
40 AMERICAN ECONOMIC JOURNAL MONTH YEAR

Online Appendix: Estimating Adjustment Frictions Using Non-Linear

Budget Sets: Method and Evidence from the Earnings Test, by

Alexander M. Gelber, Damon Jones, and Daniel W. Sacks

A1. Polynomial Adjustment Costs

We now extend the adjustment cost to encompass a polynomial adjustment cost,
allowing for greater generality than a fixed cost. We begin with an adjustment
cost that increases linearly in the size of the adjustment, which illustrates how
the method generalizes for higher-order polynomials. Assume that given an initial
level of earnings z0, agents must pay a cost of φ∗ · |z − z0| when they change their
earnings to a new level z. Utility ũ at the new earnings level can be represented
as:

ũ (c, z;n, z0) = u (c, z;n)− φ∗ · |z − z0| .
The first order condition for earnings can be characterized as:

−uz (c, z;n)

uc (c, z;n)
= (1− τ − φ∗/λ∗ · sgn (z − z0))

=

{
(1− τ − φ) if z > z0

(1− τ + φ) if z < z0
,

where λ∗ = uc (c∗, z∗;n) is the Lagrange multiplier and φ = φ∗/λ∗ is the dollar
equivalent of the linear adjustment cost φ∗.

The individual chooses earnings as if he faces an effective marginal tax rate of
τ̃ = τ + φ·sgn(z − z0). It follows that our predictions about earnings adjustment
are similar to our previous predictions, except that the effective marginal tax rate
τ̃ appears, rather than τ . Thus, we can solve for the elasticity of earnings as a
function of the change in earnings 4z∗ due to introduction of a kink in the tax
schedule and the jump in marginal tax rate dτ1:

ε =
4z∗/z∗

dτ̃1/ (1− τ̃0)

=
4z∗/z∗

(dτ1 − 2φ) / (1− τ0 − φ)
.

Since the right-hand side is increasing in φ, the estimate of the elasticity increases
as the linear adjustment cost increases. This makes intuitive sense: the adjustment
cost attenuates bunching, so holding constant the level of bunching, the elasticity
must be higher as the adjustment cost increases.

Now assume that when an individual adjusts his earnings, he incurs a linear
adjustment cost φ∗L for every unit of change in earnings, as well as a fixed cost
φ∗F associated with any change in earnings. Consider again bunching at z∗, with
a tax rate jump of dτ1 = τ1 − τ0 at earnings level z∗. We have the following set
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of expressions for excess mass:

B =

∫ z∗+4z∗

z
h0 (ζ) dζ

ε =
4z∗/z∗(

dτ1 − 2φL
)
/
(
1− τ0 − φL

)
φ∗F + φ∗L · (z − z∗) = u

(
(1− τ1) z∗ +R

′
, z∗;n

)
− u

(
(1− τ1) z +R

′
, z;n

)
.

In this case, we need at least three kinks to separately identify
(
ε, φF , φL

)
. A

similar argument generalizes this to the case of any polynomial adjustment cost:
for a polynomial adjustment cost of order n, we need n+ 1 moments to identify
these parameters as well as the elasticity.

A2. Dynamic Model with Forward-Looking Behavior

We present in this appendix a version of the dynamic model in Section V.C in
which we allow for forward-looking behavior. The key difference in implications
is that in addition to a gradual, lagged response to policy changes, this version of
the model also predicts anticipatory adjustment by agents when policy changes
are anticipated in advance. We have essentially the same setting as in Section
V.C, except that we will alter three of the assumptions. First, in each period,
an individual draws a cost of adjustment, φ̃t, from a discrete distribution, which
takes a value of φ with probability π and a value of 0 with probability 1 − π.13

Second, individuals make decisions over a finite horizon, living until Period T . In
period 0, the individuals face a linear tax schedule, T0 (z) = τ0z, with marginal
tax rate τ0. In period 1, a kink, K1, is introduced at the earnings level z∗. This
tax schedule is implemented for T1 periods, after which the tax schedule features
a smaller kink, K2, at the earnings level z∗. The smaller kink is present until
period T2, after which we return to the linear tax schedule, T0. As before, the
kink Kj , j ∈ {1, 2}, features a top marginal tax rate of τ j for earnings above z∗.14

Finally, in each period, individuals solve this maximization problem:

(A1) max
(ca,t,za,t)

v (ca,t, za,t; a, za,t−1) + δVa,t+1 (za,t, Aa,t) ,

13For expositional purposes, we constrain the probability of drawing a nonzero fixed costs to be π in
all periods. Thus, the terms from Section V.C of the form

∏
πj simplify to πj in this appendix. All

results go through with the more flexible distribution of adjustment costs in Section V.C.
14In Section V.C, we do not specify time T2, when the smaller kink, K2, is removed, as it is not

relevant to the case where individuals are not forward-looking.
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where v (ca,t, za,t; a, za,t−1) ≡ u (ca,t, za,t; a)− φ̃t ·1 (za,t 6= za,t−1), δ is the discount
factor, and Va,t+1 is the value function moving forward in Period t+ 1:
(A2)

Va,t+1 (ζ,Aa,t) = Eφ
[

max
(ca,t+1,za,t+1)

v (ca,t+1, za,t+1; a, ζ) + δVa,t+2 (za,t+1, Aa,t+1)

]
.

Va,t+1 is a function of where the individual has chosen to earn in Period t and

assets Aa,t. The expectation Eφ [·] is taken over the distribution of φ̃t. The
intertemporal budget constraint is:

(A3) Aa,t = (1 + r) (Aa,t−1 + za,t − T (za,t)− ca,t) .

We assume that δ (1 + r) = 1. Because individuals have quasilinear preferences,
this implies that consumption can be set to disposable income in each period:
ca,t = za,t − T (za,t). We therefore use the following shorthand:

uja (z) = u (z − Tj (z) , z; a)

Va,t (z) = Va,t (z,Aa,t−1)(A4)

Next, we define two operators that measure the utility gain (or loss) following a
discrete change in earnings:

4uja
(
z, z′

)
= uja (z)− uja

(
z′
)

4Va,t
(
z, z′

)
= Va,t (z)− Va,t

(
z′
)

(A5)

In each case above, the utility and utility differential depend on the tax schedule.
We define zja as the optimal level of earnings under a frictionless, static optimiza-
tion problem, facing the tax schedule Tj . We will refer to the frictionless, dynamic
optimum in any given period as z̃a,t.

15 This is the optimal level of earnings when
there is a fixed cost of zero drawn in the current period, but a nonzero fixed cost
may be drawn in future periods. We will also make a distinction between two
types of earnings adjustments: active and passive. An active earnings adjustment
takes place in the presence of a nonzero fixed cost, while a passive earnings ad-
justment takes place only when a fixed cost of zero is drawn. We solve the model
recursively, beginning in the regime after time T2, when the smaller kink, K2, has
been removed, continuing with the solution while the kink K2 is present between
times T1 and T2, and finally considering the first regime when the kink K1 is
present between time period 1 and T1.16

15In a model with no forward-looking behavior, zja = z̃a,t.
16Our recursive method can be extended to the case of multiple, successive kinks. The effect on

bunching of a sequence of more kinks depends on the relative size of the successive kinks.
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Earnings between T2 and T . — We will now derive the value function Va,T2+1 (z).
We begin with the following result: If an individual with initial earnings z makes
an active adjustment in period t > T2 + 1, then it must be the case that

(A6)
1− (δπ)T1+1−t

1− δπ
4u0

a

(
z0
a, z
)
≥ φ.

We demonstrate this result with a constructive proof, showing the result for pe-
riods T and T −1. Because the tax schedule is constant throughout this terminal
period, the frictionless, dynamic optimum is equal to the static optimum: z̃a,t =
z0
a. First, consider an agent in period T , with initial earnings z, who is consid-

ering maintaining earnings at z or paying the fixed cost φ and making an active
adjustment to z0

a, the frictionless, dynamic optimum in period T . The agent will
make the adjustment if:

4u0
a

(
z0
a, z
)
≥ φ

=
1− δπ
1− δπ

φ.(A7)

Rearranging terms, we have satisfied the inequality in (A6).
Now consider agents in period T −1 with initial earnings z. There are two types,

those who would make an active adjustment to z0
a in period T if the earnings z

are carried forward and those who would not. Consider those who would not.
If the agent remains with earnings of z, then utility will be u0

a (z) + δVa,T (z) =

u0
a (z) + δ

[
π
(
u0
a (z)

)
+ (1− π)u0

a

(
z0
a

)]
. If the agent actively adjusts to z0

a, then

utility will be u0
a

(
z0
a

)
− φ + δu0

a

(
z0
a

)
. The agent will actively adjust in period

T − 1 if:

4u0
a

(
z0
a, z
)
≥ 1

1 + δπ
φ

=
1− δπ

1− (δπ)2φ.(A8)

Once again, rearranging terms confirms that (A6) holds. Finally, consider agents
who would actively adjust from z to z0

a if earnings level z is carried forward. In
this case, the agent’s utility when remaining at z is:

u0
a (z) + δVa,T (z) = u0

a (z) + δ
[
π
(
u0
a

(
z0
a

)
− φ

)
+ (1− π)u0

a

(
z0
a

)]
(A9)

= u0
a (z) + δ

(
u0
a

(
z0
a

)
− πφ

)
.

