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By Guihai Zhao∗

This Appendix provides model solution in Section I, details of ex-
pectations hypothesis and predictability of bond returns in Section
II, and robustness in Section III.

I. Model solution

A. Forcing process

Under the worst-case measure, the economic dynamics follow

zt+1 = φaat + µz + xz,t + σzεt+1

xz,t+1 = ρxxz,t + σxεt+1

at+1 = µa + at + σaεat+1

where zt+1 = (∆gt+1, πt+1)T , xz,t+1 = (xc,t+1, xπ,t+1)T , at+1 = (ac,t+1, aπ,t+1)T ,

µz = (µc, µπ)T , µa = (µac , µ
a
π)T , ρx =

(
ρc 0
0 ρπ

)
, φa =

(
φac 0
0 φaπ

)
, σz =(

σc 0
0 σπ

)
, σx =

(
σxc σxcπ
0 σxπ

)
, σa =

(
σac σaca
0 σaπa

)
, εt+1 = (εc,t+1, επ,t+1)T ,

and εat+1 = (εac,t+1, εa,t+1)T . The shocks εc,t+1, επ,t+1, εd,t+1, εac,t+1, and εa,t+1∼i.i.d.
N(0, 1). φac and φac represent the equilibrium choice of the upper or lower bound,
equal to −1 or +1.

B. Stochastic discount factor

Given the CRRA utility, the nominal stochastic discount factor in log can be
written as

m$
t,t+1 = logβ − γ∆gt+1 − πc,t+1 = logβ − v′zt+1

where v′ = (γ, 1). For the real stochastic discount factor, replace v′ with v′ =
(γ, 0).
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C. Bond yields

The time-t price of a zero-coupon bond that pays one unit of consumption n

periods from now is denoted P
(n)
t , and it satisfies the recursion

P
(n)
t = Epot [M$

t,t+1P
(n−1)
t+1 ]

with the initial condition that P
(0)
t = 1 and Epot is the expectation operator for

the worst-case measure. Given the linear Gaussian framework, I assume that

p
(n)
t = log(P

(n)
t ) is a linear function of at and xt:

p
(n)
t = −A(n) −B(n)xt − C(n)at.

When we substitute p
(n)
t and p

(n−1)
t+1 in the Euler equation, the solution coefficients

in the pricing equation can be solved with B(n) = B(n−1)ρx+v′ = v′
(∑n−1

i=o (ρx)i
)

,

C(n) = C(n−1) + v′φa = v′φan, and

A(n) =
A(n−1) − logβ + v′µz + C(n−1)µa −B(n−1)σxσz

′
v

−0.5 ∗
(
v′σzσz

′
v +B(n−1)σxσx

′
B(n−1)′ + C(n−1)σaσa

′
C(n−1)′

)
.

Nominal bond yields can be calculated as y
(n)
t = − 1

np
(n)
t = A(n)

n +B(n)

n xt+
C(n)

n at.
The log holding period return from buying an n periods bond at time t and selling

it as an n− 1 periods bond at time t− 1 is defined as rn,t+1 = p
(n−1)
t+1 − p

(n)
t , and

the subjective excess return is ern,t+1 = −Covt
(
rn,t+1,m

$
t,t+1

)
= −B(n−1)σxσz

′
v.

The yield volatility is calculated as

V art

(
y

(n)
t

)
=

(
B(n)

n
σx

)(
B(n)

n
σx

)′

+

(
B(n)

n
ρxσ

x

)(
B(n)

n
ρxσ

x

)′
+ ...

+

(
B(n)

n
ρt−1
x σx

)(
B(n)

n
ρt−1
x σx

)′

+ t

(
C(n)

n
σa

)(
C(n)

n
σa

)′
.

To solve the price and yields for real bonds, we can just replace v′ with v′ = (γ, 0).



II. Expectations hypothesis and predictability of bond returns

A. Source of ambiguity - decomposition

Equation (3) models ambiguity about inflation and real growth in a parsi-
monious way, which can be further decomposed into two parts. The first part
(denoted by a1c,t or a1π,t) is a random walk with no drift (or a stationary pro-
cess, for example i.i.d. normal process), which represents agents’ ambiguity from
transitory shocks in equation (2). The second part (denoted by a2c,t or a2π,t) is
the trend component, which represents agents’ ambiguity from the shocks to the
expected inflation and growth.

