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A Construction of the dataset
Our data combine administrative data on firefighting expenditures from mul-
tiple agencies, parcel-level assessor data for the universe of western US homes,
topographical information, risk assessments, and weather conditions data. This
section provides a complete account of the dataset construction; readers should
refer to section Section III in the main paper for a high-level summary. Ap-
pendix Table 1 gives descriptive statistics for the dataset and Appendix Figure 1
maps all of the large fires in the sample, colored by agency.

A.A Wildland Firefighting Expenditures

The fire suppression and preparedness cost data come from six different sources,
including five federal agencies and one state firefighting agency. The federal
agencies are the United States Forest Service, the National Park Service, the
Bureau of Land Management, the Bureau of Indian Affairs, and the Federal
Emergency Management Agency. The state agency is California’s Department
of Forestry and Fire Protection (CAL FIRE). We obtained firefighting data
at the incident level from each agency through a combination of Freedom of
Information Act (FOIA) requests (or similar records requests for state data) and
publicly available sources. Our geographical focus is the western United States.
We define the “western United States” as the states of Arizona, California,
Colorado, Idaho, Montana, New Mexico, Nevada, Oregon, Utah, Washington,
and Wyoming. We discuss each source of data in detail below, as well as the
process by which we harmonize these datasets.

A.A.1 US Forest Service

The US Department of Agriculture, Forest Service (USFS) accounts for the
largest share of fire suppression expenditures of any federal agency and is pri-
marily responsible for fires that ignite in or near the boundaries of National
Forest areas. We obtain historical by-incident suppression costs (primarily wage
and equipment costs incurred by USFS) for fires managed by the USDA Forest
Service from 1995 to 2014 from the National Fire and Aviation Management
Web (FAMWEB) Database (NWCG 2017). Some institutional detail is helpful
in understanding the process by which the data are compiled: the FAMWEB
database represents a compilation of individual reports on fire occurrence, the
conditions in which the fire ignited, and the suppression efforts undertaken by
USFS. These reports are entered into the Fire Statistics System (FIRESTAT)
application, which is run by the USFS. FAMWEB is the database which con-
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tains this information.24

Gebert, Calkin, and Yoder (2007) argue that fire suppression costs are captured
more accurately by USFS accounting data than in the FAMWEB database. We
therefore also obtain separate USFS accounting data on incident level expendi-
tures through a separate Freedom of Information Act request. However, USFS
was only able to provide these records for the period 2004–2012. Moreover, be-
cause of inconsistencies between agency reporting of incident PCodes, it is not
possible to identify the fire characteristics for many fires in the accounting data.
In a separate analysis (available upon request), we investigate the relationship
between suppression cost and nearest home distance using the accounting data
and a subset of the FAMWEB data limited to 2004–2012 and find both qual-
itatively and quantitatively similar results. We conclude that inaccuracies in
the FAMWEB database are sufficiently limited within our study area to have
limited impact on our empirical questions of interest.25 Our conclusions about
the usefulness of the FAMWEB data are similar to those of Schuster, Cleaves,
and Bell (1997), who wrote at the time that, “One of the purposes for our
analysis of per-acre fire expenditures was to assess the quality of suppression
expenditure estimates contained in the NIFMID database. These estimates are
widely regarded as unreliable. However, the correlation between uncorrected,
NIFMID-based expenditures and those from the accounting system is 0.85, a
surprisingly high level.” We therefore conduct our reported analyses with the
FAMWEB data because of its greater temporal coverage.

Over the course of our study period, more than 150,000 wildfire incidents are
logged in this database. However, since the Forest Service only reports per-fire
cost data for fires above 300 acres, we limit this sample to the 2,419 fires in the
11 western states with a size of 300 acres or larger (the smallest size for which

24. Previously, these data were compiled using Kansas City Fire Access Software, or KC-
FAST. Both KFCAST and FAMWEB include data on suppression expenditures and fire
locations, but FAMWEB is the more current and complete of the two, with one exception:
FAMWEB does not include any data on which agency was responsible for a given ignition or
on the wind speed and direction at the nearest weather station at time of ignition. To obtain
these additional fields, we also load and merge in the KCFAST dataset.
25. A more subtle difference between this study and Gebert, Calkin, and Yoder (2007) is

that the latter authors use the fire cost per acre as the outcome variable when considering the
drivers of wildfire suppression costs, arguing that “fire managers are accustomed to thinking
in terms of cost per acre,” and also include the natural log of total acres burned as an
explanatory variable. We choose to use total cost as the outcome variable in our regression
analysis of incident costs. We also do not include a measure of acres burned as an explanatory
variable. We prefer this specification for two reasons: the policy-relevant figure is the total
cost of suppression; and acreage burned as the denominator and size of fire as an explanatory
variable induces a reverse causality problem (since acreage is a function of suppression effort)
and a “bad controls” problem (Angrist and Pischke 2009).
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suppression expenditures are separately reported) for which the Forest Service
was the jurisdictional owner. We also require that each fire have suppression
cost, ignition date, and location data available.