Intuitively, the agent will receive the optimal level of utility in the next period,
and with probability π the agent will have to pay the fixed cost to achieve it.
Similarly, the agent’s utility after actively adjusting to z0

a in period T − 1 is
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u0
a

(
z0
a

)
− φ+ δu0

a

(
z0
a

)
. The agent will therefore adjust in period T if:

(A10) 4u0
a

(
z0
a, z
)
≥ (1− δπ)φ.

However, we know from (A7) that this already holds for the agent who actively
adjusts in period T . Finally, note that (A7) implies (A8). It follows that in
period T − 1, adjustment implies (A7). We can similarly show the result for
earlier periods by considering separately: (a) those who would actively adjust in
the current period, but not in any future period; and (b) those who would adjust
in some future period. Both types will satisfy the key inequality. As a corollary,
note that if an individual with initial earnings z makes an active adjustment in
period t > T2 + 1, then she will also find it optimal to do so in any period t′,
where T2 < t′ < t. To see this, note that if (A6) holds for t, then it also holds for
t′ < t. It follows that the agent would also actively adjust in period t′.

Now consider an agent who earns z in period T2. Note that our results above
imply that any active adjustment that takes place after T2 will only happen in
period T2 + 1. These agents will receive a stream of discounted payoffs of u0

a

(
z0
a

)
for T − T2 periods, i.e.

∑T −T2−1
j=0 δju0

a

(
z0
a

)
= 1−δT −T2

1−δ u0
a

(
z0
a

)
, and pay a fixed

cost of φ in period T2 with probability π. Otherwise, an agent will adjust to the
dynamic frictionless optimum z0

a only when a fixed cost of zero is drawn. In the
latter case, the agent receives a payoff of u0

a (z) until a fixed cost of zero is drawn,
after which, the agent receives u0

a

(
z0
a

)
. We can therefore derive the following

value function:17

(A11)

Va,T2+1 (z) =

 1−δT −T2
1−δ u0

a

(
z0
a

)
− πφ if 1−(δπ)T −T2

1−δπ 4u0
a

(
z0
a, z
)
≥ φ

1−δT −T2
1−δ u0

a

(
z0
a

)
− π 1−(δπ)T −T2

1−δπ 4u0
a

(
z0
a, z
)

otherwise
.

To gain some intuition for (A6), note that the left side of (A6) is the net present
value of the stream of the utility differential once the agent adjusts from z to z0

a.
If this exceeds the up-front cost of adjustment, φ, then the agent actively adjusts.
The discount factor for j periods in the future, however, is (δπ)j , instead of only
δj . The reason is that current adjustment only affects future utility j periods
from now if j consecutive nonzero fixed costs are drawn, which happens with
probability πj . To better understand our second result regarding the timing of
active changes, note that if the gains from adjustment over T − t periods exceed
the up-front cost, then the agent should also be willing to adjust in period t′ < t
and accrue T − t′ periods of this gain, for the same up-front cost of φ.

17The expected utility for passive adjusters is constructed recursively, working backward from period
T to period T2 + 1.
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Earnings between T1 and T2. — We now derive the value function Va,T1+1 (z).
In this case, the dynamic frictionless optimum in each period, z̃a,t, is not constant.
Intuitively, the agent trades off the gains from adjusting earnings in response to
K2 with the effect of this adjustment on the value function Va,T2+1. In general,
the optimum is defined as:

(A12) z̃a,t = arg max
z∈[z2a,z

0
a]

1− (δπ)T2+1−t

1− δπ
u2
a (z) + δT2+1−tπT2−tVa,T2+1 (z) .

We restrict the maximization to the interval
[
z2
a, z

0
a

]
, since reducing earnings

below z2
a or raising earnings above z0

a weakly reduces utility in any current and
all future periods for t > T1. From (A11), we know that Va,T2+1 is continuous, and
thus the solution in (A12) exists.18 We present two results analogous to those in
Section A.A2, without proof. The proofs, nearly identical to those in the previous
section, are available upon request. First, if an individual with initial earnings z
makes an active adjustment in period t, T1 < t ≤ T2, then:

(A13)
1− (δπ)T2+1−t

1− δπ
4u2

a (z̃a,t, z) + δT2+1−tπT2−t4Va,T2+1 (z̃a,t, z) ≥ φ.

Furthermore, if an individual with initial earnings z makes an active adjustment
in period t, T1 < t ≤ T2, then she will also find it optimal to do so in any period
t′, where T1 < t′ < t.

The condition in (A13) differs from that in (A6) because the effect of adjustment
on the utility beyond period T2 is taken into account, in addition to the up-front
cost of adjustment, φ. Any adjustment in this time interval, active or passive, will
be to the dynamic, frictionless optimum for the current period, z̃a,t. As before,
(A13) implies that all active adjustment occurring between T1 + 1 and T2 takes
place in period T1 + 1. Those who adjust in period T1 + 1 will earn z̃a,T1+1.
Thereafter, they only adjust to z̃a,t when a fixed cost of zero is drawn. Likewise,
those who only adjust passively earn za,T1 in period T1 + 1, and thereafter adjust
to z̃a,t when a fixed cost of zero is drawn. We can therefore derive the following

18Technically, we can see from (A11) that while the function Va,P2+1 is continuous, it is kinked, which
creates a nonconvexity. Thus, the solution in (A12) may not always be single-valued. In such cases, we
define z̃a,t as the lowest level of earnings that maximizes utility.
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value function:
(A14)

Va,T1+1 (z) =



T2−T1−1∑
j=0

δju2
a (z̃a,T1+1+j) + δT2−T14Va,T2+1 (z̃a,T2)

−
T2−T1−2∑
j=0

(δπ)T2−T1

πj+1 4Va,T2+1 (z̃a,T1+2+j , z̃a,T1+1+j)

−
T2−T1−2∑
j=0

1−(δπ)T2−T1−1−j

1−δπ δj+1π4u2
a (z̃a,T1+2+j , z̃a,T1+1+j)

−πφ

if (A13) is satisfied
when t = T1 + 1

T2−T1−1∑
j=0

δju2
a (z̃a,T1+1+j) + δT2−T14Va,T2+1 (z̃a,T2)

−
T2−T1−2∑
j=0

(δπ)T2−T1

πj+1 4Va,T2+1 (z̃a,T1+2+j , z̃a,T1+1+j)

−
T2−T1−2∑
j=0

1−(δπ)T2−T1−1−j

1−δπ δj+1π4u2
a (z̃a,T1+2+j , z̃a,T1+1+j)

−π

{
T2−T1−1∑
j=0

(δπ)j4u2
a (z̃a,T1+1, z)

− δT2−T1πT2+1−T14Va,T2+1 (z̃a,T1+1, z)

}
otherwise

The first case in (A14) applies to those who actively adjust in period T1 + 1 and
passively adjust thereafter. The first line is the utility that would accrue if a
fixed cost of zero were drawn in each period. The next two lines represent the
deviation from this stream of utility, due to nonzero fixed costs potentially drawn
in periods T1 + 1 through T2. The final line represents the fixed cost that is paid
in period T1 +1 with probability π. The second case in (A14) applies to those who
only passively adjust. The first three lines remain the same. The final two lines
represent a loss in utility attributed to fact that earnings in period T1 + 1 may
not be z̃a,T1+1. Note that earnings in period T1 can only affect utility through
this last channel.

