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A The Effects of Weather on Agricultural Markets:

Supporting Evidence

In this appendix I provide more detail on the data used for the analysis of weather on

agricultural markets in India, as well as supporting evidence and additional results.

A.1 Agricultural Data

As discussed in the main paper, the data is collected from the ICRISAT Village Dynamics

in South Asia Macro-Meso Database (henceforth VDSA), which is compiled from a number

of official government datasources. Descriptive statistics for the agricultural data analysis

are found in Table A1.

Table A1: Descriptive Statistics - Agriculture Markets in India (2001–2007)

Mean Std. Dev. Std. Dev. Observations
(within) (between)

Panel A: Agricultural Data

Yield 1.762 0.468 1.673 10,275

Value (Rs.) 19,186.89 10,505.44 22,324.76 10,275

Production (’000 Tonnes) 110.462 48.954 248.789 10,275

Area (’000 Hectares) 58.210 14.794 99.884 10,275

Price (Rs./Tonne) 12,153.88 4,083.989 7492.096 10,275

Crops 7.812 0 3.805 10,275

Average Crop Share 0.151 0.0268 0.215 10,275

Average Share of Main Crop 0.563 0.041 0.182 10,275

Panel B: Meteorological Data

Daily Average Temperature (◦C) 25.359 0.343 4.820 10,275

Degree Days (tL = 17, tH =∞) 1,005.928 63.142 644.298 10,275

Degree Days (tL = 0, tH = 17) 5,261.183 29.944 1,890.894 10,275

Monsoon Rainfall (100 mm) 8.25 1.849 4.29 10,275

Monsoon Rainfall Shock (-1/0/1) 0.132 0.525 0.331 10,275

Figure A1 provides summary statistics for the 13 crops used. We observe from the figures

that both rice and wheat are the most produced crops in terms of cultivated land area and

total production and that they also comprise the largest share of production and cultivated

land area within district (Figure A2). In terms of yields, sugarcane is show to have one of

the highest yields (Figure A1c).
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Figure A1: Agricultural Production, Cultivated Area, Yields and Prices by Crop

(a) Production (’000 tonnes) (b) Cultivated Area (’000 Ha.)

(c) Yield (d) Price (2001 Rs./Tonne)
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Figure A2: District Shares of Agricultural Production and Cultivated Area by Crop

(a) District Share of Cultivated Area (b) District Share of Cultivated Area
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A.2 Non-Linearities in the Temperature Schedule

In this section I explore the degree to which there are non-linearities in the temperature

schedule. A large literature in agricultural science has demonstrated that the relationship

between agricultural yields and weather is highly nonlinear (Schlenker and Roberts, 2009;

Auffhammer and Schlenker, 2014). To account for the relevance of any non-linearities, I

engage in two exercises. First, I apply the concept of growing degree days, which measure

the amount of time a crop is exposed between a given lower and upper bound, with daily

exposures summed over the season. Denoting the lower bound as tl, the upper bound as th,

and td as the daily average temperature on a given day,

GDDd;tl;th =


0 if td ≤ tl

td − tl if tl < td < th

th − tl if th ≤ td

(1)

These daily measures are then summed over the period of interest.1 This approach is

appealing for several reasons. First, the existing literature suggests that this simple function

delivers results that are very similar to those estimated using more complicated functional

forms (Schlenker and Roberts, 2009; Burgess et al. 2016; Burke and Emerick, 2016). Sec-

ondly, these other functional forms typically feature higher order terms, which in a panel

setting means that the unit-specific mean re-enters the estimation, as is the case with us-

ing the quadratic functions (McIntosh and Schlenker, 2006). This raises omitted variable

concerns, since identification in the panel models is no longer limited to location-specific

variation over time.

Using the notion of GDD, I model weather as a simple piecewise linear function of

temperature and precipitation,

f(wdt) = β1GDDdt;tl;th + β2GDDdt;th;∞ + β3Raindt (2)

The lower temperature “piece” is the sum of GDD between the lower bound tl = 0 and

kink-point th. The upper temperature “piece” has a lower bound of th and is unbounded

above. The kink-point in the distribution th is determined by estimating an agricultural

1For example, if we set tl equal to 0◦C and th equal to 24◦C, then a given set of observations
{−1, 0, 8, 12, 27, 30, 33}, would provide GDDdt;0;24 = {0, 0, 8, 12, 24, 24}. Similarly, if we wanted to con-
struct a piecewise linear function setting tl equal to 24 and th equal to infinity, the second “piece” would
provide CDDdt;24;∞ = {0, 0, 0, 0, 6, 9}. These values are then summed over the period of interest, in this
case CDDdt;0;24 = 68 and CDDdt;24;∞ = 15. This approach accounts for any differences in the response to
this temperature schedule relative to a different schedule with the same daily average temperature.
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production function, looping over all possible thresholds and selecting the model with the

lowest root-mean-square error. This results in a kink-point at 23◦C. This kink-point is

applied to all results for consistency.

The second approach explores the effects of non-linearities in the temperature schedule

and captures the distribution of daily temperatures in district d within year t, by counting the

number of days that the daily average temperature fell within the jth bin of 10 temperature

bins. I estimate separate coefficients for each of the temperature bin regressors, using the

modal bin as a reference category to minimize multicollinearity concerns. So as to retain

power, I restrict the lowest bin to contain all days that are < 15◦C and the highest bin to

contain all days that are > 31◦C. Each of the bins are 2◦C wide. Using this approach, I

model weather as a flexible function of temperature and precipitation,

f(wdt) =
10∑
j=1

βjTempdtj + β3Raindt (3)

This approach makes a number of assumptions about the effects of daily temperatures

on the outcomes explored, as discussed in Burgess et al. (2016). First, the approach assumes

that the impact of daily temperature is determined by the daily mean alone, rather than

intra-day variations in temperature. Second, the approach assumes that the impact of a

day’s average temperature on the outcome of interest is constant within each 2◦C interval.

Finally, by using the total number of days in each bin in each year, it is assumed that the

sequence of relatively hot and cold days is irrelevant for how hot days affect the annual

outcomes.

The results of these exercises are presented below for each group of outcome variables.
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Table A2: Degree Days and Agricultural Outcomes

(1) (2) (3)
Log Value Log Yield Log Price
(All Crops) (All Crops) (All Crops)

Degree Days (10 days) -0.00800∗∗∗ -0.00777∗∗∗ 0.000227
tL = 23, tH =∞ (0.00207) (0.00182) (0.000614)

Degree Days (10 days) -0.000871 -0.00354∗ -0.00267
tL = 0, tH = 23 (0.00153) (0.00213) (0.00166)

Rainfall Controls Yes Yes Yes

Fixed Effects Crop × District, Crop × Year
and State-Year Time Trends

Observations 10,275 10,275 10,275

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are

adjusted to reflect spatial dependence (up to 1,100km) as modeled in Conley (1999) and

serial correlation (up to 7-years) as modeled in Newey and West (1987). District distances

are computed from district centroids. Results are also robust to using cluster robust standard

errors at the state level.
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Figure A3: Temperature Bins and Agricultural Outcomes

(a) Yield

(b) Value

(c) Price

Notes: Standard errors are adjusted to account for spatial correlation (up to 1,100km), as modeled in Conley
(1999) and serial correlation over time (up to a lag of 7 years), as modeled in Newey and West (1987).
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A.3 Lags and Leads

Table A3: Controlling for Lags and Leads

logAgricultural Outcomes

Yield Value Price
(All Crops) (All Crops) (All Crops)

Daily Average Temperature (◦C) -0.122∗∗∗ -0.123∗∗∗ -0.00158
(0.0296) (0.0270) (0.00949)

1-Year Lag No No No

1-Year Lead No No No

Daily Average Temperature (◦C) -0.104∗∗∗ -0.113∗∗∗ -0.00831
(0.0238) (0.0231) (0.0101)

1-Year Lag Yes Yes Yes

1-Year Lead Yes Yes Yes

Fixed Effects Crop × District, Crop × Year
and State-Year Time Trends

Observations 10,275 10,275 10,275

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. The first row of results are the main

results from Table 1, without controls for lags and leads. Standard errors are adjusted to reflect spatial

dependence as modeled in Conley (1999) and serial correlation as modeled in Newey and West (1987).

District distances are computed from district centroids. Results are robust to clustering standard errors at

the state level.
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A.4 Examining the Relative Importance of Temperature for Agri-

cultural Production in India

In the main analysis I argue that temperature is an important driver of agricultural pro-

duction in India and that its omission from empirical analysis has economically meaningful

consequences. This section provides supporting evidence in support of this conjecture.

In Table A4 I explore the potential for omitted variable bias induced by not controlling for

temperature, or rainfall when estimating the effects of weather on agricultural productivity

in India. Column (1), replicated from Table 1 in the main text presents the estimated

effects of rainfall and temperature on agricultural yields. A one standard deviation increase

in temperature (0.343◦C) is associated with a 4.15% reduction in yields. A one standard

deviation reduction in rainfall (184 mm) is associated with a 2.07% reduction in yields. In

column (2) I explore the effects of temperature on yields, omitting rainfall. The estimated

effect for temperature increases from -12.2%/1◦C (p<0.01) to -13.9%/1◦C (p<0.01) a 14%

increase in magnitude. In column (3) I estimate the effects of rainfall on yields, omitting

temperature. The estimated effect increases from 1.13%/100mm (p < 0.01) to 1.86%/100mm

(p < 0.01) a 65% increase in the magnitude of the coefficient. The exclusion of temperature

from the regression has a meaningful effect on the estimate effect of rainfall. This insight

is robust to using the University of Delaware Rainfall and Temperature dataset, commonly

used in the existing literature (Table A5 and A6), and to using the rainfall shock measure,

introduced by ?, also commonly used in the existing literature (Table A7 and A8). I also

show that the relative importance of temperature holds, when accounting for the interaction

between rainfall and temperature (Table A9) and when we restrict our attention to the main

crop produced within each district (Table A10).

One explanation for the discrepancy with prior work is that the relationship between

weather and agricultural productivity has evolved over time. Much of the existing work has

focused on earlier time periods (Townsend, 1994; Kochar 1999; Jayachadran, 2006; Adhvaryu

et al. (2013); Kaur, 2019). If rainfall mattered more during this period that would explain

the discrepancy between the findings here and the existing literature. However, in Figures

A4 and A5 we see that the omitted variable bias induced by not accounting for temperature

holds in earlier periods as well. Splitting the data in 1991 the point at which India went

through substantial trade liberalization reforms we observe that the effect of temperature

on yields and prices are very similar over time, and whether we control for rainfall or not.

The effect of rainfall on yields and prices are substantially smaller both prior to and after

the 1991 reforms, when we control for temperature. Indeed the estimated effects of rainfall

prior to 1991 do not appear to have a statistically significant effect prior to 1991, suggesting
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that rainfall was less important during this period. This insight holds when I do not control

for temperature. The estimated effects of rainfall on yields almost double but the estimated

effect in the earlier period is not larger than the estimated effect in the post-liberalization

period.

Another explanation for the relative importance of temperature might be that higher

temperatures are more difficult to manage than low rainfall realizations. Rainfall is storable

and can be substituted with surface or ground water resources (manually, or through the use

of irrigation systems). By contrast, the effects of temperature are more difficult to address,

requiring heat-resistant crop varieties. Evidence to date suggests that farmers have struggled

to adapt to short-run and long-run changes in temperature, even in developed countries like

the United States (???).

In Table A11 I estimate that greater access to irrigation is associated with significantly

lower rainfall effects. Evaluated at the mean (49%) the effects of rainfall are mitigated by

almost 50%. In areas with 100% irrigation coverage, rainfall does not appear to have any

effect on yields. By contrast, greater access to irrigation does not appear to be associated

with meaningful reductions in the effects of temperature. Consistent with the premise that

market are well integrated during the study period, I do not observe any moderating effects

of irrigation on the rainfall-price or temperature-price relationship.

In Table A12 we explore the robustness of these findings to omitting rainfall or temper-

ature from the regression. As in the main analysis we observe that the exclusion of rainfall

from the estimation does not have a meaningful effect on the estimated effects of tempera-

ture. As before, the exclusion of temperature increases the magnitude of the rainfall effect.

This also has meaningful implications for the interpretation of the irrigation results. When

temperature is included rainfall has no effect on yields in locations with 100% irrigation cov-

erage. When temperature is omitted, the complete irrigation is only able to mitigate 60%

of the effect that rainfall has on yields. The exclusion of temperature not only overstates

the importance of rainfall but undermines the estimated efficacy of irrigation. Taken at face

value, this could induce over-utilization of irrigation.

I also present evidence to suggest that irrigation could help to explain the increasing

importance of rainfall over time. The share of area irrigated has increased over time from

31% in 1980 to 47% in 2009, an increase of 0.64%/year (Figure A6). The effectiveness of

irrigation over time is believed to have decreased due to increasing water scarcity Sekhri,

2011; 2014; Blakeslee et al. 2019. In Table A13 we see that in the pre-liberalization period

greater access to irrigation was significantly more effective in mitigating the effects of rainfall

on crop yields. Evaluated at the mean in the pre-liberalization period (34%) the effects

of rainfall are mitigated by almost 90%. By contrast, in the post-liberalization period,
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during which ground water extraction and irrigation use expanded substantially, the effects

of rainfall are mitigated by 60%, when evaluated at the mean (46%). It is important to

caveat that all of the results, exploring the potential of irrigation in this context should be

interpreted cautiously as effect moderators, rather than causal moderators. We cannot rule

out that there could be other time-varying confounders that could bias the estimated effects.

Table A4: The Effect of Temperature and Rainfall on Agricultural Yields With and Without
Controls

(1) (2) (3)
log Yield log Yield log Yield

(All Crops) (All Crops) (All Crops)

Daily Average Temperature (◦C) -0.122∗∗∗ -0.139∗∗∗

(0.0296) (0.0291)

Monsoon Rainfall (100mm) 0.0113∗∗∗ 0.0186∗∗∗

(0.00351) (0.00369)

Fixed Effects Crop × District, Crop × Year
and State-Year Time Trends

Observations 10,275 10,275 10,275

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are adjusted to reflect

spatial dependence (up to 1,100km) as modeled in Conley (1999) and serial correlation as modeled in Newey

and West (1987) (up to 7 years). District distances are computed from district centroids.
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Table A5: The Effect of Temperature and Rainfall on Agricultural Yields, Value, and Prices
(UDEL Data)

(1) (2) (3)
Yield Value Price

(All Crops) (All Crops) (All Crops)

Daily Average Temperature (◦C) -0.127∗∗∗ -0.120∗∗∗ 0.00683
(0.0333) (0.0318) (0.00955)

Monsoon Rainfall (100mm) 0.0212∗∗∗ 0.0168∗∗∗ -0.00442∗∗

(0.00347) (0.00366) (0.00203)

Fixed Effects Crop × District, Crop × Year
and State-Year Time Trends

Observations 10,275 10,275 10,275

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are adjusted to reflect

spatial dependence (up to 1,100km) as modeled in Conley (1999) and serial correlation as modeled in Newey

and West (1987) (up to 7 years). District distances are computed from district centroids.

Table A6: The Effect of Temperature and Rainfall on Agricultural Yields With and Without
Controls (UDEL Data)

(1) (2) (3)
Yield Yield Yield

(All Crops) (All Crops) (All Crops)

Daily Average Temperature (◦C) -0.127∗∗∗ -0.158∗∗∗

(0.0333) (0.0337)

Monsoon Rainfall (100mm) 0.0212∗∗∗ 0.0274∗∗∗

(0.00347) (0.00389)

Fixed Effects Crop × District, Crop × Year
and State-Year Time Trends

Observations 10,275 10,275 10,275

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are adjusted to reflect

spatial dependence (up to 1,100km) as modeled in Conley (1999) and serial correlation as modeled in Newey

and West (1987) (up to 7 years). District distances are computed from district centroids.
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Table A7: The Effect of Temperature and Rainfall Shocks on Agricultural Yields, Value,
and Prices

(1) (2) (3)
Yield Value Price

(All Crops) (All Crops) (All Crops)

Daily Average Temperature (◦C) -0.116∗∗∗ -0.116∗∗∗ -0.000529
(0.0263) (0.0245) (0.00913)

Monsoon Rainfall (Shock) 0.0514∗∗∗ 0.0487∗∗∗ -0.00279
(0.0104) (0.0105) (0.00532)

Fixed Effects Crop × District, Crop × Year
and State-Year Time Trends

Observations 10,275 10,275 10,275

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are adjusted to reflect

spatial dependence (up to 1,100km) as modeled in Conley (1999) and serial correlation as modeled in Newey

and West (1987) (up to 7 years). District distances are computed from district centroids.

