The Difficulty of Easy Projects Online Appendix

Wioletta Dziuda* Arda Gitmez ${ }^{\dagger}$ Mehdi Shadmehr ${ }^{\ddagger}$

August 2020

In this Appendix, we restate and proof Theorem 2. Theorem 2 tells us how the probability of success changes with $N-q$, and its proof follows the same logic as the proof of Theorem 1. Then we state and prove Proposition 2, which is a generalization of Proposition 1.

For general q and N with $q \leq N$, the indifference condition (which is a generalization of (1)) is:

$$
\begin{equation*}
\frac{c_{q, N}^{*}(u)}{u}=\binom{N-1}{q-1}\left(F\left(c_{q, N}^{*}(u)\right)\right)^{q-1}\left(1-F\left(c_{q, N}^{*}(u)\right)\right)^{N-q} \tag{1}
\end{equation*}
$$

Similarly, the probability of success for general q and N (the generalization of (2) and (3)) is:

$$
\begin{align*}
S_{q, N}\left(c_{q, N}^{*}(u)\right) & =\sum_{k=q}^{N}\binom{N}{k}\left(F\left(c_{q, N}^{*}(u)\right)\right)^{k}\left(1-F\left(c_{q, N}^{*}(u)\right)\right)^{N-k} \tag{2}\\
& =1-\sum_{k=0}^{q-1}\binom{N}{k}\left(F\left(c_{q, N}^{*}(u)\right)\right)^{k}\left(1-F\left(c_{q, N}^{*}(u)\right)\right)^{N-k} \tag{3}
\end{align*}
$$

We now restate Theorem 2 from the main text.
Theorem 2. Take q, N, q^{\prime} and N^{\prime} such that $q \leq N$ and $q^{\prime} \leq N^{\prime}$.

1. If $q \leq q^{\prime}$ and $N-q \geq N^{\prime}-q^{\prime}$, with at least one inequality strict, then $S_{q, N}\left(c_{q, N}^{*}(u)\right)>$ $S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)$ for sufficiently small u.

[^0]2. Suppose the support of costs is bounded from above, or $1-F(x)$ is log-concave for sufficiently large x. If $N-q<N^{\prime}-q^{\prime}$, then $S_{q, N}\left(c_{q, N}^{*}(u)\right)>S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)$ for sufficiently large u.

Before we provide the proof for Theorem 2, we provide a Lemma that will be crucial for the second part of the proof.

Lemma 2. Take q, N, q^{\prime} and N^{\prime} such that $q<N$ and $q^{\prime}<N^{\prime}$. If the support of costs is bounded from above, or if $1-F(x)$ is log-concave for sufficiently large x,

1. For all $\alpha>0, \lim _{u \rightarrow \infty} \frac{c_{q, N}^{*}(u)}{u^{\alpha}}=0$.
2. $\lim _{u \rightarrow \infty} \frac{c_{q, N}^{*}(u)}{c_{q^{\prime}, N^{\prime}}^{*}(u)}<\infty$.

Proof of Lemma 2. Suppose first that the support of costs is bounded from above. Then, by (1), for any $q<N$ and $u>0, c_{q, N}^{*}(u)$ is strictly smaller than the upper bound of the cost distribution, which proves the first part. Also by $(1), \lim _{u \rightarrow \infty} c_{q^{\prime}, N^{\prime}}^{*}(u)>0$, which proves the second part.

Next, suppose the support of costs is not bounded, but $1-F(x)$ is log-concave for sufficiently high x.

To prove the first part, we first show that $\lim _{u \rightarrow \infty} c_{q, N}^{*}(u)=\infty$. Suppose towards a contradiction that $\lim _{u \rightarrow \infty} c_{q, N}^{*}(u)<\infty$. This implies that $\lim _{u \rightarrow \infty} \frac{c_{q, N}^{*}(u)}{u}=0$. But the right-hand side of (1) converges to a strictly positive number, a contradiction.