Since the one-step-ahead process contains only the transitory shocks, a1c,t(=
ac,t) and a1π,t(= aπ,t) are the total size of ambiguity for one-quater-ahead inflation
and real growth. The specification of a1c,t or a1π,t as a random walk with no
drift (or a i.i.d. normal process) implies that there is no trend in the realized
one-step-ahead ambiguity/dispersion, which is consistent with the data (Figure
1). However, innovations in the two-step-ahead (more than one-step-ahead in
general) process consist of both transitory shocks and shocks to expected inflation
and growth; hence the total size of ambiguity ac,t+1 = a1c,t+1+a2c,t+1 and aπ,t+1 =
a1π,t+1 + a2π,t+1, where a2c,t+1 and a2π,t+1 are the trend components in the total
size of ambiguity. For example, one decomposition could be (again, take inflation
ambiguity as an example) a1π,t+1 = c + σaεa,t+1 and a2π,t+1 = µ + a2π,t. When
investors’ perception of ambiguity for long-run inflation is bigger due to long-
run uncertainty arising from “inflation scares,” shifting endpoints, or stronger
disagreement, µ is positive. While in the second subperiod, agents attribute
less long-term uncertainty estimated by econometricians to ambiguity, and µ is
negative.

At each point in time, due to the trend component in ambiguity from the
uncertainty in expected inflation and growth, agents perceive long futures to be
more or less ambiguous than short horizons. However, when the time arrives, the
second part of the ambiguity containing the trend component does not materialize
(expected inflation and growth evolve over time under the true distribution),
and the realized one-step-ahead ambiguity does not become bigger or smaller on
average. Only when agents evaluate future prospects that are more than one step
ahead, does the second part matter.

As shown in Section I, bond prices are solved under the worst-case distribution
where the EH roughly holds, and the upward-sloping nominal and real curves are
mostly due to the trend component in ambiguity. Whereas the realized yields are
calculated using the realized one-step-ahead ambiguity that contains no trends,
and this difference makes excess returns on long-term bonds predictable. Note
that I focus on the average bond yields in this paper.



B. Expectations hypothesis: illustration

The EH states that the yield for an n periods bond is the average of expected

future one-period bond yields. Let y
(n)
t = − 1

np
(n)
t denote the yield for an n periods

bond at time t. The intuition of the EH can be illustrated by the following two-
periods example where 2y2

t = y1
t +Et

(
y1
t+1

)
. If the yield curve is upward sloping

as in the data, y1
t < y2

t , it must be that y1
t < y2

t < Et
(
y1
t+1

)
, that is, the short

rate will rise. However, the realized future short rate does not increase enough
in the data, and the EH does not seem to work well. The EH is often formally
tested through the following equation:

yn−1
t+1 − ynt = α+ βn

(
ynt − y1

t

n− 1

)
+ εt+1.

The EH implies that βn = 1. However, in the data, many studies (for example,
Campbell and Shiller (1991)) show that βn < 1, is often negative, and is decreasing
with the horizon n.

C. Expectations hypothesis: model solution

To derive implications for the test in Section D.2, let A ≡ ynt − y1
t and B ≡

(n− 1)
(
yn−1
t+1 − ynt

)
. Since all shocks are Gaussian and orthogonal (in the EH test

equation in Section D.2), they can be thought of as the error term. The derivation
in this session will ignore all shocks. Given the solution for bond yields, we can
solve A and B as

A =
A(n)

n
−A(1) +

(
B(n)

n
−B(1)

)
xt

B = A+ V arCov(n− 1) + C(n−1) (at+1 − at − µa)

V arCov(n− 1) = 0.5 ∗
(
B(n−1)σxσx

′
B(n−1)′ + C(n−1)σaσa

′
C(n−1)′

)
+B(n−1)σxσz

′
v.