Table A8: The Effect of Temperature and Rainfall Shocks on Agricultural Yields With and
Without Controls

(1) (2) (3)
Yield Yield Yield

(All Crops) (All Crops) (All Crops)

Daily Average Temperature (◦C) -0.116∗∗∗ -0.139∗∗∗

(0.0263) (0.0291)

Monsoon Rainfall (Shock) 0.0514∗∗∗ 0.0719∗∗∗

(0.0104) (0.0136)

Fixed Effects Crop × District, Crop × Year
and State-Year Time Trends

Observations 10,275 10,275 10,275

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are adjusted to reflect

spatial dependence (up to 1,100km) as modeled in Conley (1999) and serial correlation as modeled in Newey

and West (1987) (up to 7 years). District distances are computed from district centroids.
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Table A9: The Effect of Temperature, Rainfall, and the Interaction Between Temperature
and Rainfall on Agricultural Yields, Value, and Prices

(1) (2) (3)
Yield Value Price

(All Crops) (All Crops) (All Crops)

Daily Average Temperature (◦C) -0.119∗∗∗ -0.119∗∗∗ -0.000886
(0.0285) (0.0261) (0.00952)

Monsoon Rainfall (100mm) 0.0112∗∗∗ 0.00963∗∗∗ -0.00152
(0.00356) (0.00342) (0.00169)

Temperature × Rainfall 0.00152 0.00188∗∗ 0.000362
(0.000982) (0.000945) (0.000408)

Fixed Effects Crop × District, Crop × Year
and State-Year Time Trends

Observations 10,275 10,275 10,275

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Temperature and rainfall are demeaned

so that the interaction term captures the interaction of deviations from average temperature and average

rainfall. Standard errors are adjusted to reflect spatial dependence (up to 1,100km) as modeled in Conley

(1999) and serial correlation as modeled in Newey and West (1987) (up to 7 years). District distances are

computed from district centroids.
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Table A10: The Effect of Temperature and Rainfall on Agricultural Yields, Value, and Prices
(Main Crop)

(1) (2) (3)
Yield Value Price

(Main Crop) (Main Crop) (Main Crop)

Daily Average Temperature (◦C) -0.165∗ -0.162∗∗ 0.00259
(0.0974) (0.0764) (0.0348)

Monsoon Rainfall (100mm) 0.0155∗ 0.00957 -0.00597
(0.00925) (0.00845) (0.00456)

Fixed Effects District, Year
and State-Year Time Trends

Observations 1,551 1,551 1,551

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are adjusted to reflect

spatial dependence (up to 1,100km) as modeled in Conley (1999) and serial correlation as modeled in Newey

and West (1987) (up to 7 years). District distances are computed from district centroids.
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Figure A4: The Effects of a 100mm Increase in Monsoon Rainfall on Crop Yields and Prices,
Before and After Trade Liberalization

(a) Temperature Controls

(b) No Temperature Controls

Notes: Standard errors are adjusted to account for spatial correlation (up to 1,100km), as modeled in Conley
(1999) and serial correlation over time (up to a lag of 7 years), as modeled in Newey and West (1987).
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Figure A5: The Effects of a 1◦C Increase in Temperature on Crop Yields and Prices, Before
and After Trade Liberalization

(a) Rainfall Controls

(b) No Rainfall Controls

Notes: Standard errors are adjusted to account for spatial correlation (up to 1,100km), as modeled in Conley
(1999) and serial correlation over time (up to a lag of 7 years), as modeled in Newey and West (1987).
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Table A11: Irrigation and the Effect of Temperature and Rainfall on Agricultural Yields,
Value, and Prices

(1) (2) (3)
Yield Value Price

(All Crops) (All Crops) (All Crops)

Daily Average Temperature (◦C) -0.136∗∗∗ -0.140∗∗∗ -0.00379
(0.0342) (0.0315) (0.0102)

DAT × Irrigation Share 0.0212 0.0262∗ 0.00496
(0.0152) (0.0152) (0.00627)

Monsoon Rainfall (100mm) 0.0179∗∗∗ 0.0153∗∗∗ -0.00258
(0.00422) (0.00437) (0.00210)

Rain × Irrigation Share -0.0168∗∗ -0.0138∗ 0.00304
(0.00764) (0.00729) (0.00325)

Irrigation Share -0.112 -0.342 -0.230
(0.372) (0.379) (0.174)

Fixed Effects Crop × District, Crop × Year
and State-Year Time Trends

Observations 10,275 10,275 10,275

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are adjusted to reflect

spatial dependence (up to 1,100km) as modeled in Conley (1999) and serial correlation as modeled in Newey

and West (1987) (up to 7 years). District distances are computed from district centroids.
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Table A12: Irrigation and the Effect of Temperature and Rainfall on Agricultural Yields
With and Without Controls

(1) (2) (3)
Yield Yield Yield

(All Crops) (All Crops) (All Crops)

Daily Average Temperature (◦C) -0.136∗∗∗ -0.151∗∗∗

(0.0342) (0.0339)

DAT × Irrigation Share 0.0212 0.0258
(0.0152) (0.0159)

Monsoon Rainfall (100mm) 0.0179∗∗∗ 0.0242∗∗∗

(0.00422) (0.00506)

Rain × Irrigation Share -0.0168∗∗ -0.0146∗

(0.00764) (0.00762)

Irrigation Share -0.112 -0.319 0.431∗∗∗

(0.372) (0.393) (0.0873)

Fixed Effects Crop × District, Crop × Year
and State-Year Time Trends

Observations 10,275 10,275 10,275

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are adjusted to reflect

spatial dependence (up to 1,100km) as modeled in Conley (1999) and serial correlation as modeled in Newey

and West (1987) (up to 7 years). District distances are computed from district centroids.
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Figure A6: The Share of Land that is Irrigated Over Time (1979-2009).

Notes: The share of irrigated land is defined as the total area in ’000 hectares that is irrigated by canals,
tanks, tubewells, other wells, or other sources, divided by the total area planted in ’000 hectares.
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Table A13: Irrigation and the Effect of Temperature and Rainfall on Agricultural Yields
Over Time

(1) (2) (3)
Yield Yield Yield

(All Crops) (All Crops) (All Crops)

Daily Average Temperature (◦C) -0.101∗∗∗ -0.158∗∗∗ -0.100∗∗∗

(0.0111) (0.0207) (0.0144)

DAT × Irrigation Share -0.000934 0.0317∗ -0.000183
(0.00456) (0.0181) (0.00449)

Monsoon Rainfall (100mm) 0.0185∗∗∗ 0.0171∗∗∗ 0.0201∗∗∗

(0.00250) (0.00404) (0.00292)

Rain × Irrigation Share -0.0265∗∗∗ -0.0448∗∗∗ -0.0248∗∗∗

(0.00429) (0.00812) (0.00494)

Irrigation Share 0.323∗∗∗ -0.369 0.369∗∗∗

(0.118) (0.433) (0.118)

Years All Pre-1991 Post-1991

Fixed Effects Crop × District, Crop × Year
and State-Year Time Trends

Observations 49,925 20.606 29,319

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are adjusted to reflect

spatial dependence (up to 1,100km) as modeled in Conley (1999) and serial correlation as modeled in Newey

and West (1987) (up to 7 years). District distances are computed from district centroids.
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B Theory Appendix – Labor Reallocation and Market

Integration

This appendix presents a simple specific factors model based on Matsuyama (1992), demon-

strating how the direction of labor reallocation in response to a sector-specific productivity

shock depends on market integration. Any analysis of labor reallocation across sectors within

an economy necessitates a diversified economy and so for simplicity I consider two sectors:

agriculture (a) and manufacturing (m).

Preferences

Consider a country composed of a large number of regions i. Each location i is populated

by a continuum of workers Li, which are assumed to be mobile between sectors, immobile

between regions, supplied inelastically, and fully employed. Workers earn income wijLij

and preferences are defined over two types of goods agriculture and manufactured goods.

Agricultural consumption is subject to subsistence constraints with a Stone-Geary utility

function (Matsuyama, 1992; Caselli and Coleman, 2001; Jayachandran, 2006; Desmet and

Parente, 2012).2 Given prices in sector j, pij, and total income, wiLi, each worker maximizes

Ui = (Cia − ā)αCim
1−α (4)

which they maximize subject to their budget constraint,

piaCia + pimCim ≤ Liwi (5)

Worker demand for goods in agriculture, Dia = piaā+α(Liwi− piaā). For manufactured

goods Dim = (1 − α)(Liwi − piaā). As such, preferences are non-homothetic. Higher food

subsistence requirements, higher prices, and lower incomes are associated with an increase

in the demand for agricultural goods (Dia/Liwi).

Production

There are 2 goods that can be produced in each location i: agricultural good a and man-

ufactured goods m.3 I assume that all regions have access to the same technology and so

2Non-homothetic preferences can also be incorporated through a CES utility function where the elasticity
of substitution between agricultural goods and other goods is less than one (Ngai and Pissarides, 2007;
Desmet and Rossi-Hansberg, 2014).

3I will refer to goods and sectors interchangeably.
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production functions do not differ across regions within each industry. Different industries

may have different production functions. I drop the locational subscript unless necessary.

Output of each good j is produced according to the following production function,

Yj = AjFj(Lj) (6)

where Aj is sector-specific productivity and Lj is the set of workers in sector j. I assume

that Fj(0) = 0, Fj
′ > 0 and Fj

′′ < 0. In addition, I assume that AaF
1(1) > āL > 0. This

inequality states that agriculture is productive enough to provide the subsistence level of

food to all workers. If this condition is violated then workers receive negative infinite utility.

Each firm equates its demand for labor to the value of the marginal product of labor.

As market clearing requires that La + Lm = L, the marginal productivity of labor will be

equalized across sectors,

paAaFa
′(La) = w = pmAmFm

′(Lm) (7)

Equilibrium

Autarky and Equilibrium Prices

Equilibrium is defined as a set of prices, wages, and an allocation of workers across sectors

such that goods and labor markets clear. In a state of autarky, the price ensures that the

total amount produced is equal to total consumption in each location, so that,

Ca = AaFa(La) (8)

Cm = AmFm(Lm)

Maximization of equation 4 implies that each worker consumes agricultural goods such

that,

paCa = ā+
αpmCm
1− α

(9)

Combining this result with the profit maximization condition (equation 7), the labor

market clearing condition (Lm = 1 − La), and the fact that total production must equal

total consumption yields,

Ω(Lm) =
ā

Aa
(10)

where,
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Ω(Lm) ≡ Fm(Lm)− Fm
′(Lm)Fa(1− La)
Fa
′(1− La)

(11)

In addition, it is the case that Ω(0) = Fm(1), Ω(1) < 0 and Ω′(·) < 0.

In equilibrium a unique interior solution will arise for the employment share in manufac-

turing Lm,

Lm = Ω−1

(
ā

Aa

)
(12)

As preferences are non-homothetic, the demand for agricultural goods (food) decreases as

income increases (Engel’s law). An increase (decrease) in agricultural productivity will push

(pull) workers into the manufacturing (agricultural) sector. Similarly, a decrease (increase)

in the subsistence constraint ā will push (pull) workers into the manufacturing (agricultural)

sector.

Trade and Equilibrium Prices

Without opportunities to trade, consumers must consume even their worst productivity

draws. The ability to trade breaks the production-consumption link. In the case of free

trade, prices, set globally, are taken as given. If the world price for a good j, p̄j, exceeds

the autarkic local price pij, firms and farms will engage in arbitrage and sell to the global

market. By contrast, if the world price for a good j is less than the autarkic local price,

consumers will import the product from outside of the local market. Local demand does not

affect the allocation of labor across sectors, i.e., changes in Aij do not affect prices.

As discussed above, the rest of the world differs only in terms of agricultural and man-

ufacturing productivity, Ai′a and Ai′m. Profit maximisation in the rest of the world implies

that,

paAi′aFi′a
′(Li′a) = pmAi′mFi′m

′(Li′m) (13)

Within industry, production functions are assumed to be constant across regions. Under

the assumption of free trade and incomplete specialisation, manufacturing employment in

region i, Lim, is now determined jointly by equations 7 and 13. Taking the ratio of these

equations provides the following equality,

Fim
′(Lim

Fia
′(Lia)

=
AiaAi′m
Ai′aAim

Fi′m
′(Li′m)

Fi′a
′(Li′a)

(14)

As Fim
′(Lim)

Fia
′(Lia)

is decreasing in Lim it follows that,
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Lim R Lia iff
Ai′a
Ai′m

R
Aia
Aim

(15)

In this case an increase (decrease) in agricultural productivity will pull (push) workers

into the agricultural (manufacturing) sector, due to a change in local comparative advantage.

This is demonstrated in FigureB1

Figure B1: The Effect of a Reduction in Agricultural Productivity on Equilibrium Employ-
ment Shares (Free Trade)

In the case of costly trade, firms (farms) will engage in arbitrage opportunities as before;

however, the local price is bounded by a trade cost δ. A trader will engage in arbitrage,

selling on the global market, as long as the global price is greater than the local price net

of trade costs, i.e., p̄j/δ > pAj . Conversely, consumers will import from the global market if

the local price is greater than the global price net of trade costs, i.e., p̄j < pAj /δ. In the case

of homogenous traders where all agents face a constant iceberg trade cost, the local price is

bounded by the global price, i.e.,
p̄j
δ
≤ pAj ≤ p̄jδ.
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C The Effects of Weather on Local Labor Markets:

Supporting Evidence

C.1 NSS Data Appendix

This section provides additional details on the NSS Employment and Unemployment surveys

used in section III. The National Sample Survey Organization (NSSO) carries out all-India,

large-sample household surveys on employment and unemployment every few years. This

paper takes advantage of the 60th round (January 2004 – June 2004), the 61st round (July

2004 – June 2005), the 62nd round (July 2005 – June 2006), and the 64th round (July 2007

– June 2008).

Using this data I construct the average day wage and district employment shares for

agricultural workers, manufacturing workers, services workers and construction workers.

Looking at the breakdown of employment between rural and urban areas, it is clear that

non-agricultural activities are not restricted to urban areas.

Table C1: Labor Force Shares in India

Rural Urban Combined

Agriculture 67.2% 13% 58.4%

Manufacturing 9.1% 20.2% 10.8%

Services 13.5% 49.1% 20%

Construction 8% 13.2% 8.3%

Unemployment 2.2% 4.5% 2.5%

Agricultural employment the most important sector in rural areas, accounting for 67%

of rural employment, on average. Manufacturing and services employment are the most

important sectors in urban areas accounting for 70% of urban employment, on average. A

non-trivial share of employment in rural areas is non-agricultural. This is consistent with

one of the most striking features of India’s recent spatial development, namely the expansion

of India’s metropolitan areas into rural areas, referred to as peri-urbanization.4 In the last

decade there has been an official increase in urban agglomerations by 25%, with popula-

tions shifting outwards. Henderson (2010) presents evidence in support of this industrial

decentralization for the Republic of Korea and Japan. Desmet et al. (2015) and Ghani et

al. (2014) also provide supporting evidence for this process in India. Desmet et al. (2015)

show that the services sector has become increasingly concentrated over time, while manu-

facturing has become less concentrated in districts that were already concentrated, and has

4See Colmer (2015) for a more detailed discussion and review of this literature
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increased in districts which originally were less concentrated. Ghani et al. (2014) look more

specifically at the manufacturing sector and document its movement away from urban to

rural areas, comparing the formal and informal sectors. The authors argue that the formal

sector is becoming more rural; however, in practice, a lot of this movement is likely sub-

urbanization, rather than ruralization, in which firms move to the outskirts of urban areas

where they can exploit vastly cheaper land and somewhat cheaper labor. Colmer (2015)

finds evidence consistent with these papers, finding that manufacturing employment growth

has become more concentrated in districts which were initially less concentrated, and that

this employment growth is significantly higher in less concentrated rural areas compared to

less concentrated urban areas.

