
Online Appendix: A Simple Planning
Problem for COVID-19 Lockdown,

Testing and Tracing∗

Fernando Alvarez
University of Chicago and NBER

David Argente
Pennsylvania State University

Francesco Lippi
LUISS and Einaudi Institute for Economics and Finance

October 19, 2020

Abstract

This appendix contains additional documentation to solve the planning problem
using a finite differences. It also describes in detail the extension of the problem to
implement the trace-test-quarantine protocol and the case where the period cost of
lockdown is quadratic in the total number of hours in lockdown.

∗First draft, March 23, 2020. We thank Tom Phelan who shared his code of our problem using a similar
version of the finite difference method, substantially improving the speed on our earlier method of computa-
tion.

A Planning Problem

In this appendix we provide more details on how we use the finite difference method to

approximate the solution of the continuous time Bellman equation. It begins describing the

problem without the trace-test-quarantine (TTQ) protocol and providing a description of the

finite difference method; it describes how it can be implemented using the same grid size for

the two state variables of the problem and its application when the grid size of the two state

variables differs, which is how is implemented in the code for computational reasons. It then

describes the required assumptions to implement the TTQ protocol and an extension where

we consider the case where the period cost of lockdown is quadratic in the total number of

hours in lockdown.

The replication files include matlab codes that solve the planning problem for COVID-

19 lockdown, testing and tracing. We include files that use the finite differences method.

We also include matlab files that, after loading a pre-existing output file, run a time-path

simulation and constructs the figures in the paper. The files are provided for academic use.

Users of the files (or modified version of it) should cite Alvarez, Argente and Lippi (2020).

B Finite Difference Method without TTQ

The main idea of the finite difference method is to recast the problem of the planner as a

stochastic control problem, where the domain is partitioned in space and in time, and whose

solution is sure to converge to the continuous time version of the problem and the appropriate

regularity conditions. We opted to numerically solve the value function of this problem for

two reasons. First, the planning problem is not a convex problem. Second, we want to have

a solution over the entire state space for counterfactuals.1 We rely on discretization methods

for stochastic control problems in continuous time described in Kushner and Dupuis (2013).

1Alternatively, we could have used the shooting algorithm for the system of ordinary differential equations
given by the state and co-states defined by the Hamiltonian, but that will provide us with conditions that
are necessary but, in general, not sufficient.

1

In this note, we first describe how the finite difference method can be applied when the same

grid size is used for both state variables of the problem in a triangular domain. We also

use that the value function is known when either of the two state variables is zero (i.e. we

solve the problem in the remaining part of the state space). We then describe how it can

be implemented when the grid size is different. For computational reasons described in this

note, this is our preferred methodology and the one that is implemented in the replication

code. Since the original problem is deterministic, we use the “upwind” approximation method

both in the interior and in the boundary of the state space, where we do not know the value

function. We also discuss how to easily carry the minimization even when the first order

conditions may not apply. We provide the details of the implementation in the rest of the

note. We first consider the problem without TTQ so that the state space is simply S and I,

see Section C for details on the implementation of the TTQ protocol.

The planner solves the following Bellman-Hamilton-Jacobi equation:

(r + ν)V (S, I) = min
L∈[0,L̄]

wL
[
τ(S + I) + 1− τ

]
+ Iφ(I) vsl+ (B1)

+
[
β S I (1− θL)2

]
[∂IV (S, I)− ∂SV (S, I)]

− γI∂IV (S, I)

The domain of V is (S, I) ∈ R2 such that S + I ≤ 1. Note that V (S, I) can be interpreted

as the minimum expected discounted cost of following the optimal policy in units of output

loss. Recall that if φ(I) = 0, then the value of the objective of the planner at time t = 0 will

give N(0)w. Thus, the quantity rV (S, I)/w converts the stock-value of the value function

into a ratio of the flow cost relative to output at time t = 0, when there is no virus. Finally,

we notice that the value function has simple analytic expressions on the boundary of its

domain, where the lockdown policy is not exercised. In particular, on the I = 0 axis we have

V (S, 0) = 0, for all S ∈ (0, 1), so that the cost is zero if nobody is infected. On the S = 0

axis we have V (0, I) = vsl
(

ϕγ
r+ν+γ

+ κγI
r+ν+2γ

)
I for all I ∈ (0, 1).