Earnings between Period 1 and T1. — Earnings during the first period, when
the kink K1 is present, can be derived similarly. The dynamic, frictionless opti-
mum is now defined as:

(A15) z̃a,t = arg max
z∈[z1a,z

0
a]

1− (δπ)T1+1−t

1− δπ
u1
a (z) + δT1+1−tπT1−tVa,T1+1 (z) .19

19Note, the objective function now features two potential nonconvexities. In cases where the solution
is multi-valued, we again define z̃a,t as the lowest earnings level from the set of solutions.
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Similar to the other cases, if an individual with initial earnings z makes an active
adjustment in period t, 0 < t ≤ T1, then it must be the case that

(A16)
1− (δπ)T1+1−t

1− δπ
4u1

a (z̃a,t, z) + δT1+1−tπT1−t4Va,T1+1 (z̃a,t, z) ≥ φ.

Furthermore, if an individual with initial earnings z makes an active adjustment
in period t, 0 < t ≤ T1, then she will also find it optimal to do so in any period
t′, where 0 < t′ < t. Again, this implies that all active adjustment will take place
in period 1. Since individuals begin with earnings of z0

a, we know that all active
adjustment will be downward. Thereafter, it can be shown that z̃a,t is weakly
increasing, and upward adjustment will occur passively.

Characterizing Bunching. — Given these results, we can now derive expressions
for excess mass at z∗ analogous to (8) and (9). For notational convenience, we
define Aj (z) as the set of individuals, a, with initial earnings z who actively
adjust in period j. Again, denote Bt

1 as bunching at K1 in period t ∈ [1, T1]. We
have the following generalized version of (8):

Bt
1 =

∫ z∗+4z∗1

z∗

[
1 {z̃a,1 = z∗, a ∈ A1 (ζ)}

+
t∑

j=1

(
1− πj

)
πt−j1 {sup { l| l ≤ t, z̃a,l = z∗} = j, a /∈ A1 (ζ)}

−
t−1∑
j=1

(
1− πt−j

)
1 {sup { l| l ≤ t, z̃a,l = z∗} = j, a ∈ A1 (ζ)}

]
h0 (ζ) dζ.

(A17)

We have partitioned the set of potential bunchers into three groups in (A17). In
the first line, we have the set of active bunchers in period 1. In the second line, we
capture individuals who are passive bunchers, i.e. a /∈ A1

(
z0
a

)
. For j ∈ [1, t− 1],

the indicator function selects the individual who has z̃a,j = z∗ but z̃a,j+1 6= z∗.
Since z̃a,t is weakly increasing, the optimal earnings for this individual is z∗ in
periods 1 through j− 1. The probability that the individual bunches by period j
is 1−πj . Thereafter, the individual will de-bunch if a fixed cost of zero is drawn.
The probability of only drawing nonzero fixed costs thereafter is πt−j . For j = t,
the indicator function selects agents for whom z̃a,t = z∗. Their probability of
passively bunching by period t is 1 − πt. The third line captures the outflow of
active bunchers, for whom z̃a,t ceases to be z∗ starting in period j. The probability
of having drawn a nonzero fixed cost and de-bunching since period j is 1− πt−j .

Equation (A17) differs from (8) in three key ways. First, the set of active bunch-
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ers in period 1 is different, as can be seen by comparing (A16) and the relevant
condition for active bunchers in Section V.C, 4u1

a

(
z∗, z0

a

)
≥ φ. The utility gain

accrues for multiple periods in the forward-looking case, increasing the probabil-
ity of actively bunching, but the effect of adjustment on future payoffs via Va,T1+1

may either reinforce or offset this incentive. Furthermore, passive bunchers are
(weakly) less likely to remain bunching, as they de-bunch in anticipation of policy
changes in future periods. To see this, note that the πt−j factor is decreasing in
t. Finally, the set of active bunchers similarly de-bunch passively, in anticipation
of future policy changes. The model therefore predicts a gradual outflow from
the set of bunchers, in anticipation of the shift from K1 to K2. Nonetheless, the
overall net change in bunching over time is ambiguous.

We now turn to bunching starting in period T + 1. It can be shown, similarly
to the cases above, that if an agent would be willing to actively bunch in period
T1 + 1, she will also be willing to actively bunch in earlier periods. Thus, the
only active adjustment occurring that affects bunching will be de-bunching. The
set of individuals who actively de-bunch, AT1+1 (z∗), are those for whom (A13)
is satisfied, when evaluated at t = T1 + 1 and z = z∗. The remaining changes in
bunching between T1 and T2 consist of passive adjustment among those who were
bunching at the end of period T1. We can thus characterize Bt

2, bunching at K2

in period t ∈
[
T1 + 1, T

]
, in a manner analogous to (9):20

Bt
2 =

∫ z∗+4z∗1

z∗

[
1 {a /∈ AT1+1 (z∗)}

×

{
πt−T11 {z̃a,T1+1 6= z∗}+

t∑
j=T1+1

πt−j1 {sup { l| l ≤ t, z̃a,l = z∗} = j}

}

×

{
1 {z̃a,1 = z∗, a ∈ A1 (ζ)}

+

T1∑
j=1

(
1− πj

)
πT1−j1 {sup { l| l ≤ T1, z̃a,l = z∗} = j, a /∈ A1 (ζ)}

−
T1−1∑
j=1

(
1− πT1−j

)
1 {sup { l| l ≤ T1, z̃a,l = z∗} = j, a ∈ A1 (ζ)}

}]
h0 (ζ) dζ.

(A18)

The first line of this expression selects only those agents who do not actively
de-bunch immediately in period T1 + 1. The second line selects the set of agents
who would like to passively de-bunch beginning at some period j > T1 + 1. They
are weighted by the probability of continuing to bunch due to consecutive draws

20When T1 = 1, we set the very last summation to zero.
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of nonzero fixed costs. The final three lines select agents from the set of bunchers
at the end of period T1. As with our simpler model in Section V.C, bunching
gradually decreases following a reduction in the size of the kink from K1 to K2.
However, in this case, the reduction is due to both fixed costs of adjustment and
anticipation of the removal of the kink K2 in period T2 + 1.

As in Section V.C, the richer model in this appendix nests the dynamic model
without forward looking behavior when we set δ = 0, collapses to the comparative
static model of Sections V.A-V.B if we additionally assume that π = 1 and is
equivalent to the frictionless model when either φ = 0 or π = 0.

A3. Derivation of Bunching Formulae with Heterogeneity

Comparative Static Model. — Under heterogenous preferences, our estimates
can be interpreted as reflecting average parameters among the set of bunchers
(as in Saez, 2010, and Kleven and Waseem, 2013). As described in the main
text, suppose (εi, φi, ai) is jointly distributed according to a smooth CDF, which
translates to a smooth, joint distribution of elasticities, fixed costs and earnings.
Let the joint density of earnings, adjustment costs and elasticities be h∗0 (z, ε, φ)
under a linear tax of τ0. Assume that the density of earnings is constant over the
interval [z∗, z∗ + ∆z∗], conditional on ε and φ. When moving from no kink to a
kink, we derive a formula for bunching at K1 in the presence of heterogeneity as
follows:

B1 =

∫∫∫ z∗+∆z∗1

z1

h∗0 (ζ, ε, ϕ) dζdεdϕ

=

∫∫
[z∗ + ∆z∗1 − z1]h∗0 (z∗, ε, ϕ) dεdϕ

= h0 (z∗) ·
∫∫

[z∗ + ∆z∗1 − z1]
h∗0 (z∗, ε, ϕ)

h0 (z∗)
dεdϕ

= h0 (z∗) · E [z∗ + ∆z∗1 − z1] ,(A19)

where we have used the assumption of constant h∗0 (·) in line two, h0 (z∗) =∫∫
h∗0 (z∗, ε, ϕ) dεdϕ, and ζ, ε and ϕ are dummies of integration. The expecta-

tion E [·] is taken over the set of bunchers, under the various combinations of
ε and φ throughout the support. It follows that normalized bunching can be
expressed as follows:

(A20) b1 = z∗ + E [∆z∗1 ]− E [z1] .

Under heterogeneity, the level of bunching identifies the average behavioral re-
sponse, ∆z∗, and threshold earnings, z1, among the marginal bunchers under
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each possible combination of parameters ε and φ. Under certain parameter val-
ues, there is no bunching, and thus, the values of the elasticity and adjustment
cost in these cases do not contribute our estimates.

When we move sequentially from a larger kink, K1 to a smaller kink, K2, our
formula for bunching under K2 in the presence of heterogeneity is likewise derived
as follows:

B̃2 =

∫∫∫ z̄0

z1

h∗0 (ζ, ε, ϕ) dζdεdϕ

=

∫∫
[z̄0 − z1]h∗0 (z∗, ε, ϕ) dεdϕ

= h0 (z∗) ·
∫∫

[z̄0 − z1]
h∗0 (z∗, ε, ϕ)

h0 (z∗)
dεdϕ

= h0 (z∗) · E [z̄0 − z1] .(A21)

Similarly, normalized bunching can now be expressed as follows:

(A22) b̃2 = E [z̄0]− E [z1] .