This process of peri-urbanization also benefits workers, reducing the cost of sectoral

adjustment and migration. Indeed, in many instances, it may reduce the need to migrate

altogether, with workers choosing to commute from home rather than migrate to urban

areas. This is consistent with the non-trivial shares of manufacturing employment and

agricultural employment present in both rural and urban areas. Interestingly, we observe

that the unemployment share in urban areas is almost twice the size of those in rural areas,

suggesting that there is more absorptive capacity in rural areas.
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Table C2: Descriptive Statistics - Local Labor Markets in India (2004–2007)

Mean Std. Dev. Std. Dev.
(within) (between)

Panel A: Wage Data

Average Day Wage: Agriculture 52.712 17.425 19.963

Average Day Wage: Manufacturing 98.399 47.087 49.196

Average Day Wage: Services 159.012 45.538 40.159

Average Day Wage: Construction 79.239 35.566 30.400

Panel B: Employment Data

District Employment Share: Agriculture 0.550 0.081 0.169

District Employment Share: Manufacturing 0.113 0.041 0.075

District Employment Share: Services 0.220 0.050 0.089

District Employment Share: Construction 0.083 0.041 0.048

Unemployment Share of Labor Force 0.032 0.019 0.025

Panel C: Meteorological Data

Daily Average Temperature (◦C) 25.280 0.236 3.491

Monsoon Rainfall (mm) 978.71 189.59 485.18
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C.2 Additional Results and Robustness Tests

C.2.1 The Relative Importance of Temperature vs. Rainfall for Wages and

Employment in India

Table C3: The Effect of Temperature on Wages Without Rainfall
Controls

log Average Day Wages

Agriculture Manufacturing Services Construction

Daily Average -0.0989∗∗ -0.0476 -0.0491 -0.00283
Temperature (◦C) (0.0467) (0.0578) (0.0427) (0.0402)

Fixed Effects District, Year, State-Year Time Trends

Observations 1,062 1,062 1,062 1,062

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are
adjusted to reflect spatial dependence as modeled in Conley (1999) and serial correlation as
modeled in Newey and West (1987). District distances are computed from district centroids.
Differences in observations across sectors arise due to missing wage data.
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Table C4: The Effect of Rainfall on Wages Without Temperature Controls

log Average Day Wages

Agriculture Manufacturing Services Construction

Monsoon Rainfall (100mm) 0.00106 -0.0107 0.00685 0.00556
(0.00445) (0.00927) (0.00791) (0.00659)

Fixed Effects District, Year, State-Year Time Trends

Observations 1,062 1,062 1,062 1,062

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are adjusted to
reflect spatial dependence as modeled in Conley (1999) and serial correlation as modeled in Newey
and West (1987). District distances are computed from district centroids. Differences in observations
across sectors arise due to missing wage data.
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Table C5: The Effect of Weather on Wages (UDEL Data)

log Average Day Wages

Agriculture Manufacturing Services Construction

Daily Average -0.0694 -0.0382 -0.0244 0.0384
Temperature (◦C) (0.0454) (0.0573) (0.0591) (0.0452)

Monsoon Rainfall (100mm) 0.00654 0.0157∗ -0.000192 0.00411
(0.00676) (0.00919) (0.00740) (0.00592)

Fixed Effects District, Year, State-Year Time Trends

Observations 1,062 1,062 1,062 1,062

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are adjusted to
reflect spatial dependence as modeled in Conley (1999) and serial correlation as modeled in Newey
and West (1987). District distances are computed from district centroids. Differences in observations
across sectors arise due to missing wage data.
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Table C6: The Effect of Temperature on Wages Without Rainfall
Controls (UDEL)

log Average Day Wages

Agriculture Manufacturing Services Construction

Daily Average -0.0891∗∗ -0.0852 -0.0239 0.0261
Temperature (◦C) (0.0416) (0.0527) (0.0551) (0.0390)

Fixed Effects District, Year, State-Year Time Trends

Observations 1,062 1,062 1,062 1,062

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are
adjusted to reflect spatial dependence as modeled in Conley (1999) and serial correlation as
modeled in Newey and West (1987). District distances are computed from district centroids.
Differences in observations across sectors arise due to missing wage data.
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Table C7: The Effect of Rainfall on Wages Without Temperature Controls
(UDEL)

log Average Day Wages

Agriculture Manufacturing Services Construction

Monsoon Rainfall (100mm) 0.0109∗ 0.0181∗∗ 0.00135 0.00168
(0.00645) (0.00839) (0.00696) (0.00517)

Fixed Effects District, Year, State-Year Time Trends

Observations 1,062 1,062 1,062 1,062

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are adjusted to
reflect spatial dependence as modeled in Conley (1999) and serial correlation as modeled in Newey
and West (1987). District distances are computed from district centroids. Differences in observations
across sectors arise due to missing wage data.
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Table C8: The Effects of Temperature on the District Labor Force Share of Employment -
By Sector (No Rainfall Controls)

District Labor Force Shares

Agriculture Manufacturing Services Construction Unemployment

Daily Average -0.0583∗∗∗ 0.0155∗∗ 0.0302∗∗∗ 0.00906∗ 0.00356
Temperature (◦C) (0.0133) (0.00666) (0.00742) (0.00535) (0.00277)

Fixed Effects District, Year, State-Year Time Trends

Observations 1,062 1,062 1,062 1,062 1,062

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are adjusted to reflect
spatial dependence as modeled in Conley (1999) and serial correlation as modeled in Newey and West (1987).
District distances are computed from district centroids.
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Table C9: The Effects of Rainfall on the District Labor Force Share of Employment - By
Sector (No Temperature Controls)

District Labor Force Shares

Agriculture Manufacturing Services Construction Unemployment

Monsoon Rainfall (100mm) 0.00211 -0.000287 -0.00178 -0.000441 0.000399
(0.00205) (0.000874) (0.00139) (0.00103) (0.000390)

Fixed Effects District, Year, State-Year Time Trends

Observations 1,062 1,062 1,062 1,062 1,062

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are adjusted to reflect spatial
dependence as modeled in Conley (1999) and serial correlation as modeled in Newey and West (1987). District distances
are computed from district centroids.
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Table C10: The Effects of Weather on the District Labor Force Share of Employment - By
Sector (UDEL)

District Labor Force Shares

Agriculture Manufacturing Services Construction Unemployment

Daily Average -0.0621∗∗∗ 0.00727 0.0317∗∗∗ 0.0191∗∗ 0.00406
Temperature (◦C) (0.0157) (0.00607) (0.00998) (0.00782) (0.00296)

Monsoon Rainfall (100mm) -0.00116 -0.000141 -0.000329 0.00183 -0.000203
(0.00249) (0.00129) (0.00173) (0.00128) (0.000588)

Fixed Effects District, Year, State-Year Time Trends

Observations 1,062 1,062 1,062 1,062 1,062

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are adjusted to reflect spatial
dependence as modeled in Conley (1999) and serial correlation as modeled in Newey and West (1987). District distances
are computed from district centroids.
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Table C11: The Effects of Temperature on the District Labor Force Share of Employment -
By Sector (UDEL)

District Labor Force Shares

Agriculture Manufacturing Services Construction Unemployment

Daily Average -0.0586∗∗∗ 0.00769 0.0327∗∗∗ 0.0135∗∗ 0.00467∗

Temperature (◦C) (0.0135) (0.00506) (0.00892) (0.00678) (0.00265)

Fixed Effects District, Year, State-Year Time Trends

Observations 1,062 1,062 1,062 1,062 1,062

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are adjusted to reflect
spatial dependence as modeled in Conley (1999) and serial correlation as modeled in Newey and West (1987).
District distances are computed from district centroids.
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Table C12: The Effects of Rainfall on the District Labor Force Share of Employment - By
Sector (UDEL)

District Labor Force Shares

Agriculture Manufacturing Services Construction Unemployment

Monsoon Rainfall (100mm) 0.00276 -0.000600 -0.00233 0.000631 -0.000459
(0.00227) (0.00111) (0.00163) (0.00114) (0.000533)

Fixed Effects District, Year, State-Year Time Trends

Observations 1,062 1,062 1,062 1,062 1,062

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are adjusted to reflect spatial
dependence as modeled in Conley (1999) and serial correlation as modeled in Newey and West (1987). District distances
are computed from district centroids.
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C.2.2 Alternative Measures of Employment

Table C13: The Effects of Weather on the District Labor Force Share of Employment - By
Sector (Principal Sector of Employment)

District Labor Force Shares

Agriculture Manufacturing Services Construction Unemployment

Daily Average -0.0416∗∗ 0.0107 0.0215∗∗ 0.0121∗ -0.00259
Temperature (◦C) (0.0168) (0.00837) (0.0100) (0.00644) (0.00297)

Monsoon Rainfall (100mm) -0.000230 -0.000193 0.000292 0.0000725 0.0000579
(0.00188) (0.000989) (0.00165) (0.00103) (0.000396)

Fixed Effects District, Year, State-Year Time Trends

Observations 1,062 1,062 1,062 1,062 1,062

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are adjusted to reflect spatial
dependence as modeled in Conley (1999) and serial correlation as modeled in Newey and West (1987). District distances
are computed from district centroids.
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C.2.3 Non-Linearities in the Temperature Schedule

Table C14: The Effects of Daily Temperature on Wages

(1) (2) (3) (4)
Agriculture Manufacturing Services Construction

Degree Days (10 days) 0.00178 -0.000908 -0.0000676 0.00144
tL = 23, tH =∞ (0.00182) (0.00247) (0.00173) (0.00152)

Degree Days (10 days) -0.0117∗∗∗ -0.00665∗∗ -0.00215 -0.000371
tL = 0, tH = 23 (0.00364) (0.00281) (0.00218) (0.00162)

Rainfall Controls Yes Yes Yes Yes

Fixed Effects District, Year and State-Year Time Trends

Observations 1,062 1,062 1,062 1,062

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are adjusted
to reflect spatial dependence as modeled in Conley (1999) and serial correlation as modeled in
Newey and West (1987). District distances are computed from district centroids.

40



Figure C1: Temperature Bins and Wages

(a) Agriculture (b) Manufacturing

(c) Services (d) Construction

Notes: Standard errors are adjusted to account for spatial correlation (up to 1,100km), as modeled in Conley
(1999) and serial correlation over time (up to a lag of 7 years), as modeled in Newey and West (1987).
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Table C15: The Effects of Daily Temperature on Employment

(1) (2) (3) (4) (5)
Agriculture Manufacturing Services Construction Unemployed

Degree Days (10 days) -0.00154∗∗ 0.000697∗∗ 0.000346 0.0000367 -0.0000134
tL = 23, tH =∞ (0.000632) (0.000325) (0.000335) (0.000235) (0.00000978)

Degree Days (10 days) -0.00266∗∗∗ 0.000321 0.00181∗∗∗ 0.000231 0.0000413
tL = 0, tH = 23 (0.000641) (0.000305) (0.000373) (0.000321) (0.0000145)

Rainfall Controls Yes Yes Yes Yes Yes

Fixed Effects District, Year, and State-Year Time Trends

Observations 1,062 1,062 1,062 1,062 1,062

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are adjusted to reflect spatial
dependence (up to 1,000km) as modeled in Conley (1999) and serial correlation (1-year) as modeled in Newey and
West (1987). District distances are computed from district centroids. Kernels are selected to provide the most
conservative standard errors, looped over all distances between 10 and 2,000km and 1–7 years. Results are also
robust to using cluster robust standard errors at the state level.
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Figure C2: Temperature Bins and Employment

(a) Agriculture (b) Manufacturing

(c) Services (d) Construction

(e) Unemployment

Notes: Standard errors are adjusted to account for spatial correlation (up to 1,100km), as modeled in Conley
(1999) and serial correlation over time (up to a lag of 7 years), as modeled in Newey and West (1987).
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C.2.4 Lags and Leads

Table C16: The Effects of Weather on Average Wages

log Average Day Wages

Agriculture Manufacturing Services Construction

Daily Average -0.134∗∗ -0.120∗ -0.0348 0.0238
Temperature (◦C) (0.0538) (0.0676) (0.0532) (0.0431)

1-Year Lag No No No No
1-Year Lead No No No No

Daily Average -0.107∗∗ -0.0850 -0.0274 0.0183
Temperature (◦C) (0.0435) (0.0809) (0.0413) (0.0414)

1-Year Lag Yes Yes Yes Yes
1-Year Lead Yes Yes Yes Yes

Fixed Effects District, Year, State-Year Time Trends

Observations 1,062 1,062 1,062 1,062

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. The first row of results
are the main results from Table 2, without controls for lags and leads. Standard errors are
adjusted to reflect spatial dependence as modeled in Conley (1999) and serial correlation as
modeled in Newey and West (1987). District distances are computed from district centroids.
Results are robust to clustering standard errors at the state level. Differences in observations
across sectors arise due to missing wage data.
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Table C17: The Effects of Weather on the District Labor Force Share of Employment - By
Sector

District Labor Force Shares

Agriculture Manufacturing Services Construction Unemployment

Daily Average -0.0714∗∗∗ 0.0204∗∗ 0.0335∗∗∗ 0.0105 0.00700∗

Temperature (◦C) (0.0165) (0.00867) (0.00953) (0.00673) (0.00370)

1-Year Lag No No No No No
1-Year Lead No No No No No

Daily Average -0.0664∗∗∗ 0.0198∗∗∗ 0.0291∗∗∗ 0.0114∗∗ -0.00417∗

Temperature (◦C) (0.0169) (0.00744) (0.00865) (0.00540) (0.00249)

1-Year Lag Yes Yes Yes Yes Yes
1-Year Lead Yes Yes Yes Yes Yes

Fixed Effects District, Year, State-Year Time Trends

Observations 1,062 1,062 1,062 1,062 1,062

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. The first row of results are the main results
from Table 3, without controls for lags and leads. Standard errors are adjusted to reflect spatial dependence as
modeled in Conley (1999) and serial correlation as modeled in Newey and West (1987). District distances are
computed from district centroids. Results are robust to clustering standard errors at the state level.

45



C.2.5 The Effects of Temperature on Temporary Migration

An important consideration is the degree to which workers move across space, rather than

sectors. To explore this consideration I engage in two exercises using Round 64 of the NSS

Employment Survey, which contains a special schedule on seasonal migration. This provides

data on the origin district of seasonal migrants; however, there is no detail on the destination

of seasonal migrants. Instead, the NSS reports the destination of migrants in district `o in six

relevant categories: rural or urban migration within the same district (moo); rural or urban

migration between districts in the same state (
∑

`d 6=`o∈Somod); rural or urban migration

between states (
∑

Sd 6=So
∑

`d 6=`o∈Sdmod). The first empirical exercise uses information on the

share of workers in each district that seasonally migrate to other districts. Assuming that

seasonal migration in Round 64 is representative of typical seasonal migration decisions, I

interact district temperature and rainfall realizations with the share of workers in the district

that migrate out of the district. If workers are wont to migrate out of district in response

to weather-driven agricultural productivity shocks then we may expect that districts that

experience temperature shocks should have dampened reductions in the share of workers

in agriculture and exacerbated increases in the employment shares for manufacturing and

services, as the population shrinks. We observe that, on average, 3.2% of rural workers

migrated seasonally out of their district in the year 2007.

The second exercise combines this information with imputed information on the district

of destination to examine how temperature shocks in other districts affect local labor markets

through migration. Since the NSS survey does not contain information on the destination

district, it is necessary to predict the district of destination for seasonal migrants who migrate

to different districts. To do this, I draw inspiration from Imbert and Papp (2018) and

use the 2001 Indian Population Census, extracting data on migrant workers by state of

last residence. For each destination district, `d, I observe: the number of migrant workers

from the same district (Mdd); the number of migrant workers from other districts in the

same state (
∑

`o 6=`d∈SdMdo); the number of migrant workers from districts in other states

(
∑

So 6=Sd

∑
`o 6=`d∈SoMdo). I combine these data to estimate seasonal migration flows m̂od,

using the following algorithm:
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m̂od =



mod if `o = `d

∑
`o 6=`d∈Sd

Mdo∑
Sd

∑
`o 6=`d∈Sd

Mdo

∑
`d 6=`o∈Somod if `o 6= `d and So = Sd

∑
So 6=Sd

∑
`o 6=`d∈So

Mdo∑
Sd

∑
So 6=Sd

∑
`o 6=`d∈So

Mdo

∑
Sd 6=So

∑
`d 6=`o∈Sdmod if `o 6= `d and So 6= Sd

I deviate from Imbert and Papp (2018) in two respects. First, by using migrant workers

rather than the total population of permanent migrants. Second, by broadening my attention

beyond urban destinations. Non-agricultural production is not restricted to urban areas, and

so rural–urban migration is not the appropriate characterization of migration flows in the

context of this paper. Indeed, a number of papers provide evidence to suggest that non-

agricultural production in India is decentralizing, from urban to peri-urban and even rural

areas, taking advantage of cheaper labor and vastly cheaper land prices (Ghani et al., 2015;

Desmet et al., 2015; Colmer, 2015). These adjustments provide stronger support for the

identification assumption on which this approach relies: that the proportion of NSS seasonal

migrants who go from district `o to district `d, either in the same state or between states, is

the same as the proportion of census migrant workers in district `d who come from another

district `o, either in the same state or between states; that is, short-term and long-term

migrants choose similar destinations.