2

Let Si be the values on a grid of for S and Ij the values on a grid for I. Then we can try

at each interior grid point:

(r + ν)V (Si, Ij) = min
L∈[0,L̄]

Lw
[
τ(Si + Ij) + 1− τ

]
+ Ijφ(Ij) vsl (B2)

+
[
β SiIj(1− θL)2

] [
V +
I (i, j)− V −S (i, j)

]
− γIjV −I (i, j)

where for the first term we use

V −S (i, j) =
V (Si, Ij)− V (Si−1, Ij)

Si − Si−1

and V +
I (i, j) =

V (Si, Ij+1)− V (Si, Ij)

Ij+1 − Ij
(B3)

For instance, assuming that Si − Si−1 = Ij+1 − Ij = ∆

V +
I (i, j)− V −S (i, j) =

1

∆
[V (Si, Ij+1)− V (Si, Ij)− V (Si, Ij) + V (Si−1, Ij)] (B4)

=
1

∆
[V (Si, Ij+1)− 2V (Si, Ij) + V (Si−1, Ij)] (B5)

We can also use in the last term, since the drift is negative:

V −I (i, j) =
1

∆
[V (Si, Ij)− V (Si, Ij−1)] (B6)

The rule used for the derivatives, whether to use forward or backward difference, is whether

the drift of the corresponding term is positive or negative. This is the rule used in Kushner

and Dupuis (2013), “Numerical Methods for Stochastic Control Problems in Continuous

Time” chapter 5 for the explanation in the case of drift (b is the drift of the state in the book

notation) and no diffusion or degenerate case (a = 0 in the book notation). For instance,

see Example 2, for ”Uncontrolled Deterministic Case”, or see section 5.3 “The general Finite

Difference Method”, The Diagonal Case, equations (3.4) and (3.5). The important point is

that the direction of the change on the finite difference approximating the derivatives is given

by the sign of the drift itself.

3

We will use the grids:

GridS = {0,∆, 2∆, . . . , (N − 1)∆} (B7)

GridI = {0,∆, 2∆, . . . , (N − 1)∆} (B8)

with S1 = 0, S2 = ∆, . . . , Si = (i − 1)∆, . . . , SN = (N − 1)∆ = 1, so ∆ = 1
N−1

. Likewise,

I1 = 0, I2 = ∆, . . . , Ij = (j − 1)∆, . . . , IN = (N − 1)∆ = 1. We require Si + Ij ≤ 1

so (i + j − 2)/(N − 1) ≤ 1 or (i + j − 2) ≤ N − 1 or i + j ≤ N + 1. We know the

value function at V (S1, Ij) for all j given by the quadratic expression above V (S1, Ij) =

vsl
(

ϕγ
r+ν+γ

+
κγIj

r+ν+2γ

)
Ij. We also know that V (Si, I1) = 0 for all i. In both cases, i.e. when

I1 = 0 or when S1 = 0, the optimal policy is no lockdown, i.e L(1, j) = L(i, 1) = 0 for all i, j,

where we use L(i, j) to denote the optimal lockdown policy when S = Si and I = Ij. Thus

the expression for V −I (i, j), and for V +
I (i, j) − V −S (i, j) are only computed for pairs (i, j):

2 ≤ i ≤ N − 1 and 2 ≤ j ≤ N + 1− i.

Denote the right hand side of the HJB equation evaluated at (i, j) as F (L; i, j) given by.

F (L; i, j) = Lw
[
τ(Si + Ij) + 1− τ

]
+ Ijφ(Ij) vsl (B9)

+
[
β SiIj(1− θL)2

] [
V +
I (i, j)− V −S (i, j)

]
− γIjV −I (i, j) (B10)

The first derivative is:

dF (L; i, j)

dL
= w

[
τ(Si + Ij) + 1− τ

]
− θ(1− θL)2 [β SiIj]

[
V +
I (i, j)− V −S (i, j)

]
(B11)

and the second derivative is

d2F (L; i, j)

dL2
= θ22 [β SiIj]

[
V +
I (i, j)− V −S (i, j)

]
(B12)

The following gives the optimal L:

4

1. If V +
I (i, j)− V −S (i, j) < 0, then F is concave in L, and the minimum must be at either

L(i, j) = 0 or L(i, j) = L̄, and must be located by evaluating F at these two values.

