µ))]h (x̂ (µ)) ∂x̂(µ)
∂µ

µ ∈
[
µL, µH

]
−
∫ x
x
Lλ (x, λ (x, µ))λµ (x, µ) dH (x) µ ≤ µL.

Because Lλ > 0 and λµ < 0, a sufficient condition for ∆µ (µ) ≥ 0 for all µ ∈ [0, 1] , is
∂x̂ (µ) /∂µ > 0.

Using the definition of x̂ (µ), we can show that this condition is satisfied, because

(E.16)
∂x̂ (µ)

∂µ
= − ∂V/∂µ

∂[V (x,µ)−U(x)]
∂x

= − λµ
∂[V (x,µ)−U(x)]

∂x

> 0.

The sign follows from the results in section D, which say that the numerator is negative
while the denominator is positive.

Stability We now provide the basic argument as to why only the corner solutions for µ
can be stable steady states of the model.

We require that any steady state, µ̂, has to be stable following a small perturbation to
µ̂± ν. To prove that only the extremal steady states are stable, we start from

(E.17) µt+1 − µt = (1− µt) ςP,C − µtςC,P .

Note that if ∆ > 0 for all µ ∈ [0, 1] then ςP,C > 0 and ςC,P ≤ 0 and (E.17) is positive so µ
converges to one globally. The opposite is true if ∆ < 0 for all µ ∈ [0, 1]. Now consider the
case where there exists µ̂ (σ) such that ∆ (µ̂) = 0. Then since ∆ (µ) is globally increasing
for µ ∈ [0, 1] , then at ∆ (µ̂) = 0, we must have µt+1 − µt ≥ 0 for all 1 ≥ µ ≥ µ̂, while
µt+1 − µt < 0 for all 0 ≤ µ < µ̂. The interior steady state is therefore unstable. Moreover as
∆ (µ) is globally increasing, we must have ∆ (1) ≥ 0 ≥ ∆ (0) . Hence

µt+1 − 1 + ν = (1− ν) ςP,C − νςC,P > 0

µt+1 − ν = νςP,C − (1− ν) ςC,P < 0

for small enough ν > 0. This implies that the steady states at µ = 0 and µ = 1 are stable
as required. �
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