Imbert and Papp (2018) provide some evidence in support of this assumption using

data from the 2006 ARIS-REDS survey, which records both short and long-term migration

flows for a representative sample of Indian villages. They construct bilateral migration

matrices for short-term and long-term migration flows at the district-level. They estimate

that, conditional on staying in the same state or going to another state, short-term and

long-term migrants from the same origin choose similar destinations.

On average, rural-origin migrants comprise the bulk of migration flows, accounting for

nearly 90% of all seasonal migration. 31.4% of migrants move within the same district, 33.3%

of migrants move to another district within the same state (shared among an average of 28

districts per state, 1.15% per district), and 35.2% move to a different state (an average of

0.064% per district). Most strikingly, we observe that there is very little seasonal migration

in absolute terms – only 4.2% of the workforce engage in seasonal migration. This is an

observation that has been highlighted by a number of papers and contrasts starkly with

migration patterns in other developing and developed countries (Foster and Rosenzweig,

2008; Munshi and Rosenzweig, 2016; Morten, 2019)
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These insights have potential implications for the effects of localized shocks in India.

First, if workers are limited in their ability to move across space, then the economic conse-

quences of agricultural productivity shocks will be locally concentrated. Second, this implies

that sectoral shocks are likely to have a bigger effect on other sectors in the local economy,

as employment adjustments are less diversified across space. Finally, this implies that local-

ized productivity shocks elsewhere are unlikely to have a large effect on economic outcomes

across space; however, the validity of this argument is decreasing as the spatial correlation of

localized productivity shocks increases, and as the importance of a specific location for the

supply of workers increases. I test this prediction by examining the effects of localized tem-

perature shocks in origin districts on local labor market outcomes in destination districts.

This helps us to understand the degree to which transitory localized productivity shocks

propagate through short-term migrants across space.

Empirical Specification – Migration

In examining the potential effects of migration across space, I present two specifications.

The first exercise interacts temperature with the share of rural workers in each district that

migrate out of their district for work based on data from Round 64 of the NSS employment

survey,

Ydt = f(wdt) + γ

[
f(wdt)×

md

Ld

]
+ αd + αt + φst+ εdt

This specification provides insights into the degree to which out-migration may affect

local labor market outcomes in origin districts.

The second migration specification explores the degree to which weather-driven changes in

agricultural productivity in origin districts affect local labor market outcomes in destination

districts through migration. Using the bilateral migration flows described above, I construct

a spatial weights matrix summarizing the migratory relationship between each district. As

mentioned, migration flows between `o and `d produce an o× d matrix Mo×d,

Mo×d =


m11 m12 · · · m1D

m21 m22 · · · m2D

...
...

. . .
...

mD1 mD2 · · · mDD


Each weight mdo reflects the contribution of migration flows from rural areas of district

o to district d.5 In the case that all migration is spread equally between all districts, each

5Results are robust to allowing migrants to originate from rural or urban areas.
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entry in Mo×d will be equal to 1/d. At the other extreme, the case in which all migration

occurs within districts provides an identity matrix. Based on the data, migration patterns in

India tend towards the identity matrix extreme, far from an equal distribution of migrants.

To identify the degree to which local labor demand shocks affect economic outcomes

in destination sectors, I weight temperature and rainfall variation by the bilateral migra-

tion matrix, examining the migration-weighted effects of weather in district o on economic

outcomes in district d through migration. The estimating equation is specified as follows,

Ydt = βf(wdt) + γ

[∑
o

mod

Md

× f(wot)

]
+ αd + αt + φst+ εdt

where: Ydt represents sectoral labor force shares in destination district d; αd is a vector

of district fixed effects; αt is a vector of year fixed effects; φst a set of state-specific time

trends.∑
o
mod
Md
× f(wot) captures the migration-weighted effects of weather in other districts.

By directly controlling for local weather effects, f(wdt), to account for the correlation of

weather across space, γ identifies the effects of weather variation in foreign districts on local

labor market outcomes through migration.

Results – Migration

Table C18 presents the results of the first exercise. We observe that there is no differential

effect of having a greater migrant share on the labor force share of employment. Evaluated

at the mean out-migration share (6.12%), a 1◦C increase in temperature is associated with

a relative 1.58 percentage point increase in the labor force employed in agriculture. There

is little difference between a district with no out-migrants and the average effect estimated

across districts. Similar effects are estimated for other employment shares as well, suggesting

that out-migration is not a driving factor in the estimated effects.

Table C19 presents the results of the second exercise. I find that the migration-weighted

weather effects have no effect on employment shares in destination markets, further sup-

porting the premise that there is little migration across districts in response to temperature

increases. The estimated coefficients capture the combined effect of temperature increases

from all other districts. A 1◦C increase in all districts is clearly out of sample, and so a

more reasonable interpretation is to consider the effect of a 1◦C increase in an “average”

district. The average share of total migrants from each district is 0.16 percent. The average

effect of a 1◦C increase in temperature on the labor force share of agriculture is a reduction
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of 0.01 percentage points.6 Alternatively, we could consider the effect of a 1◦C increase in

temperature for a district that provides 100% of migrants. This would result in a 6.69%

reduction in agricultural employment, driven by an increase in the denominator. However,

this is also out-of-sample and estimates for all sectors are statistically insignificant.

The reason behind the limited migration remains unclear. Workers may face significant

adjustment costs across space, or the ability of other sectors to absorb workers in response

to sectoral productivity shocks may mitigate the need to move across space. Understanding

the degree to which workers face spatial frictions and are therefore misallocated across space

is an important area of research, but one that cannot be addressed in this paper given the

transitory nature of the agricultural productivity shocks.

6-0.000669 × 0.16 = -0.000107.
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Table C18: The Moderating Effects of Out-Migration on the District Labor Force Share of
Employment - By Sector

Origin District Labor Force Shares

Agriculture Manufacturing Services Construction Unemployment

Daily Average -0.0878∗∗∗ 0.0228∗ 0.0368∗∗∗ 0.0168 -0.00502
Temperature (◦C) (0.0234) (0.0120) (0.0115) (0.0120) (0.00416)

Monsoon Rainfall (100mm) -0.00405 0.00151 -0.00122 0.00259 -0.0000648
(100 mm) (0.00366) (0.00168) (0.00200) (0.00170) (0.000471)

DAT × 0.00258 -0.000375 -0.000570 -0.000938 0.000381
Migrant Share (0.00193) (0.00125) (0.000937) (0.00176) (0.000364)

Monsoon Rainfall 0.0000613 -0.0000215 0.000287∗∗∗ -0.000296 0.0000183
× Migrant Share (0.000277) (0.000126) (0.0000992) (0.000185) (0.0000294)

Fixed Effects District, Year, State-Year Time Trends

Observations 1,062 1,062 1,062 1,062 1,062

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are adjusted to reflect spatial dependence
as modeled in Conley (1999) and serial correlation as modeled in Newey and West (1987). District distances are computed
from district centroids. Results are robust to clustering standard errors at the state level.
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Table C19: The Effects of Weather in Foreign Districts on the Share of Employment in
Destination Districts - By Sector

Destination District Labor Force Shares

Agriculture Manufacturing Services Construction Unemployment

Local Daily Average -0.0689∗∗∗ 0.0212∗∗ 0.0315∗∗∗ 0.0105 0.00569
Temperature (◦C) (0.0174) (0.00949) (0.0102) (0.00650) (0.00402)

Local Monsoon Rainfall -0.00333 0.00111 0.000535 0.000661 0.00102∗

(100 mm) (0.00242) (0.00123) (0.00171) (0.00121) (0.000536)

Foreign Daily Average -0.000669 9.01e-08 0.000600 -0.000131 0.000200
Temperature (◦C) (0.000811) (0.000342) (0.000446) (0.000329) (0.000160)

Foreign Monsoon Rainfall -0.000924 0.000533 0.00101 -0.000551 -0.0000670
(100 mm) (0.00108) (0.000621) (0.000780) (0.000549) (0.000202)

Fixed Effects District, Year, State-Year Time Trends

Observations 1,062 1,062 1,062 1,062 1,062

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are adjusted to reflect spatial
dependence as modeled in Conley (1999) and serial correlation as modeled in Newey and West (1987). District distances
are computed from district centroids. Results are robust to clustering standard errors at the state level.
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D The Effects of Weather on Manufacturing Firms:

Supporting Evidence

D.1 ASI Data Appendix

This section provides additional details on the Annual Survey of Industries Establishment-

level Microdata.

I begin by extracting a subset of variables from the raw data separately for each year

and then append each year together. With this initial sample, I begin by dropping all plants

that are outside of the manufacturing sector, and firms that are closed. In addition, I remove

all observations with missing or zero total output data. I then combine this data with the

weather data taken from the ERA-Interim Reanalysis Data archive. Finally, I drop Union

Territories and then restrict the sample to be the same districts as the previous analyses.

Financial amounts are deflated to constant 2001–02 Rupees.7 Revenue (gross sales) is

deflated by a three-digit commodity price deflator available from the “Index Numbers of

Wholesale Prices in India - By Groups and Sub-Groups (Yearly Averages)” produced by

the Office of the Economic Adviser in the Ministry of Commerce & Industry.8 Material

inputs are deflated by constructing the average output deflator for a given industry’s supplier

industries based on India’s 1993–94 input–output table, available from the Central Statistical

Organization.

Table D1 presents descriptive statistics and differences-in-means across rigid and more

flexible labor markets for regulated (columns 1-3) and unregulated (columns 4-6) firms.

Across a wide-range of outcomes, there do not appear to be important differences across

labor regulation environments for either regulated or unregulated firms.

7Thank you to Hunt Allcott, Allan Collard-Wexler, and Stephen O’Connel for publicly providing the
data and code to conduct this exercise.

8Available from http://www.eaindustry.nic.in/
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Table D1: Descriptive Statistics - Manufacturing Firms in India (2001–2007)

Regulated Firms Unegulated Firms
Rigid States Flexible States Difference Rigid States Flexible States Difference

Total Output 1529.185 1676.697 -147.512 103.008 94.148 8.859
(Million Rs.) (371.832) (460.655) (591.999) (20.074) (13.693) (24.300)

Total Employment 409.741 431.264 -21.523 39.760 47.024 -7.264
(Non-mangers) (38.865) (65.174) (75.883) (2.271) (5.252) (6.509)

Employment 158.987 348.164 -189.177 49.386 64.705 -15.318*
(Contract Workers) (10.299) (138.091) (125.979) (1.315) (6.681) (8.229)

Average Day Wage 133.419 129.085 4.333 110.944 103.298 7.645
(Contract Workers) (3.193) (4.006) (5.123) (12.983) (3.559) (13.462)

Employment 332.317 304.044 28.272 21.263 27.269 -6.005*
(Regular Workers) (48.374) (17.375) (51.400) (1.191) (2.869) (3.106)

Average Day Wage 262.132 190.596 71.536 151.893 122.450 29.443
(Regular Workers) (42.132) (13.725) (42.741) (26.858) (5.390) (267.394)

Employment 52.999 47.555 5.447 5.253 4.735 0.517
(Managers) (7.902) (5.653) (9.716) (0.816) (0.366) (0.856)

Average Day Wage 852.112 728.123 123.989 561.277 448.018 113.258
(Managers) (124.822) (47.589) (133.587) (93.794) (33.796) (99.697)

Fixed Capital 808.488 815.740 -7.251 31.813 24.115 7.698
(Million Rs.) (159.066) (240.396) (288.258) (7.966) (4.211) (9.011)

Working Capital 99.282 140.489 -41.206 11.851 11.460 0.391
(Million Rs.) (28.333) (29.954) (41.231) (2.374) (1.251) (2.683)

Access to Electricity 0.996 0.991 0.005** 0.996 0.981 0.015**
(%) (0.00006) (0.002) (0.002) (0.002) (0.005) (0.006

Generates Own 0.491 0.645 -0.154*** 0.163 0.379 -0.215***
Electricity (%) (0.010) (0.046) (0.046) (0.025) (0.062) (0.067)

Output per Worker 3.389 3.106 0.787 2.426 2.009 0.416
(Million Rs.) (0.776) (0.418) (0.881) (0.314) (0.148) (0.347)

log TFPR 6.040 6.037 0.002 5.402 5.429 -0.027
(0.080) (0.040) (0.047) (0.077) (0.028) (0.081)

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are clustered at the state level.
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D.2 Differences-in-Temperature: Supporting Evidence

D.2.1 The IDA Doesn’t Moderate the Effects of Temperature on Agricultural

Outcomes

In this section I show that there are no meaningful differences in the effects of temperature

on agricultural outcomes between the different labor regulation environments. This provides

evidence against the premise that differences in the effects of temperature on manufacturing

outcomes may be driven by differences in the intensity of the agricultural shock between

labor regulation environments. Temperature does not appear to have a differential effect

on agricultural yields, the value of production, or prices. By contrast, the effects of rainfall

on agricultural yields and the value of production are different across labor regulation en-

vironments. There does not appear to be any effect of rainfall on agricultural production

in pro-worker states. By contrast, there are meaningful effects of rainfall on agricultural

production in more flexible labor regulation environments. As such, it is not possible to

interpret the differential effects of rainfall shocks between labor regulation environments.

Table D2: The Moderating Effect of the Labor Regulation Environment on the Relationship
between Weather and Agricultural Outcomes

(1) (2) (3)
Log Yield Log Value Log Price

(All Crops) (All Crops) (All Crops)

Daily Average -0.111∗∗ -0.113∗∗ -0.00256
Temperature (◦C) (0.0447) (0.0401) (0.0189)

Temperature -0.00977 -0.00829 0.00148
× Flexible (0.0501) (0.0441) (0.0277)

Monsoon 0.000293 -0.00219 -0.00248
Rainfall (100mm) (0.00375) (0.00640) (0.00388)

Rainfall 0.0139∗ 0.0152∗∗ 0.00126
× Flexible (0.00780) (0.00581) (0.00656)

Fixed Effects Crop × District and Crop × Year

Other Controls Linear State-Year Time Trends

Observations 10,275 10,275 10,275

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Stan-
dard errors are clustered at the state level.
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D.2.2 Temperature Isn’t Correlated with Amendments to the IDA

In this section I provide evidence that variation in the weather, between states or within

states over time, does not appear to be correlated with the amendments made to the IDA

between 1950 and 1995. This insight is robust to using both the ERA-interim reanalysis

data used in the main analysis, which is only available from 1979 and to using the UDEL

weather data available from 1950.

Table D3: The Effects of Temperature on Amendments to the Industrial Disputes Act

(1) (2) (3) (4) (5) (6)
Total Total Total Total Total Total
Change Change Change Change Change Change

Daily Average -0.0236 0.0292 0.0354 -0.0324 -0.0428 -0.112
Temperature (◦C) (0.0286) (0.0867) (0.114) (0.0294) (0.0763) (0.112)

Monsoon 0.0267 0.0000621 -0.0157 0.0172 -0.00476 0.00225
Rainfall (100mm) (0.0387) (0.00869) (0.0233) (0.0171) (0.0109) (0.0121)

District Fixed Effects No Yes Yes No Yes Yes

Year Fixed Effects No No Yes No No Yes

Observations 384 384 384 848 848 848

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. The unit of analysis is
a state-year. Total Change measures the magnitude and direction of the change, e.g., if 3
pro-worker amendments were made during the year a value of 3 would be assigned to that state
in that year. Standard errors are clustered at the state level.
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D.3 A Simple Model of Hiring Frictions and Firm Behavior

Here I present a simple model to formalize the potential outcomes associated with the effects

of hiring frictions on firm behavior, building on the model environment presented in Garicano

et al., 2016.

Basic Model The model considers two types of firm, regulated and unregulated and two

types of worker, unregulated (contract) workers and regulated workers. If a firm is below

the regulatory threshold hiring regulated workers can result in them becoming regulated if

they pass the firm-size threshold. By contrast, unregulated workers do not affect regulatory

status. Above the regulatory threshold firms face de jure hiring costs, τr, when hiring

regulated workers. They do not face de jure hiring costs when hiring unregulated workers.

First, we explore what the model predicts when there are no de facto hiring costs. In

this situation, firms optimize over whether they are regulated or unregulated and choose the

number of regulated workers accordingly.

