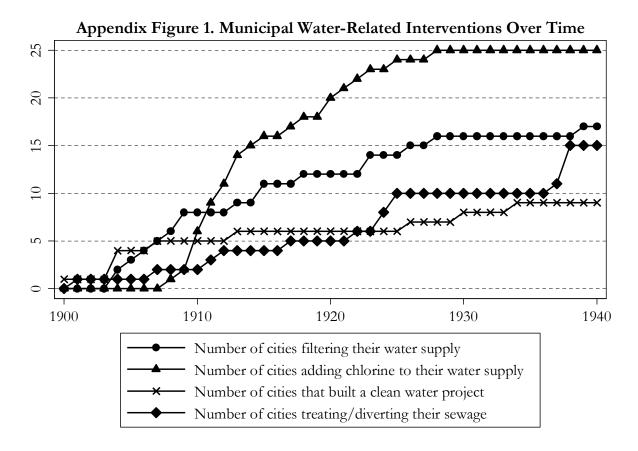
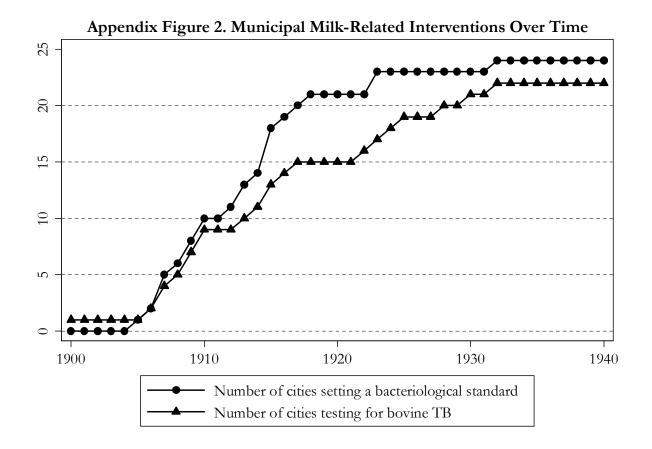
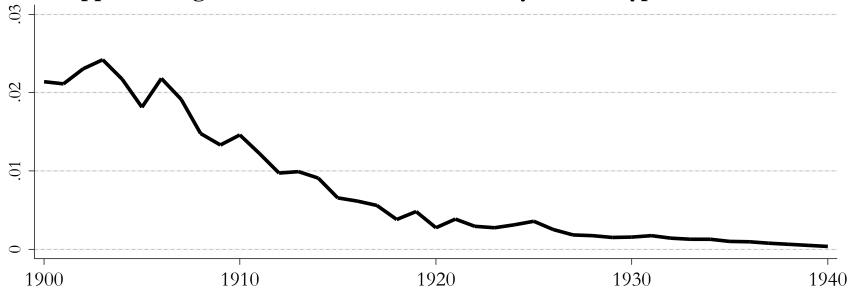
Re-Examining the Contribution of Public Health Efforts to the Decline in Urban Mortality

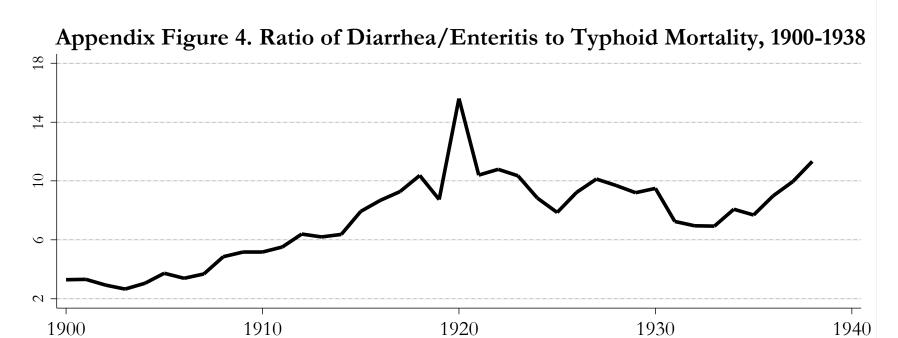

D. Mark Anderson

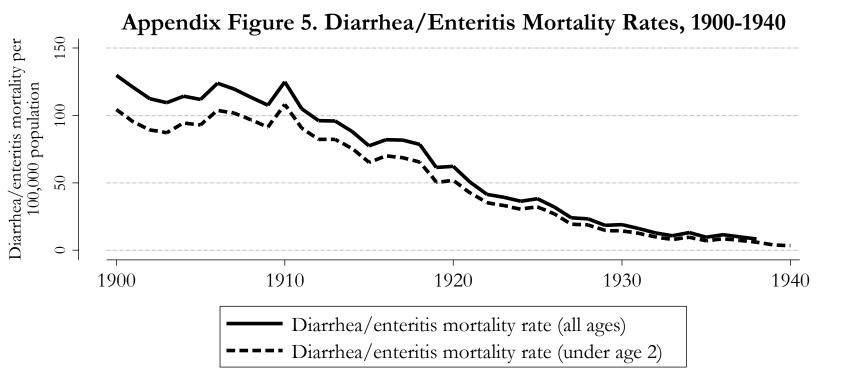

Kerwin Kofi Charles

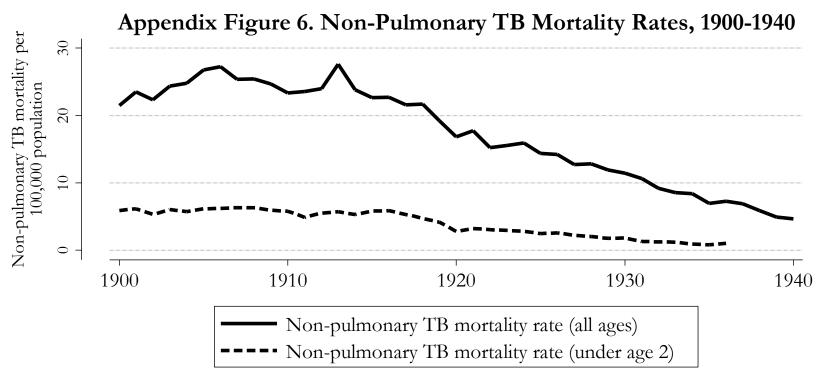
Daniel I. Rees

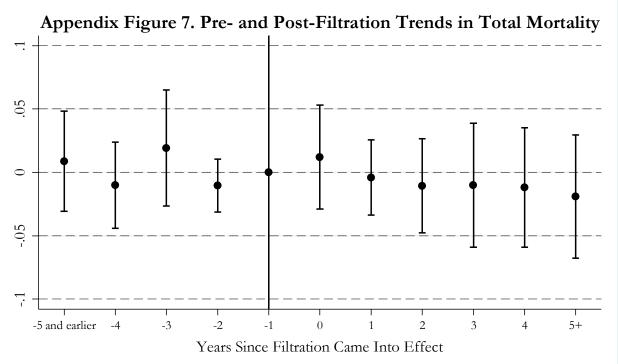

Online Appendix

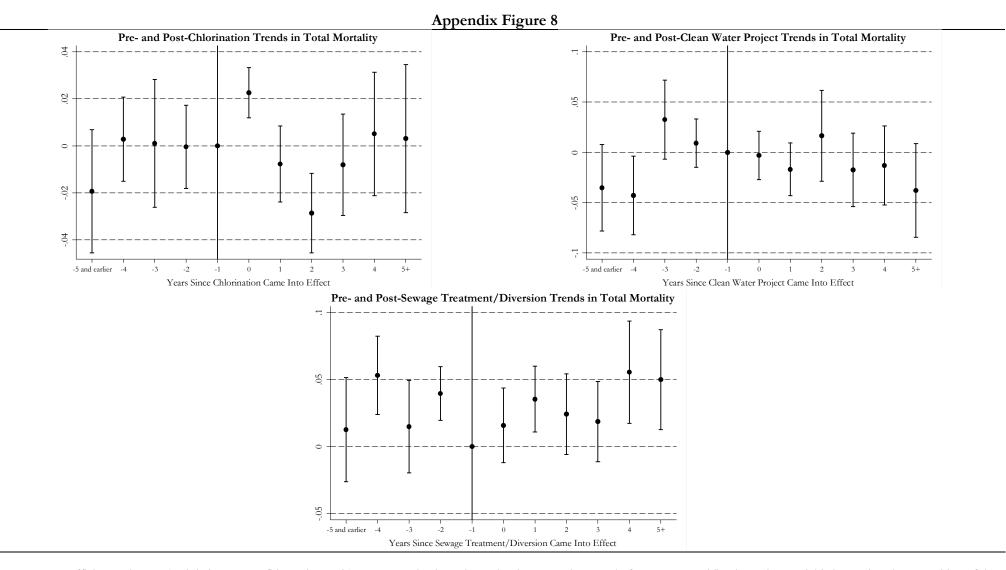
Appendix A

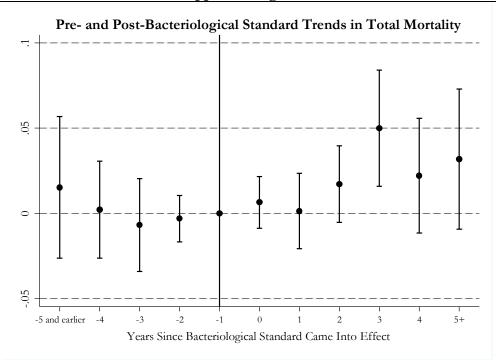


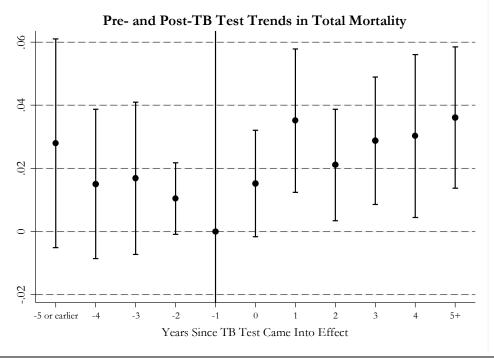



Notes: Based on annual data from Mortality Statistics and Vital Statistics of the United States for the period 1900-1940, published by the U.S. Census Bureau.