2. If V +
I (i, j) − V −S (i, j) ≥ 0, then F is convex in L, and the minimum can be located

using the first order condition dF (L;i,j)
dL

= 0 and complementary slackness. Define

L0(i, j) =
−w
[
τ(Si + Ij) + 1− τ

]
+ 2θ [β SiIj]

[
V +
I (i, j)− V −S (i, j)

]
2θ2 [β SiIj]

[
V +
I (i, j)− V −S (i, j)

] (B13)

= −
w
[
τ(Si + Ij) + 1− τ

]
2θ2 [β SiIj]

[
V +
I (i, j)− V −S (i, j)

] +
1

θ
(B14)

and

L(i, j) = min
{
L̄ , max

{
0 , L0(i, j)

}}
(B15)

Note we can first multiply our discrete HJB equation by dt in both sides, and after add

V (Si, Ij) to obtain:

[1 + (r + ν)dt]V (Si, Ij) = min
L∈[0,L̄]

Lw
[
τ(Si + Ij) + 1− τ

]
dt+ Ijφ(Ij) vsl dt[

β SiIj(1− θL)2
]
dt
[
V +
I (i, j)− V −S (i, j)

]
− γIj dt V −I (i, j) + V (Si, Ij)

Replacing the finite difference approximations:

[1 + (r + ν)dt]V (Si, Ij) = min
L∈[0,L̄]

Lw
[
τ(Si + Ij) + 1− τ

]
dt+ Ijφ(Ij) vsl dt

+
[
β SiIj(1− θL)2

] dt
∆

[V (Si, Ij+1)− 2V (Si, Ij) + V (Si−1, Ij)]

− γIj
dt

∆
[V (Si, Ij)− V (Si, Ij−1)] + V (Si, Ij)

5

Moving some terms from the left to the right-and side:

V (Si, Ij) = min
L∈[0,L̄]

Lw
[
τ(Si + Ij) + 1− τ

]
dt+ Ijφ(Ij) vsl dt

+
[
β SiIj(1− θL)2

] dt
∆

[V (Si, Ij+1)− 2V (Si, Ij) + V (Si−1, Ij)]

− γIj
dt

∆
[V (Si, Ij)− V (Si, Ij−1)] + V (Si, Ij) [1− (r + ν)dt]

Collecting terms on the RHS

V (Si, Ij) = min
L∈[0,L̄]

Lw
[
τ(Si + Ij) + 1− τ

]
dt+ Ijφ(Ij) vsl dt

+ [1− (r + ν)dt]
{β SiIj(1− θL)2

1− (r + ν)dt

dt

∆
[V (Si, Ij+1)− 2V (Si, Ij) + V (Si−1, Ij)]

− γIj
1− (r + ν)dt

dt

∆
[V (Si, Ij)− V (Si, Ij−1)] + V (Si, Ij)

}

Further rearranging the terms:

V (Si, Ij) = min
L∈[0,L̄]

Lw
[
τ(Si + Ij) + 1− τ

]
dt+ Ijφ(Ij) vsl dt

+ [1− (r + ν)dt]

[
1− 2

β SiIj(1− θL)2

1− (r + ν)dt

dt

∆
− γIj

1− (r + ν)dt

dt

∆

]
V (Si, Ii)

+ [1− (r + ν)dt]

[
β SiIj(1− θL)2

1− (r + ν)dt

dt

∆

]
[V (Si, Ij+1) + V (Si−1, Ij)]

+ [1− (r + ν)dt]
γIj

1− (r + ν)dt

dt

∆
V (Si, Ij−1)

6

which can be rearrange to obtain the following expression of interest:

V (Si, Ij) = min
L∈[0,L̄]

Lw
[
τ(Si + Ij) + 1− τ

]
dt+ Ijφ(Ij) vsl dt

+ [1− (r + ν)dt]

[
1− 2

β SiIj(1− θL)2

1− (r + ν)dt

dt

∆
− γIj

1− (r + ν)dt

dt

∆

]
V (Si, Ii)

+ [1− (r + ν)dt]

[
β SiIj(1− θL)2

1− (r + ν)dt

dt

∆

]
V (Si, Ij+1)

+ [1− (r + ν)dt]

[
β SiIj(1− θL)2

1− (r + ν)dt

dt

∆

]
V (Si−1, Ij)

+ [1− (r + ν)dt]

[
γIj

1− (r + ν)dt

dt

∆

]
V (Si, Ij−1)

When i, j are such that Si+Ij = 1, so that the state is in the boundary, or equivalently that

i+ j = N + 1, we can’t evaluate V (Si, Ij+1), so we use a different scheme for the difference.