So the difference between A and B is V arCov(n − 1) + C(n−1) (at+1 − at − µa).
V arCov(n − 1) is quantitatively very small; the difference is mainly driven by
C(n−1) (at+1 − at − µa).

When evaluating future prospects, investors’ worst-case beliefs are described by
at+1 = µa + at + σaεat+1. Ignoring the shock term σaεat+1, the difference between
A and B now only contains the variance and covariance term V arCov(n − 1),
which is very small. Thus the EH roughly holds.

However, the realized ambiguity process is described by at+1 = at + σaεat+1,

and now the difference is V arCov(n− 1)−µaC(n−1). To see intuitively what this
difference implies for the EH test coefficient βn, I first ignore the xt in A and B,



and then calculate A and B for different horizons. For n = 2:

A =
1

2
µaC

(1) − 1

2
V arCov(1)

B = −A
β2 ≈ −1.

For n = 3:

A = µaC
(1) − 1

3
(V arCov(2) + V arCov(1))

B = −A+
1

3
V arCov(2) − 2

3
V arCov(1)

β2 ≈ −1.

For n = 4:

A =
3

2
µaC

(1) − 1

4
(V arCov(3) + V arCov(2) + V arCov(1))

B = −A+
1

2
(V arCov(3) − V arCov(2) − V arCov(1))

β2 ≈ −1.

Similarly, I can calculate βn for n = 5, 6, 7... If we ignore the variance/covariance
term and xt, the coefficient βn = −1 for all n. To see the exact value for βn, we
should use simulated values for xt, and take into account V arCov(n − 1), and
these terms have a bigger impact on βn when n is small (this intuition can be
confirmed by the regression results reported in Table 4, βn converges to -1 when
n is large).

D. Expectations hypothesis: formal tests

To formally assess the EH, I show in Section D.3 that the difference between
the left-hand side and right-hand side of the EH test equation in Section D.2 is(
yn−1
t+1 − ynt

)
− ynt −y1t

n−1 = v′φa ((at+1 − at) − µa) + V arCovn−1

n−1 . Taking advantage of
the closed-form solution, I show that the coefficient βn would be −1 for all n if we
ignore xz,t and a variance/covariance term. Because of the low autocorrelation
(ρx), short-term yields are more sensitive to xz,t and the variance/covariance
term, yet βn for long maturities are mainly driven by the difference above and
are close to −1.

To further evaluate the predictability of bond returns, I follow the approach in
Cochrane and Piazzesi (2005) by first regressing the average of one-year nominal
excess bond returns of two to five years to maturity on one- to five-year forward
rates, extracting a single bond factor r̂xt from this regression, and then forecasting

excess bond returns at each maturity n from two to five years, rxn,$t→t+1 = const+



bnr̂xt + error. They show that the estimate bn is positive and increasing with
horizons.

Based on the closed-form solution, the intuition of EH and the source for the
predictability of the realized excess bond returns are provided in Section II.E.

III. Robustness

This section provides further checks for the sensitivity of the results in several
dimensions.

A. Ambiguity vs. heterogeneous beliefs vs. volatility

Apart from ambiguity, forecast dispersion is also widely used as measure for
disagreement or uncertainty (volatility) in the literature. For example, Ehling et
al. (2018) show that stronger inflation disagreement (or bigger inflation forecast
dispersion) increases wealth growth expectations for all types of investors, hence
unambiguously raising nominal yields. Meanwhile, higher uncertainty (volatility)
typically lowers nominal yields through the precautionary savings channel, or
through a flight to quality effect as in Bansal and Shaliastovich (2013). In this
model, the impact of inflation forecast dispersion (as a measure for ambiguity) on
nominal yields is fundamentally different from disagreement or volatility. Instead
of an unambiguous effect, I show that higher inflation ambiguity is associated
with higher nominal yields before the late 1990s (upper bound as the worst-case
belief), and it is associated with lower nominal yields afterwards (lower bound as
the worst-case belief).