Once again, the expectations are taken over the population of bunchers.

Following the approach in Kleven and Waseem (2013, pg. 682), the average
value of the parameters ∆z∗1 , z1 and z̄0 can then be related to ε and φ, assuming
a quasi-linear utility function and using (5) and (7) and the identities 4z∗1 =
εz∗dτ1/ (1− τ0) and z̄0 − z̄2 = εz̄2dτ2/ (1− τ0).

Dynamic Model. — A similar interpretation of our results holds when we turn to
our more dynamic framework in Section V.C. Suppose now that (εi, φi, ai,πi) is
jointly distributed according to a smooth CDF, which results in a smooth, joint
distribution of elasticities, fixed costs, earnings, and probabilities of drawing a
positive fixed cost. In order to gain tractability, we assume that the profile πi
is independent of the parameters (εi, φi, ai). The result is that the joint density
of these parameters, under a linear tax of τ0, can be expressed as a product of
two densities: h∗0 (z, ε, φ) g (πi). We maintain the assumption that the density
of earnings is constant over the interval [z∗, z∗ + ∆z∗], conditional on ε and φ.
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Bunching at K1 in period t ∈ [1, T1] will now be:

Bt
1 =

∫∫∫∫ z∗+∆z∗1

z1

h∗0 (ζ, ε, ϕ) g (π) dζdεdϕdπ

+

∫∫∫∫ z1

z∗

(
1−Πt

j=1πj
)
h∗0 (ζ, ε, ϕ) g (π) dζdεdϕdπ

=

∫∫
[z∗ + ∆z∗1 − z1]h∗0 (z∗, ε, ϕ)

(∫
g (π) dπ

)
dεdϕ

+

∫∫
[z1 − z∗]h∗0 (z∗, ε, ϕ)

(∫ (
1−Πt

j=1πj
)
g (π) dπ

)
dεdϕ

= h0 (z∗)

{∫∫
[z∗ + ∆z∗1 − z1]

h∗0 (z∗, ε, ϕ)

h0 (z∗)
dεdϕ

+
(
1− E

[
Πt
j=1πj

]) ∫∫
[z1 − z∗]

h∗0 (z∗, ε, ϕ)

h0 (z∗)
dεdϕ

}
= h0 (z∗)

{
z∗ + E [∆z∗1 ]− E [z1] +

(
1− E

[
Πt
j=1πj

])
(E [z1]− z∗)

}
= h0 (z∗)

{
E [∆z∗1 ]− E

[
Πt
j=1πj

]
(E [z1]− z∗)

}
,(A23)

where now h0 (z∗) =
∫∫∫

h∗0 (z∗, ε, ϕ) g (π) dεdϕdπ. In the second line, we have
again made use of a constant h∗0 (·) and also the independence of πi. Normalized
bunching at K1 in period t will then be:

(A24) bt1 = E [∆z∗1 ]− E
[
Πt
j=1πj

]
(E [z1]− z∗) .

Using similar steps, we can show that bunching in period t > T1 at K2, when
moving sequentially from K1, can be written as:

Bt
2 =

∫∫∫∫ z∗+∆z∗2

z1

h∗0 (ζ, ε, ϕ) g (π) dζdεdϕdπ

+

∫∫∫∫ z̄0

z∗+∆z∗2

(
Πt−T1
j=1 πj

)
h∗0 (ζ, ε, ϕ) g (π) dζdεdϕdπ

+

∫∫∫∫ z1

z∗

(
1−Πt−T1

j=1 πj ·Π
T1
j=1πj

)
h∗0 (ζ, ε, ϕ) g (π) dζdεdϕdπ

= h0 (z∗)

{(
1− E

[
Πt−T1
j=1 πj

])
E [∆z∗2 ] + E

[
Πt−T1
j=1 πj

]
E [z̄0]

−E
[
Πt−T1
j=1 πj ·Π

T1
j=1πj

]
E [z1]−

(
E
[
Πt−T1
j=1 πj

]
− E

[
Πt−T1
j=1 πj ·Π

T1
j=1πj

])
z∗
}
.

(A25)
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Likewise, normalized bunching at K2 will be:

bt2 =
(

1− E
[
Πt−T1
j=1 πj

])
E [∆z∗2 ] + E

[
Πt−T1
j=1 πj

]
E [z̄0]− E

[
Πt−T1
j=1 πj ·Π

T1
j=1πj

]
E [z1]

−
(
E
[
Πt−T1
j=1 πj

]
− E

[
Πt−T1
j=1 πj ·Π

T1
j=1πj

])
z∗.

(A26)

The levels of bunching at the kink before and after the transition are now functions
of average behavioral responses, (∆z∗1 ,∆z

∗
2), the average thresholds for marginal

bunchers, (z1, z̄0), and average survival probabilities,
(

Πt
j=1πj ,Π

t−T1
j=1 πj ·Π

T1
j=1πj

)
.

Relative to our baseline dynamic model in Section V.C, the number of interme-
diate parameters to be identified is increasing in the number of post-transition

periods, due to the terms of the form E
[
Πt−T1
j=1 πj ·Π

T1
j=1πj

]
. A sufficient condition

that allows us to retain identification while only using two transitions in kinks
is that the expectation of this product simplifies to a product of expectations:

E
[
Πt−T1
j=1 πj ·Π

T1
j=1πj

]
= E

[
Πt−T1
j=1 πj

]
E
[
ΠT1j=1πj

]
. There are two cases of interest

that satisfy this condition. First, if πj = 0 for some j < T1, then ΠT1j=1πj = 0,
and the condition holds. This empirically appears to be the case in our context:
adjustment takes roughly two years, while T1 ≥ 3 in our two main applications.
Second, if there is no heterogeneity in π across agents, the condition also holds.

If we relax the assumption that E
[
Πt−T1
j=1 πj ·Π

T1
j=1πj

]
= E

[
Πt−T1
j=1 πj

]
E
[
ΠT1j=1πj

]
,

we will require additional transitions in kinks in order to achieve identification.
Furthermore, if we relax the assumption that the profile πi is independent of
(εi, φi, ai), identification is more complicated, as the expectations in the above
expressions will then feature weights that vary with t. In that case, more para-
metric structure on the joint distribution of (εi, φi, ai,πi) is needed to achieve
identification. We discuss identification further in section A.A5 of the Appendix.

A4. Allowing for Frictions in Initial Earnings

In the initial period 0 (prior to the policy change), under a linear tax of τ0, we
have assumed that individuals are located at their frictionless optimum, while we
have assumed in subsequent periods adjustment costs may preclude individuals
from reaching their exact, interior optimum. Here, we extend the model to allow
for agents to be away from their optimum in period 0, in a way that is consistent
with our model of a fixed adjustment cost.

We now analyze the thought experiment previously discussed in Section V.B.
That is, we demonstrate this extension in the context of the “comparative static”
model. From a linear tax of τ0 in period 0, in period 1 we introduce a kink, K1,
at z∗, and let the marginal tax rate increase to τ1 for earnings above z∗. Finally,
in period 2 we replace the first kink with a second, smaller kink, K2, at z∗, where
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the marginal tax rate only increases to τ2.

Again, agents are indexed by a. Let za,j be actual earnings for individual a
in period when facing tax schedule Tj (z), and let z̃a,j be the optimal level of
earnings she would choose in the absence of adjustment frictions. As in Chetty
(2012), assume that earnings are not “too far” from the frictionless optimum; that
is, assume that earnings are within a set such that the utility gain of adjusting
to the optimum does not exceed the adjustment cost. Formally:

za,j (z̃a,0) ∈
[
z−a,j (z̃a,0) , z+

a,j (z̃a,0)
]

,

where z−a,t ≤ z̃a,j ≤ z
+
a,t

and u (z̃a,j − Tj (z̃a,j) , z̃a,j ; a)− φ∗ = u
(
z−a,j − Tj

(
z−a,j

)
, z−a,j ; a

)
= u

(
z+
a,j − Tj

(
z+
a,j

)
, z+
a,j ; a

)
(A27)

where Tj (·) represents a linear tax of τ0 in period 0, reflects the kink K1 in pe-
riod 1, and reflects the kink K2 in period 2. In words, z−a,j and z+

a,j are the lowest
and highest level of earnings, respectively, that would be acceptable before an
individual chooses to adjust to their optimal earnings level. Note that we have
defined za,j (z̃a,0) as a function of the optimal level of earnings for individual a in
period 0 for notational convenience. Let the actual earnings, conditional on opti-
mal earnings in period 0, be distributed according to the cumulative distribution
function Fa,j (za,j |z̃a,0 ), with probability density function fa,j (za,j |z̃a,0 ). Thus,
individuals are distributed around their frictionless optimum in period 0.