π(α) = max
nu,nr

{
αf(nu, nr)− wunu − wrnr if nr ≤ N

αf(nu, nr)− wunu − wrτrnr − F if nr > N

αfr
′(nu, nr)− τ̃rwr = 0 with

{
τ̃r = 1 if nr ≤ N

τ̃r = τr if nr > N

αfu
′(nu, nr)− wu = 0

n∗r(α, τr, wr, wu) = fr
′−1

(
τ̃rwr
α

)

n∗u(α, τr, wr, wu) = fu
′−1
(wu
α

)
The model predicts that there will be differential hiring of regulated workers in labor

markets with lower de jure hiring cost, ∂nr
∂τr

< 0. The number of unregulated workers is

also a function of hiring costs τ . Under a Cobb-Douglas technology there will be differential

hiring of unregulated workers in labor markets with higher de jure hiring costs, ∂nu
∂τr

> 0.

Incorporating de facto hiring costs for unregulated workers The relevance of de

facto hiring costs, τu, for unregulated workers would reduce the incentive associated with

hiring unregulated workers in markets with greater de jure hiring costs.
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π(α) = max
nu,nr

{
αf(nu, nr)− wunu − wrnr if nr ≤ N

αf(nu, nr)− wuτunu − wrτrnr − F if nr > N

αfr
′(nu, nr)− τ̃rwr = 0 with

{
τ̃r = 1 if nr ≤ N

τ̃r = τr if nr > N

αfu
′(nu, nr)− τ̃uwu = 0 with

{
τ̃u = 1 if nr ≤ N

τ̃u = τu if nr > N

n∗r(α, τr, wr, τ̃u, wu) = fr
′−1

(
τ̃rwr
α

)

n∗u(α, τ̃r, wr, τ̃u, wu) = fu
′−1

(
τ̃uwu
α

)
As before, the model predicts that there will be differential hiring of regulated workers in

labor markets with lower de jure hiring cost, ∂nr
∂τr

< 0. The number of unregulated workers

is decreasing in de facto hiring costs, ∂nu
∂τu

< 0. To the degree that de facto hiring costs are

higher in labor markets with higher de jure hiring costs, rho(τr, τu) > 0, as it is argued to

be in the context of the IDA, the incentive to hire unregulated workers as a substitute is

diminished. When de facto hiring costs for unregulated workers are empirically relevant we

may see differential hiring of unregulated workers in labor markets with lower de facto hiring

costs. The overall effect depends on the relative importance of de facto vs. de jure hiring

costs.

Considering regulated workers as a fixed factor in the short run The discussion

so far considers equilibrium hiring decisions. Firms choose the optimal number of regulated

and unregulated workers, subject to de jure and de facto hiring costs, and choose whether

to be regulated or unregulated firms, subject to the indifference condition,

αf(N, nu)− wrN − wnu = αf(n∗r(α), n∗u(α))− wuτun∗u(α)− wrτrn∗r(α)− F

In the empirical analysis we explore the effects of transitory labor supply shocks on firm

hiring decisions. It is plausible to think that in markets where hiring costs are more binding,

the number of regulated workers might be fixed in the short run. We would not expect firms

to change their regulatory status, or change the number of regulated workers in response to

short-run shocks.

If we consider regulated workers to be a fixed factor of production in the short run,

when τr > 1, the insight gained from introducing de facto hiring costs become unambiguous.
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This is because the hiring of unregulated workers no longer depends on the the number of

regulated workers, and consequently does not depend on de jure hiring costs,

n∗u(α, τ̃u, wu) = fu
′−1

(
τ̃uwu
α

)
with

{
τ̃u = 1 if n̄r ≤ N

τ̃u = τu if n̄r > N

In this case there is an unambiguous differential increase in the hiring of unregulated

workers in markets with lower de facto hiring costs, ∂nu
∂τu

< 0. If de facto hiring costs are not

empirically relevant, τu = 0 we would not expect any differential increase in the hiring of

unregulated workers.

Overview of Theoretical Predictions Table D4 presents an overview of the predicted

hiring responses of regulated firms under the different model assumptions. The empirical

relevance of de facto hiring costs is identified if a relative increase in the employment of un-

regulated contract workers is estimated in flexible labor markets (Θ(τu > 0, ∂nr
∂temperature

> 0)

and Θ(τu > 0, ∂nr
∂temperature

= 0)). The empirical relevance of de facto hiring costs is also iden-

tified if there is no relative increase in unregulated contract workers and a relative increase in

the number of regulated workers in more flexible labor markets (Θ(τu > 0, ∂nr
∂temperature

> 0)).

The absence of de facto hiring costs would be identified if I estimated no relative increase

in the employment of unregulated contract workers and no increase in the employment of

regulated workers (Θ(τu,
∂nr

∂temperature
= 0).) The only case that does not allow us to say

anything about the empirical relevance of de facto hiring costs is if there is a relative in-

crease in the number of unregulated workers in rigid labor markets and a relative increase

in the number of regulated workers in flexible labor markets (Θ(τu = 0, ∂nr
∂temperature

> 0) vs.

Θ(τu > 0, ∂nr
∂temperature

> 0)). This could arise if de facto costs are empirically relevant, but

are less important for the hiring of unregulated workers than de jure hiring costs, or if de

facto hiring costs are not empirically relevant. Nevertheless, in this setting we still identify

a relative increase in the employment of (regulated) workers in more flexible labor markets,

allowing us to identify the labor reallocation effect separately from the the residual effects

of temperature on manufacturing outcomes.
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Table D4: An Overview of Empirical Predictions for Regulated Firms under Different Model
Assumptions

Model Predicted Hiring Responses for Regulated Firms

Assumptions Unregulated Contract Workers Regulated Workers

Θ(τu = 0, ∂nr
∂temperature

> 0) 0 <
∂nu,F lexible
∂temperature

<
∂nu,Rigid

∂temperature
0 <

∂nr,Rigid
∂temperature

<
∂nr,F lexible
∂temperature

Θ(τu = 0, ∂nr
∂temperature

= 0) 0 <
∂nu,Rigid

∂temperature
=

∂nu,F lexible
∂temperature

0 =
∂nr,Rigid

∂temperature
=

∂nr,F lexible
∂temperature

Θ(τu > 0, ∂nr
∂temperature

> 0) 0 <
∂nu,Rigid

∂temperature
Q ∂nu,F lexible

∂temperature
0 <

∂nr,Rigid
∂temperature

<
∂nr,F lexible
∂temperature

Θ(τu > 0, ∂nr
∂temperature

= 0) 0 <
∂nu,Rigid

∂temperature
<

∂nu,F lexible
∂temperature

0 =
∂nr,Rigid

∂temperature
=

∂nr,F lexible
∂temperature
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D.4 Wage Gaps Between Agriculture and Manufacturing

In this section I explore the common support between agricultural workers and workers in

manufacturing, using worker-level data from the NSS. I estimate worker-level mincerian wage

regressions to estimate the size of wage gaps after controlling for education, age, gender, dis-

trict and year fixed effects. Table D5 shows that there is a significant wage gap between

permanent manufacturing workers and agricultural workers, with permanent manufacturing

workers earning 1.4 times more than agricultural workers within local labor markets after

controlling for individual characteristics.9 We observe that the average wage gap between

casual manufacturing workers and agricultural workers is far smaller after controlling for

individual characteristics, with casual manufacturing workers earning 1.1 times more than

agricultural workers, a difference that is statistically significant at the 10% level. There is

likely to be greater common support between the wages of contract workers and agricul-

tural workers, consistent with the premise that workers within low-skill groups are relatively

substitutable across sectors. This suggests that labor markets in this context may not be

dualistic across sectors per se (agriculture vs. non-agriculture), but rather can be character-

ized as dualistic across types of activities or skill. The fact that non-agricultural sectors tend

to have a distribution of workers with a higher dispersion of skill likely conflates the inter-

pretation of a dualistic labor market across sectors. A sectoral dimension may become more

important as workers rise up the skill ladder and work in more specialized tasks, reducing

the substitutability of workers across sectors.

Table D5: Average Wage Gap (Agriculture vs. Manufacturing)

India Wide Within District Within District
Skill Adjusted

Average Wage Gap 1.352*** 1.163*** 1.106**
(Casual Manufacturing Workers)

Average Wage Gap 2.295*** 2.016*** 1.397***
(Regular Manufacturing Workers)

Average Day Wage in Agriculture (Rs.) 49.819 49.819 49.819
Year Fixed Effects Yes Yes Yes

District Fixed Effects No Yes Yes
Individual Controls No No Yes

Observations 68,940 68,940 68,940

f
Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Individual level controls include age,
education, sex, and whether an individual lives in a rural area. Estimates are based on individual-level
mincerian wage regressions on the working-age population (14-65) controlling for a sector dummy (β)
specifying whether the individual is engaged in agricultural, casual manufacturing, or regular manufac-
turing employment. The wage gap is calculated as exp(β).

9This data does not make a distinction between the informal and formal sector.
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D.5 Labor Reallocation into the Informal Manufacturing Sector

In this section I explore the degree to which temperature-driven labor reallocation occurs in

the informal manufacturing sector. I collected data from the NSSO Unorganized Manufac-

turing Survey for 2005 and 2010. I extract data on the number of workers and total output

in each informal establishments. I construct a sample-weighted aggregate of the number of

informal sector manufacturing workers and output in each district-year. Given the limited

panel the estimates of this exercise should be interpreted with caution.

I regress the log number of workers and log output on temperature and rainfall, control-

ling for district and year fixed effects as well as state-year time trends, following the same

specification as section 3,

logY = f(wdt) + αd + αt + φst+ εdt

The results of this exercise are presented in Table D6. I estimate that a 1◦C increase in

temperature is associated with a 12% increase in the number of informal sector manufacturing

workers and a 33% increase in output, however, the estimates are statistically insignificant

at conventional levels. Given limited data availability, it is possible that this exercise is

underpowered. Nevertheless, the magnitude of these estimates are substantial suggesting

that the informal sector could absorbs a substantial share of the estimated labor reallocation.

Consistent with estimates in the other sections of this paper I estimate small, statistically

insignificant, effects of rainfall on informal sector employment.

Table D6: The Effects of Weather on Informal Manufacturing Sector Employment and Out-
put

(1) (2)
log Workers log Output

Daily Average 0.121 0.330
Temperature (◦C) (0.0910) (0.257)

Monsoon -0.00239 -0.0212
Rainfall (100mm) (0.0168) (0.0354)

District Fixed Effects Yes Yes

Year Fixed Effects Yes Yes

State-Year Time Trends Yes Yes

Observations 604 604

Notes: Significance levels are indicated as * 0.10 ** 0.05
*** 0.01. Standard errors are adjusted to reflect spatial de-
pendence as modeled in Conley (1999) and serial correlation
as modeled in Newey and West (1987). District distances
are computed from district centroids. Results are robust to
clustering standard errors at the state level.
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D.6 Differences-in-Temperature: Additional Results

D.6.1 Alternative Codifications of Exposure to the Industrial Disputes Act

In this section I explore the robustness of the main results to alternative codifications of the

Industrial Disputes Act measure. Given that there are no differences in the effects of temper-

ature on manufacturing outcomes across labor regulation environments for unregulated firms

I restrict attention to regulated firms. The baseline estimates restricted to regulated firms

are presented in Panel A of Table D7. This measure uses pro-worker states as the baseline

category and defines Flexible as neutral and pro-employer States. In Panel B I incorpo-

rate a separate category for Neutral and Pro-Employer states, defining an ordinal ranking,

following Besley and Burgess (2004). For comparability with the main results, pro-Worker

states are coded as zero, neutral states are coded as 0.5 and pro-employer states are coded as

1. The estimated effects are similar to the baseline results. In Panel C I construct a cardinal

ranking, allowing pro-worker and pro-employer states to vary in the intensity of their classi-

fication. West Bengal is coded as the most pro-worker state with a value of -4, followed by

Maharashtra (-2), and Odisha (-1). Tamil Nadu and Andhra Pradesh are coded as the most

pro-employer states with a value of 2, followed by Rajasthan, Karnataka, and Kerala, coded

as 1. For comparability with the main results, I normalize the coding to be between 0 and

1, with West Bengal coded as zero and Tamil Nadu and Andhra Pradesh coded as 1. These

estimates are qualitatively similar. The magnitude of the estimated effects are larger than

the baseline estimates. Finally, in Panel D I include separate interaction terms for Neutral

and Pro-Employer states. There is no difference in the effects of temperature in neutral and

flexible states motivating the combination of these categories in the main specification.
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Table D7: Alternative Codifications of the Labor Regulation Environment

(1) (2) (3) (4) (5)
log Total log Workers log Workers log Day Wage log Day Wage
Output (Contract) (Regular) (Contract) (Regular)

Panel A: Baseline

Daily Average -0.173∗∗∗ -0.193∗∗∗ -0.0672 -0.00497 -0.0690∗∗∗

Temperature (◦C) (0.0199) (0.0480) (0.0705) (0.0121) (0.00691)

Temperature 0.136∗∗∗ 0.152∗∗ 0.0402 -0.0464∗ 0.0716∗∗∗

× Flexible (0.0260) (0.0528) (0.0648) (0.0228) (0.0228)

Panel B: Ordinal Ranking

Daily Average -0.138∗∗∗ -0.165∗∗∗ -0.0474 -0.00482 -0.0405
Temperature (◦C) (0.0406) (0.0373) (0.0635) (0.0203) (0.0277)

Temperature 0.132∗∗ 0.180∗∗∗ 0.0167 -0.0747∗∗∗ 0.0474
× Flexible (0.0571) (0.0519) (0.0835) (0.0235) (0.0282)

Panel C: Cardinal Ranking

Daily Average -0.214∗∗∗ -0.283∗∗∗ -0.0294 0.0216 -0.0705∗∗

Temperature (◦C) (0.0353) (0.0462) (0.101) (0.0324) (0.0261)

Temperature 0.235∗∗∗ 0.338∗∗∗ -0.0177 -0.101∗ 0.0894∗

× Flexible (0.0460) (0.0781) (0.131) (0.0558) (0.0443)

Panel D: Separate Categories

Daily Average -0.173∗∗∗ -0.192∗∗∗ -0.0663 -0.00652 -0.0703∗∗∗

Temperature (◦C) (0.0200) (0.0486) (0.0710) (0.0110) (0.00670)

Temperature 0.144∗∗∗ 0.145∗∗ 0.0520 -0.0341 0.0896∗∗∗

× Neutral (0.0362) (0.0589) (0.0667) (0.0254) (0.0281)

Temperature 0.114∗∗∗ 0.158∗∗∗ -0.00626 -0.0782∗∗ 0.0376∗∗

× Flexible (0.0362) (0.0541) (0.0657) (0.0289) (0.0132)

Fixed Effects Sector × District & Sector × Year

Other Controls Monsoon Rainfall (inc. interactions) & Linear State × Year Time Trends

Observations 36,160 14,357 36,160 14,357 36,160

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are clustered at the state level as this
is the level at which the labor regulation policy varies. Results are robust to accounting for broader spatial correlations
as modeled in Conley (1999) and serial correlation as modeled in Newey and West (1987).
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D.6.2 Weighted Results

In this section I present results documenting robustness of the main results to the use of

sampling weights. The results are qualitatively and quantitatively similar to the unweighted

results. Furthermore, I do not reject the null hypothesis that there is no differential effect of

temperature across labor regulation environments for unregulated firms – an important test

for the research design.
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Table D8: The Differential Effects of Temperature by Regulatory Status (Weighted)

(1) (2) (3) (4) (5)
log Total log Workers log Workers log Day Wage log Day Wage
Output (Contract) (Regular) (Contract) (Regular)

Regression Estimates

Daily Average -0.108 -0.262∗∗∗ -0.0519 0.0103 -0.0216
Temperature (◦C): γ1 (0.0699) (0.0661) (0.0432) (0.0177) (0.0129)

Temperature 0.110 0.249∗∗ 0.0598 -0.0625∗ 0.0442∗

× Flexible: γ2 (0.0700) (0.0967) (0.0429) (0.0312) (0.0248)

Temperature 0.118∗∗ 0.151 0.0601 0.0342 0.0169
× Below Threshold: γ3 (0.0546) (0.109) (0.0388) (0.0345) (0.0193)

Temperature × Flexible -0.176∗∗∗ -0.305∗∗ -0.0801∗ 0.00876 -0.0224
× Below Threshold: γ4 (0.0498) (0.119) (0.0407) (0.0364) (0.0330)

Fixed Effects Sector × District × Regulatory Group and Sector × Year × Regulatory Group

Other Controls Monsoon Rainfall (including interactions) and Linear State × Year Time Trends