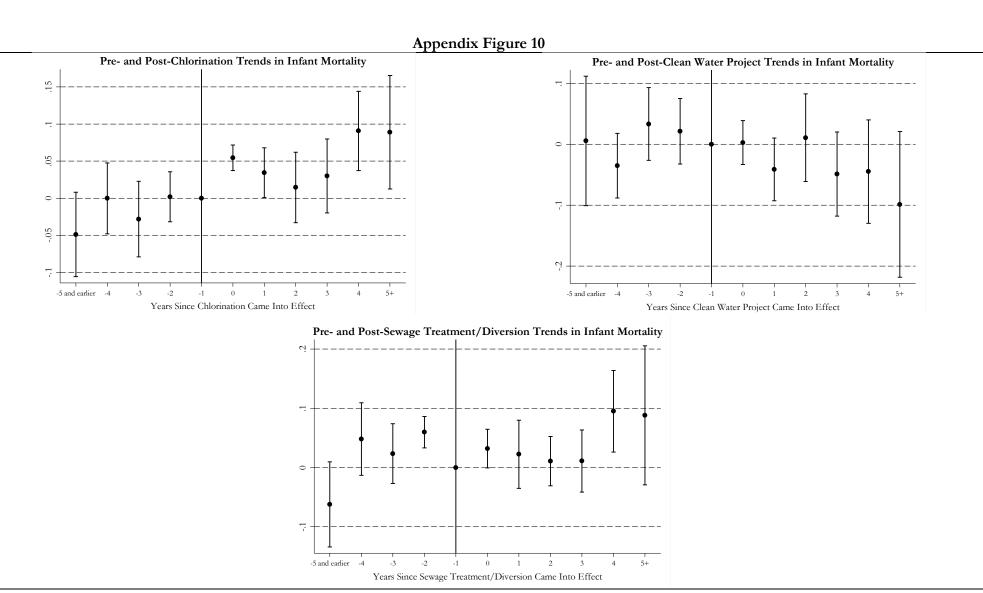

Notes: Based on annual data from *Mortality Statistics* and *Vital Statistics of the United States* for the period 1900-1938, published by the U.S. Census Bureau.


Notes: Based on annual data from *Mortality Statistics* and *Vital Statistics of the United States* for the period 1900-1940, published by the U.S. Census Bureau.

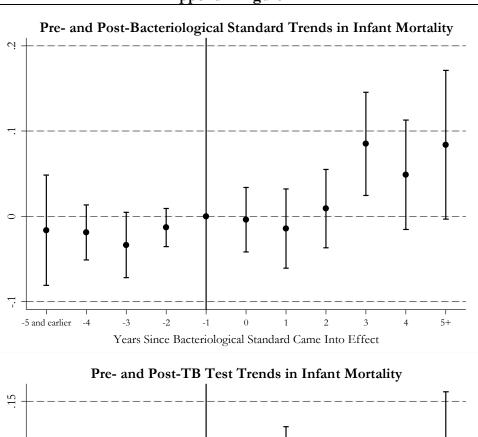

Notes: Based on annual data from *Mortality Statistics* and *Vital Statistics of the United States* for the period 1900-1940, published by the U.S. Census Bureau.

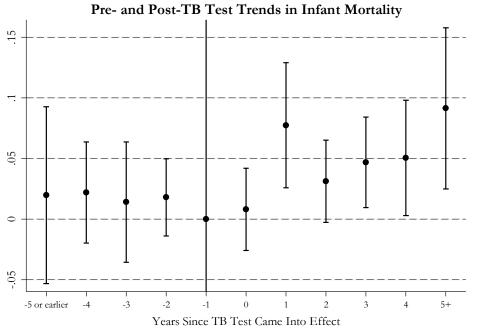


Notes: OLS coefficient estimates (and their 90% confidence intervals) are reported, where the omitted category is 1 year before treatment. The dependent variable is equal to the natural log of the number of deaths per 100,000 population in city ϵ and year ϵ . Controls include the demographic characteristics and remaining public health interventions listed in Table 5, city fixed effects, year fixed effects, and city-specific linear trends. Regressions are weighted by city population. Standard errors are corrected for clustering at the city level.

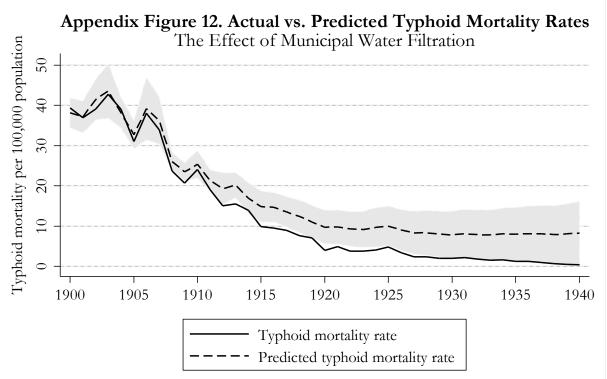


Notes: OLS coefficient estimates (and their 90% confidence intervals) are reported, where the omitted category is 1 year before treatment. The dependent variable is equal to the natural log of the number of deaths per 100,000 population in city c and year t. Controls include the demographic characteristics and remaining public health interventions listed in Table 5, city fixed effects, year fixed effects, and city-specific linear trends. Regressions are weighted by city population. Standard errors are corrected for clustering at the city level.

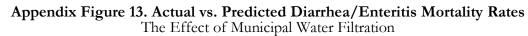


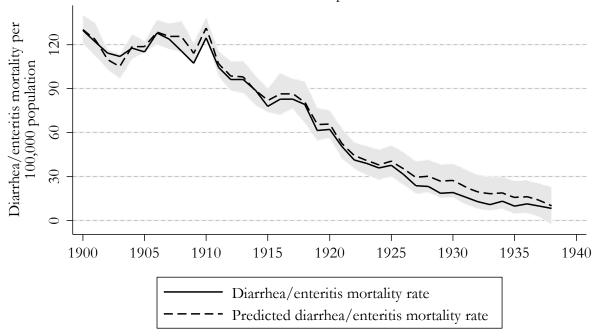


Notes: OLS coefficient estimates (and their 90% confidence intervals) are reported, where the omitted category is 1 year before treatment. The dependent variable is equal to the natural log of the number of deaths per 100,000 population in city ϵ and year t. Controls include the demographic characteristics and remaining public health interventions listed in Table 5, city fixed effects, year fixed effects, and city-specific linear trends. Regressions are weighted by city population. Standard errors are corrected for clustering at the city level.

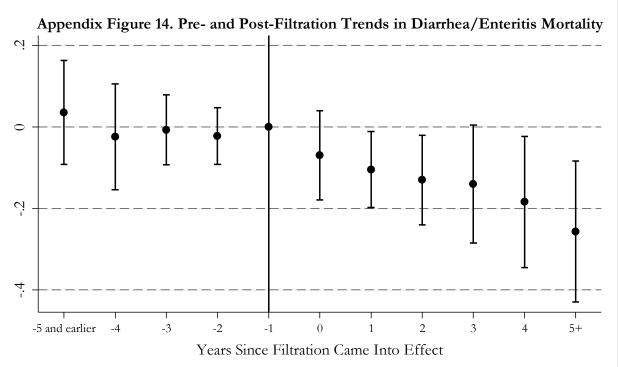


Notes: OLS coefficient estimates (and their 90% confidence intervals) are reported, where the omitted category is 1 year before treatment. The dependent variable is equal to the natural log of the number of infant deaths per 100,000 population in city c and year t. Controls include the demographic characteristics and remaining public health interventions listed in Table 5, city fixed effects, year fixed effects, and city-specific linear trends. Regressions are weighted by city population. Standard errors are corrected for clustering at the city level.





Notes: OLS coefficient estimates (and their 90% confidence intervals) are reported, where the omitted category is 1 year before treatment. The dependent variable is equal to the natural log of the number of infant deaths per 100,000 population in city ϵ and year t. Controls include the demographic characteristics and remaining public health interventions listed in Table 5, city fixed effects, year fixed effects, and city-specific linear trends. Regressions are weighted by city population. Standard errors are corrected for clustering at the city level.



Notes: Based on annual data from *Mortality Statistics* and *Vital Statistics of the United States* for the period 1900-1940, published by the U.S. Census Bureau. Predicted typhoid mortality rates are calculated under the assumption that municipalities did not filter their water supply. Shaded area represents 90% confidence region around typhoid mortality rates.