We approximate the difference in the derivatives as follows: ∂IV (Si, Ij) − ∂SV (Si, Ij) =

(V (Si−1, Ij+1)− V (Si, Ij)) /∆. The resulting operator is:

V (Si, Ij) = min
L∈[0,L̄]

Lw
[
τ(Si + Ij) + 1− τ

]
dt+ Ijφ(Ij) vsl dt

+ [1− (r + ν)dt]

[
1− β SiIj(1− θL)2

1− (r + ν)dt

dt

∆
− γIj

1− (r + ν)dt

dt

∆

]
V (Si, Ii)

+ [1− (r + ν)dt]

[
β SiIj(1− θL)2

1− (r + ν)dt

dt

∆

]
V (Si−1, Ij+1)

+ [1− (r + ν)dt]

[
γIj

1− (r + ν)dt

dt

∆

]
V (Si, Ij−1)

Note that the expressions for V (Si, Ij) can be considered as the Bellman equation cor-

responding to a finite state stochastic discrete time programming problem. Indeed, we can

use it to define a corresponding operator and use the method of successive approximations

to approximate its fixed point. The optimal value of L(i, j) was obtained above, as function

of the difference of the finite difference approximation on derivatives. On the one hand, note

that for any fixed grid side ∆ > 0, the last terms of the left hand side can be considered a

weighted average of the value function at different points. For dt small enough all the weights

7

are non-negative. On the other hand, this operator contracts are rate [1− (r + ν)dt], which

is closer to one as dt gets smaller.

To make sure that
[
1− 2

β SiIj(1−θL)2

1−(r+ν)dt
dt
∆
− γIj

1−(r+ν)dt
dt
∆

]
> 0 note that

2
β SiIj(1− θL)2

1− (r + ν)dt

dt

∆
≤ β dt (N − 1)

2[1− (r + ν)dt]

γIj
1− (r + ν)dt

dt

∆
≤ γ dt(N − 1)

1− (r + ν)dt

Thus we require dt to satisfy:

1 ≥ [r + ν + (N − 1) (β/2 + γ)] dt or

dt ≤ 1

r + ν + (N − 1) (β/2 + γ)

Different S and I grid sizes. Since for the initial conditions of interest, the state spends

a large time around low values of I. We consider a non-equal spaced grid for I, while keeping

an equally spaced grid for S such that:

Si+1 = Si + ∆S = i∆S for i = 1, 2, ..., NI

Ij+1 = Ij + ∆I = j∆I for j = 1, 2, ..., NS

∆S = k∆I where k is a strictly positive integer

Thus, we have ∆S = 1
NS−1

and ∆I = 1
NI−1

and (NS − 1)k = NI − 1 or NS = (NI − 1)/k + 1.

We will assume that NS, γ/β satisfies:

∆S =
1

NS − 1
≤ γ

β

We will consider two cases:

8

1. In the “interior” of the state space we will estimate the derivatives by:

V −S (i, j) =
1

∆S

[V (Si, Ij)− V (Si−1, Ij)] (B16)

V +
I (i, j) =

1

∆I

[V (Si, Ij+1)− V (Si, Ij)] (B17)

V −I (i, j) =
1

∆I

[V (Si, Ij)− V (Si, Ij−1)] (B18)

Replacing them in the value function, for values Si > 0 and Ij−1 > 0 are in the state

space, but also so that Si + Ij+1 ≤ 1. This is corresponds to:

2 ≤ i ≤ NS − 1

2 ≤ j ≤ NI − 1− (i− 1)k

since Si + Ij+1 ≤ 1 is equivalent to j∆I + (i − 1)∆S ≤ 1 or j ≤ 1
∆I
− (i − 1)∆S

∆I
or

j ≤ NI − 1− (i− 1)k.