Then, using L'Hôpital's rule,

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \frac{c_{q, N}^{*}(u)}{u^{\alpha}}=\lim _{u \rightarrow \infty} \frac{\frac{d c_{q, N}^{*}(u)}{d u}}{\alpha u^{\alpha-1}} . \tag{4}
\end{equation*}
$$

Differentiating (1) with respect to u yields (we omit argument u here for brevity)

$$
\begin{equation*}
\frac{d c_{q, N}^{*}}{d u}=\frac{\binom{N-1}{q-1}\left(F\left(c_{q, N}^{*}\right)\right)^{q-1}\left(1-F\left(c_{q, N}^{*}\right)\right)^{N-q}}{1-u\binom{N-1}{q-1}\left(F\left(c_{q, N}^{*}\right)\right)^{q-2}\left(1-F\left(c_{q, N}^{*}\right)\right)^{N-q-1}\left((q-1)\left(1-F\left(c_{q, N}^{*}\right)\right)-(N-q) F\left(c_{q, N}^{*}\right)\right) f\left(c_{q, N}^{*}\right)} . \tag{5}
\end{equation*}
$$

From (1), the numerator is equal to $\frac{c_{q, N}^{*}(u)}{u}$, and also

$$
\begin{equation*}
\binom{N-1}{q-1}\left(F\left(c_{q, N}^{*}(u)\right)\right)^{q-2}\left(1-F\left(c_{q, N}^{*}(u)\right)\right)^{N-q-1}=\frac{c_{q, N}^{*}(u)}{u} \frac{1}{F\left(c_{q, N}^{*}(u)\right)\left(1-F\left(c_{q, N}^{*}(u)\right)\right)} . \tag{6}
\end{equation*}
$$

Substituting $\frac{c_{q, N}^{*}(u)}{u}$ and (6) into (5) yields:

$$
\begin{align*}
\frac{d c_{q, N}^{*}(u)}{d u} & =\frac{\frac{c_{q, N}^{*}(u)}{u}}{1-u \frac{c_{q, N}^{*}(u)}{u} \frac{1}{F\left(c_{q, N}^{*}(u)\right)\left(1-F\left(c_{q, N}^{*}(u)\right)\right)}\left((q-1)\left(1-F\left(c_{q, N}^{*}(u)\right)\right)-(N-q) F\left(c_{q, N}^{*}(u)\right)\right) f\left(c_{q, N}^{*}(u)\right)} \\
& =\frac{1}{u} \frac{1}{\frac{1}{c_{q, N}^{*}(u)}-\left((q-1) \frac{1-F\left(c_{q, N}^{*}(u)\right)}{F\left(c_{q, N}^{*}(u)\right)}-(N-q)\right) \frac{f\left(c_{q, N}^{*}(u)\right)}{1-F\left(c_{q, N}^{*}(u)\right)} .} \tag{7}
\end{align*}
$$

Substituting (7) into (4),

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \frac{c_{q, N}^{*}(u)}{u^{\alpha}}=\lim _{u \rightarrow \infty} \frac{1}{\alpha u^{\alpha}} \frac{1}{\frac{1}{c_{q, N}^{*}(u)}-\left((q-1) \frac{1-F\left(c_{q, N}^{*}(u)\right)}{F\left(c_{q, N}^{*}(u)\right)}-(N-q)\right) \frac{f\left(c_{q, N}^{*}(u)\right)}{1-F\left(c_{q, N}^{*}(u)\right)}} . \tag{8}
\end{equation*}
$$

Recall that $\lim _{u \rightarrow \infty} c_{q, N}^{*}(u)=\infty$, and thus $\lim _{u \rightarrow \infty} F\left(c_{q, N}^{*}(u)\right)=1$. Since $1-F(x)$ is log-concave, $\lim _{u \rightarrow \infty} \frac{f\left(c_{q, N}^{*}(u)\right)}{1-F\left(c_{q, N}^{*}(u)\right)}>0$. Equation (8) then implies that $\lim _{u \rightarrow \infty} \frac{c_{q, N}^{*}(u)}{u^{\alpha}}=0$.