Notes: Based on annual data from *Mortality Statistics* and *Vital Statistics of the United States* for the period 1900-1938, published by the U.S. Census Bureau. Predicted diarrhea/enteritis mortality rates are calculated under the assumption that municipalities did not filter their water supply. Shaded area represents 90% confidence region around diarrhea/enteritis mortality rates.

Notes: OLS coefficient estimates (and their 90% confidence intervals) are reported, where the omitted category is 1 year before treatment. The dependent variable is equal to the natural log of the number of diarrhea/enteritis deaths per 100,000 population in city ϵ and year t. Controls include the demographic characteristics and remaining public health interventions listed in Table 5, city fixed effects, year fixed effects, and city-specific linear trends. Regressions are weighted by city population. Standard errors are corrected for clustering at the city level.

Appendix Table 1. Robustness Checks: The Effects of Water Quality, Sewage Treatment/Diversion, and Clean Milk on Typhoid Mortality

	(1)	(2)	(3)	(4)	(5)	(6)
	Control for wages	Control for region-by- year fixed effects	Unweighted	Drop New York City	Drop years 1917-1920	Dependent variable in levels
Water				•		
Filtration	172**	188**	205***	168**	183**	-9.70*
	(.072)	(.079)	(.070)	(.070)	(.076)	(4.88)
	{.037}	{.014}	{.002}	{.044}	$\{.020\}$	{.033}
	[-4.88]	[-5.05]	[-5.48]	[-4.58]	[-5.08]	
Chlorination	.010	.019	.006	012	002	802
	(.038)	(.049)	(.041)	(.042)	(.041)	(2.03)
	{.808}	{.732}	{.897}	{.808}	{.965}	<i>{</i> .707 <i>}</i>
	[.271]	[.514]	[.155]	[318]	[062]	
Clean Water Project	.043	.068	046	048	.049	5.11
J	(.074)	(.099)	(.069)	(.113)	(.074)	(5.08)
	{.627}	{.560}	{.565}	$\{.750\}$	{.587}	{.437}
	[1.22]	[1.83]	[-1.23]	[-1.32]	[1.35]	,
Sewage	. ,					
Sewage Treatment/Diversion	013	050	060	042	014	1.11
	(.062)	(.052)	(.054)	(.064)	(.055)	(1.83)
	{.850}	{.394}	{.332}	{.577}	{.826}	{.543}
	[374]	[-1.33]	[-1.62]	[-1.14]	[400]	
Milk						
Bacteriological Standard	052	069*	047	061	056	-3.68
	(.036)	(.039)	(.045)	(.048)	(.039)	(2.72)
	{.178}	$\{.099\}$	{.352}	{.311}	{.212}	{.232}
	[-1.47]	[-1.84]	[-1.25]	[-1.65]	[-1.54]	
TB Test	.029	.094*	.036	.045	.045	2.06
	(.060)	(.052)	(.066)	(.072)	(.069)	(2.53)
	$\{.702\}$	{.246}	{.629}	{.671}	{.631}	{.499}
	[.818]	[2.53]	[.970]	[1.23]	[1.26]	
Mean of typhoid mortality rate	13.6	12.6	12.6	12.9	13.3	12.6
N	949	1,024	1,024	983	924	1,024
\mathbb{R}^2	.938	.948	.911	.929	.943	.818

^{*}Statistically significant at 10% level; ** at 5% level; *** at 1% level.

Notes: Based on annual data from *Mortality Statistics* for the period 1900-1940, published by the U.S. Census Bureau. Each column represents the results from a separate OLS regression. In columns (1)-(5), the dependent variable is equal to the quartic root of the number of typhoid deaths per 100,000 population in city c and year t. In column (6), the dependent variable is equal to the number of typhoid deaths per 100,000 population in city c and year t. Controls include the demographic characteristics listed in Table 5, city fixed effects, year fixed effects and city-specific linear trends. In columns (1)-(2) and (4)-(6), regressions are weighted by city population. Standard errors, corrected for clustering at the city level, are in parentheses. P-values from wild cluster bootstrap procedure are in curly brackets and are based on 1,000 replications. Marginal effects are in square brackets.

Appendix Table 2. Typhoid Mortality and Lags of Filtration (1) (2)(3)Typhoid Mortality Year 0 .042 .036 .033 (.078)(.078)(.078){.744} {.783} $\{.806\}$ [1.13][.964][.891]1 Year After Filtration -.089 -.096 -.099 (.088)(.088)(.087){.370} {.330} {.309} [-2.39][-2.57][-2.65]2 Years After Filtration -.130 -.139* -.142* (.076)(.076)(.076){.127} {.120} {.153} [-3.48][-3.71][-3.81]-257*** 3+ Years After Filtration (.067) $\{.002\}$ [-6.88]3 Years After Filtration -.211*** -.214*** ... (.067)(.068){.004} {.004} [-5.64][-5.75]-.224*** 4 Years After Filtration -.219*** (.075)(.076) $\{.035\}$ $\{.035\}$ [-5.99][-5.87]5+ Years After Filtration -.286*** . . . (.072){.003} [-7.66]-.270*** 5 Years After Filtration (.066) $\{.007\}$ [-7.24]6 Years After Filtration -.267*** (.070){.006} [-7.16]7+ Years After Filtration -.300*** (.081){.011} [-8.04] Mean of typhoid mortality 12.6 12.6 12.6 rate N 1,024 1,024 1,024

 \mathbb{R}^2

.941

.942

.941

^{*}Statistically significant at 10% level; ** at 5% level; *** at 1% level.

Notes: Based on annual data from *Mortality Statistics* for the period 1900-1940, published by the U.S. Census Bureau. Each column represents the results from a separate OLS regression. The dependent variable is equal to the quartic root of the number of typhoid deaths per 100,000 population in city *c* and year *t*. Controls include the demographic characteristics and remaining public health interventions listed in Table 5, city fixed effects, year fixed effects and city-specific linear trends. Regressions are weighted by city population. Standard errors, corrected for clustering at the city level, are in parentheses. P-values from wild cluster bootstrap procedure are in curly brackets and are based on 1,000 replications. Marginal effects are in square brackets.

Appendix Table 3. Robustness Checks: The Effects of Water Quality, Sewage Treatment/Diversion, and Clean Milk on Diarrhea/Enteritis Mortality

	(1)	(2)	(3)	(4)	(5)	(6)
	Control for wages	Control for region-by- year fixed effects	Unweighted	Drop New York City	Drop years 1917-1920	Dependent variable in levels
Water				-		
Filtration	139*	145	209***	171**	147	-6.93
	(.076)	(.087)	(.058)	(.065)	(.089)	(9.35)
	{.090}	{.152}	{.004}	{.022}	{.150}	{.521}
Chlorination	.072	010	.034	.149*	.095	6.56
	(.066)	(.066)	(.076)	(.072)	(.086)	(5.88)
	{.381}	{.911}	{.716}	{.175}	{.381}	{.391}
Clean Water Project	128	234**	.142	.135	122	-22.5*
·	(.118)	(.112)	(.140)	(.186)	(.135)	(11.0)
	{.404}	{.147}	{.420}	{.568}	{.503}	{.309}
Sewage						
Sewage Treatment/Diversion	.206*	.203**	.141	.259**	.172	13.7
	(.117)	(.090)	(.092)	(.098)	(.112)	(10.8)
	{.400}	{.195}	{.181}	{.118}	{.430}	{.579}
Milk						
Bacteriological Standard	.038	.094	.100	.040	.009	-1.75
	(.051)	(.069)	(.066)	(.071)	(.057)	(4.61)
	{.448}	{.241}	{.238}	{.564}	{.888}	{.714}
TB Test	.154**	.106**	.102	.217**	.177**	10.7*
	(.073)	(.046)	(.079)	(.079)	(.073)	(5.78)
	{.116}	{.033}	{.309}	{.062}	{.075}	{.159}
Mean of diarrhea/enteritis mortality rate	66.4	64.9	64.9	64.6	64.2	64.9
N	949	974	974	935	874	974
\mathbb{R}^2	.972	.979	.957	.968	.974	.939

^{*}Statistically significant at 10% level; ** at 5% level; *** at 1% level.

Notes: Based on annual data from *Mortality Statistics* for the period 1900-1938, published by the U.S. Census Bureau. Each column represents the results from a separate OLS regression. In columns (1)-(5), the dependent variable is equal to the natural log of the number of diarrhea/enteritis deaths per 100,000 population in city ϵ and year t. In column (6), the dependent variable is equal to the number of diarrhea/enteritis deaths per 100,000 population in city ϵ and year t. Controls include the demographic characteristics listed in Table 5, city fixed effects, year fixed effects and city-specific linear trends. In columns (1)-(2) and (4)-(6), regressions are weighted by city population. Standard errors, corrected for clustering at the city level, are in parentheses. P-values from wild cluster bootstrap procedure are in curly brackets and are based on 1,000 replications.