Replacing the finite difference approximation into the value function:

(r + ν)V (Si, Ij) = min
L∈[0,L̄]

Lw
[
τ(Si + Ij) + 1− τ

]
+ Ijφ(Ij) vsl

+
[
β SiIj(1− θL)2

] 1

∆I

[V (Si, Ij+1)− V (Si, Ij)]

−
[
β SiIj(1− θL)2

] 1

∆S

[V (Si, Ij)− V (Si−1, Ij)]

− γIj
1

∆I

[V (Si, Ij)− V (Si, Ij−1)]

9

Multiplying by dt and adding V (Si, Ij) on each side:

V (Si, Ij) = min
L∈[0,L̄]

Lw
[
τ(Si + Ij) + 1− τ

]
dt+ Ijφ(Ij) vsl dt

+
[
β SiIj(1− θL)2

] dt

∆I

[V (Si, Ij+1)− V (Si, Ij)]

−
[
β SiIj(1− θL)2

] dt

∆S

[V (Si, Ij)− V (Si−1, Ij)]

− γIj
dt

∆I

[V (Si, Ij)− V (Si, Ij−1)] + V (Si, Ij) [1− (r + ν)dt]

Grouping common terms for the value functions evaluated at the same points:

V (Si, Ij) = min
L∈[0,L̄]

Lw
[
τ(Si + Ij) + 1− τ

]
dt+ Ijφ(Ij) vsl dt

+

{
[1− (r + ν)dt]−

[
β SiIj(1− θL)2

] dt

∆I

−
[
β SiIj(1− θL)2

] dt

∆S

− γIj
dt

∆I

}
V (Si, Ij)

+
[
β SiIj(1− θL)2

] dt

∆I

V (Si, Ij+1)

+
[
β SiIj(1− θL)2

] dt

∆S

V (Si−1, Ij)

+ γIj
dt

∆I

V (Si, Ij−1)

taking [1− (r + ν)dt] as a common factor:

V (Si, Ij) = min
L∈[0,L̄]

Lw
[
τ(Si + Ij) + 1− τ

]
dt+ Ijφ(Ij) vsl dt

+ [1− (r + ν)dt]

{
1− [β SiIj(1− θL)2]

[1− (r + ν)dt]

dt

∆I

− [β SiIj(1− θL)2]

[1− (r + ν)dt]

dt

∆S

− γIj
[1− (r + ν)dt]

dt

∆I

}
V (Si, Ij)

+ [1− (r + ν)dt]
[β SiIj(1− θL)2]

[1− (r + ν)dt]

dt

∆I

V (Si, Ij+1)

+ [1− (r + ν)dt]
[β SiIj(1− θL)2]

[1− (r + ν)dt]

dt

∆S

V (Si−1, Ij)

+ [1− (r + ν)dt]
γIj

[1− (r + ν)dt]

dt

∆I

V (Si, Ij−1)

2. Now we write the approximation for those (i, j) for which Si+Ij = 1 so that Si+Ij+1 >

10

1. We will first consider the case where

2 ≤ i ≤ NS − 1 and j = NI − (i− 1)k

For this case we use

V (S −∆S, I + k∆I)− V (S, I) = −∂SV (S, I)∆S + ∂IV (S, I)∆I

= ∆S [∂IV (S, I)− ∂SV (S, I)] + o(||(∆,∆I)||)

Thus we approximate ∂IV (S, I)− ∂SV (S, I) as

V +
I (i, j)− V −S (i, j) ≡ 1

∆S

[V (Si−1, Ij+k)− V (Si, Ij)]

where k is the ratio of ∆S/∆I so Sj−1 + Ij+k ≤ 1 whenever Si + Ij = 1. For ∂IV (S, I)

we still use:

V −I (i, j) =
1

∆I

[V (Si, Ij−1)− V (Si, Ij)]

Replacing the finite difference into the value function:

(r + ν)V (Si, Ij) = min
L∈[0,L̄]

Lw
[
τ(Si + Ij) + 1− τ

]
+ Ijφ(Ij) vsl

+
[
β SiIj(1− θL)2

] [
V +
I (i, j)− V −S (i, j)

]
− γIj V −I (i, j)

Using the expressions for the finite differences, multiplying by dt and adding V (Si, Ij)

11

on each side:

V (Si, Ij) = min
L∈[0,L̄]

Lw
[
τ(Si + Ij) + 1− τ

]
dt+ Ijφ(Ij) vsl dt

+
[
β SiIj(1− θL)2

] dt

∆S

[V (Si−1, Ij+k)− V (Si, Ij)]

− γIj
dt

∆I

[V (Si, Ij)− V (Si, Ij−1)] + V (Si, Ij) [1− (r + ν)dt]

Grouping common terms for the value functions evaluated at the same points:

V (Si, Ij) = min
L∈[0,L̄]