First, consider the level of bunching at K1. Relative to our baseline model
with frictions (that assumes individuals are initially located at their frictionless
optimum), there will be two differences in who bunches. First, individuals in
Figure 6 Panel B area i did not bunch in the baseline because they were sufficiently
close to the kink. These are agents for whom z∗ < z̃a,0 < z1. Now, with some
probability, a fraction of these agents will be sufficiently far from z∗ in period 0 to

justify moving to the kink in Period 1—formally, those for whom za,0 ∈
[
z+
a,1, z

+
a,0

]
.

Their initial earnings are above their interior optimum in period 0, but not far
enough to outweigh the fixed cost of adjustment in Period 0. Now that the
optimum in period 1 has moved to z∗, the utility gain to readjusting exceeds the
fixed cost of adjustment. These individuals will now bunch under K1. The second
difference in this version of the model relative to our baseline model is that some
individuals who had bunched under K1 in the baseline model, i.e. areas ii, iii,and
iv in Figure 6, may find themselves already close enough to z∗ in period 0 that
they do not bunch at z∗ in period 0 (because relocating to z∗ in period 0 does not
have sufficient benefit to outweigh the fixed adjustment cost). Formally, these are
individuals for whom za,0 < z+

a,1. These cases are illustrated in Appendix Figure
B3.
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Define bunching under this modified model as B′1. Bunching under K1 can be
expressed as:

B′1 =

∫ z∗+4z∗1

z∗

[∫ z+n,0

z+n,1

fa,0 (v |ζ ) dv

]
h0 (ζ) dζ

=

∫ z∗+4z∗1

z∗

[
1− Fa,0

(
z+
a,1 |ζ

)]
h0 (ζ) dζ

=

∫ z∗+4z∗1

z∗
Pr
(
za,0 ≥ z+

a,1 |z̃a,0 = ζ
)
h0 (ζ) dζ

where ν and ζ are dummies of integration.

We now turn to bunching in period 2, under K2. Note that because this kink
is smaller, anyone sufficiently close to z∗ that they did not bunch under K1 will
continue not to bunch under K2. Thus, the only change in bunching in period 2
will be those who now move away from the kink. Under the baseline model, these
were individuals for whom z̄0 ≤ z̃a,0 ≤ z∗ +4z∗1 , i.e. area iv in Figure 6, Panel
B. These individuals will still find it worthwhile to move away from the kink, but
the difference from the baseline model is that only a subset of them bunched in
period 1. Thus, the decrease in bunching will be related to the share of people in
area v who actually bunched under K1. What remains are those individuals with
z∗ ≤ z̃a,0 ≤ z̄0 who actually bunched in period 1. Formally, bunching in period 2
under K2 can be expressed as follows:

B̃′2 =

∫ z̄0

z∗

[∫ z+n,0

z+n,1

fa,0 (v |ζ ) dv

]
h0 (ζ) dζ

=

∫ z̄0

z∗

[
1− Fa,0

(
z+
a,1 |ζ

)]
h0 (ζ) dζ

=

∫ z̄0

z∗
Pr
(
za,0 ≥ z+

a,1 |z̃a,0 = ζ
)
h0 (ζ) dζ

We can rewrite the level of bunching in this setting in terms of bunching amounts
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derived above:

B′1 =

∫ z∗+4z∗1

z∗
Pr
(
za,0 ≥ z+

a,1 |z̃a,0 = ζ
)
h (ζ) dζ

=

∫ z∗+4z∗1

z∗
h (ζ) dζ ·

∫ z∗+4z1

z∗
Pr
(
za,0 ≥ z+

a,1 |z̃a,0 = ζ
) h (ζ)∫ z∗+4z1

z∗ h (ζ) dζ
dζ

= B∗1 ·
∫ z∗+4z∗1

z∗
Pr
(
za,0 ≥ z+

a,1 |z̃a,0 = ζ
)
h (ζ|z∗ < ζ ≤ z∗ +4z∗1) dζ

= B∗1 · E
[
Pr
(
za,0 ≥ z+

a,1

)
|z∗ < z̃a,0 ≤ z∗ +4z∗1

]
where B∗1 =

∫ z∗+4z∗1
z∗ h0 (ζ) dζ is defined in equation (2) when j = 1. This is the

bunching that would occur in a model of no frictions under K1, i.e. areas i − iv
in Figure 6, Panel B. Likewise, we have:

B̃
′
2 =

∫ z̄0

z∗
Pr
(
za,0 ≥ z+

a,1 |z̃a,0 = ζ
)
h0 (ζ) dζ

=
[
B̃2 +B∗1 −B1

]
· E
[
Pr
(
zn,0 ≥ z+

n,1

)
|z∗ < z̃a,0 ≤ z̄0

]
where B̃2 is defined in equation (6), and B1 is defined in equation (4). It follows
that B̃2 +B∗1 −B1 =

∫ z̄0
z∗ h0 (ζ) dζ, i.e. areas i− iii in Figure 6.

Without further restrictions on the distribution of optimal earnings under a
linear tax, H0 (z), or distribution of earnings about the frictionless optimum in
period 0, Fa,j (za,j |z̃a,0 ), we cannot make further simplifications of these expres-
sions. However, if we assume that the initial actual earnings level is distributed
uniformly about optimal earnings in period 0, following Chetty et al. (2011) or
Kleven and Waseem (2013), then we have:

za,0 ∼ U
[
z−a,0, z

+
a,0

]
which implies that:

Pr
(
za,0 ≥ z+

a,1 |z̃a,0 = ζ
)

= min

(
z+
a,0 (ζ)− z+

a,1 (ζ)

z+
a,0 (ζ)− z−a,0 (ζ)

, 1

)

Using our definitions above for z+
a,0 (·), z−a,0 (·) and z+

a,1 (·) we can calculate this
probability conditional on initial frictionless earnings in period 0, the elasticity ε
and the adjustment cost φ. Note that the uniform distribution of actual earnings
is not generally centered at the optimal earnings level in period 0, since the lower

and upper limits of the support in period 0, i.e.
[
z−a,0, z

+
a,0

]
, will tend to be
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different distances from the frictionless optimum. We can also calculate B∗1 , B1,

and B̃2, conditional on the counterfactual distribution H0 (z) and a value of ε
and φ. We are therefore able to calculate predicted values for B′1 and B̃

′
2 and use

these in a modified version of the estimation procedure outlined in Section V.E.

Although it is not necessary for our estimation procedure, if we further assume
that the optimal earnings density, h0 (·), is constant over the range [z∗, z∗ +4z∗1 ],
as is common in the literature (e.g., Chetty et al. 2011 or Kleven and Waseem
2013), then we have the following:

B
′
1 = B∗1 · E

[
Pr
(
za,0 ≥ z+

a,1

)
|z∗ < z̃a,0 ≤ z∗ +4z∗1

]
= 4z∗1h0 (z∗) · E

[
Pr
(
za,0 ≥ z+

a,1

)
|z∗ < z̃a,0 ≤ z∗ +4z∗1

]
and likewise:

B̃
′
2 =

[
B̃2 +B∗1 −B1

]
· E
[
Pr
(
zn,0 ≥ z+

n,1

)
|z∗ < z̃a,0 ≤ z̄0

]
= [z̄0 − z∗]h0 (z∗) · E

[
Pr
(
zn,0 ≥ z+

n,1

)
|z∗ < z̃a,0 ≤ z̄0

]
It also follows that bunching normalized by the height of the density at the

kink will be:

b
′
1 = 4z∗1 · E

[
Pr
(
za,0 ≥ z+

a,1

)
|z∗ < z̃a,0 ≤ z∗ +4z∗1

]
b
′
2 = [z̄0 − z∗] · E

[
Pr
(
zn,0 ≥ z+

n,1

)
|z∗ < z̃a,0 ≤ z̄0

]
A5. Identification

Our estimator is a minimum distance estimator (MDE); Newey and McFadden
(1994) give conditions for identification, consistency, and asymptotic normality.
An MDE is defined as:

θ̂ = arg min
θ
Q̂(θ)

Q̂(θ) = [B −m(θ)]′Ŵ [B −m(θ)]

In our case, B is a vector of L estimated bunching amounts from before and
after a policy change, and m(θ) is a vector of predicted bunching amounts. Ŵ is
a weighting matrix. We consider our comparative static, and dynamic, models,
in turn.
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Comparative Static Model. — We focus on the exactly identified case with
two bunching moments, which is relevant in our empirical application of the
comparative static model. We have:

m(θ) = (B1(ε, φ), B̃2(ε, φ))

B1 =

∫ z∗+∆z∗1

z1

h(ξ)dξ

B̃2 =

∫ z̄0

z1

h(ξ)dξ

where B1 and B̃2 refer to bunching before and after the policy change, and θ ≡
(ε, φ).