Appendix Table 4. Diarrhea/Enteritis Mortality and Lags of Filtration

	(1)	(2)	(3)
	Die	arrhea/Enteritis Mort	ality
Year 0	066	074	078
	(.076)	(.076)	(.078)
	{.450}	{.409}	{.391}
1 Year After Filtration	099	108*	113*
·	(.062)	(.062)	(.064)
	{.111}	{.089}	$\{.088\}$
2 Years After Filtration	122*	134**	138**
·	(.063)	(.063)	(.063)
	$\{.067\}$	{.053}	$\{.040\}$
3+ Years After Filtration	213**	•••	•••
·	(.099)		
	{.047}		
3 Years After Filtration		143	148
•		(.089)	(.088)
		{.107}	{.089}
4 Years After Filtration		185*	191*
		(.106)	(.106)
		{.126}	{.116}
5+ Years After Filtration		251**	•••
		(.108)	
		{.040}	
5 Years After Filtration		•••	209*
			(.104)
			{.073}
6 Years After Filtration		•••	253**
			(.100)
			{.027}
7+ Years After Filtration		•••	270**
			(.124)
			{.066}
Mean of dependent variable	64.9	64.9	64.9
N	974	974	974
\mathbb{R}^2	.971	.971	.971

^{*}Statistically significant at 10% level; ** at 5% level; *** at 1% level.

Notes: Based on annual data from *Mortality Statistics* for the period 1900-1938, published by the U.S. Census Bureau. Each column represents the results from a separate OLS regression. The dependent variable is equal to the natural log of the number of diarrhea/enteritis deaths per 100,000 population in city ϵ and year t. Controls include the demographic characteristics and remaining public health interventions listed in Table 5, city fixed effects, year fixed effects and city-specific linear trends. Regressions are weighted by city population. Standard errors, corrected for clustering at the city level, are in parentheses. P-values from wild cluster bootstrap procedure are in curly brackets and are based on 1,000 replications.

Appendix Table 5. Comparing our Preferred Specification to that of Cutler and Miller (2005)

	C&M Specification	Our Specification
Set of controls	See Appendix Table 7	See Table 5
Model choice	OLS	OLS
Weighting	Unweighted	Weighted by city population
Standard errors	Huber-White	Clustered at the city level
		· · · · · · · · · · · · · · · · · · ·
N	415	1,024
Years	1905-1936	1900-1940
Number of cities	13	25
	City in C&M sample	City in our sample
Baltimore, MD	yes	yes
Boston, MA		yes
Buffalo, NY		yes
Chicago, IL	yes	yes
Cincinnati, OH	yes	yes
Cleveland, OH	yes	yes
Detroit, MI	yes	yes
Indianapolis, IN		yes
Jersey City, NJ	yes	yes
Kansas City, MO		yes
Louisville, KY	yes	yes
Memphis, TN	yes	yes
Milwaukee, WI	yes	yes
Minneapolis, MN		yes
Newark, NJ		yes
New Orleans, LA	yes	yes
New York, NY		yes
Philadelphia, PA	yes	yes
Pittsburgh, PA	yes	yes
Providence, RI		yes
Rochester, NY	•••	yes
San Francisco, CA	•••	yes
St. Louis, MO	yes	yes
St. Paul, MN	•••	yes
Washington, D.C.		yes

Appendix Table 6. Comparing City Characteristics of our Sample to that of Cutler and Miller (2005)

	Mean
	(SD)

	C&M Sample	Our Sample
Population	800,805 (724,467)	806,454 (1,174,634)
% Female	.502 (.015)	.503 (.016)
% Nonwhite	.116 (.107)	.090 (.100)
% Foreign	.175 (.100)	.193 (.109)
% Under 15	.261 (.025)	.255 (.032)
% 15 to 44	.531 (.022)	.529 (.025)
% 45 and Older	.208 (.032)	.216 (.038)
N	415	1,024

Notes: Unweighted means with standard deviations in parentheses.

Appendix Table 7. List of Controls in Cutler and Miller (2005)

	Description
Filtration	= 1 if city had a water filtration plant, = 0 otherwise
Chlorination	= 1 if city chemically treated water supply, = 0 otherwise
Filtration w/in 5 Years	= 1 if city began filtering water supply within 5 years, = 0 otherwise
Chlorination w/in 5 Years	= 1 if city began chemically treating water supply within 5 years, = 0 otherwise
Sewage Treatment ^a	= 1 if city had a sewage treatment plant, = 0 otherwise
Sewage Chlorination ^b	= 1 if city chemically treated its sewage, = 0 otherwise
Lake Michigan Outfalls	= 1 for Chicago after Lake Michigan sewer outfalls were shut off, = 0 otherwise
Cleveland Intake Tunnel	= 1 for Cleveland after intake tunnel was built to draw water from Lake Erie, = 0 otherwise
$ln(Mortality)_{t-1}$	One-year lag of natural log of city mortality rate
$ln(Mortality)_{t-2}$	Two-year lag of natural log of city mortality rate
$ln(Mortality)_{t-3}$	Three-year lag of natural log of city mortality rate
$ln(Mortality)_{t=4}$	Four-year lag of natural log of city mortality rate
$ln(Mortality)_{t-5}$	Five-year lag of natural log of city mortality rate
ln(Population)	Natural log of city population
% Female	Percent of city population that was female
% Black	Percent of city population that was black
% Other Nonwhite	Percent of city population that was a nonwhite race other than black
% Foreign	Percent of city population that was foreign born
% Under 1	Percent of city population that was under 1 years of age
% 1 to 4	Percent of city population that was 1 to 4 years of age
% 5 to 9	Percent of city population that was 5 to 9 years of age
% 10 to 14	Percent of city population that was 10 to 14 years of age
% 15 to 19	Percent of city population that was 15 to 19 years of age
% 20 to 24	Percent of city population that was 20 to 24 years of age
% 25 to 34	Percent of city population that was 25 to 34 years of age
% 35 to 44	Percent of city population that was 35 to 44 years of age
% 45 to 64	Percent of city population that was 45 to 64 years of age
% 65 and Older	Percent of city population that was 65 years of age or older

^a Three cities in C&M's sample period constructed sewage treatment plants (Baltimore in 1911, Cleveland in 1922 and Milwaukee in 1925).

^b One city in C&M's sample period chlorinated its sewage (Cleveland in 1922).

Appendix Table 8. Differences in Recorded Infant Mortality Counts between Cutler and Miller (2005) and the U.S. Census Bureau's *Mortality Statistics*

				u's Mortality Statistics
		C0 M2 1 1	Correct infant	
		C&M's recorded	mortality count	
C'.	37	infant mortality	from Mortality	D (1'0' / 1 1)
City	Year 1910	count ^a	Statistics ^b	Reason for difference (when known)
Baltimore, MD		1417.07	2146	
	1911	1295.99	1960	
	1912	1384.03	2022	
	1913	1343	2011	
	1914	1312.43	1949	
	1915	1093.48	1626	
	1916	1158.78	1770	
	1917	1183.75	1780	
Chicago, IL	1910	6595.52	6844	
	1911	6017.86	6252	
	1912	6394.31	6678	
	1913	6649.87	6939	
	1914	6571.52	6878	
	1915	5942.99	6219	
	1916	6566.35	6910	
	1917	6246.72	6664	
	1931	766	2992	To calculate, one needs to add white infant mortality (=2,617) and nonwhite infant mortality (=375). It appears as if C&M incorrectly added mortality for one-year-olds, rather than infants, for whites (=391) and nonwhite infant mortality, which gives their
C OII	1010	702.425	017	recorded total of 766.
Cincinnati, OH	1910	793.435	917	
	1911	630.712	721	
	1912	693.419	805	
	1913	706.664	<u>801</u>	
	1914	637.264	750	
	1915	524.823	619	
	1916	623.426	736 	
	1917	563.757	688	
Cleveland, OH	1924	2366	1386	To calculate, one needs to add white infant mortality (=1,219) and nonwhite infant mortality (=167). It appears as if C&M incorrectly added overall nonwhite mortality (=1,147) and white infant mortality (=1,219), which gives their recorded total of 2,366.
Detroit, MI	1920	2734	2885	C&M incorrectly recorded infant mortality for whites only, which was 2,734. Nonwhite infant mortality was 151.

Jersey City, NJ				No mistakes for Jersey City
Louisville, KY	1910	328.389	503	• • •
- -	1911	298.928	441	
- -	1912	46.4965	448	
-	1913	322.27	486	
- -	1914	338.518	496	
-	1915	250.146	379	
- -	1916	283.827	418	
- -	1917	271.929	397	
Memphis, TN	1910	173.2	345	
<u>-</u>	1911	175.645	348	
 	1912	185.973	373	
	1913	157.88	319	
	1914	158.831	317	
	1915	118.738	228	
- -	1916	0		Data for Memphis, TN are not reported in 1916.
-	1917	158.43	311	
Milwaukee, WI	1926	865	856	C&M incorrectly transposed the "5" and "6"
New Orleans, LA	1910	571.931	1061	· •
	1911	595.471	1071	
- -	1912	416.903	774	
- -	1913	500.74	934	
- -	1914	477.419	883	
	1915	492.79	927	
	1916	404.008	757	
	1917	446.364	866	
Philadelphia, PA	1910	4557.6	5334	
	1911	4093.3	4769	
- -	1912	3659.92	4201	
- -	1913	3925.69	4618	
-	1914	4170.24	4870	
- -	1915	3634.78	4233	
	1916	3669.4	4252	
- -	1917	3921.49	4637	
Pittsburgh, PA	1901	6578	1580	C&M incorrectly recorded the overall mortality count instead of the infant mortality count.
- -	1904	771	1771	C&M incorrectly entered "1771" as "771"
-	1910	2024.02	2259	
-	1911	1648.01	1812	
	1912	1648.71	1811	

	1913	1754.65	1957	
	1914	1672.1	1868	
	1915	1670.73	1765	
	1916	1688.55	1893	
	1917	1744.14	1983	
	1924	1530	1440	
St. Louis, MO	1910	1452.74	1689	
	1911	1345.61	1573	
	1912	1263.1	1467	
	1913	1246.83	1478	
	1914	1278.93	1508	
	1915	1014.65	1181	
	1916	1061.51	1264	
	1917	1012.88	1252	

^a In the Cutler and Miller data set, the variable "mort0_1" represents the infant mortality count. Their dependent variable of interest, the natural log of the infant mortality rate, can be recreated with the following STATA command:

gen lninfmrt = $ln((mort0_1*100000)/age0_1)$, where "age0_1" is the city infant population.