To prove the second part by contradiction, suppose that $\lim _{u \rightarrow \infty} \frac{c_{q, N}^{*}(u)}{c_{q^{\prime}, N^{\prime}}^{*}(u)}=\infty$. Then, $\lim _{u \rightarrow \infty} c_{q, N}^{*}(u)>\lim _{u \rightarrow \infty} c_{q^{\prime}, N^{\prime}}^{*}(u)$. Because $1-F(x)$ is log-concave, $\frac{\underline{f}(x)}{1-F(x)}$ is increasing, and hence

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \frac{\frac{f\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)}{1-F\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)}}{\frac{f\left(c_{q, N}^{*}(u)\right)}{1-F\left(c_{q, N}^{*}(u)\right)}}<\infty . \tag{9}
\end{equation*}
$$

Using L'Hôpital's rule,

$$
\begin{aligned}
\lim _{u \rightarrow \infty} \frac{c_{q, N}^{*}(u)}{c_{q^{\prime}, N^{\prime}}^{*}(u)} & =\lim _{u \rightarrow \infty} \frac{\frac{d c_{q, N}^{*}(u)}{d u}}{\frac{d c_{q^{\prime}, N^{\prime}}^{*}(u)}{d u}} \\
& =\lim _{u \rightarrow \infty} \frac{\frac{1}{c_{q^{\prime}, N^{\prime}}^{*}(u)}-\left(\left(q^{\prime}-1\right) \frac{1-F\left(c_{c^{\prime}, N^{\prime}}^{*}(u)\right)}{F\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)}-\left(N^{\prime}-q^{\prime}\right)\right) \frac{f\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)}{1-F\left(c_{q^{\prime}, N^{\prime}}^{\prime}(u)\right)}}{\frac{1}{c_{q, N}^{*}(u)}-\left((q-1) \frac{1-F\left(c_{q, N}^{*}(u)\right)}{F\left(c_{q, N}^{*}(u)\right)}-(N-q)\right) \frac{f\left(c_{q, N}^{*}(u)\right)}{1-F\left(c_{q, N}^{*}(u)\right)}}(\text { from }(7)) \\
& =\lim _{u \rightarrow \infty} \frac{N^{\prime}-q^{\prime}}{N-q} \frac{\frac{f\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)}{1-F\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)}}{\frac{f\left(c_{q, N}^{*}(u)\right)}{1-F\left(c_{q, N}^{*}(u)\right)}}<\infty \quad(\text { from }(9)),
\end{aligned}
$$

which is a contradiction.
Proof of Theorem 2. To prove the first part, note that from $(1), c_{q, N}^{*}(0)=0$. There-
fore, when $u=0$, the number of citizens contributing is:

$$
X \sim \operatorname{Binomial}(N, F(0))
$$

and the probability of success is:

$$
\begin{aligned}
S_{q, N}\left(c_{q, N}^{*}(0)\right)=S_{q, N}(0) & =\operatorname{Pr}\{X \geq q\} \\
& =1-\operatorname{Pr}\{X \leq q-1\} \\
& =1-I_{1-F(0)}(N-q+1, q),
\end{aligned}
$$

where $I_{p}(a, b)$ is the regularized beta function, defined as:

$$
I_{p}(a, b)=\frac{\int_{0}^{p} t^{a-1}(1-t)^{b-1} d t}{\int_{0}^{1} t^{a-1}(1-t)^{b-1} d t} \quad p \in[0,1], a, b>0
$$

Since $I_{p}(.,$.$) is strictly decreasing in its first argument and strictly increasing in its second$ argument, $S_{q, N}(0)$ is strictly increasing in $N-q+1$ and strictly decreasing in q. As a result, $S_{q, N}\left(c_{q, N}^{*}(0)\right)>S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(0)\right)$ if $N-q \geq N^{\prime}-q^{\prime}$ and $q \leq q^{\prime}$, with at least one inequality strict. The first part of the theorem follows from the continuity of $c_{q, N}^{*}(u)$ and $S_{q, N}^{*}\left(c_{q, N}^{*}(u)\right)$ in u.