Lw
[
τ(Si + Ij) + 1− τ

]
dt+ Ijφ(Ij) vsl dt

+

{
[1− (r + ν)dt]−

[
β SiIj(1− θL)2

] dt

∆S

− γIj
dt

∆I

}
V (Si, Ij)

+
[
β SiIj(1− θL)2

] dt

∆S

V (Si−1, Ij+k)

+ γIj
dt

∆I

V (Si, Ij−1)

taking [1− (r + ν)dt] as a common factor:

V (Si, Ij) = min
L∈[0,L̄]

Lw
[
τ(Si + Ij) + 1− τ

]
dt+ Ijφ(Ij) vsl dt

+ [1− (r + ν)dt]

{
1− [β SiIj(1− θL)2]

[1− (r + ν)dt]

dt

∆S

− γIj
[1− (r + ν)dt]

dt

∆I

}
V (Si, Ij)

+ [1− (r + ν)dt]
[β SiIj(1− θL)2]

[1− (r + ν)dt]

dt

∆S

V (Si−1, Ij+k)

+ [1− (r + ν)dt]
γIj

[1− (r + ν)dt]

dt

∆I

V (Si, Ij−1)

See Section D for instructions on how to implement this version in the code.

12

C Allowing for the Trace-Test-Quarantine policy

This section explains how the the basic model can be extended by endowing the planner

with an additional policy instrument: a trace-test-quarantine (TTQ) protocol. In this

case, the planner will choose two controls as a function of the state: the rate of tracing-

testing-quarantining as well as the lockdown rate. The codes provided already allow

for this extension.

State Space Reduction. To reduce the state space define X as the stock of those

infected, not in quarantine:

X = I −Q (C19)

so that Ẋt = İt − Q̇t, thus we can write:

Ṡt = −βStXt(1− θL)2 (C20)

Ẋt = βStXt(1− θL)2 − Tt − γXt (C21)

The initial conditions of interest are X0 = I0 and S0 = 1−X0, since there is quarantine,

and note that S +X ≤ 1.

To eliminate {Qt} from the state, we rewrite the objective function. The expected

discounted cost of output forgone for those in quarantine, denoted by C({Q}), can be

written, using integration by parts and the law of motion of Q, as follows:

C({Q}) ≡
∫ ∞

0

e−(r+ν)tQtdt =
Q0

r + ν + γ
+

∫ ∞
0

e−(r+ν)t

r + ν + γ
Ttdt

which is equivalent to “booking” the expected discounted cost every time someone is

traced and put in quarantine. The advantage of this formulation is that we can keep

track of the forgone cost of output due to the quarantine using the contemporaneous

control Tt.

13

Two comments about the boundaries of the state space. First, if Qt = It, i.e X0 = 0,

then Ṡt = 0 and İt− Q̇t = −Tt. In this case, it will be optimal to set Lt = 0 and Tt = 0,

and hence Ir − Qr = It − Qt, and Sr = St for all the future r ≥ t. Second, note that

with a positive but finite value of Tr = T̂ > 0 applied for a long enough time, then

Xt = 0 in finite time t <∞.

The introduction of X as a state variable, and the use of the current control T to

represent C({Q}) allow us to eliminate one state variable in the law of motion of the

state. However, this is not yet enough to write the problem as a two-state variable

problem, since the return function still requires to have (S,X,Q) or alternatively the

original (S, I,Q). To see this note that the period cost is given by:

wL
[
τ(S +X) + (1− τ)(1−Q)

]
+

wT

r + ν + γ
+ c(T ;S, I,Q) + vsl φ(X +Q) (X +Q)

Finally note that the function c(T ;S, I,Q) gives the cost of tracing-testing T agents,

which are put in quarantine when the state is (S, I,Q). This cost does not include the

forgone output of the quarantine. We allow the cost function c to depend the flow of

those traced-tested-quarantined, T , as well as on the composition of the state (S, I,Q).

We assume that the function c(T ;S, I,Q) is increasing and convex in T , for fixed

(S, I,Q), and that c(0;S, I,Q) = 0. Below, we elaborate more on the parameterization

and interpretation of the cost function c and the presence of the state (S, I,Q) in it.

We will add two assumptions, which will allow to eliminate Q as part of the state,

which we discuss in three steps:

(a) The first term in the flow cost contains the forgone output cost of lockdown if

there is no test, i.e. the term wL(1−Q) if τ = 0. This term can be dispensed of

by focusing on the case with an antibody test, i.e. the case with τ = 1. We will

assume this from now on.