Observations 88,846 31,051 88,846 31,051 88,846

Formal Tests

Difference Above Threshold: 0.110 0.249∗∗ 0.0598 -0.0625∗ 0.0442∗

H0 : γ2 = 0 (0.0700) (0.0967) (0.0429) (0.0312) (0.0248)

Difference Below Threshold: -0.065 -0.056 -0.020 -0.053 0.021
H0 : γ2 + γ4 = 0 (0.048) (0.083) (0.018) (0.038) (0.016)

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Regressions are weighted using sampling weights
provided by the Central Statistics Office. “Difference Above Threshold” presents the differential effect of temperature
on firms above the regulatory threshold in flexible states compared to regulated firms in rigid states. “Difference
Below Threshold” presents the differential effect of temperature on unregulated firms below the regulatory threshold
in flexible states compared to unregulated firms in rigid states. District × Sector and Sector × Year fixed effects are
regulatory group specific, meaning that separate fixed effects are included for firms above and below the regulatory
threshold. Standard errors are clustered at the state level as this is the level at which the labor regulation policy
varies. Results are robust to accounting for broader spatial correlations as modeled in Conley (1999) and serial
correlation as modeled in Newey and West (1987).
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Table D9: The Differential Effects of Temperature by Regulatory Status (Weather × Sector
Controls)

(1) (2) (3) (4) (5)
log Total log Workers log Workers log Day Wage log Day Wage
Output (Contract) (Regular) (Contract) (Regular)

Regression Estimates

Daily Average -0.0620 -0.133∗ -0.0360 -0.00790 -0.0652∗∗∗

Temperature (◦C): γ1 (0.0866) (0.0641) (0.0595) (0.0259) (0.0186)

Temperature 0.0954∗∗ 0.162∗∗ 0.0338 -0.0533∗ 0.0626∗∗∗

× Flexible: γ2 (0.0394) (0.0641) (0.0557) (0.0278) (0.0207)

Temperature 0.155∗∗∗ 0.182∗ 0.109 0.00764 0.0569∗∗∗

× Below Threshold: γ3 (0.0334) (0.0962) (0.0673) (0.0363) (0.0139)

Temperature × Flexible -0.0927∗∗ -0.273∗∗ -0.0864 0.0443 -0.0431
× Below Threshold: γ4 (0.0403) (0.124) (0.0721) (0.0377) (0.0253)

Fixed Effects Sector × District × Regulatory Group and Sector × Year × Regulatory Group

Other Controls Monsoon Rainfall (including interactions), Linear State × Year Time Trends,
and Weather × Sector Dummy Variable Controls

Observations 88,846 31,051 88,846 31,051 88,846

Formal Tests

Difference Above Threshold 0.0954∗∗ 0.162∗∗ 0.0338 -0.0533∗ 0.0626∗∗∗

H0 : γ2 = 0 (0.0394) (0.0641) (0.0557) (0.0278) (0.0207)

Difference Below Threshold: 0.002 -0.111 -0.053 -0.009 0.019
H0 : γ2 + γ4 = 0 (0.045) (0.113) (0.031) (0.037) (0.013)

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Regressions are weighted using sampling
weights provided by the Central Statistics Office. “Difference Above Threshold” presents the differential effect
of temperature on firms above the regulatory threshold in flexible states compared to regulated firms in rigid
states. “Difference Below Threshold” presents the differential effect of temperature on unregulated firms below the
regulatory threshold in flexible states compared to unregulated firms in rigid states. District × Sector and Sector
× Year fixed effects are regulatory group specific, meaning that separate fixed effects are included for firms above
and below the regulatory threshold. Standard errors are clustered at the state level as this is the level at which
the labor regulation policy varies. Results are robust to accounting for broader spatial correlations as modeled in
Conley (1999) and serial correlation as modeled in Newey and West (1987).
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Table D10: The Differential Effects of Temperature by Regulatory Status (Weather × Rural
Controls)

(1) (2) (3) (4) (5)
log Total log Workers log Workers log Day Wage log Day Wage
Output (Contract) (Regular) (Contract) (Regular)

Regression Estimates

Daily Average -0.120∗∗∗ -0.155∗∗∗ -0.0532 0.00571 -0.0575∗∗∗

Temperature (◦C): γ1 (0.0234) (0.0462) (0.0705) (0.0106) (0.00786)

Temperature 0.102∗∗ 0.146∗∗ 0.0390 -0.0595∗∗ 0.0617∗∗

× Flexible: γ2 (0.0360) (0.0599) (0.0651) (0.0265) (0.0222)

Temperature 0.146∗∗∗ 0.180∗ 0.0998 0.00991 0.0545∗∗∗

× Below Threshold: γ3 (0.0317) (0.0977) (0.0737) (0.0379) (0.0135)

Temperature × Flexible -0.0946∗∗ -0.268∗∗ -0.0841 0.0472 -0.0395
× Below Threshold: γ4 (0.0412) (0.119) (0.0778) (0.0401) (0.0268)

Fixed Effects Sector × District × Regulatory Group and Sector × Year × Regulatory Group

Other Controls Monsoon Rainfall (including interactions), Linear State × Year Time Trends,
Weather × Rural, and Rural Controls

Observations 88,846 31,051 88,846 31,051 88,846

Formal Tests

Difference Above Threshold 0.102∗∗ 0.146∗∗ 0.0390 -0.0595∗∗ 0.0617∗∗

H0 : γ2 = 0 (0.0360) (0.0599) (0.0651) (0.0265) (0.0222)

Difference Below Threshold: 0.007 -0.122 -0.045 -0.012 0.022
H0 : γ2 + γ4 = 0 (0.041) (0.111) (0.033) (0.036) (0.015)

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Regressions are weighted using sampling
weights provided by the Central Statistics Office. “Difference Above Threshold” presents the differential effect
of temperature on firms above the regulatory threshold in flexible states compared to regulated firms in rigid
states. “Difference Below Threshold” presents the differential effect of temperature on unregulated firms below the
regulatory threshold in flexible states compared to unregulated firms in rigid states. District × Sector and Sector
× Year fixed effects are regulatory group specific, meaning that separate fixed effects are included for firms above
and below the regulatory threshold. Standard errors are clustered at the state level as this is the level at which
the labor regulation policy varies. Results are robust to accounting for broader spatial correlations as modeled in
Conley (1999) and serial correlation as modeled in Newey and West (1987).
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Table D11: The Differential Effects of Temperature by Regulatory Status (Weather × Pri-
vately Owned Firm Controls)

(1) (2) (3) (4) (5)
log Total log Workers log Workers log Day Wage log Day Wage
Output (Contract) (Regular) (Contract) (Regular)

Regression Estimates

Daily Average -0.138∗∗∗ -0.133∗∗ -0.0839 0.00629 -0.0895∗∗∗

Temperature (◦C): γ1 (0.0247) (0.0467) (0.0711) (0.0114) (0.00938)

Temperature 0.121∗∗∗ 0.141∗∗ 0.0685 -0.0579∗∗ 0.0951∗∗∗

× Flexible: γ2 (0.0334) (0.0604) (0.0668) (0.0266) (0.0213)

Temperature 0.166∗∗∗ 0.179∗ 0.118 0.0133 0.0766∗∗∗

× Below Threshold: γ3 (0.0323) (0.0995) (0.0749) (0.0363) (0.0133)

Temperature × Flexible -0.121∗∗∗ -0.269∗∗ -0.110 0.0409 -0.0695∗∗

× Below Threshold: γ4 (0.0404) (0.123) (0.0780) (0.0382) (0.0265)

Fixed Effects Sector × District × Regulatory Group and Sector × Year × Regulatory Group

Other Controls Monsoon Rainfall (including interactions), Linear State × Year Time Trends,
Weather × Private Ownership, and Private Ownership Controls

Observations 88,846 31,051 88,846 31,051 88,846

Formal Tests

Difference Above Threshold 0.121∗∗∗ 0.141∗∗ 0.0685 -0.0579∗∗ 0.0951∗∗∗

H0 : γ2 = 0 (0.0334) (0.0604) (0.0668) (0.0266) (0.0213)

Difference Below Threshold: 0.001 -0.128 -0.041 -0.017 0.026
H0 : γ2 + γ4 = 0 (0.042) (0.112) (0.031) (0.036) (0.016)

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Regressions are weighted using sampling
weights provided by the Central Statistics Office. “Difference Above Threshold” presents the differential effect
of temperature on firms above the regulatory threshold in flexible states compared to regulated firms in rigid
states. “Difference Below Threshold” presents the differential effect of temperature on unregulated firms below the
regulatory threshold in flexible states compared to unregulated firms in rigid states. District × Sector and Sector
× Year fixed effects are regulatory group specific, meaning that separate fixed effects are included for firms above
and below the regulatory threshold. Standard errors are clustered at the state level as this is the level at which
the labor regulation policy varies. Results are robust to accounting for broader spatial correlations as modeled in
Conley (1999) and serial correlation as modeled in Newey and West (1987).
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D.6.3 Non-Linearities in the Temperature Schedule

Table D12: The Differential Effects of Temperature by Regulatory Status (Degree-Days)

(1) (2) (3) (4) (5)
log Total log Workers log Workers log Day Wage log Day Wage
Output (Contract) (Regular) (Contract) (Regular)

Degree Days (10 days) -0.00610∗∗∗ -0.00490∗∗∗ -0.00290 -0.000722 -0.00257∗∗∗

tL = 17, tH =∞ (0.00152) (0.00124) (0.00204) (0.000558) (0.000500)

DD High × Flexible 0.00481∗∗∗ 0.00520∗∗∗ 0.00186 0.000144 0.00218∗∗∗

(0.00128) (0.00172) (0.00179) (0.000550) (0.000631)

Degree Days (10 days) -0.00161 -0.00429 0.000359 0.00156∗ -0.000155
tL = 0, tH = 17 (0.00224) (0.00578) (0.00102) (0.000864) (0.000934)

DD Low × Flexible 0.00109 0.000227 -0.000606 -0.00446∗∗ 0.000953
(0.00312) (0.00621) (0.00169) (0.00161) (0.00125)

Fixed Effects Sector × District & Sector × Year

Other Controls Monsoon Rainfall (inc. interactions) & Linear State × Year Time Trends

Observations 36,160 14,357 36,160 14,357 36,160

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are clustered at the state
level as this is the level at which the labor regulation policy varies. Results are robust to accounting for broader
spatial correlations as modeled in Conley (1999) and serial correlation as modeled in Newey and West (1987).
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Figure D1: The Differential Effect of Temperature on Total Output

Notes: Standard errors are clustered at the state level.

Figure D2: The Differential Effect of Temperature on the Number of Contract Workers

Notes: Standard errors are clustered at the state level.
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Figure D3: The Differential Effect of Temperature on the Number of Regular Workers

Notes: Standard errors are clustered at the state level.

Figure D4: The Differential Effect of Temperature on the Average Contract Worker Wage

Notes: Standard errors are clustered at the state level.
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Figure D5: The Differential Effect of Temperature on the Average Regular Worker Wage

Notes: Standard errors are clustered at the state level.

73



D.6.4 Lags and Leads

Table D13: Controlling for Temperature and Rainfall Lags and Leads

(1) (2) (3) (4) (5)
log Total log Workers log Workers log Day Wage log Day Wage
Output (Contract) (Regular) (Contract) (Regular)

Daily Average -0.173∗∗∗ -0.193∗∗∗ -0.0672 -0.00497 -0.0690∗∗∗

Temperature (◦C) (0.0199) (0.0480) (0.0705) (0.0121) (0.00691)

Temperature 0.136∗∗∗ 0.152∗∗ 0.0402 -0.0464∗ 0.0716∗∗∗

× Flexible (0.0260) (0.0528) (0.0648) (0.0228) (0.0228)

1-year Lag No No No No No
1-year Lead No No No No No

Daily Average -0.171∗∗∗ -0.159∗∗∗ -0.0646 0.0000346 -0.0612∗∗∗

Temperature (◦C) (0.0233) (0.0536) (0.0469) (0.0134) (0.00919)

Temperature 0.136∗∗∗ 0.136∗∗ 0.0340 -0.0616∗∗∗ 0.0642∗∗∗

× Flexible (0.0334) (0.0608) (0.0471) (0.0196) (0.0207)

1-year Lag Yes Yes Yes Yes Yes
1-year Lead Yes Yes Yes Yes Yes

Fixed Effects Sector × District & Sector × Year

Other Controls Monsoon Rainfall (inc. interactions) & Linear State × Year Time Trends

Observations 36,160 14,357 36,160 14,357 36,160

Notes: Panel A reports baseline estimates without lag and lead controls for rainfall and temperature.
Panel B reports estimates that include lag and lead controls for rainfall and temperature. Significance
levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are clustered at the state level as this is
the level at which the labor regulation policy varies. Results are robust to accounting for broader spatial
correlations as modeled in Conley (1999) and serial correlation as modeled in Newey and West (1987).
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D.6.5 The Relative Importance of Temperature vs. Rainfall for Manufacturing

Outcomes in India

In this section I explore the relative importance of temperature over rainfall, as explored

in other sections. This exercise provides little additional insight as the concern, as with

temperature, is that rainfall could have direct effects on manufacturing other than through

temperature. For example, rainfall affects electricity provision through hydroelectric dams.

Nevertheless, there is still value in reporting the estimates on rainfall, evaluating how they

change when controlling for temperature, and exploring the robustness of the findings to

alternative weather data sets. The results of this analysis are presented in Table D14 and

Table D15

In Table D14 I present results using the main weather data, the ERA-Interim Reanalysis

data. In Panel A, I present the baseline results for regulated firms as a comparison. In Panel

B, I show that the estimated effects are qualitatively and quantitatively similar when rainfall

and its interaction with the labor regulation environment measure are not included. This

suggests that rainfall is not strongly correlated with manufacturing outcomes. Consistent

with this Panels C and D present estimates for monsoon rainfall. Panel C includes controls

for temperature. Panel D does not control for temperature. In both cases rainfall has no

meaningful effects on firm outcomes. Table D15 replicates the above analysis using the

UDEL weather data.
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Table D14: The Relative Importance of Temperature vs. Rainfall for Manufacturing Out-
comes

(1) (2) (3) (4) (5)
log Total log Workers log Workers log Day Wage log Day Wage
Output (Contract) (Regular) (Contract) (Regular)

Panel A: Temperature
(Controlling for Rainfall)

Daily Average -0.173∗∗∗ -0.193∗∗∗ -0.0672 -0.00497 -0.0690∗∗∗

Temperature (◦C) (0.0199) (0.0480) (0.0705) (0.0121) (0.00691)

Temperature 0.136∗∗∗ 0.152∗∗ 0.0402 -0.0464∗ 0.0716∗∗∗

× Flexible (0.0260) (0.0528) (0.0648) (0.0228) (0.0228)

Panel B: Temperature
(No Rainfall Controls)

Daily Average -0.114∗∗∗ -0.152∗∗ -0.0528 0.0217 -0.0498∗∗∗

Temperature (◦C) (0.0217) (0.0604) (0.0549) (0.0188) (0.00796)

Temperature 0.0914∗∗∗ 0.131∗∗ 0.0200 -0.0545∗∗ 0.0534∗∗∗

× Flexible (0.0271) (0.0586) (0.0520) (0.0243) (0.0181)

Panel C: Rainfall
(Controlling for Temperature)

Monsoon -0.0180∗∗∗ -0.0130 -0.00478 -0.00814 -0.00606∗∗∗

Rainfall (100mm) (0.00619) (0.00959) (0.00702) (0.00579) (0.000833)

Rainfall 0.0135∗∗ 0.00487 0.00652 0.000870 0.00569∗

× Flexible (0.00563) (0.0110) (0.00671) (0.00640) (0.00271)

Panel D: Rainfall
(No Temperature Controls)

Monsoon -0.00745 0.00217 -0.000706 -0.00803 -0.00178∗∗

Rainfall (100mm) (0.00538) (0.0128) (0.00262) (0.00552) (0.000637)

Rainfall 0.00564 -0.00635 0.00424 0.00440 0.00142
× Flexible (0.00517) (0.0131) (0.00330) (0.00589) (0.00196)

Fixed Effects Sector × District & Sector × Year

Other Controls Monsoon Rainfall (inc. interactions) & Linear State × Year Time Trends

Observations 36,160 14,357 36,160 14,357 36,160

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are clustered at the state level as this
is the level at which the labor regulation policy varies. Results are robust to accounting for broader spatial correlations
as modeled in Conley (1999) and serial correlation as modeled in Newey and West (1987).
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Table D15: The Relative Importance of Temperature vs. Rainfall for Manufacturing Out-
comes (UDEL)