To distinguish the different effects, I regress 10-year nominal yields on their
lagged values and inflation forecast dispersion for the two subperiods, and results
are reported in Table E1. Consistent with the impact of inflation ambiguity,
the coefficient on dispersion is positive in the first subperiod and negative in the
second subperiod. It could be the case that inflation forecast dispersion contains
information for both disagreement and ambiguity. However, the result of the
second subperiod suggests that ambiguity has a dominating impact.

B. Regime shift and learning

In this paper, I assume that there is an unexpected discrete regime shift at the
end of 1999 for the following reasons: (1) the term structure of inflation forecast
dispersion has switched from upward sloping to downward sloping after the late
1990s (see Figure 1); (2) Figure E1 shows that the correlation between individual
GDP growth and inflation forecasts switched from negative in the first subperiod
to positive in the second subperiod; and (3) this is consistent with the literature
for regime breaks; for example, Campbell, Pflueger, and Viceira (2014) argue that
the first subperiod is the inflation fighting period of Volcker and Greenspan and
the second subperiod is the recent period of low inflation and increased central
bank transparency.



Table 1—Impact of inflation forecast dispersion on nominal yields

Constant Yield 10Y Lag1 Inflation Disp Q4 R2

Yield 10Y 0.38 0.92 0.09 0.96

(1985-1999) (0.15) (0.27) (0.05)

Yield 10Y 0.18 0.97 -0.07 0.96

(2000-2017) (0.08) (0.01) (0.05)

Note: This table presents results from the regression of ten-year nominal Treasury bond yields
on their lagged values and four-quarter-ahead inflation forecast dispersion. The data employed
in the estimation are on a monthly frequency and cover the period from 1985 to 2017. Robust
standard errors are reported in the brackets.

While it is useful to clarify the mechanics by assuming an unanticipated regime
switch in the late 1990s, there seems no obvious event in this period that this could
be tied to. We may ask what the model would imply if we allowed a more gradual
transition between these two regimes. Suppose investors know the probabilities
of each regime at time t; then stock and bond prices can be computed as the
weighted average of the two solutions in Section I. Given that the probability
of regime one (negative correlation between growth and inflation expectation) is
very high before the late 1990s and close to zero thereafter (see, for example, the
estimation in Song 2017), the mechanism of this paper still works and the model
results are quantitatively similar. Because the theoretical framework of learning
under ambiguity with a regime switch is not clear yet, I will leave this case for
future research.
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Figure 1. Correlation between individual GDP growth and inflation forecasts

Note: Individual survey data are one-quarter-ahead forecasts from the BCFF and are monthly
from 1985 to 2017.



C. Magnitude of ambiguity

Given the specification for the ambiguity process, one natural question is whether
the size of the ambiguity is reasonable. I use two different approaches in the lit-
erature to provide a sense for the magnitude of the ambiguity.

The first one is the error detection probability suggested by Anderson, Hansen,
and Sargent (2003), which quantifies the statistical closeness of two measures by
calculating the average error probability in a Bayesian likelihood ratio test of
two competing models. Intuitively, measures that are statistically close will be
associated with large error probabilities, but measures that are easy to distinguish
imply low error probabilities. Formally, let l be the log likelihood function of the
worst-case measure relative to the reference measure and P a be the alternative
worst-case measure. Then, the average probability of a model detection error in
the corresponding likelihood ratio test is ε = 0.5 · P (l > 0) + 0.5 · P a(l < 0),
where ε is just a simple equally weighted average of the probability of rejecting
the reference model when it is true (P (l > 0)) and the probability of accepting
the reference model when the worst-case model is true (P a(l < 0)). In general,
a closed-form expression for the detection error probability is not available. The
error probability is calculated using simulated data. In this paper, parameters
are estimated from data and the error detection probabilities for both output and
inflation are at least 5%.

The second approach is by Ilut and Schneider (2014), who argue that (1) the
choice of size for ambiguity is guided by the view that agents’ ambiguity should
be “small enough” relative to the estimated volatility by econometricians, and (2)
the extreme forecasts from the implied belief set should perform sufficiently well
in forecasting the true data generating process. They show that the maximal size
of ambiguity should be smaller than twice the size of the estimated standard error.
Yet the size of ambiguity in my model is less than half the size of the estimated
standard error, which is small and reasonable according to this standard.
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