(b) The second term where we have a Q is the specification of the tracing-testing cost

14

c(·). We discuss the proposed formulation, and how it dispensed from the use of

Q. The cost of finding a number of people T that are infected and aren’t currently

in quarantine, i.e. a member of the population X, should depend on the size of

X in the population that is being trace-tested. If we assume that τ = 1, that

population is of size S + X. In one extreme, if testing is random, the number

of people that have to be tested to identify T is T (S + X)/X. Simply put, it is

harder to find someone infected if there are very few infected in the population

and we search at random. If, instead, there is a smart tracing technology, the cost

can scale at a lower rate relative to the composition of the pool. This motivates

the following functional form:

c(T, S,X) = η

(
T

(
S +X

X

)1−ζ
)

(C22)

where η is a weakly increasing, positive, and convex function, and where ζ ∈ [0, 1]

indexes how smart the tracing is. If ζ = 0 then there is no tracing, and it is

just random sampling. If ζ = 1 then tracing is very powerful, the fraction in the

population is immaterial, and the cost depends only on the number to be traced.

Summarizing, the cost function η(z) depends on the number of “tasks” that have

to be carried out to identify T infected, and we parameterize the number of tasks

as z = T ((S + X)/X)1−ζ , where each “task” is a combination of tracing and

testing.

(c) The third term where Q shows up is the number of deaths per unit of time φ(X +

Q) (X +Q) = φ(I) I, which depends on the total number of infected I = Q+X,

regardless of whether they are in quarantine or not. This can be dispensed with if

we consider the case in which the fatality rate function φ(·) is constant, i.e. κ = 0,

so that φ(X +Q) = ϕγ(X +Q), where ϕ and γ are constant parameters.

Combining these assumptions, i.e. τ = 1 and κ = 0, and again using integration

15

by parts and the law of motion of Q to rewrite vsl ϕγ
∫∞

0
e−(r+ν)tQtdt, we obtain the

following per period flow cost:

wL (S +X) + T
w + vsl ϕγ

r + ν + γ
+ η

(
T

(
S +X

X

)1−ζ
)

+ vsl ϕγX

Two-state-problem. Thus, if τ = 1 and κ = 0 we can formulate the problem with

only two state variables, and with two controls: L ≤ L̄ and T ≤ T̄ .

(r + ν)v(S,X) = min
L∈[0,L̄],T∈[0,T̄]

wL
[
S +X

]
+ T

w + vsl ϕγ

r + ν + γ
+ η

(
T

(
S +X

X

)1−ζ
)

+ vsl ϕγX

+
[
β S X (1− θL)2

]
[∂Xv(S,X)− ∂Sv(S,X)]

− [γX + T] ∂Xv(S,X) (C23)

We summarize the previous argument in the next proposition:

Proposition 1. Assume that there is an antibody test, so τ = 1, and that the fatality

rate function φ(I) = ϕγ is constant, i.e. κ = 0. Let (S, I,Q) be the initial conditions

for the original three state variable problem, with a minimized value V(S, I,Q) and

associated optimal policies L(S, I,Q), T (S, I,Q). Let (S,X) be the initial conditions

for the modified two state variable defined in equation (C23), with a minimized value

v(S,X) and associated optimal policy L(S,X), T (S,X). Then, for all (S, I,Q) ∈ R3
+

with S + I +Q ≤ 1, and I ≥ Q, we have:

V(S, I,Q) = v(S, I −Q) +Q
w + vsl ϕγ

r + γ + ν
(C24)

L(S, I,Q) = L(S, I −Q) and T (S, I,Q) = T (S, I −Q) (C25)

16

We note that the minimization problem in the right hand side of equation (C23) is a

convex problem in T . Instead, the minimization problem with respect to L, as in the

problem without TTQ, is convex at the point where ∂Xv(S,X) ≥ ∂Sv(S,X).