^b The infant mortality counts for each year listed above can be found in the following *Mortality Statistics* tables:

Year	Location
1901	Mortality Statistics 1900 to 1904, Table 2, pp. 180-197; or Table 8, pp. 270-311
1904	Mortality Statistics 1900 to 1904, Table 2, pp. 654-671; or Table 8, pp. 744-785
1910	Mortality Statistics 1910, Table 3, pp. 204-251; or Table 9, pp. 455-501; or Table 11, pp. 533-574
1911	Mortality Statistics 1911, Table 1, pp. 150-173; or Table 2, pp. 174-257; or Table 7, pp. 466-512; or Table 9, pp. 537-567
1912	Mortality Statistics 1912, Table 1, pp. 28-49; or Table 6, pp. 255-301; or Table 8, pp. 335-377
1913	Mortality Statistics 1913, Table 1, pp. 222-243; or Table 6, pp. 486-539; or Table 8, pp. 577-625
1914	Mortality Statistics 1914, Table 3, pp. 192-219; or Table 4, pp. 220-303; or Table 9, pp. 567-621; or Table 11, pp. 660-709
1915	Mortality Statistics 1915, Table 3, pp. 184-211; or Table 4, pp. 212-297; or Table 9, pp. 553-607; or Table 11, pp. 645-694
1916	Mortality Statistics 1916, Table 3, pp. 150-175; or Table 9, pp. 406-449; or Table 11, pp. 483-525
1917	Mortality Statistics 1917, Table 3, pp. 172-197; or Table 9, pp. 441-487; or Table 11, pp. 523-568
1920	Mortality Statistics 1920, Table 3, pp. 140-174; or Table 9, pp. 479-539; or Table 11, pp. 586-646
1924	Mortality Statistics 1924, Table 9, pp. 358-390
1926	Mortality Statistics 1926, Table 9, pp. 285-317
1931	Mortality Statistics 1931, Table 9, pp. 396-440

Appendix B

Sources for Tables 1-3

Baltimore, Maryland

Hendrickson, Martha A. 2012. "The Montebello Water Filtration Plant I: Clean Water for City & Suburb Alike." *History Trails*, 43(3-4): 1-20.

Jennings, C.A. 1918. "Some Results Secured by Chlorine Compounds in Water Purification and Sewage Treatment." *City Engineering*, LV(1): 249-251.

Wagenhals, H.H., E.J. Theriault and H.B. Hommon. 1925. Report on the Study of Fifteen Representative Sewage Treatment Plants. Washington, D.C.: Government Printing Office.

Boston, Massachusetts

Castellon, Cynthia M. 2008. "Disinfection Byproduct (DBP) Precursors in Central MA." Environmental & Water Resources Engineering Masters Projects, University of Massachusetts-Amherst.

Mohlman, F. W. 1940. "Sewage Treatment in Large American Cities." Sewage Works Journal, 12(1): 168-171.

Ropes, Horace. 1904. "Westin Aqueduct Department". In the *Third Annual Report of the Metropolitan Water and Sewage Board* (Public Document 57). Boston, MA: Wright and Potter Printing Company, pp. 113-136.

Buffalo, New York

Andrews, George C. 1927. "The Buffalo Water Works." *Journal of the American Water Works Association*, 17(3): 279-290.

Fronczak, Francis E. 1915. "Reduction in Typhoid." Buffalo Sanitary Bulletin, 8(8): 85-86.

Mohlman, F. W. 1940. "Sewage Treatment in Large American Cities." Sewage Works Journal, 12(1): 168-171.

Rossi, Mary C. 1995. "The History of Sewage Treatment in the City of Buffalo, New York." *Middle States Geographer*, 28: 9-19.

Chicago, Illinois

Baylis, John R. 1949. "Chicago South District Filtration Plant." *Journal of the American Water Works Association*, 41(7):599-615.

Cain, Louis P. 1978. Sanitation Strategy for a Lakefront Metropolis: The Case of Chicago. DeKalb, IL: Northern Illinois University Press.

Gustaitis, Joseph. 2013. *Chicago's Greatest Year, 1893: The White City and the Birth of a Modern Metropolis.* Carbondale, IL: Southern Illinois University Press.

Hering, Rudolph and George W. Fuller. 1907. "Sewage Disposal at Chicago and Vicinity." *Engineering Record*, 55(5): 130-134.

Jennings, C. A. 1923. "The Disinfection of Public Water Supplies and its Relation to Public Health." *Journal of the American Water Works Association*, 10(1): 127-138.

Melosi, Martin. 2008. The Sanitary City: Environmental Services in Urban America from Colonial Times to the Present. Pittsburgh, PA: University of Pittsburgh Press.

Cincinnati, Ohio

Cutler, David M. and Grant Miller. 2005. "The Role of Public Health Improvements in Health Advances: The Twentieth-Century United States." *Demography*, 42(1): 1-22.

Eddy, Harrison P. 1913. "Report upon Necessity and Feasibility of Treating the Sewage of Cincinnati before its Discharge into the Ohio River." *Progress Report on a Plan of Sewerage for the City of Cincinnati*. Department of Public Works, Cincinnati, OH, pp. 295-610.

Mohlman, F. W. 1940. "Sewage Treatment in Large American Cities." Sewage Works Journal, 12(1): 168-171.

Cleveland, Ohio

Ellms, J. W. and John J. Wirts. 1943. "Sewage Treatment Problems in Cleveland, Ohio." *Sewage Works Journal*, 15(1): 40-47.

Hyde, Charles Gilman, George H. Wilhelm and Frank C. Miller. 1916. A Report Upon Possible Sources of Water Supply for the City of Sacramento. Sacramento, CA: Rincon Publishing Company, Printers.

Ohio (state). 1913. Twenty Seventh Annual Report of the State Board of Health. Columbus, Ohio: F.J. Heer Printing Company, pp. 623-633.

Orth, Samuel Peter. 1910. A History of Cleveland, Ohio, Volume 1. Chicago-Cleveland: S.J. Clarke Publishing Company.

Perkins, Roger G. 1921. "Typhoid Fever in Cleveland Ohio for the Years 1918, 1919, and 1920" *Public Health Reports*, 36(20): 1095-1132.

Stradling, David and Richard Stradling. 2015. Where the River Burned: Carl Stokes and the Struggle to Save Cleveland. Ithaca, NY: Cornell University Press.

Detroit, Michigan

Detroit Water and Sewerage Department. 2002. Detroit Water and Sewerage Department: The First 300 Years (Daisy, Michael, editor). Detroit, MI: Detroit Water and Sewerage Department.

Jennings, C.A. 1918. "Some Results Secured by Chlorine Compounds in Water Purification and Sewage Treatment." *Municipal Engineering*, LV(1): 249-251.

Indianapolis, Indiana

Calvert, C.K. 1934. "The Sanitary Works of Indianapolis." *American Journal of Public Health*, 24(7): 739-742.

Jordan, H.E. 1909. "Preliminary Chemical Treatment as an Aid to Slow Sand Filtration; Indianapolis Water Company." *Engineering News*, 66(6): 144-148.

Mabee, W.C. 1909. "Concrete in Waterworks Construction." Fire and Water Engineering, 46:242-244.

Unknown Author. 1919. "Disinfection of Water Supplies." *Municipal Journal and Public Works*, 46(24): 437-439 and 444.

Jersey City, New Jersey

Jennings, C.A. 1918. "Some Results Secured by Chlorine Compounds in Water Purification and Sewage Treatment." *Municipal Engineering*, LV(1): 249-251.

Leith, Rodney B. 1972. "Jersey City Gives Up its Sewage Treatment Plant." *New York Times*, April 30. Available at: https://www.nytimes.com/1972/04/30/archives/jersey-city-gives-up-its-sewagetreatment-plant.html.

McGuire, Michael J. 2013. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO: American Water Works Association.

Stoddard, Andrew, Jon B. Harcum, Jonathan T. Simpson, James R. Pagenkopf and Robert K. Bastian. 2002. *Municipal Wastewater Treatment: Evaluating Improvements in National Water Quality*. New York, NY: John Wiley and Sons.

Kansas City, Missouri

Bullard, Loring. 2010. *Source to Tap: A History of Missouri's Public Water Supplies.* Available at: http://www.watershedcommittee.org/wp-content/uploads/2010/08/copy-of-copy-of-source-to-tapfinal.pdf.

Hyde, Charles Gilman, George H. Wilhelm and Frank C. Miller. 1916. A Report Upon Possible Sources of Water Supply for the City of Sacramento. Sacramento, CA: Rincon Publishing Company, Printers.

Mohlman, F. W. 1940. "Sewage Treatment in Large American Cities." Sewage Works Journal, 12(1): 168-171.