A.A.2 Department of Interior Agencies

Four separate agencies within the Department of Interior (DOI) engage in sig-
nificant fire management. They are the Bureau of Land Management (BLM),
the Bureau of Indian Affairs (BIA), the National Park Service (NPS), and the
US Fish and Wildlife Service (FWS). We successfully obtained firefighting cost
data for BLM, BIA, and NPS through FOIA requests BLM 2017; BIA 2017;
NPS 2017. BLM is responsible for fires that ignite on the 248 million acres of
public lands they manage. BIA is responsible for fires starting on the 55 million
acres of Indian trust lands, and NPS is responsible for fires igniting within its
417 park units across 84 million acres of land. Each agency provided incident-
level data from 2003-2016 from its own accounting databases for fires larger
than 300 acres. To match the data available from the Forest Service, we limit
this sample to include only fires that were the jurisdictional responsibility of the
given agency and that affect more than 300 acres and apply similar data quality
restrictions as those described for the USFS data. Our final DOI suppression
dataset includes 1,617 BLM fires, 315 BIA fires, and 126 NPS fires.

A.A.3 California Department of Forestry and Fire Protection

We also collect fire suppression cost data for California, which includes over 50%
of the population in our study area and some of the most frequent and costly
wildfires. Suppression cost data for California come from a public records re-
quest to the California Department of Forestry and Fire Protection, or CAL
FIRE (CAL FIRE 2016). CAL FIRE is responsible for managing wildfires on
31 million acres of State Responsibility Area lands, loosely corresponding to
private- and state-owned lands outside of incorporated towns and cities. We
merge three sets of administrative records from CAL FIRE. The first is a com-
plete listing of all reported wildland fire incidents in the CAL FIRE protection
area during 2007–2016, regardless of size. This dataset includes the ignition
date, acres burned, CAL FIRE geographic unit, and, for incidents after mid-
2011, the latitude and longitude of the ignition point.26 The third dataset is an
administrative record of firefighting expenditures at the incident level for 788
incidents during 2011–2016. According to CAL FIRE, these expenditure data
are carefully tracked because they are the basis of cross-agency reimbursements

26. To supplement the location records for earlier fires, we also obtain shapefile data for
a subset of CAL FIRE incidents from the publicly available Fire and Resource Assessment
Program database managed by CAL FIRE.
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for mutual aid expenditures – for example, reimbursements to California by
the federal government under the FEMA Fire Management Assistance Grant
(FMAG) program, or by local governments to CAL FIRE for firefighting assis-
tance in incorporated areas.

Beginning with the list of significant fires, we drop those that are not the ju-
risdictional responsibility of CAL FIRE. Limiting our sample to fires for which
we are able to obtain precise location and suppression cost data results in 104
large fires (and 318 fires of any size) from 2011–2016.

A.A.4 Federal Emergency Management Agency

Our final agency source is the Federal Emergency Management Agency (FEMA).
FEMA does not directly engage in firefighting efforts. Instead, FEMA reim-
burses state agencies and local governments for their costs on large firefight-
ing efforts through the Fire Management Assistance Grant (FMAG) program.
These grants reimburse 75% of the firefighting expenses incurred by state and
local governments during qualifying incidents. We obtained incident-level data
on FEMA reimbursements for wildfire incidents during 2000–2017 through a
Freedom of Information Act request. These records contain the incident name,
date, state, and amount reimbursed. They do not contain geographic coor-
dinates (or a common identifier that would allow us to merge them to other
agency data to recover geographic information). For cost scenarios in Section V
that include FEMA reimbursements, we allocate these costs, multiplied by 1.33
to include the non-reimbursed portion, over fires in each year-state cell similarly
to preparedness costs (see Section A.A.7). In any calculation where we include
CAL FIRE cost data, we do not include FEMA reimbursements to California,
which presumably include costs incurred by CAL FIRE.

A.A.5 Harmonization of Fire Suppression Cost Data

To ensure consistent data quality, we harmonize the data across all agencies
from which we source suppression expenditures. Specifically, we ensure that
ignition date, ignition location, responsible agency, cause of fire, area burned,
and suppression cost data are present for all incidents and that the costs reflect
values in 2017 dollars. Federal, state, and local firefighting agencies provide
assistance to one another through coordinated dispatch systems and mutual
aid agreements. We carefully considered the implications of this aid for our
analysis. We confirmed with each agency that its reported costs represent only
that agency’s costs for a given incident (except for FEMA reimbursements).
Thus, we avoid double counting when adding up historical costs across agencies
in Section V. When investigating the effect of homes on costs in Section IV.A,
we use only USFS cost data and further limit the sample to incidents where
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USFS was the primary responsible agency. This restriction is used by Gebert,
Calkin, and Yoder (2007), who argue that USFS bears at least 90% of the costs
of these fires.27

We have also attempted to ensure that cost concepts are at least broadly com-
parable across agencies. In general, the firefighting cost data in the final dataset
include wages (salaries, overtime, hazard pay) and equipment costs. Usage costs
for agency-owned equipment (as opposed to equipment from private contrac-
tors) are tracked somewhat differently by different agencies. For example, in
direct correspondence BLM indicated that they assign mileage costs for regular
vehicles and engine-hour costs for fire engines to each incident, while NPS indi-
cated that they assign only fuel and repair costs. The allocation of salary costs
between “preparedness” and “suppression” budget categories may also differ
somewhat across agencies.