Now, we prove the second part of the theorem. Take q, N, q^{\prime} and N^{\prime} such that $N-q<N^{\prime}-q^{\prime}$. We will consider three separate cases.

Case 1: $N-q>0$. Write the difference between success probabilities as:

$$
S_{q, N}\left(c_{q, N}^{*}(u)\right)-S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)=\left(1-S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)\right)\left(1-\frac{1-S_{q, N}\left(c_{q, N}^{*}(u)\right)}{1-S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)} .\right)
$$

Thus, it suffices to show

$$
\lim _{u \rightarrow \infty} \frac{1-S_{q, N}\left(c_{q, N}^{*}(u)\right)}{1-S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)}<1 .
$$

From (3),

$$
\begin{align*}
\frac{1-S_{q, N}(u)}{1-S_{q^{\prime}, N^{\prime}}(u)} & =\frac{\sum_{k=0}^{q-1}\binom{N}{k}\left(F\left(c_{q, N}^{*}(u)\right)\right)^{k}\left(1-F\left(c_{q, N}^{*}(u)\right)\right)^{N-k}}{\sum_{k=0}^{q^{\prime}-1}\binom{N^{\prime}}{k}\left(F\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)\right)^{k}\left(1-F\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)\right)^{N^{\prime}+1-k}} \\
& =\frac{\sum_{k=0}^{q-1}\binom{N}{k}\left(F\left(c_{q, N}^{*}(u)\right)\right)^{k}\left(1-F\left(c_{q, N}^{*}(u)\right)\right)^{q-1-k}}{\sum_{k=0}^{q^{\prime}-1}\binom{N+1}{k}\left(F\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)\right)^{k}\left(1-F\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)\right)^{q^{\prime}-1-k}} \frac{\left(1-F\left(c_{q, N}^{*}(u)\right)\right)^{N+1-q}}{\left(1-F\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)\right)^{N^{\prime}+1-q^{\prime}}} \tag{10}
\end{align*}
$$

Moreover, since $\lim _{u \rightarrow \infty} F\left(c_{q, N}^{*}(u)\right)=1$,

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \sum_{k=0}^{q-1}\binom{N}{k}\left(F\left(c_{q, N}^{*}(u)\right)\right)^{k}\left(1-F\left(c_{q, N}^{*}(u)\right)\right)^{q-1-k}=\binom{N}{q-1} . \tag{11}
\end{equation*}
$$

Substituting (11) into (10) yields

$$
\lim _{u \rightarrow \infty} \frac{1-S_{q, N}\left(c_{q, N}^{*}(u)\right)}{1-S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)}=\lim _{u \rightarrow \infty} \frac{\binom{N}{q-1}}{\left(\begin{array}{c}
N_{\prime^{\prime}-1} \tag{12}
\end{array}\right)} \frac{\left(1-F\left(c_{q, N}^{*}(u)\right)\right)^{N+1-q}}{\left(1-F\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)\right)^{N^{\prime}+1-q^{\prime}}}
$$