The upper cutoff in B1 is defined as

z∗ + ∆z∗1 = z∗
(

1− τ0

1− τ1

)ε
.

A necessary condition for identification is that solutions for z1 and z̄0 exist;
if they do not, then no bunching occurs. It is straightforward to show that a
solution for z1 exists if

z∗
[
(1− τ1)−

(
1− τ0

1− τ1

)ε
((1− τ1)− ε (τ1 − τ0))

]
> φ (ε+ 1) .

This ensures that the “top” buncher wants to adjust to the kink. A solution for
z̄0 exists as long as some debunching occurs. It is straightforward to show that
this requires that:

z∗

[
(1− τ2)ε+1 − (1− τ1)ε+1

(1− τ1)ε

]
> φ (ε+ 1) .

As long as τ0 < τ2 < τ1, ε > 0, and φ > 0, there exists a range of values of ε and
φ for which these inequalities hold.

Provided that z̄0 and z1 exist, identification requires that m(θ) = B has a
unique solution. Following previous literature (e.g. Kline and Walters 2016), we
establish local uniqueness by linearizing m (·) around a solution m(θ0) = B. Let
θ0 be a solution to m(θ) = B. Linearizing m (·) around θ0, we have:

m(θ) ≈ m(θ0) +∇m(θ0)(θ − θ0).

It follows that a unique solution requires Jm(θ0) to have full rank, where Jm(θ0)
is the Jacobian of m (·) evaluated at θ0:



58 AMERICAN ECONOMIC JOURNAL MONTH YEAR

Jm(θ0) =

[
∂B1
∂ε

∂B1
∂φ

∂B̃2
∂ε

∂B̃2
∂φ

]
.

We calculate the elements of this matrix analytically by differentiating the ex-
pressions above for B1 and B̃2, which is straightforward.21 Thus, given θ̂, z1, and
z̄0, we can calculate the Jacobian analytically (although z1 and z̄0 must be found
numerically).

Jm has full rank only if it has a non-zero determinant. We find in all of
our bootstrap iterations that det(Jm) < 0, demonstrating that the determinant
is significantly different from zero. We have also shown analytically that the
determinant is generically non-zero (results available upon request).

Dynamic Model. — To identify the dynamic model, we need to observe at least
as many moments as the number of parameters we seek to estimate. In our
case this means that we must observe bunching across multiple policy changes,
specifically the reductions in the benefit reduction rate above the exempt amount
in 1990 and at age 70. Let l index different such policy changes (in our case,
l ∈ {1990, 70}). Let Bt

1,l be bunching at kink l and period t before the policy

change, let Bt
2,l be bunching at kink l and period t after the policy change, let

time t measure the time since the introduction of the first kink, K1,l, and let
the policy change at kink l take place at time T1,l. The parameter vector θ now
consists of (ε, φ, π1, π2,..., π5) . We match 12 bunching amounts in our estimates:
1987 to 1992 (pooling 66 to 68 year olds) and ages 67 to 72 (pooling years 1990
to 1999).

Bunching before the policy change is

Bt
1,l = Πt

j=1πj ·B1,l + (1−Πt
j=1πj)B

∗
1,l

where B1,l =
∫ z∗l +∆z∗1,l
z1,l

h(ξ)dξ and B∗1,l =
∫ z∗l +∆z∗1,l
z∗l

h(ξ)dξ, and the limits of inte-

gration are defined similarly to the static case (but with the additional subscript
l to allow for analysis across multiple policy changes, as in our empirical applica-
tion of the dynamic model). If the policy change happens T1,l periods after the
kink is initially introduced, then bunching under the new policy in period t is

Bt
2,l = Π

t−T1,l
j=1 πj ·B̃2,l+

(
1−Π

t−T1,l
j=1 πj

)
B∗2,l+Π

t−T1,l
j=1 πj

(
1−Π

T1,l
j=1πj

) (
B∗1,l −B1,l

)
where B̃2,l =

∫ z̄0,l
z1,l

h(ξ)dξ, B∗2,l =
∫ z∗l +∆z∗2,l
z∗l

h(ξ)dξ, and the limits of integration

again are defined similarly to the static case but with the additional subscript l.

21We can specify functions implicitly defining the lower and upper cutoffs z1 and z̄0, respectively, as
functions of the other parameters, given our quasilinear and isoelastic case. These enter the expressions
for each element of the Jacobian (more details are available upon request).
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We calculate the elements of the resulting Jacobian analytically by differenti-
ating the expressions above for Bt

1,l and Bt
2,l with respect to ε, φ, π1, π2, π3, π4,

and π5, which is again straightforward. Thus, given θ̂, z1,l and z̄0,l, we can again
calculate the Jacobian analytically.

Identification requires that this Jacobian have full rank. To test for full rank
of the Jacobian, we use the method of Kleibergen and Papp (2006). We use the

bootstrap to obtain an estimate of V ar[Jm(θ̂)]. In each iteration of our bootstrap,

we also calculate Jm(θ̂), and we estimate V ar[Jm(θ̂)] from the bootstrap variance-
covariance matrix. The RK test easily rejects under-identification, with p < 0.001.

A6. Econometric Estimation

We begin by describing our econometric estimation procedure under our basic
comparative static model of Sections V.A and V.B. Let B = (B1, B2, . . . , BL)
be a vector of (estimated) bunching amounts, using the method described in
Section II. Let τ = (τ 1, . . . , τL) be the tax schedule at each kink. The triplet
τ l = (τ0,l, τ1,l, τ2,l) denotes the tax rate below the kink (τ0,l), above the kink
(τ1,l), and the ex post marginal tax rate above the kink after it has been reduced
(τ2,l), as in Section V.B. Let z∗ = (z∗1 , . . . , z

∗
L) be the earnings levels associated

with each kink. In principle, it would be possible to estimate bunching separately
for each age group at a given kink. In practice and for simplicity, we pool across
a constant set of ages to estimate bunching at a given kink—for example, when
examining the 1990 policy change we examine 66-68 year-olds both before and
after the change. Thus, the bunching amounts are not indexed by age.22

n our baseline, we use a non-parametric density for the counterfactual earn-
ings distribution, H0. Once H0 is known, we use (4) and (6) to obtain predicted
bunching from the model. To recover H0 non-parametrically we take the em-
pirical earnings distribution for 72 year-olds in $800 bins as the counterfactual
distribution. 72 year-olds’ earnings density represents a reasonable counterfactual
because they no longer face the Earnings Test, no longer show bunching, and are
close in age to those aged 70 or 71. Letting zi index the bins, our estimate of the
distribution is Ĥ0(zi) =

∑
j≤i Pr(z ∈ zj). This function is only defined at the

midpoints of the bins, so we use linear interpolation for other values of z. In a
robustness check, we instead assume that the earnings distribution over the range
[z∗, z∗ + ∆z] is uniform, a common assumption in the literature (e.g. Chetty
et al., 2011, Kleven and Waseem, 2013). Using the nonparametrically-estimated
distribution of earnings from age 72 is helpful because it does not entail distri-
butional assumptions, but relative to assuming a uniform distribution, using the
age-72 distribution comes at the cost of using a different age (i.e. 72) to generate

22Analogously, when we examine bunching at each age around 70 when the AET is eliminated, we
pool across calendar years (namely 1990-1999) to estimate bunching, so that we do not also have to
index the bunching amounts by calendar year. We find comparable results when we estimate bunching
separately at each age and year.
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the earnings distribution.23

To estimate (ε, φ), we seek the values of the parameters that make predicted

bunching B̂ and actual (estimated) bunching B as close as possible on average.