(1) (2) (3) (4) (5)
log Total log Workers log Workers log Day Wage log Day Wage
Output (Contract) (Regular) (Contract) (Regular)

Panel A: Temperature
(Controlling for Rainfall)

Daily Average -0.115 -0.112 -0.0869 -0.0142 -0.0640∗∗∗

Temperature (◦C) (0.0811) (0.0730) (0.0746) (0.0186) (0.00945)

Temperature 0.0497 0.120∗ 0.0612 -0.0555∗∗∗ 0.0458∗∗∗

× Flexible (0.0807) (0.0634) (0.0693) (0.0181) (0.0125)

Panel B: Temperature
(No Rainfall Controls)

Daily Average -0.0664∗∗ -0.199∗∗ -0.0147 0.00214 -0.0428∗∗∗

Temperature (◦C) (0.0298) (0.0765) (0.0723) (0.0179) (0.0125)

Temperature 0.0235 0.189∗∗∗ -0.0204 -0.0658∗∗∗ 0.0279∗∗

× Flexible (0.0368) (0.0636) (0.0698) (0.0160) (0.0129)

Panel C: Rainfall
(Controlling for Temperature)

Monsoon -0.0104 0.0161∗∗∗ -0.0137∗∗∗ -0.00324∗∗ -0.00429∗

Rainfall (100mm) (0.0125) (0.00303) (0.00163) (0.00134) (0.00215)

Rainfall 0.00340 -0.0117∗ 0.0178∗∗∗ 0.00133 0.00342
× Flexible (0.0125) (0.00563) (0.00188) (0.00191) (0.00230)

Panel D: Rainfall
(No Temperature Controls)

Monsoon -0.00440 0.0223∗∗∗ -0.00911∗∗ -0.00244 -0.000905
Rainfall (100mm) (0.00867) (0.00529) (0.00374) (0.00143) (0.00227)

Rainfall -0.000230 -0.0190∗∗∗ 0.0140∗∗∗ 0.00369∗∗ 0.000558
× Flexible (0.00834) (0.00527) (0.00430) (0.00164) (0.00207)

Fixed Effects Sector × District and Sector × Year

Other Controls Monsoon Rainfall (inc. interactions) & Linear State × Year Time Trends

Observations 36,160 14,357 36,160 14,357 36,160

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are clustered at the state level as this
is the level at which the labor regulation policy varies. Results are robust to accounting for broader spatial correlations
as modeled in Conley (1999) and serial correlation as modeled in Newey and West (1987).
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D.6.6 Productivity Results

Basic Estimation The following provides an explicit model of TFPR, in the context of a

profit-maximizing firm.

Each firm i, in time t, produces output Qit using the following (industry-specific) tech-

nology:

Qit = AitK
αk
it M

αm
it LαLit

where Kit is the capital input, Lit is the labor input, and Mit is the materials input. Fur-

thermore, I assume constant returns to scale in production so αM + αK + αL = 1.

The demand curve for the firm’s product has a constant elasticity:

Qit = BitP
−ε
it

Combining these two equations, I obtain an expression for the sales-generating production

function:

Sit = ΩitK
βk
it M

βM
it LβLit

where Ωit(true) = A
1− 1

ε
it B

1
ε
it , and βX = αX(1 − 1

ε
) for X ∈ {K,L,M}. Within the confines

of this paper, I define true productivity as ωit ≡ log(Ωit).

To recover a measure of ωit, I compute the value of βL, andβM using median regression

for each industry-year cell.

βX = median

({
PX
it Xit

Sit

})
for X ∈ {L,M}

To recover the coefficient on capital, βK , I use the assumption of constant returns to scale

in production, i.e.,
∑

X αX = 1, such that:

βK =
ε− 1

ε
− βL − βM

For ease of measurement I set ε to be constant for all firms. Following Bloom (2009) I

set ε = 4. Using these estimates I compute ωit,

ωit(est) = log(Sit)− βK log(Kit)− βM log(Mit)− βL log(Lit)

Allowing for Differences in the Elasticity of Substitution Within Labor As sug-

gested by the empirical results, contract labor does not appear to be perfectly substitutable

with regular labor as is implied under the Cobb-Douglas production function. This sec-

tion presents an alternative production function to estimate productivity, allowing for im-
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perfect substitutability between these two labor types. Specifically, I estimate a nested

Cobb-Douglas production function, in which the aggregate labor factor is a CES function of

contract and regular workers.

As above, the top-level sales-generating production function is Cobb-Douglas,

Sit = ΩitK
βk
it M

βM
it LβLit

However, the Labor input is CES, i.e.,

Lit = [θcL
σ−1
σ

cit + θpL
σ−1
σ

pit ]
σ
σ−1

In the event that contract workers and regular workers are perfectly substitutable, this

production function collapses back to the standard Cobb-Douglas production function. Given

the results presented in the main text, each of the parameters in the CES structure are

observed or estimated θcLcit = w̄citLcit, i.e. the wage bill of the firm for each labor type.

That contract and regular labor markets are segmented (we observe no increase in the

number of regular workers) suggests that the tasks that contract workers and regular workers

engage in are complementary in production. In light of this, it is possible to provide an

exogenous estimate of the elasticity of substitution, σ, between new entrants into casual

positions and incumbent regular workers. If σ < 1, the new entrant casual workers and

incumbent regular workers engage in tasks that are complementary. If σ > 1, then these

workers engage in tasks that are substitutable.

σ ∝ ∂ logwpm
∂Temperature

/
∂ logLcm

∂Temperature
=
∂ logwpm
∂ logLcm

= 0.436 (16)

These results suggest that a 1% increase in the number of contract workers is associated

with a 0.436% increase in the average wage of regular manufacturing workers. To the degree

that new entrants out of agriculture and incumbent casual workers are substitutable in tasks,

this would indicate that, on average, contract and regular workers in regulated firms engage

in complementary production tasks.

With these parameters in hand, I construct LCESit for each firm and then estimate pro-

ductivity using the CES labor input in place of the Cobb-Douglas Labor input.

Results Table D16 presents the productivity results for the differences-in-temperature

exercise. I fail to reject the null hypothesis that there is no relative increase in output per

worker, however, I do estimate relative increases in TFPR, measured using the standard

Cobb-Douglas approach and the nested Cobb-Douglas approach. For both measures of
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TFPR I do not estimate any differential effect of temperature between labor regulation

environments for unregulated firms. For output per worker I estimate a differential effect of

temperature across labor regulation environments that is significant at the 10% level.

Table D16: The Effects of Temperature on Productivity

(1) (2) (3)
log Output log TFPR log TFPR
per Worker (CES)

Regression Estimates:

Daily Average -0.0759 -0.0734∗∗∗ -0.0736∗∗∗

Temperature (◦C): γ1 (0.0469) (0.0227) (0.0239)

Temperature 0.0546 0.0536∗∗ 0.0545∗

× Flexible: γ2 (0.0551) (0.0253) (0.0262)

Temperature 0.0278 0.0638∗ 0.0646
× Below Threshold: γ3 (0.0485) (0.0354) (0.0377)

Temperature × Flexible 0.0360 -0.0553 -0.0582
× Below Threshold: γ4 (0.0612) (0.0397) (0.0425)

Formal Tests

Difference Above Threshold: 0.0546 0.0536∗∗ 0.0545∗

H0 : γ2 = 0 (0.0535) (0.0253) (0.0262)

Difference Below Threshold: 0.090 -0.002 -0.003
H0 : γ2 + γ4 = 0 (0.058) (0.029) (0.030)

Sector × District Fixed Effects Yes Yes Yes
Sector × Year Fixed Effects Yes Yes Yes
Rainfall Controls Yes Yes Yes
State-Year Time Trends Yes Yes Yes

Observations 88,846 88,846 88,846

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Regressions
are weighted using sampling weights provided by the Central Statistics Office. “Dif-
ference Above Threshold” presents the differential effect of temperature on firms
above the regulatory threshold in flexible states compared to regulated firms in rigid
states. “Difference Below Threshold” presents the differential effect of temperature
on unregulated firms below the regulatory threshold in flexible states compared to
unregulated firms in rigid states. District × Sector and Sector × Year fixed effects
are regulatory group specific, meaning that separate fixed effects are included for
firms above and below the regulatory threshold. Standard errors are clustered at the
state level as this is the level at which the labor regulation policy varies. Results are
robust to accounting for broader spatial correlations as modeled in Conley (1999)
and serial correlation as modeled in Newey and West (1987).
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D.7 Discontinuity-in-Temperature Approach

In this section I introduce a secondary identification strategy, which explores whether there

is a discontinuous change in the effects of temperature at the regulatory threshold within

each labor regulation environment.

D.7.1 Research Design

The purpose of this second research design is to alleviate concerns about systematic differ-

ences between labor regulation environments by identifying the differential effects of temper-

ature within the same labor regulation environment as well as provide a more credible test

for the hypothesis that unregulated firms are more responsive than regulated firms. Firms

on either side of the regulatory threshold are affected by the same temperature exposure

and so should not be differentially affected other than as a result of any differential response

to the labor regulation environment. By looking at firms that are close to the regulatory

threshold they should be similar in other respects as well, except that unregulated firms face

fewer constraints in hiring workers. We should expect a discontinuous positive effect of tem-

perature on firm outcomes moving from regulated to unregulated in rigid labor markets, and

a smaller discontinuous effect in flexible labor markets because moving above the regulatory

threshold is less costly.

Equation 17 presents the empirical specification for this research design,

log Yijrdst = γ1f(wdt) + γ2f(wdt)× Flexibles

+γ3f(wdt)×Belowr + γ4f(wdt)×Belowr × Flexibles

+ δ1Belowr + δ2Belowr × Flexibles + δ3f(Firm Sizeijdt)

+ δ4f(Firm Sizeijdt)× f(wdt) + δ5f(Firm Sizeijdt)× Flexibles

+ δ6f(Firm Sizeijdt)× f(wdt)× Flexibles

+ αjd + αjt + φst+ εijdt. (17)

Equation 17 is similar in essence to equation ??, except that the fixed effects are no

longer regulatory group specific as we wish to make comparisons between regulated and

unregulated firms at the regulatory threshold. I include a variable which defines whether a

firm is below the regulatory threshold, Belowr, and include the interaction of this variable

with the labor regulation environment, Belowr×Flexibles. In addition, I include variables

controlling for firm size relative to the threshold (the running variable), on each side of the

threshold, as well as a full set of interaction variables between relative firm size, weather and

the labor regulation environment. In the main specification I use a linear polynomial for
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firm-size, weight observations using a triangular kernel, and restrict the window to be firms

within 50 employees of the regulatory threshold. Results are robust to including quadratic

polynomials, uniform weights, and narrowing the bandwidth further.

The key identification assumption for this approach is that there are no other factors

that change at the regulatory threshold that also differentially affect firm responses to tem-

perature. Note that unlike a standard RDD approach it does not necessarily matter if the

continuity assumption is violated as long as the other factors that vary at the regulatory

threshold do not differentially effect the response of firms to changes in temperature. This

is, arguably, a much weaker identification assumption. In the context of exploring the effects

of labor regulations that vary with firm-size, one may be concerned that there is bunching in

the firm-size distribution, but, again, bunching is only a concern in this context if it varies in

response to temperature changes. In Appendix D.7.3 I show that there is limited evidence

of bunching in the firm-size distribution and that, more importantly, bunching estimates do

not vary with temperature.

D.7.2 Results

Table D17 presents the results of the discontinuity-in-temperature analysis. The purpose

of this second research design is to alleviate concerns about systematic differences between

labor regulation environments by identifying the differential effects of temperature within

the same labor regulation environment. The coefficient of interest is, γ3, capturing the

discontinuous effect of temperature on firms just below the regulatory threshold in rigid

labor markets. Consistent with the results from the differences-in-temperature analysis we

observe discontinuous increases in output and employment, with larger effects on contract

workers. In Table D18 we also observe discontinuous increases in productivity. Despite the

discontinuous expansion in activity for unregulated firms the overall effect of temperature

is negative for all outcomes – the discontinuous expansions are relative. Finally, I do not

observe any discontinuous effects of temperature at the regulatory threshold in more flexible

labor regulation environments. These results are robust to using a quadratic polynomial for

the running variable (Table D20), to using uniform, as opposed to triangular, weights (Table

D21), and to using different bandwidths (Tables D22, D23, and D24).
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Table D17: The Differential Effects of Temperature on Manufacturing Firms at the Regula-
tory Threshold

(1) (2) (3) (4) (5)
log Total log Workers log Workers log Day Wage log Day Wage
Output (Contract) (Regular) (Contract) (Regular)

Regression Estimates

Daily Average -0.150∗∗∗ -0.296∗∗∗ 0.00147 -0.00217 -0.0444∗∗∗

Temperature (◦C): γ1 (0.0446) (0.0917) (0.0102) (0.0282) (0.0143)

Temperature 0.151∗∗ 0.275∗∗ -0.0139 0.0108 0.0686∗∗

× Flexible: γ2 (0.0545) (0.108) (0.0185) (0.0398) (0.0277)

Temperature 0.0307∗∗∗ 0.135∗∗∗ 0.00969 0.00216 0.00799
× Below Threshold: γ3 (0.0102) (0.0385) (0.0128) (0.0102) (0.00916)

Temperature × Flexible -0.0248∗ -0.124∗∗∗ -0.00994 -0.000425 0.00323
× Below Threshold: γ4 (0.0134) (0.0412) (0.0135) (0.0120) (0.0106)

Fixed Effects Sector × District & Sector × Year

Other Controls Monsoon Rainfall (inc. interactions), Linear State × Year Time Trends
& Running variables (inc. interactions)

Bandwidth 50 50 50 50 50

Polynomial Linear Linear Linear Linear Linear

Kernel Triangle Triangle Triangle Triangle Triangle

Observations 22,999 7,985 22,999 7,985 22,999

Formal Tests

Discontinuity (Pro-Worker): 0.0307∗∗∗ 0.135∗∗∗ 0.00969 0.00216 0.00799
H0 : γ3 = 0 (0.0102) (0.0385) (0.0128) (0.0102) (0.00916)

Discontinuity (Non Pro-Worker): 0.005 0.011 -0.000 0.002 0.011**
H0 : γ3 + γ4 = 0 (0.008) (0.011) (0.005) (0.004) (0.005)

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. “Discontinuity in Pro-Worker States” presents the
differential effect of temperature on firms at the regulatory threshold going from regulated to unregulated. “Discontinuity
in Non Pro-Worker States” presents the differential effect of temperature on firms at the regulatory threshold going from
regulated to unregulated in non-rigid states. Standard errors are clustered at the state level as this is the level at which
the labor regulation policy varies. Results are robust to accounting for broader spatial correlations as modeled in Conley
(1999) and serial correlation as modeled in Newey and West (1987).
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Table D18: The Differential Effects of Temperature on Firm Productivity at the Regulatory
Threshold

(1) (2) (3)
log Output log TFPR log TFPR
per Worker (CES)

Regression Estimates

Daily Average -0.107 -0.0722∗∗∗ -0.0714∗∗∗

Temperature (◦C): γ1 (0.0733) (0.0166) (0.0162)

Temperature 0.141∗ 0.0533 0.0507
× Flexible: γ2 (0.0712) (0.0325) (0.0328)

Temperature 0.0195∗∗ 0.0101 0.00921
× Below Threshold: γ3 (0.00751) (0.00725) (0.00665)

Temperature × Flexible -0.0221∗∗ -0.0127 -0.0123
× Below Threshold: γ4 (0.0102) (0.0109) (0.0106)

Sector × District Fixed Effects Yes Yes Yes
Sector × Year Fixed Effects Yes Yes Yes
Rainfall Controls Yes Yes Yes
State × Year Time Trends Yes Yes Yes

Bandwidth 50 50 50

Kernel Triangle Triangle Triangle

Observations 22,999 22,999 22,999

Formal Tests

Discontinuity (Pro-Worker): 0.0195∗∗ 0.0101 0.00921
H0 : γ3 = 0 (0.00751) (0.00725) (0.00665)

Discontinuity (Non Pro-Worker): -0.002 -0.002 -0.003
H0 : γ3 + γ4 = 0 (0.008) (0.007) (0.007)

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. “Discontinuity
in Pro-Worker States” presents the differential effect of temperature on firms at
the regulatory threshold going from regulated to unregulated. “Discontinuity in
Non Pro-Worker States” presents the differential effect of temperature on firms at
the regulatory threshold going from regulated to unregulated in non-rigid states.
Standard errors are clustered at the state level as this is the level at which the
labor regulation policy varies. Results are robust to accounting for broader spatial
correlations as modeled in Conley (1999) and serial correlation as modeled in Newey
and West (1987).
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D.7.3 Bunching in the Firm-Size Distribution

The key identification assumption for a regression discontinuity design is continuity – . In

the context of labor regulations the first-order concern, relating to a violation of continuity, is

that firms select around the regulatory threshold resulting in bunching around the regulatory

threshold. For identification in the context of the discontinuity-in-temperature research

design, bunching is not necessarily a problem. The parameter of interest is the effect of

temperature on firms at the threshold. Bunching is only an identification concern if it is

driven by short-run changes in temperature.