Substituting the indifference conditions (1) into (12) yields

$$
\begin{aligned}
& \lim _{u \rightarrow \infty} \frac{1-S_{q, N}\left(c_{q, N}^{*}(u)\right)}{1-S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)}=\lim _{u \rightarrow \infty} \frac{\binom{N}{q-1}}{\binom{N^{\prime}}{q^{\prime}-1}} \frac{\left(\frac{c_{q, N}^{*}(u)}{u} \frac{1}{\binom{N-1}{q-1}\left(F\left(c_{q, N}^{*}(u)\right)\right)^{q-1}}\right)^{\frac{N+1-q}{N-q}}}{\left(\frac{c_{q^{\prime}, N^{\prime}}^{*}(u)}{u} \frac{1}{\binom{N^{\prime}-1}{q^{\prime}-1}\left(F\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)\right)^{q^{\prime}-1}}\right)^{\frac{N^{\prime}+1-q^{\prime}}{N^{\prime}-q^{\prime}}}} \\
& =\lim _{u \rightarrow \infty} \frac{\binom{N}{q-1}}{\binom{N^{\prime}}{q^{\prime}-1}} \frac{\left(\frac{1}{\binom{N-1}{q-1}\left(F\left(c_{q, N}^{*}(u)\right)\right)^{q-1}}\right)^{\frac{N+1-q}{N-q}}}{\left(\frac{1}{\binom{N^{\prime}-1}{q^{\prime}-1}\left(F\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)\right)^{q^{\prime}-1}}\right)^{\frac{N^{\prime}+1-q^{\prime}}{N^{\prime}-q^{\prime}}}}\left(\frac{c_{q, N}^{*}(u)}{c_{q^{\prime}, N^{\prime}}^{*}(u)}\right)^{\frac{N^{\prime}+1-q^{\prime}}{N^{\prime}-q^{\prime}}}\left(\frac{c_{q, N}^{*}(u)}{u}\right)^{\frac{N+1-q}{N-q}-\frac{N^{\prime}+1-q^{\prime}}{N^{\prime}-q^{\prime}}} \\
& =\frac{\binom{N}{q-1}}{\binom{N^{\prime}}{q^{\prime}-1}} \frac{\left(\frac{1}{\binom{N-1}{q-1}}\right)^{\frac{N+1-q}{N-q}}}{\left(\frac{1}{\binom{N^{\prime}-1}{q^{\prime}-1}}\right)^{\frac{N^{\prime}+1-q}{N^{\prime}-q^{\prime}}}}\left(\lim _{u \rightarrow \infty} \frac{c_{q, N}^{*}(u)}{c_{q^{\prime}, N^{\prime}}^{*}(u)}\right)^{\frac{N^{\prime}+1-q^{\prime}}{N^{\prime}-q^{\prime}}}\left(\lim _{u \rightarrow \infty} \frac{c_{q, N}^{*}(u)}{u}\right)^{\frac{N+1-q}{N-q}-\frac{N^{\prime}+1-q^{\prime}}{N^{\prime}-q^{\prime}}} .
\end{aligned}
$$

By Lemma 2, $\lim _{u \rightarrow \infty} \frac{c_{q, N}^{*}(u)}{c_{q^{\prime}, N^{\prime}}^{*}(u)}<\infty$ and $\lim _{u \rightarrow \infty} \frac{c_{q, N}^{*}(u)}{u}=0$. Thus,

$$
\lim _{u \rightarrow \infty} \frac{1-S_{q, N}\left(c_{q, N}^{*}(u)\right)}{1-S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)}=0
$$

if

$$
\frac{N+1-q}{N-q}-\frac{N^{\prime}+1-q^{\prime}}{N^{\prime}-q^{\prime}}>0 \Longleftrightarrow N-q<N^{\prime}-q^{\prime}
$$

Case 2: $N-q=0$ and $N^{\prime}-q^{\prime}=1$. If the support of costs is bounded from above, then
$1-F\left(c_{q, N}^{*}(u)\right)=0$ for sufficiently large u, while $1-F\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)>0$ for all u. As a result, $S_{q, N}\left(c_{q, N}^{*}(u)\right)=1>S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)$. If the support of costs has no upper bound, (12) applies and

$$
\lim _{u \rightarrow \infty} \frac{1-S_{q, N}\left(c_{q, N}^{*}(u)\right)}{1-S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)}=\lim _{u \rightarrow \infty} \frac{N}{\binom{N^{\prime}}{N^{\prime}-2}} \frac{\left(1-F\left(c_{q, N}^{*}(u)\right)\right)}{\left(1-F\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)\right)^{2}} .
$$