Letting B̂(ε, φ) ≡ (B̂(τ 1, z
∗
1 , ε, φ), . . . , B̂(τL, z

∗
L, ε, φ)), our estimator is:

(A28)
(
ε̂, φ̂
)

= argmin(ε,φ)

(
B̂(ε, φ)−B

)′
W
(
B̂(ε, φ)−B

)
,

where W is a K × K identity matrix. This estimation procedure runs parallel
to our theoretical model, as the bunching amounts B̂ are those predicted by the
theory (and the estimated counterparts B are found using the procedure outlined
in Section II).24 When we pool data across multiple time periods, we assume that
ε and φ are constant across these time periods.

We obtain our estimates by minimizing (A28) numerically. Solving this problem

requires evaluating B̂ at each trial guess of (ε, φ).25 Our estimator assumes a

quasilinear utility function, u(c, z; a) = c− a
1+1/ε

(
z
a

)1+1/ε
, following Saez (2010),

Chetty et al. (2011) and Kleven and Waseem (2013). Note that because we have

assumed quasilinearity, ∆z1,l = z∗l

((
1−τ1,l
1−τ0,l

)ε
− 1
)

and a = z (τ) / (1− τ)ε, where

z (τ) are the optimal, interior earnings under a linear tax of τ . Typically there is
no closed form solution for z1,l or z̄0,l. Instead, given ε and φ, we find z1,l and
z̄0,l numerically as the solution to the relevant indifference conditions in (5) and
(7). For example, z1,l is defined implicitly by:
(A29)
u((1− τ1,l)z

∗
l +R1,l, z

∗
l ; z1,l/(1− τ0,l)

ε)︸ ︷︷ ︸
utility from adjusting to kink

−u((1− τ1,l)z1,l +R1,l, z1,l; z1,l/(1− τ0,l)
ε)︸ ︷︷ ︸

utility from not adjusting

= φ,

This equation is continuously differentiable and has a unique solution for z1,l.
26

Dynamic Model. — Our estimation method is easily amended to accommodate
the dynamic extension of our model in Section V.C. As in (8) and (9), the
bunching expressions in the dynamic model are weighted sums of B1 and B̃2,

23Because we use the age-72 density as our counterfactual density – unlike most bunching papers
bunching that estimate the counterfactual from the same density that is used to estimate bunching – our
method is not subject to the Blomquist and Newey (2017) point that the functional form of preference
heterogeneity cannot be simultaneously estimated with the taxable income elasticity.

24Without loss of generality, we use normalized bunching, b̂ = δB̂/h0 (z∗), so that the moments are
identical to what is reported elsewhere in the text.

25In solving (A28), we impose that φ ≥ 0. When φ < 0, every individual adjusts her earnings by at
least some arbitrarily small amount, regardless of the size of φ. This implies that φ is not identified if
it is less than zero. Inattention or the difficulty of negotiating new contracts should be associated with
positive adjustment costs (which could distinguish this context from the firm context studied in Garicano
et al., 2016).

26Note that some combinations of τ l, z
∗
l , ε, and φ imply z1,l > z∗l +4z1,l. In this case, the lowest-

earning adjuster does not adjust to the kink. Whenever this happens, we set B̂l = 0.
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which are calculated as in Section V.E, and two measures of frictionless bunching,
B∗1 and B∗2 . Frictionless bunching under either kink can be calculated conditional
on H0 and ε using (2).

We must also estimate the probability of drawing a positive fixed cost as a func-
tion of the time since the last policy shock, πt−t∗ .

27 For given values of ε, φ, and
the vector π of πt−t∗ ’s, we can evaluate (8) and (9). Our vector of predicted bunch-

ing, B̂, will now be a function of these additional parameters, as well as the rele-
vant time indices: B̂(ε, φ,π) ≡ (B̂(τ 1, z

∗
1 , t1, T1,l, ε, φ,π), . . . , B̂(τL, z

∗
L, tL, T1,L, ε, φ,π)),

where tl is the time elapsed since the first kink, K1,l, was introduced, and T1,l is
the length of time before the second kink, K2,l, is introduced. Once again we use
the minimum distance estimator (A28).

Equations (8) and (9) illustrate how we estimate the elasticity and adjustment
cost in this richer setting. We require as many observations of bunching as the
parameters, (ε, φ, π1, ..., πJ), and these moments must span a change in dτ .28 Sup-
pose we observe the pattern of bunching over time around two or more different
policy changes. Loosely speaking, the π’s are estimated relative to one another
from the time pattern of bunching over time: a delay in adjustment in a given
period will generally correspond to a higher probability of facing the adjustment
cost (all else equal). Note that the relationship is linear; the degree of “inertia” in
bunching in (for example) period 1 increases linearly in π1. Meanwhile, a higher
φ implies a larger amount of inertia in all periods until bunching has fully dissi-
pated (in a way that depends on the earnings distribution, the elasticity, and the
size of the tax change). Finally, a higher ε will correspond to a larger amount
of bunching once bunching has had time to adjust fully to the policy changes.
Intuitively, these features of the data help us to identify the parameters using our
dynamic model.

A7. Policy Simulations

In this Appendix, we describe how we simulate the effect of various policy
changes on earnings. These calculations are designed to be illustrative of the
attenuation of earnings responses to policy changes that can result from incorpo-
rating adjustment frictions in the analysis. Nonetheless, we highlight that these
calculations are done in the context of a highly stylized model making a number
of assumptions, as well as a particular sample of earners. One key (extreme) as-
sumption is that everyone has the same elasticity and adjustment cost. Moreover,
these estimates are specific to a particular context, and they are not intended to
be an exhaustive account of the implications of adjustment costs for earnings
responses to taxation. Rather, they are intended simply to illustrate the attenu-
ation of earnings responses to policy changes that can result from incorporating

27We have also tried using a flexible, logistic functional form, πj =
exp (α+ β · j) / (1 + exp (α+ β · j)), and we found comparable results (available upon request).

28The number of moments is not itself sufficient. We also require non-trivial variation in bunching
before and after the tax change in order to point identify φ. As in footnote 8, this requires z̄0 < z∗+4z∗1 .
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adjustment frictions in the analysis in such contexts.
We assume that utility is isoelastic and quasi-linear with elasticity ε. Individ-

uals must pay an adjustment cost φ to change their earnings. Individuals are
heterogeneous in their ability ni. Individuals are therefore distributed according
to their “counterfactual” earnings z0i that they would have under a linear tax
schedule. (Despite the absence of heterogeneity in the elasticity and adjustment
cost, there is still heterogeneity in the gains from re-optimizing earnings, due to
heterogeneity in z0i.) We use the 1989 earnings distribution for 60-61 year-olds
(from the MEF data) as the counterfactual earnings distribution, i.e. the earn-
ings distribution under a linear tax schedule in the region of the exempt amount.
We incorporate the key features of the individual income tax code, including in-
dividual federal income taxes, state income taxes, and FICA (all from Taxsim
applied in 1989), and the Earnings Test. Our estimates of elasticities and ad-
justment costs apply to a population earning near the exempt amount; to avoid
extrapolating too far out of sample, our simulations examine only those whose
counterfactual earnings is from $10,000 under to $10,000 over the exempt amount
(and is greater than $0). (While the Earnings Test should only affect people whose
counterfactual earnings are over the exempt amount, we also include the group
earning up to $10,000 under the exempt amount in order to illustrate the fact
that some individuals could be unaffected by a policy change.)

We consider two periods, 1 and 2. In period 1, in the region of the Earnings Test
exempt amount, the mean tax rate below the exempt amount is 27.21 percent,
and the mean tax rate above the exempt amount is 77.21 percent. Note that
these tax rates mimic those faced by 62-64 year-old Social Security claimants.29

In period 2, the tax rate below the exempt amount remains 27.21 percent, but
the tax rate above the exempt amount changes according to the policy changes
we specify below. (We assume that in the counterfactual individuals face a linear
schedule with a mean tax rate of 27.21 percent.)

For a given counterfactual earnings level z0i, we calculate optimal frictionless
earnings z∗1i in period 1, and we calculate whether the individual with counter-
factual earnings z0i wishes to adjust her earnings from the frictionless optimum
because the gains from doing so outweigh the adjustment cost. (Optimal “fric-
tionless” earnings refers to the individual’s optimal earnings in the absence of
adjustment costs.) We then determine the individual’s optimal frictionless earn-
ings z∗2i under the new tax schedule in period 2. We assess whether given the
adjustment cost, the individual obtains higher utility by staying at her period 1
earnings level, or by paying the adjustment cost and moving to a new earnings
level in period 2.