Samuel, T.D. 1930. "The Water Supply System of Kansas City Missouri." *Journal of the American Water Works Association*, 22(9): 1236-1246.

Louisville, Kentucky

Bruggers, James. 2016. "Yuk! Louisville Still has a \$943m Sewer Problem." *The Courier Journal*, October 22. Available at: https://www.courier-journal.com/story/tech/science/environment/2016/10/22/yuck-louisville-still-has-943m-sewer-problem/87721810/.

Gazlay, Webster. 1912. "The Louisville Water Purification Plant." Engineering Record, 65(26): 728.

Recktenwold, Roger. 2017. "Water and Wastewater Service for the Commonwealth of Kentucky." In *Water in Kentucky: Natural History, Communities, and Conservation* (editors Brian D. Lee, Daniel I. Carey, Alice L. Jones), Lexington, KY: University Press of Kentucky.

Unknown Author. 1911. "Louisville Waterworks Report." Fire and Water Engineering, 49(22): 209.

Memphis, Tennessee

Hardin, Eugene. 1932. "Design and Operation Data on Large Rapid Sand Filtration Plants in the United States and Canada." *Journal of the American Water Works Association*, 24(8): 1190-1207.

JAMA (editorial board). 1921. "Typhoid in the Large Cities of the United States in 1920." Journal of the American Medical Association, 76(13): 860-863.

JAMA (editorial board). 1922. "Typhoid in the Large Cities of the United States in 1921." Journal of the American Medical Association, 78(12): 890-893.

Preble, Paul. 1921. "Review of Public Health Administration in Memphis, Tennessee." *Public Health Bulletin No. 113*. Treasury Department, United States Public Health Service.

Milwaukee, Wisconsin

Foss-Mollan, Kate. 2001. Hard Water: Politics and Water Supply in Milwaukee, 1870-1995. West Lafayaette, IN: Purdue University Press.

Jennings, C. A. 1918. "Some Results Secured by Chlorine Compounds in Water Purification and Sewage Treatment." *Municipal Engineering*, LV(1): 249-251.

Minneapolis, Minnesota

Cappelen, F.W. 1918. Annual Report of the City Engineer of the City of Minneapolis for the Year Ending December 31, 1914. Minneapolis, MN: Syndicate Printing Company.

Mohlman, F. W. 1940. "Sewage Treatment in Large American Cities." Sewage Works Journal, 12(1): 168-171.

National Research Council of the National Academies. 2008. Mississippi River Water Quality and the Clean Water Act. Washington, D.C.: National Academies Press.

Saint Paul (MN). 1938. Annual Report of the Commissioner of Public Works. Saint Paul, MN: Department of Public Works.

Stokes, William Royal. 1911. "A Report Concerning the Treatment of Baltimore Drinking Water with Hypochlorite of Calcium." *Maryland Medical Journal*, LIV(7): 204-214.

Unknown Author. 1917. "Chlorine Disinfection in Water-Works Plants." Water and Gas Review, 27(10): 17-22.

Newark, New Jersey

Hendricks David. 2011. Fundamentals of Water Treatment Unit Processes: Physical, Chemical, and Biological. New York, NY: CRC Press.

Modica, Glenn R.2001. The History of the Newark Sewer System. Cranbury, NJ: Richard Grubb & Associates.

Newark (NJ), Dept. of Streets and Public Improvements. 1922. Annual Report, Newark, NJ.

North Jersey District Water Supply Commission. 1950. Wanaque and Ramapo Projects. Wanaque, NJ.

Unknown Author. 1917. "Chlorine Disinfection in Water-Works Plants." Water and Gas Review, 27(10):17-22.

Unknown Author. 1919. "Disinfection of Water Supplies." *Municipal Journal and Public Works*, 46 (24): 437-439 and 444.

New Orleans, Louisiana

Cutler, David M. and Grant Miller. 2005. "The Role of Public Health Improvements in Health Advances: The Twentieth-Century United States." *Demography*, 42(1): 1-22.

Porter, John L. 1909. "Operation and Maintenance Purification Stations." In the Semi-annual Report of the Sewerage and Water Board of the City of New Orleans, La, pp. 57-63.

Reeves, William D. 2003. *Historic Louisiana: An Illustrated History*. San Antonio, TX: Historical Publishing Network.

New York, New York

Coffin, T.D.L. 1913. "Chlorinating Plants, Croton Water Supply." Engineering News, 69(9): 419-422.

Donaldson, Wellington. 1939. "First Year's Operation of Wards Island Sewage Treatment Works." Sewage Works Journal, 11(1): 100-116.

Mohlman, F. W. 1940. "Sewage Treatment in Large American Cities." Sewage Works Journal, 12(1): 168-171.

New York City Department of Environmental Protection. "New York City's Wastewater Treatment System." Available at: http://www.nyc.gov/html/dep/pdf/wwsystem.pdf.

Unknown Author. 1908. "The Filling of the New Croton Reservoir." *The Engineering Review*, 18(1): 53.

Pittsburgh, Pennsylvania

Cutler, David M. and Grant Miller. 2005. "The Role of Public Health Improvements in Health Advances: The Twentieth-Century United States." *Demography*, 42(1): 1-22.

Mohlman, F. W. 1940. "Sewage Treatment in Large American Cities." Sewage Works Journal, 12(1): 168-171.

Pittsburgh (PA), Dept. of Public Works. 1916. The City of Pittsburgh and Its Public Works. Pittsburgh, PA: Pittsburgh Printing Company.

Philadelphia, Pennsylvania

Hendricks, David W. 2006. Water Treatment Unit Processes: Physical and Chemical. Boca Raton, FL: CRC Press.

McCarthy, Michael P. 1987. *Typhoid and the Politics of Public Health in Nineteenth-century Philadelphia*. Philadelphia, PA: American Philosophical Society.

Mohlman, F. W. 1940. "Sewage Treatment in Large American Cities." Sewage Works Journal, 12(1): 168-171.

Philadelphia (PA), 1909. Description of the Filtration Works and Pumping Stations: Also Brief History of the Water Supply. Philadelphia, PA: Bureau of Water.

West, Francis D. 1909. "Sanitary Control of Filter Plants." *Proceedings of the Engineers' Club of Philadelphia*, 26(2): 135-144.

West, Francis D. 1914. "Disinfecting 200,000,000 Million Gallons of Water a Day—Experience with Chloride of Lime and Liquid Chlorine at the Torresdale Filtration Plant." *Journal of the American Water Works Association*, 1(3): 403-446.

Providence, Rhode Island

Bronsdon, M.H. 1919. "Operating Results of Slow-Sand Filtration Plant at Providence R.I." Chemical Abstracts, Volume 13(7): 760.

Cady, John Hutchins. 1957. The Civic and Architectural Development of Providence, 1636-1950. Providence, RI: The Book Shop

Nixon, Scott W. 1995. Metal Inputs to Narragansett Bay: A History and Assessment of Recent Conditions. Narragansett, RI: Rhode Island Sea Grant Communications Office.

Unknown Author. 1909. "Water Filters of Providence, R.I." Municipal Journal and Engineer, 27(3): 85-89.

Rochester, New York

Baker, Frank Collins. 1920. "Animal Life and Sewage in the Genesee River, New York." *The American Naturalist*, 54(631): 152-161.

McKelvey, Blake. 1972. "Water for Rochester." Rochester History, 34(3): 1-24.

Rochester (City of), Department of Environmental Services, Bureau of Water. 2013. A Pocket History of the Rochester Water Works, Rochester New York.

San Francisco, California

Environmental Protection Agency, Office of Enforcement. 1975. Evaluation of Sewage Treatment Facilities San Francisco, California September 1975. EPA-330/2-75-008, San Francisco, CA.

Hanson, Warren D. 2005. A History of the Municipal Water Department and Hetch Hetchy System. San Francisco, CA: San Francisco Public Utilities Commission.

Hassler, William C. 1930. "Typhoid Fever Epidemic Occurring During the Summer of 1928." *American Journal of Public Health*, 20(2): 137–146.

Schussler, Hermann. 1906. The Water Supply of San Francisco, California, Before, During and After the Earthquake of April 18th, 1906, and the Subsequent Conflagration. New York, NY: Martin B. Brown Press.

Unknown Author. 1919. "Disinfection of Water Supplies." *Municipal Journal and Public Works*, 46 (24): 437-439, 444.

St. Louis, Missouri

Cutler, David M. and Grant Miller. 2005. "The Role of Public Health Improvements in Health Advances: The Twentieth-Century United States." *Demography*, 42(1): 1-22.

Mohlman, F. W. 1940. "Sewage Treatment in Large American Cities." Sewage Works Journal, 12(1): 168-171.

National Research Council of the National Academies. 2008. Mississippi River Water Quality and the Clean Water Act. Washington, D.C.: National Academies Press.

Wall, Edward E. 1920. "Water Treatment at St. Louis Mo." *American Journal of Public Health*, 10(5): 437-443.

St. Paul, Minnesota

Jensen, Bob. 2016. "A Drink of Water." *LillieNews.com*, August 3. Available at: http://www.lillienews.com/articles/2016/08/03/drink-water.

Mohlman, F. W. 1940. "Sewage Treatment in Large American Cities." Sewage Works Journal, 12(1): 168-171.