D Implementation with and without TTQ of the

code

The user studying the planning problem without the TTQ protocol must run the files

provided choosing the maximum of the testing-tracing rate Tmax = 0. In order to imple-

ment the code with the TTQ protocol, the user must choose Tmax = 1 as well as τ = 1

and κ = 0 in accordance to the assumptions required for the implementability of the

problem described above. Furthermore, the accuracy of the solution increases as the

number of grid points increase and as the number of iteration increase (or equivalently

the tolerance to stop the iterations). To obtain accurate solutions even when the initial

conditions are close to the boundary (i.e. X0 =0.01 and S0=0.97), for the benchmark

case we ran the code with 300 grid points for S (i.e. NS in the code) and k × 300 grid

points for X where k = 5 (i.e. NX in the code). For higher values of vsl (i.e. vsl=70),

we use NS=650 grid points for S and NX = 5× 650 = 3250 grid points for X . The file

“SimplePlanningProblem.m” solves the planning problem with and without TTQ, this

file should be run first. The file “SimplePlanningProblem Figures NoTTQ.m” plots

the main figures in Alvarez, Argente and Lippi (2020) without TTQ and takes as an

input the .mat file created in “SimplePlanningProblem.m.” The file “SimplePlanning-

Problem Figures TTQ.m” plots the figures with the TTQ protocol.

17

E Quadratic Lockdown Costs

In this section, we consider the case briefly mentioned in the paper where the period

cost of lockdown is quadratic in the total number of hours in lockdown. We consider

only the case without TTQ. In particular, instead of having w[L(1− τ + τ(I + S))] we

use w c
2
[L(1− τ + τ(I + S))]2. The constant c is chosen as follows. Let Lbt be the path

that solves the benchmark case with either τ=0 or τ=1. Then c is chosen so that, if

the same path for lockdown is followed in the benchmark and in the quadratic case,

the expected discounted cost are equal i.e.

∫ ∞
0

e−(r+ν)twLbt

[
τ(St + It) + (1− τ)

]
dt =

∫ ∞
0

e−(r+ν)tw c
2

[
Lbtτ(St + It) + (1− τ)

]2

dt

We compare the optimal policy of the benchmark case under τ=0 with the case where

the output losses from a lockdown are quadratic. The panel on the right in Figure E1

shows that, in the quadratic cost case, the path of the lockdown policy is smoother

through time. Figure E2 shows the time paths for the both the cases with and without

anti-body test. In both instances, the lockdown policy starts immediately at positive

values, but the share of the population under lockdown is smaller than in our benchmark

cases with linear costs.

Relative to the benchmark case, the code is very similar. The only changes in the code

are the first order conditions for L in the right-hand side of the HBJ equation and the

period return of the value function. The file “SimplePlanningProblem quadratic.m”

solves the planning problem without TTQ, this file should be run first and must be

implemented choosing the maximum of the testing-tracing rate Tmax = 0. The file

“SimplePlanningProblem Figures NoTTQ.m” plots the main figures and takes as an

input the .mat file created in “SimplePlanningProblem quadratic.m.”

18

Figure E1: Optimal policy, benchmark case - linear and quadratic output costs

(a) Linear Cost (b) Quadratic Cost

Note: The figure on the left shows the optimal policy for the benchmark parameter values. The blue area

indicates lower values of lockdown (L=0) and the yellow color higher values (L=0.7). The figure on the right

shows the optimal policy for the benchmark parameter values when the output costs of the lockdown are

quadratic.

19

Figure E2: Time paths under baseline parameters (quadratic output losses)

Panel A – Case w/o testing (τ = 0)

Panel B – Case w / testing (τ = 1)

Note: Panel A considers the case where the test is not available (τ = 0), Panel B the case where a test is

available (τ = 1). Both cases consider quadratic lockdown losses. The red lines correspond to the scenario

where no Lockdown is exercised, the blue lines to the optimal control case. The parameters are: r = 0.05,

ν = 1/1.5, w = 1, vsl = 40, γ = 1/18 · 365, β = 0.13 · 365, ϕ = 0.0068, κ = 0.034, θ = 0.5, L̄ = 0.70, T̄ = 0.

The initial condition is I0 = 0.01 and S0 = 0.97.

20

References

Alvarez, Fernando E, David Argente, and Francesco Lippi. 2020. “A simple planning

problem for covid-19 lockdown, testing and tracing.”

Kushner, Harold, and Paul G Dupuis. 2013. Numerical methods for stochastic control

problems in continuous time. Vol. 24, Springer Science & Business Media.

21

	Planning Problem
	Finite Difference Method without TTQ
	Allowing for the Trace-Test-Quarantine policy
	Implementation with and without TTQ of the code
	Quadratic Lockdown Costs