By (1), $\lim _{u \rightarrow \infty} \frac{c_{N, N}^{*}(u)}{u}=1$. By Lemma 2, $\lim _{u \rightarrow \infty} \frac{c_{q^{\prime}, N^{\prime}}^{*}(u)}{u^{\alpha}}=0$ for any $\alpha>0$. Therefore, it suffices to show:

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \frac{1-F(u)}{\left(1-F\left(u^{\alpha}\right)\right)^{2}}=0, \text { for some } \alpha \in(0,1) \tag{13}
\end{equation*}
$$

This is precisely condition (13), demonstrated in the proof of Theorem 1.
Case 3: $N-q=0$ and $N^{\prime}-q^{\prime}>1$. For sufficiently large u,

$$
S_{N, N}\left(c_{N, N}^{*}(u)\right)>S_{N-1, N}\left(c_{N-1, N}^{*}(u)\right)>S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right) .
$$

where the first inequality follows from Case 2 and the second inequality follows from Case 1.

We state and prove now the equivalent of Proposition 1.
Proposition 2. Suppose $1-F(x)=\beta / x^{\alpha}$, $\alpha, \beta>0$, for sufficiently large x.

- If $\alpha>1$, the likelihood of success is decreasing in $N-q$ for sufficiently large u : $S_{q, N}\left(c_{q, N}^{*}(u)\right)>S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)$ when $N-q<N^{\prime}-q^{\prime}$ for sufficiently large u,
- if $\alpha<1$, the likelihood of success is increasing in $N-q$ for sufficiently large u : $S_{q, N}\left(c_{q, N}^{*}(u)\right)>S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)$ when $N-q>N^{\prime}-q^{\prime}$ for sufficiently large u.
Proof of Proposition 2. Substituting $1-F(x)=\frac{\beta}{x^{\alpha}}$ in (12),

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \frac{1-S_{q, N}\left(c_{q, N}^{*}(u)\right)}{1-S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)}=\lim _{u \rightarrow \infty} \frac{\binom{N}{q-1}}{\binom{N^{\prime}}{q^{\prime}-1}} \frac{\beta^{N-q+1}}{\beta^{N^{\prime}-q^{\prime}+1}}\left(\frac{\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)^{N^{\prime}-q^{\prime}+1}}{\left(c_{q, N}^{*}(u)\right)^{N-q+1}}\right)^{\alpha} . \tag{14}
\end{equation*}
$$

Substituting $1-F(x)=\frac{\beta}{x^{\alpha}}$ in (1),

$$
c_{q, N}^{*}(u)=\binom{N-1}{q-1}\left(1-\frac{\beta}{\left(c_{q, N}^{*}(u)\right)^{\alpha}}\right)^{q-1}\left(\frac{\beta}{\left(c_{q, N}^{*}(u)\right)^{\alpha}}\right)^{N-q} u .
$$

Thus,

$$
\begin{equation*}
\left(c_{q, N}^{*}(u)\right)^{N-q+1}=\left(\binom{N-1}{q-1} \beta^{N-q}\left(1-\frac{\beta}{\left(c_{q, N}^{*}(u)\right)^{\alpha}}\right)^{q-1} u\right)^{\frac{N-q+1}{\alpha(N-q)+1}} \tag{15}
\end{equation*}
$$

Substituting this in (14),
$\left.\lim _{u \rightarrow \infty} \frac{1-S_{q, N}\left(c_{q, N}^{*}(u)\right)}{1-S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)}=\lim _{u \rightarrow \infty} \frac{\binom{N}{q-1}}{\binom{N^{\prime}}{q^{\prime}-1}} \beta^{N-q-\left(N^{\prime}-q^{\prime}\right)}\left(\frac{\left(\binom{N^{\prime}-1}{q^{\prime}-1} \beta^{N^{\prime}-q^{\prime}}\left(1-\frac{\beta}{\left(c_{q^{\prime}, N^{\prime}}(u)\right)^{\alpha}}\right)^{q^{\prime}-1} u\right)^{\frac{N^{\prime}-q^{\prime}+1}{\alpha\left(N^{\prime}-q^{\prime}\right)+1}}}{\left(\binom{N-1}{q-1} \beta^{N-q}\left(1-\frac{\beta}{\left(c_{q, N}^{*}(u)\right)^{\alpha}}\right)^{q-1} u\right)^{\alpha}}\right)^{\frac{N-q+1}{\alpha(N-q)+1}}\right)$.
Since $\lim _{u \rightarrow \infty} c_{q, N}^{*}(u)=\infty$,