We perform these calculations alternatively under the assumptions that (a) the
elasticity ε is 0.35 and the adjustment cost φ is $280 (our baseline estimates);

29As we note elsewhere, 62-64 year-olds technically face a notch in the budget constraint at the exempt
amount, as opposed to a kink. However, we find no evidence that they behave as if they faced a notch,
as the earnings distribution for this age group 1) does not show bunching just above the exempt amount
and 2) does not show a ”hole” in the earnings distribution just under the exempt amount.
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or (b) the elasticity ε is 0.35 and the adjustment cost φ is zero. Thus, our
simulations illustrate the difference between incorporating adjustment costs and
not incorporating them, holding the elasticity constant.

Under these alternative assumptions, we can perform a number of experiments
to simulate the effects of changing the effective tax schedule. These calculations
are shown in Appendix Table B6 below.

We calculate that if the marginal tax rate above the exempt amount were
reduced by 17.22 percentage points, so that the tax rate above the exempt amount
were reduced from 77.21 percent to 59.99 percent, mean earnings in the population
under consideration would be unchanged at $9,371.9 under our baseline estimates
of the elasticity and adjustment cost. In this case, adjustment is not optimal
for anyone when we assume the adjustment cost. In fact, earnings would be
unchanged for any reduction in the marginal tax rate above the exempt amount
up to 17.22 percentage points; 17.22 percentage points is the largest percentage
point marginal tax rate decrease above the exempt amount for which there is
no adjustment. Since the gains are second-order near the kink, even a modest
adjustment cost of $280 prevents adjustment with an 17.22 percentage point (or
smaller) cut in marginal tax rates. By contrast, when assuming ε=0.35 and φ=0,
we predict that mean earnings would rise from $9,340.3 to $10,166.3, an increase
of 8.84 percent.

At the same time we calculate that if the 50 percent Earnings Test above the
exempt amount were eliminated, so that the tax rate above the exempt amount
were reduced from 77.21 percent to 27.21 percent, mean earnings in the popula-
tion under consideration would rise from $9,371.9 to $11,566.7.7, or 23.4 percent,
under our baseline estimates of the elasticity and adjustment cost. When assum-
ing ε=0.35 and φ=0, we predict that mean earnings would rise from $9,340.3
to $11,639.2, a nearly identical increase of 24.6 percent. The slight discrepancy
between the two estimates arises because there are individuals whose counter-
factual earnings is just above the exempt amount who choose to adjust without
adjustment costs, but for whom the gains from adjustment do not outweigh the
adjustment cost when we assume the friction.

It is worth noting an additional caveat to these results: they apply to those
with counterfactual earnings in the range from $10,000 below to $10,000 above
the exempt amount. If we allowed unbounded counterfactual earnings, there
would be some individuals with very large counterfactual earnings for whom the
gains from adjustment would outweigh the adjustment cost, even in the presence
of adjustment costs. However, this is less relevant to the Earnings Test because as
we have noted, the Social Security benefit phases out entirely at very high earnings
levels. Moreover, considering such individuals would involve extrapolating the
estimates much farther out of sample. Finally, the results are qualitatively robust
to considering other earnings ranges within the range we measure in our study,
such as the range of individuals earning from $10,000 below to $30,000 above the
exempt amount. In fact, under all of the other choices we have explored, the
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results always show that the maximum tax cut that leads to no earnings change
is quite substantial (and larger than the changes in marginal tax rates envisioned
in most tax reform proposals)—including when we use other ages to specify the
counterfactual earnings density; use a different baseline marginal tax rate; and use
the constrained estimate of the elasticity (0.58) when performing the simulations
(which actually leads to still starker results).

All of these simulations use the static model. If we were to use our estimates
of the dynamic model instead to perform these simulations, we would still find
that the immediate reaction even to large taxes changes is greatly attenuated,
since the estimates of the dynamic model still show that most individuals are
constrained from adjusting immediately.

Additional Empirical Results
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(a) Age 65 Earnings Distribution | Near Kink at 64

(b) Age 64 Earnings Distribution | Near Kink at 65

Figure B1. : Inertia in Bunching from 64 to 65

Notes: Using data from 1990 to 1999, Panel A of the figure shows that when they are age 65, those
previously bunching at age 64 tend to either (a) remain near the age 64 exempt amount or (b) move
to the age 65 exempt amount. Panel B of the figure shows that those bunching at age 65 were usually
bunching at age 64 in the previous year, or were near the age 65 exempt amount in the previous year.
Having earnings “near the kink” at a given age is defined as having earnings within $1,000 of the kink
at that age. The first vertical line at zero shows the age 64 exempt amount, and the second vertical line
shows the average location of the age 65 exempt amount.
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Figure B2. : Normalized Excess Mass of Claimants, Ages 59 to 73, 1990 to 1999

Notes: See notes to Figure 2 Panel B. This figure differs from Figure 2 Panel B because here the sample
in year t consists only of people who have claimed Social Security in year t or before (whereas in Figure
2 Panel B it consists of those who claimed by age 65).



70 AMERICAN ECONOMIC JOURNAL MONTH YEAR

Figure B3. : Bunching Response to a Convex Kink, with Frictions in Initial
Earnings

Notes: See Section A.A4 for an explanation of the figure.
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Table B4—: Estimates of Elasticity and Adjustment Cost 1990 Policy Change,
Assuming Pre-Period Bunching may not be at Frictionless Optimum

(1) (2) (3) (4)

ε φ ε|φ = 0

1990 1989

Baseline 0.28 $193 0.43 0.24
[0.25, 0.32]*** [56, 299]*** [0.36, 0.53]*** [0.20, 0.28]***

Uniform Density 0.24 $163 0.39 0.22
[0.21, 0.28]*** [54, 268]*** [0.33, 0.48]*** [0.18, 0.25]***

Benefit Enhancement 0.47 $103 0.66 0.41
[0.41, 0.54]*** [21, 172]*** [0.54, 0.80]*** [0.33, 0.48]***

Excluding FICA 0.39 $165 0.56 0.34
[0.34, 0.45]*** [41, 270]*** [0.46, 0.68]*** [0.27, 0.39]***

Bandwidth = $400 0.37 $123 0.53 0.33
[0.31, 0.46]*** [6, 383]** [0.42, 0.70]*** [0.27, 0.42]***

Notes: The table examines the 1990 policy change, using data from 1989 and 1990, but assumes that
bunching in 1989 may not be at the frictionless optimum, as described in the text. See also notes to
Table 2.
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Table B5—: Estimates of Changes in Bunching Around 1990

Old only, DD, separate
Sample Old only linear trend DD linear trend

old x 1990 dummy 28.9 -165.1 -107.3 -69.2
(249.1) (411.0) (306.7) (411.7)

old x 1991 dummy -1728.9 -1966.0 -1824.5 -1777.9
(249.1)*** (500.6)*** (306.7)*** (481.3)***

old x 1992 dummy -1648.8 -1928.9 -1130.2 -1075.1
(249.1)*** (594.9)*** (306.7)*** (558.1)*

old x 1993 dummy -2123.8 -2447.1 -2131.2 -2067.6
(249.1)*** (692.1)*** (306.7)*** (639.7)***

Ages 66-68 66-68 62-64, 66-68 62-64, 66-68
Year FE? No No Yes Yes
Linear time trend (in year) No Yes No No
Separate linear trend for “old” No No No Yes

Notes: The table shows that the estimated change in bunching amounts from before to after 1990 in
the age 66-68 age group are similar under several specifications. The dummy variable “old” indicates
the older age group (66-68). The sample in Columns (1) and (2) includes only 66-68 year-olds, and in
Columns (3) and (4) it also includes 62-64 year-olds. Additional controls include a linear time trend (in
year) in column (2), year fixed effects in columns (3) and (4), and the linear time trend interacted with
the “old” dummy in column (4). Robust standard errors are in parentheses. Under all the specifications,
the coefficient on old x 1990 is insignificantly different from zero: bunching in 1990 is not significantly
different from prior bunching, indicating that adjustment does not immediately occur. However, the
coefficients on old x 1991, old x 1992, old x 1993 are negative and significant, indicating that bunching
falls significantly after 1990—i.e. a reduction in bunching does eventually occur (but not immediately
in 1990). The fact that the results are similar under all these various specifications indicates that the
results are little changed by controlling for a linear trend (Column 2), comparing 66-68 year-olds to a
reasonable control group of 62-64 year-olds (Column 3), and additionally controlling for a separate linear
trend for the older group (Column 4). In Columns 1 and 3, the standard errors are the same across all
of the interaction coefficients shown because there is only one observation underlying each dummy, and
the dummies are exactly identified. See also notes from Table 2.
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