Saint Paul (MN). 1938. Annual Report of the Commissioner of Public Works. Saint Paul, MN: Department of Public Works

Unknown Author. 1914. "St. Paul, Minn., Water Report for 1913." Fire and Water Engineering, 56(2): 20

Washington, D.C.

Cosby, Spencer. 1909. "The Water Supply of Washington" In (editor, John H. Walker) the *Purification of the Washington Water Supply* (3rd edition), Washington, D.C.: Government Printing Office, Chapter 8, pp. 260-265.

Mohlman, F. W. 1940. "Sewage Treatment in Large American Cities." Sewage Works Journal, 12(1): 168-171.

Parker, Horatio N. 1907. "Stream Pollution, Occurrence of Typhoid Fever, and the Character of Surface Waters in the Potomac Basin." *Water-Supply and Irrigation Papers of the United States*, Paper No. 192: 191-290.

Penn, James R. 2001. Rivers of the World: A Social, Geographical, and Environmental Sourcebook. Santa Barbar, CA: ABC-CLIO, Inc.

United States Engineer Office, War Department. 1939. The Washington Aqueduct Water Supply, District of Columbia. Available at: http://www.waterworkshistory.us/DC/Washington/1939Aqueduct.pdf.

Unknown Author. 1978. "Blue Plains Treatment Plant, Washington D.C." *Journal Water Pollution Control Federation*, 50(5): 997-998, 315a, 317a.

Sources for Table 4

Baltimore, Maryland

Blanck, Fred. 1913. "Report of the Chemical Laboratory." *Annual Report Department of Public Safety*, Sub-Department of Health to the Mayor and City Council of Baltimore for the Fiscal Year Ended December 31, 1912. Baltimore, MD: Meyer and Thalheimer, p. 511-558.

City of Baltimore. 1943. One Hundred and Twenty-Ninth Annual Report of the Department of Health. Baltimore, MD: Department of Health.

Early, Floyd R. 1925. "Restrictions of Milk Production in Different Large Cities in the East." *Milk Products Review*, 6(3): 8.

Steffens, D.H. 1913. "Some Weaknesses of the City Inspection Theory." *The Creamery and Milk Plant Monthly*, 1(10): 1-6.

Wessel, Joyce E. 1984. "Baltimore's Dairy Industry and the Fight for Pure Milk, 1900-1920." Business and Economic History, 13 (Papers presented at the thirtieth annual meeting of the Business History Conference), pp. 150-157.

Boston, Massachusetts

Jordan, James O. 1907. "Boston's Campaign for Clean Milk." Journal of American Medical Association, 49: 1082-1087.

Massachusetts (State Board of Health). 1912. The State Board of Health of Massachusetts: A Brief History of its Organization and its Work, 1869-1912. Boston, MA: Wright and Potter Printing Company, State Printers.

Prescott, Samuel C. 1906. "The Production of Clean Milk as a Practical Proposition" *Maryland Medical Journal*, 49(6): 208-281.

Rosenau, Milton J. 1908. "The Number of Bacteria in Milk and the Value of Bacterial Counts." In Milk and its Relation to the Public Health, Washington, D.C.: Government Printing Office, pp. 429-453.

United States Public Health Service. 1946. *List of American Municipalities with Compulsory Pasteurization*. Washington D.C.: U.S. Public Health Service, Sanitary Engineering Division, Milk and Food Section.

Unknown Author. 1943. "Curtains for Raw Milk." New England Journal of Medicine, 229(20): 765.

Buffalo, New York

Baker, Moses M. 1910. "The Economic and Sanitary Supervision of City Milk Supplies." *Statistics of Cities Having a Population of Over 25,000: 1907*. Washington, D.C.: Government Printing Office, pp. 36-45, 450.

Mangold, George B. 1908. "Infant Mortality in the American Cities." *Annals of the American Academy of Political and Social Science*, 31(2): 484-494.

Wende, Ernest. 1908. "The Bulletin's Mission." The Buffalo Sanitary Bulletin, 1(1): 1-4.

Chicago, Illinois

Czaplicki, Alan. 2007. "Pure Milk Is Better Than Purified Milk": Pasteurization and Milk Purity in Chicago, 1908-1916." *Social Science History*, 31(3): 411-433

Eastman, Francis. 1912. *Chicago City Manual 1912*. Chicago, IL: Bureau of Statistics and Municipal Library.

Fuchs, A. W. and L.C. Frank. 1938. "Milk Supplies and Their Control in American Urban Communities of Over 1,000 Population in 1936." *Public Health Bulletin, No. 245*. Washington D.C.: U.S. Public Health Service.

Olmstead, Alan and Paul Rhode. 2004. "An Impossible Undertaking: The Eradication of Bovine Tuberculosis in the United States." *Journal of Economic History*, 64(3): 734–772.

Rose, James A. 1914. "Dairy Animals – Tuberculin Test." *Bulletin of the Chicago Tuberculosis Institute*, Series 2, No. 8.

Ward, Archibald Robinson and Myer Edward Jaffa. 1909. Pure Milk and the Public Health: A Manual of Milk and Dairy Inspection. Ithaca, NY: Taylor and Carpenter, pp. 200-205.

Cincinnati, Ohio

Blume, R.B. 1922. "Report of the Medical Milk Commission of the Cincinnati Academy of Medicine." Proceedings of the American Association of Medical Milk Commissions and Certified Milk Producers Association of America. Chicago, IL: American Association of Medical Milk Commissions, pp. 282-286.

Cincinnati (OH). 1913. "Milk. Production, Care, and Sale." Public Health Reports (1896-1970), 28(14): 672-677.

Mangold, George B. 1908. "Infant Mortality in the American Cities." *Annals of the American Academy of Political and Social Science*, 31(2): 484-494.

United States Public Health Service. 1915. Municipal Ordinances, Rules, and Regulations Pertaining to Public Health. Washington, D.C.: Washington Government Printing Office, pp. 240-241.

United States Public Health Service. 1946. *List of American Municipalities with Compulsory Pasteurization*. Washington D.C.: U.S. Public Health Service, Sanitary Engineering Division, Milk and Food Section.

Unknown Author. 1949. "City's Main Source Closed for Certified Grade Milk at End of Month, is Word." *Cincinnati Enquirer*, September 16, p. 12.

Cleveland, Ohio

Cleveland (OH). 1915. "Milk and Milk Products. Production, Care, and Sale. Bureau of Dairy and Food Inspection Created." *Public Health Reports*, 30(46): 3380-3387.

Commission of Publicity and Efficiency. 1919. "Does Regulation Increase the Price of Milk?" *Toledo City Journal*, 4(7): 104.

Lane, C.B. and Ivan C. Weld. 1908. "A City Milk and Cream Contest as a Practical Method of Improving the Milk Supply." *Bureau of Animal Industry Circular 117*. Washington D.C.: Government Printing Office.

Milk Commission of the City of Cleveland. 1906. "Report of the Milk Commission of the City of Cleveland, December 1906." *Cleveland Medical Journal*, 6(1): 31-38.

Mowry, Don E. 1908. "Milk Regulation in the Larger Cities." Municipal Journal and Engineer, 25(2): 55.

Detroit, Michigan

Clement, Clarence Elbert and Gustav Paul Warber. 1918. "The Market Milk Business of Detroit, Mich., in 1915" United States Department of Agriculture Bulletin No. 639 (February 15).

Kiefer, Guy L. 1911. "Report of the Milk Inspector." *Thirtieth Annual Report of the Board of Health of the City of Detroit for the Fiscal Year Ending June 30, 1911*. Detroit, MI: Board of Health, pp. 94-106.

Indianapolis, Indiana

City of Indianapolis (IN) 1940. "Regular Meeting, Monday August 19." *Journal of the Common Council of the City of Indianapolis, Indiana*, pp. 469-580.

United States Public Health Service. 1917. *Public Health Reports*, 31 (Part 2), Washington, D.C.: Washington Government Printing Office, pp. 2130-2134.

United States Public Health Service. 1946. *List of American Municipalities with Compulsory Pasteurization*. Washington D.C.: U.S. Public Health Service, Sanitary Engineering Division, Milk and Food Section.

Jersey City, New Jersey

Gray, Thomas N. 1913. "Infant Mortality." *Journal of the Medical Society of New Jersey*, 10(1): 3-9.

United States Public Health Service. 1917. Municipal Ordinances, Rules, and Regulations Pertaining to Public Health, 1915. Washington DC: Washington Government Printing Office, pp. 291-296.

Kansas City, Missouri

Baker, Moses M. 1910. "The Economic and Sanitary Supervision of City Milk Supplies." *Statistics of Cities Having a Population of Over 25,000: 1907*. Washington, D.C.: Government Printing Office, pp. 36-45.

Treasury Department, United States. 1912. Municipal Ordinances, Rules, and Regulations Pertaining to Public Hygiene. Washington, D.C.: Washington Government Printing Office, pp. 102-105

United States Public Health Service. 1916. *Public Health Reports*, 31 (Part 1), Washington, D.C.: Washington Government Printing Office, pp. 34-46.

Louisville, Kentucky

Baker, Moses M. 1910. "The Economic and Sanitary Supervision of City Milk Supplies." *Statistics of Cities Having a Population of Over 25,000: 1907*. Washington, D.C.: Government Printing Office, pp. 36-45.

United States Department of Agriculture. 1953. The Marketing of Milk in the Louisville Area Under Federal Regulation. Marketing Research Report No. 43, Washington, D.C.: Government Printing Office.