$$
\begin{aligned}
\lim _{u \rightarrow \infty} \frac{1-S_{q, N}\left(c_{q, N}^{*}(u)\right)}{1-S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)} & =\lim _{u \rightarrow \infty} \frac{\binom{N}{q-1}}{\binom{N^{\prime}}{q^{\prime}-1}} \beta^{N-q-\left(N^{\prime}-q^{\prime}\right)}\left(\frac{\left(\binom{N^{\prime}-1}{q^{\prime}-1} \beta^{N^{\prime}-q^{\prime}} u\right)^{\frac{N^{\prime}-q^{\prime}+1}{\alpha\left(N^{\prime}-q^{\prime}\right)+1}}}{\left(\binom{N-1}{q-1} \beta^{N-q} u\right)^{\frac{N}{\alpha(N-q+1}}}\right)^{\alpha} \\
& =\frac{\binom{N}{q-1}}{\binom{N^{\prime}}{q^{\prime}-1}} \beta^{N-q-\left(N^{\prime}-q^{\prime}\right)}\left(\frac{\left(\binom{N^{\prime}-1}{q^{\prime}-1} \beta^{N^{\prime}-q^{\prime}}\right)^{\frac{N^{\prime}-q^{\prime}+1}{\alpha\left(N^{\prime}-q^{\prime}\right)+1}}}{\left(\binom{N-1}{q-1} \beta^{N-q}\right)^{\frac{N-q+1}{\alpha(N-q)+1}}}\right)^{\alpha} \lim _{u \rightarrow \infty} u^{\left(\frac{\alpha\left(N^{\prime}-q^{\prime}\right)+\alpha}{\alpha\left(N^{\prime}-q^{\prime}\right)+1}-\frac{\alpha(N-q)+\alpha}{\alpha(N-q)+1}\right)} .
\end{aligned}
$$

Now, suppose:

- $\alpha>1$ and $N-q<N^{\prime}-q^{\prime}$, or,
- $\alpha<1$ and $N-q>N^{\prime}-q^{\prime}$.

In both cases,

$$
\frac{\alpha\left(N^{\prime}-q^{\prime}\right)+\alpha}{\alpha\left(N^{\prime}-q^{\prime}\right)+1}-\frac{\alpha(N-q)+\alpha}{\alpha(N-q)+1}<0 .
$$

Therefore,

$$
\lim _{u \rightarrow \infty} \frac{1-S_{q, N}\left(c_{q, N}^{*}(u)\right)}{1-S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)}=0 .
$$

Thus, for sufficiently large $u, \frac{1-S_{q, N}\left(c_{q, N}^{*}(u)\right)}{1-S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)}<1$ and

$$
S_{q, N}\left(c_{q, N}^{*}(u)\right)-S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)=\left(1-S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)\right)\left(1-\frac{1-S_{q, N}\left(c_{q, N}^{*}(u)\right)}{1-S_{q^{\prime}, N^{\prime}}\left(c_{q^{\prime}, N^{\prime}}^{*}(u)\right)}\right)>0
$$

[^0]: ${ }^{*}$ Harris School of Public Policy, University of Chicago. E-mail: wdziuda@uchicago.edu
 ${ }^{\dagger}$ Harris School of Public Policy, University of Chicago, and Department of Economics, Bilkent University. E-mail: arda@uchicago.edu
 ${ }^{\ddagger}$ Harris School of Public Policy, University of Chicago, and Department of Economics, University of Calgary. E-mail: mshadmeh@gmail.com