First, I explore the degree to which bunching is observed in the data. In Figure D6 I plot

the firm-size distribution for four different groups for the year 2003.10 In panel a) we see the

firm-size distribution for all firms. There is no visible evidence of a discontinuous break in the

firm-size distribution to indicate that firms are sorting around any regulatory thresholds. In

panel b) I restrict attention to West Bengal, a pro-worker state with a regulatory threshold

of 50 workers. In panel c) we look at the other pro-worker states, Odisha and Maharashtra,

that have a regulatory threshold at 100 workers. In panel d) we look at the remaining non

pro-worker states. In all cases I do not observe any visible evidence of sorting around the

regulatory threshold. In Figure D7 I use formally test the presence of bunching using Mc-

Crary tests. Again we find little evidence of bunching to the left of the regulatory threshold.

In Panel a) we observe limited bunching on the wrong side of the 100-worker regulatory

threshold for firms in Odisha and Maharashtra. In West Bengal there is an indication that

some bunching could occur just before the 50-worker regulatory threshold, however, focusing

on an individual state reduces the number of observations around the threshold, meaning

that small changes in density are exacerbated, potentially leading to spurious inferences.

While there is limited direct evidence of bunching in the data, several caveats need to be

noted. First, the ASI reports the average number of workers in a given year. Second, the

sampling structure of the ASI means that firms are randomly sampled below the 100-worker

regulatory threshold, potentially resulting in spurious changes in the density of observations,

even after accounting for sampling weights, which are likely imperfect. Bunching around

the regulatory threshold may occur even if I do not observe it directly in the data due to

measurement error and sampling issues. Nevertheless, bunching per se is not an identifi-

cation issue. What matters is that bunching doesn’t respond to year-to-year changes in

temperature, a much weaker identification assumption. To explore this directly, I estimate

state-year specific bunching estimates and regress these estimates on temperature, rainfall,

and the interaction of these variables with the policy variable to explore differential bunching

102003 has the most observations and is chosen to maximize power. The inferences made here are robust
to using alternative years.
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with respect to the rigidity of the labor market.11 The results of this exercise are reported

in Table D19. In all cases I fail to reject the null hypothesis that there is no relationship

between temperature and bunching around the regulatory threshold.

11In a number of cases bunching estimates are based on a small number of observations and lead to some
vary large, and likely spurious, discontinuities. To account for this I trim the absolute value of the bunching
estimates at the 95th percentile.
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Figure D6: The Firm-Size Distribution

(a) All States (b) West Bengal (Pro-Worker)

(c) Other Pro-Worker States (d) Non Pro-Worker States
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Figure D7: Formal Bunching Tests

(a) Pro-Worker (Threshold = 100) (b) Not Pro-Worker (Threshold = 100)

(c) West Bengal (Threshold = 50) (d) Not West Bengal (Threshold = 50)
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Table D19: Do Bunching Estimates Vary with Temperature?

(1) (2) (3) (4)
Bunching Bunching Bunching Bunching
Estimates Estimates Estimates Estimates

Daily Average -0.0145 -0.00555 -0.0668 -0.148
Temperature (◦C) (0.0152) (0.0170) (0.237) (0.235)

Temperature -0.0110 0.0877
× Flexible (0.00875) (0.368)

State Fixed Effects No No Yes Yes
Year Fixed Effects No No Yes Yes
Rainfall Controls Yes Yes Yes Yes

Observations 117 117 117 117

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. The data
is trimmed to exclude the absolute value of bunching estimates that exceed the
95th percentile.
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D.7.4 Quadratic Polynomials

Table D20: The Differential Effects of Temperature on Manufacturing Firms at the Regula-
tory Threshold (Quadratic Polynomials)

(1) (2) (3) (4) (5)
log Total log Workers log Workers log Day Wage log Day Wage
Output (Contract) (Regular) (Contract) (Regular)

Regression Estimates

Daily Average -0.160∗∗∗ -0.286∗∗∗ 0.0000343 -0.0112 -0.0505∗∗∗

Temperature (◦C): γ1 (0.0487) (0.0853) (0.00934) (0.0320) (0.0132)

Temperature 0.150∗∗ 0.236∗∗ -0.0138 0.00593 0.0700∗∗

× Flexible: γ2 (0.0546) (0.106) (0.0189) (0.0431) (0.0273)

Temperature 0.0403∗∗ 0.129∗ 0.00419 0.00597 0.00969
× Below Threshold: γ3 (0.0155) (0.0644) (0.0165) (0.0151) (0.00668)

Temperature × Flexible -0.0118 -0.115∗ -0.00854 0.000980 0.00527
× Below Threshold: γ4 (0.0131) (0.0614) (0.0160) (0.0162) (0.00830)

Fixed Effects Sector × District & Sector × Year

Other Controls Monsoon Rainfall (inc. interactions), Linear State × Year Time Trends
& Running variables (inc. interactions)

Bandwidth 50 50 50 50 50

Polynomial Quadratic Quadratic Quadratic Quadratic Quadratic

Kernel Triangle Triangle Triangle Triangle Triangle

Observations 22,999 7,985 22,999 7,985 22,999

Formal Tests

Discontinuity (Pro-Worker): 0.0403∗∗ 0.129∗ 0.00419 0.00597 0.00969
H0 : γ3 = 0 (0.0155) (0.0644) (0.0165) (0.0151) (0.00668)

Discontinuity (Non Pro-Worker): 0.028∗∗∗ 0.014 -0.004 0.007 0.015**
H0 : γ3 + γ4 = 0 (0.008) (0.016) (0.005) (0.006) (0.006)

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. “Discontinuity in Pro-Worker States” presents the
differential effect of temperature on firms at the regulatory threshold going from regulated to unregulated. “Discontinuity
in Non Pro-Worker States” presents the differential effect of temperature on firms at the regulatory threshold going from
regulated to unregulated in non-rigid states. Standard errors are clustered at the state level as this is the level at which
the labor regulation policy varies. Results are robust to accounting for broader spatial correlations as modeled in Conley
(1999) and serial correlation as modeled in Newey and West (1987).
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D.7.5 Uniform Weights

Table D21: The Differential Effects of Temperature on Manufacturing Firms at the Regula-
tory Threshold (Uniform Weights)

(1) (2) (3) (4) (5)
log Total log Workers log Workers log Day Wage log Day Wage
Output (Contract) (Regular) (Contract) (Regular)

Regression Estimates

Daily Average -0.115∗∗ -0.218∗∗ -0.0204∗∗ -0.00371 -0.0330
Temperature (◦C): γ1 (0.0511) (0.101) (0.00878) (0.0198) (0.0193)

Temperature 0.0968 0.160 0.0137 -0.0116 0.0360
× Flexible: γ2 (0.0611) (0.124) (0.0173) (0.0402) (0.0273)

Temperature 0.00869 0.132∗∗ 0.00683 -0.0135∗ -0.00610
× Below Threshold: γ3 (0.0178) (0.0581) (0.00457) (0.00655) (0.00603)

Temperature × Flexible -0.00494 -0.124∗ -0.0104 0.0192∗ 0.0166∗

× Below Threshold: γ4 (0.0187) (0.0598) (0.00603) (0.00978) (0.00815)

Fixed Effects Sector × District & Sector × Year

Other Controls Monsoon Rainfall (inc. interactions), Linear State × Year Time Trends
& Running variables (inc. interactions)

Bandwidth 50 50 50 50 50

Polynomial Linear Linear Linear Linear Linear

Kernel Uniform Uniform Uniform Uniform Uniform

Observations 23,520 8,172 23,520 8,172 23,520

Formal Tests

Discontinuity (Pro-Worker): 0.00869 0.132∗∗ 0.00683 -0.0135∗ -0.00610
H0 : γ3 = 0 (0.0178) (0.0581) (0.00457) (0.00655) (0.00603)

Discontinuity (Non Pro-Worker): 0.004 0.008 -0.004 0.006 0.011∗

H0 : γ3 + γ4 = 0 (0.006) (0.011) (0.004) (0.007) (0.005)

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. “Discontinuity in Pro-Worker States” presents the
differential effect of temperature on firms at the regulatory threshold going from regulated to unregulated. “Discontinuity
in Non Pro-Worker States” presents the differential effect of temperature on firms at the regulatory threshold going from
regulated to unregulated in non-rigid states. Standard errors are clustered at the state level as this is the level at which
the labor regulation policy varies. Results are robust to accounting for broader spatial correlations as modeled in Conley
(1999) and serial correlation as modeled in Newey and West (1987).
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D.7.6 Different Bandwidths

Table D22: The Differential Effects of Temperature on Manufacturing Firms at the Regula-
tory Threshold (Bandwidth of 40 Workers)

(1) (2) (3) (4) (5)
log Total log Workers log Workers log Day Wage log Day Wage
Output (Contract) (Regular) (Contract) (Regular)

Regression Estimates

Daily Average -0.121∗∗ -0.333∗∗∗ 0.00535 0.000106 -0.0385∗∗∗

Temperature (◦C): γ1 (0.0498) (0.0891) (0.0152) (0.0338) (0.0116)

Temperature 0.126∗∗ 0.325∗∗ -0.0163 0.00810 0.0671∗∗

× Flexible: γ2 (0.0544) (0.120) (0.0212) (0.0441) (0.0282)

Temperature 0.0291∗∗∗ 0.139∗∗∗ 0.00883 0.00745 0.0123
× Below Threshold: γ3 (0.00933) (0.0451) (0.0170) (0.0125) (0.00968)

Temperature × Flexible -0.0189 -0.130∗∗ -0.00972 -0.00339 -0.000116
× Below Threshold: γ4 (0.0133) (0.0485) (0.0175) (0.0147) (0.0115)

Fixed Effects Sector × District & Sector × Year

Other Controls Monsoon Rainfall (inc. interactions), Linear State × Year Time Trends
& Running variables (inc. interactions)

Bandwidth 40 40 40 40 40

Polynomial Linear Linear Linear Linear Linear

Kernel Triangle Triangle Triangle Triangle Triangle

Observations 17,893 6,213 17,893 6,213 17,893

Formal Tests

Discontinuity (Pro-Worker): 0.0291∗∗∗ 0.139∗∗∗ 0.00883 0.00745 0.0123
H0 : γ3 = 0 (0.00933) (0.0451) (0.0170) (0.0125) (0.00968)

Discontinuity (Non Pro-Worker): 0.010 0.008 -0.000 0.004 0.021∗∗

H0 : γ3 + γ4 = 0 (0.009) (0.012) (0.004) (0.005) (0.005)

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. “Discontinuity in Pro-Worker States” presents the
differential effect of temperature on firms at the regulatory threshold going from regulated to unregulated. “Discontinuity
in Non Pro-Worker States” presents the differential effect of temperature on firms at the regulatory threshold going from
regulated to unregulated in non-rigid states. Standard errors are clustered at the state level as this is the level at which
the labor regulation policy varies. Results are robust to accounting for broader spatial correlations as modeled in Conley
(1999) and serial correlation as modeled in Newey and West (1987).
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Table D23: The Differential Effects of Temperature on Manufacturing Firms at the Regula-
tory Threshold (Bandwidth of 30 Workers)

(1) (2) (3) (4) (5)
log Total log Workers log Workers log Day Wage log Day Wage
Output (Contract) (Regular) (Contract) (Regular)

Regression Estimates

Daily Average -0.0816 -0.356∗∗∗ 0.0164 0.0114 -0.0466∗∗∗

Temperature (◦C): γ1 (0.0670) (0.0660) (0.0244) (0.0368) (0.0159)

Temperature 0.0925 0.381∗∗∗ -0.0316 -0.00607 0.0759∗∗

× Flexible: γ2 (0.0677) (0.119) (0.0269) (0.0476) (0.0346)

Temperature 0.0149 0.108∗ 0.0110 0.0156 0.0145∗

× Below Threshold: γ3 (0.0111) (0.0584) (0.0185) (0.0224) (0.00732)

Temperature × Flexible 0.0164 -0.0945 -0.0156 -0.0123 0.000170
× Below Threshold: γ4 (0.0157) (0.0624) (0.0190) (0.0248) (0.00906)

Fixed Effects Sector × District & Sector × Year

Other Controls Monsoon Rainfall (inc. interactions), Linear State × Year Time Trends
& Running variables (inc. interactions)

Bandwidth 30 30 30 30 30

Polynomial Linear Linear Linear Linear Linear

Kernel Triangle Triangle Triangle Triangle Triangle

Observations 12,935 4,524 12,935 4,524 12,935

Formal Tests

Discontinuity (Pro-Worker): 0.0149 0.108∗ 0.0110 0.0156 0.0145∗

H0 : γ3 = 0 (0.0111) (0.0584) (0.0185) (0.0224) (0.00732)

Discontinuity (Non Pro-Worker): 0.031∗∗∗ 0.014 -0.004 0.003 0.015∗∗

H0 : γ3 + γ4 = 0 (0.010) (0.017) (0.005) (0.006) (0.005)

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. “Discontinuity in Pro-Worker States” presents the
differential effect of temperature on firms at the regulatory threshold going from regulated to unregulated. “Discontinuity
in Non Pro-Worker States” presents the differential effect of temperature on firms at the regulatory threshold going from
regulated to unregulated in non-rigid states. Standard errors are clustered at the state level as this is the level at which
the labor regulation policy varies. Results are robust to accounting for broader spatial correlations as modeled in Conley
(1999) and serial correlation as modeled in Newey and West (1987).
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Table D24: The Differential Effects of Temperature on Manufacturing Firms at the Regula-
tory Threshold (Bandwidth of 20 Workers)

(1) (2) (3) (4) (5)
log Total log Workers log Workers log Day Wage log Day Wage
Output (Contract) (Regular) (Contract) (Regular)

Regression Estimates

Daily Average -0.0270 -0.265∗∗∗ 0.00826 0.0247 -0.0208
Temperature (◦C): γ1 (0.0980) (0.0841) (0.0485) (0.0518) (0.0252)

Temperature 0.0629 0.306 -0.0483 0.0154 0.0504
× Flexible: γ2 (0.0948) (0.177) (0.0417) (0.0612) (0.0453)

Temperature -0.00290 0.0502 0.0111 0.0532 0.0115∗∗

× Below Threshold: γ3 (0.00550) (0.0589) (0.0243) (0.0336) (0.00421)

Temperature × Flexible 0.0597∗∗ -0.0249 -0.0151 -0.0537 0.00464
× Below Threshold: γ4 (0.0221) (0.0678) (0.0256) (0.0375) (0.00648)

Fixed Effects Sector × District & Sector × Year

Other Controls Monsoon Rainfall (inc. interactions), Linear State × Year Time Trends
& Running variables (inc. interactions)

Bandwidth 20 20 20 20 20

Polynomial Linear Linear Linear Linear Linear

Kernel Triangle Triangle Triangle Triangle Triangle

Observations 8,198 2,943 8,198 2,943 8,198

Formal Tests

Discontinuity (Pro-Worker): -0.00290 0.0502 0.0111 0.0532 0.0115∗∗

H0 : γ3 = 0 (0.00550) (0.0589) (0.0243) (0.0336) (0.00421)

Discontinuity (Non Pro-Worker): 0.056∗∗ 0.025 -0.003 -0.000 0.016∗∗

H0 : γ3 + γ4 = 0 (0.020) (0.032) (0.008) (0.001) (0.005)

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. “Discontinuity in Pro-Worker States” presents the
differential effect of temperature on firms at the regulatory threshold going from regulated to unregulated. “Discontinuity
in Non Pro-Worker States” presents the differential effect of temperature on firms at the regulatory threshold going from
regulated to unregulated in non-rigid states. Standard errors are clustered at the state level as this is the level at which
the labor regulation policy varies. Results are robust to accounting for broader spatial correlations as modeled in Conley
(1999) and serial correlation as modeled in Newey and West (1987).
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