Memphis, Tennessee

Preble, Paul. 1921. A Review of Public Health Administration in Memphis, Tennessee. Public Health Bulletin No. 113, Washington D.C.: Government Printing Office, pp. 101-106.

United States, Public Health Service. 1912. Municipal Ordinances, Rules, and Regulations Pertaining to Public Hygiene. Washington D.C.: Government Printing Office, pp. 112-115.

Milwaukee, Wisconsin

Baker, Moses M. 1910. "The Economic and Sanitary Supervision of City Milk Supplies." *Statistics of Cities Having a Population of Over 25,000: 1907*. Washington, D.C.: Government Printing Office, pp. 36-45.

Mangold, George B. 1908. "Infant Mortality in the American Cities." *Annals of the American Academy of Political and Social Science*, 31(2): 484-494.

Minneapolis, Minneapolis

Baker, Moses M. 1910. "The Economic and Sanitary Supervision of City Milk Supplies." Statistics of Cities Having a Population of Over 25,000: 1907. Washington, D.C.: Government Printing Office, pp. 36-45.

Minneapolis (MN). 1917. Annual Report of the Health Department. Minneapolis, MN: Syndicate Printing Company, p. 83.

Minneapolis (MN), City Council. 1919. Proceedings of the City Council of the City of Minneapolis from January 1, 1919 to January 1, 1920, Volume 45, pp. 364-365.

Minneapolis (MN), City Council. 1907. Proceedings of the City Council of the City of Minneapolis from January 1, 1907 to January 1, 1908, Volume 33, pp. 553-556.

Newark, New Jersey

Gray, Thomas N. 1913. "Infant Mortality." *Journal of the Medical Society of New Jersey*, 10(1): 3-9.

Newark (NJ), Mayor. 1915. "The Mayor's Message Together with the Reports of the City Officers of the City of Newark, NJ." Newark, NJ: Daily Advertiser Office.

United States Congress, House Committee on the District of Columbia. 1921. Sale of Milk, Cream, and Certain Milk Products in the D.C.: Hearings Before the Subcommittee on the District of Columbia, Part 1, House of Representatives. Washington, D.C.: Government Printing Office, p. 39.

New Orleans, Louisiana

Maes, Urban. 1910. "Report of the Milk Commission of the New Orleans Pure Milk Society." Proceedings of the Fourth Annual Conference of the American Association of Medical Milk Commissions, 4: 41-43.

New Orleans (LA), Board of Health 1922. "The Following Resolution was Passed at a Regular Meeting of the Board of Health for the Parish of Orleans and the City of New Orleans, October 11." Monthly Bulletin, Municipal Health Department, 10(11).

Tuley, Henry Enos. 1915. "President's Address." Proceedings of the Sixth, Seventh, and Eighth Annual Conferences of the American Association of Medical Milk Commissions, Volumes 6-8, pp. 89-93.

United States Public Health Service. 1946. *List of American Municipalities with Compulsory Pasteurization*. Washington D.C.: U.S. Public Health Service, Sanitary Engineering Division, Milk and Food Section.

Unknown Author. 1925. "Hefferman Says Monroe Needing Milk Inspector." *The Monroe News-Star*, January 21, p. 3.

New York, New York

Baker, Moses M. 1910. "The Economic and Sanitary Supervision of City Milk Supplies." *Statistics of Cities Having a Population of Over 25,000: 1907.* Washington, D.C.: Government Printing Office, pp. 36-45 (and page 450).

New York (NY). 1912. "Milk. Production, Care, and Sale. With Special Reference to Pasteurization." *Public Health Reports* (1896-1970), 27(12): 434-438.

New York (NY), Department of Health. 1913. Weekly Bulletin of the Department of Health of the City of New York, 2(44): 1-3.

United States Public Health Service. 1946. *List of American Municipalities with Compulsory Pasteurization*. Washington D.C.: U.S. Public Health Service, Sanitary Engineering Division, Milk and Food Section.

Unknown Author. 1943. "New York City Certified Milk to be Pasteurized." *American Journal of Public Health*, 33 (October): 1305.

Philadelphia, Pennsylvania

Beard, Charles Austin. 1913. "Notes and Events." National Civic Review, 2(4): 675-719.

Early, Floyd R. 1925. "Restrictions of Milk Production in Different Large Cities in the East." *Milk Products Review*, 6(3): 8.

Gittings, J.C. 1922. "Report of the Milk Commission of the Philadelphia Pediatric Society" Proceedings of the American Association of Medical Milk Commissions and Certified Milk Producers Association of America. Chicago, IL: American Association of Medical Milk Commissions, pp. 463-465.

Henry Phipps Institute. 1915. "Food Inspection Service in Philadelphia." Report of the Henry Phipps Institute, 12: 57-94.

Mowry, Don E. 1908. "Milk Regulation in the Larger Cities." Municipal Journal and Engineer, 25(2): 55.

Philadelphia, PA, Department of Public Health. 1931. *Quarterly Bulletin of the Department of Public Health of the City of Philadelphia*. Philadelphia, PA.

Pittsburgh, Pennsylvania

Pittsburgh City Council. 1911. Municipal Record. Minutes of the Proceedings of the Select Council of the City of Pittsburgh for the Years 1910-1911, Volume 43. Pittsburgh, PA: Devine and Co., pp. 212-215.

Edwards, Ogden M. 1910. "Report of the Milk Commission of the Allegheny County Medical Society of Pittsburgh, PA." *Proceedings of the Fourth Annual Conference of the American Association of Medical Milk Commissions*, 4: 44-50.

United States Public Health Service. 1946. *List of American Municipalities with Compulsory Pasteurization*. Washington D.C.: U.S. Public Health Service, Sanitary Engineering Division, Milk and Food Section.

Unknown Author. 1942. "Ban on Raw Milk Voted by Council." The Pittsburgh Press, June 23, p. 21.

Providence, Rhode Island

Providence, RI. 1916. Resolutions and Ordinances of the City Council of the City of Providence. Providence, RI: Providence Printing Company, pp. 166-173.

Rochester, New York

Goler, G.W. 1919. "Control of the Milk Supply by the Rochester Milk Department." Report of the Rochester Milk Survey, pp. 160-175.

Groenewold, Ellen. 1908. "Milk Supply and Public Health." NDQ: North Dakota Quarterly, 8: 239-254.

Mowry, Don E. 1908. "Milk Regulation in the Larger Cities." Municipal Journal and Engineer, 25(2): 55.

Rochester (NY), Common Council. 1922. Record of the Proceedings of the Common Council of the City of Rochester. Rochester, NY: Rochester Herald Company, p. 350.

San Francisco, California

Hutshing, E.E. 1913. "The Milk Supply of San Francisco and it Bacterial Content." *California State Journal of Medicine*, 11(1): 14-17.

San Francisco (CA). 1910. San Francisco Municipal Reports for the Fiscal Year 1908-9. San Francisco, CA: Neal Publishing Company.

San Francisco (CA). 1915. Ordinances Relating to the Preservation of Public Health, Regulation of Hospitals, Prevention of Disease, Preparation of Food, and Regulation of Places where Food is Offered for Sale, pp. 25-33.

Skelly, Al. 1944. "Concerning San Francisco Ordinance Requiring Pasteurization of Milk." California and Western Medicine, 60(6): 355.

United States Public Health Service. 1917. Municipal Ordinances, Rules, and Regulations Pertaining to Public Health. Washington, D.C.: Washington Government Printing Office, pp. 160-173.

United States Public Health Service. 1946. *List of American Municipalities with Compulsory Pasteurization*. Washington D.C.: U.S. Public Health Service, Sanitary Engineering Division, Milk and Food Section.

St. Louis, Missouri

Baker, Moses M. 1910. "The Economic and Sanitary Supervision of City Milk Supplies." *Statistics of Cities Having a Population of Over 25,000: 1907*. Washington, D.C.: Government Printing Office, pp. 36-45.

Board of Aldermen of the City of St. Louis. 1921. "An Ordinance to Regulate the Production and Sale of Milk, Cream, and Ice Cream, and for Other Purposes." *The City Journal*, 4(17): 16-17.

Brown, C.A. 1928. Costs and Margins and Other Related Factors in the Distribution of Fluid Milk in Four Illinois Markets. University of Illinois, Bulletin Number 318: Urbana, IL.

Unknown Author. 1922. "News from Far and Near." The Milk Dealer: The National Journal for the City Milk Trade, 11(12): 101-104.

St. Paul, Minnesota

Baker, Moses M. 1910. "The Economic and Sanitary Supervision of City Milk Supplies." *Statistics of Cities Having a Population of Over 25,000: 1907.* Washington, D.C.: Government Printing Office, pp. 36-45.

Mowry, Don E. 1908. "Milk Regulation in the Larger Cities." Municipal Journal and Engineer, 25(2): 55.

Washington, D.C.

Dahlberg, Arthur Chester, H.S. Adams and M.E. Held. 1953. Sanitary Milk Control and Its Relation to the Sanitary, Nutritive, and Other Qualities of Milk. Washington D.C.: National Academy of Sciences.

United States Congress House Committee on the District of Columbia. 1921. Sale of Milk, Cream, and Certain Milk Products in the District of Columbia: Hearings before the Subcommittee on the District of Columbia, House of Representatives, 67th Congress. Washington, D.C.: Washington Government Printing Office, pp. 3-5.