Finally, we compute the spatial relationship between each fire and potentially
valuable resources nearby. Specifically, we measure the distance from the igni-
tion point of each fire to the nearest parcel in the homes dataset described in
Section A.B, the nearest state or federal highway, and the count of homes and
their value within x km of the ignition point, where x ∈ {5, 10, . . . , 50}.

A.A.6 Ignition Point Characteristics and Weather Data

Using the harmonized location data, we obtain elevation, slope, aspect, and fuel
model data for the ignition point of each fire from LANDFIRE (LANDFIRE
2016). The former three products are derived from the high-resolution National
Elevation Dataset; elevation represents the land height above sea level and is
given in meters, slope represents the angle of the land and is given in degrees,
and aspect represents the direction of the slope and is given in degrees as well.
The fuel model data are the 13 Anderson Fire Behavior Fuel Models and de-
scribe the fire potential of surface fuel components (e.g., the type of foliage
in the area). We also obtain ignition-day weather (maximum and minimum
temperatures, precipitation, and measure of humidity) from the PRISM daily
weather dataset (PRISM Climate Group 2018), as well as ignition-day wind di-
rection and speed from the FAMWEB dataset (NWCG 2017) and from NOAA
(NCEP 2018).

27. Ideally, we would sum each agencies expenditures on each individual incident. Unfortu-
nately, USFS and the DOI agencies do not reliably use consistent incident identifiers, making
such a merge impossible.
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A.A.7 Preparedness Expenditures

Most ignitions are quickly suppressed at low marginal cost by initial attack
efforts. These incidents are not included in our dataset of large fires. We
address this in Section V by incorporating data on preparedness expenditures
for USFS and the DOI agencies.

These costs include base salaries and training costs for firefighters, purchase
and maintenance expenses for aircraft and equipment, and suppression costs for
minor incidents where costs are not separately reported. To identify these costs
for the US Forest Service, we use annual USFS budget justification reports
covering the years 2005-2017. From these documents we extract the region-
specific spending allocated towards “Fire Preparedness.” In total we obtain
more than $7.8 billion of preparedness spending for the regions that overlap our
study area.28 Section V describes how we allocate these costs over homes.

The DOI agencies collectively prepare one annual budget justification that cov-
ers wildland fire activities across the entire United States. Our data on DOI
preparedness costs from these documents cover the 2010-2018 fiscal years. In to-
tal, we account for $2.8 billion of DOI preparedness spending (in 2017 dollars).
Because DOI does not provide region-specific figures for these preparedness
costs, we allocate them according to the proportion of total US ignitions that
occur within our study area on an annual basis, which is 56%. This leads us
to allocate a total of $1.8 billion in preparedness spending from the DOI agen-
cies to our study area, again allocating these costs to homes as described in
Section V.

28. The Forest Service regions that overlap our study area are 01, 02, 03, 04, 05, and 06.
We allocate costs attributed to all regions in proportion to the share allocated to our study
region.
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Appendix Table 1: Descriptive statistics

Panel A. Fire Characteristics (USFS)
Mean P10 Median P90

Acres burned (1000s) 8.07 0.38 1.50 17.00
Suppression cost ($M) 3.79 0.01 0.61 9.54
Nearest home distance (km) 13.35 1.90 10.08 30.06
Elevation (m) 1,724 841 1,776 2,467
Slope (°) 16.71 3.00 16.00 32.00
Temperature (C) 19.70 12.67 19.99 26.25
Precipitation (mm) 0.51 0.00 0.00 1.32
Vapor Pressure Deficit 20.17 10.31 19.66 30.64
Homes in 5 km 167 0 0 91
Homes in 10 km 764 0 0 857
Homes in 20 km 3,329 0 142 6,472
Value in 5 km ($M) 55 0 0 15
Value in 10 km ($M) 230 0 0 159
Value in 20 km ($M) 987 0 24 1,521

Panel B. Totals by Agency
USFS BLM BIA NPS Cal Fire Total

Number of fires 2,321 1,788 300 139 117 4,665
Acres burned (1000s) 18,720 15,905 1,960 958 769 38,313
Suppression cost ($M) 10,539 784 258 228 1,406 13,216

Notes: Table reports descriptive statistics for fires in our sample. P10, P50, and P90
indicate the 10th, 50th (median), and 90th percentile of values. Aspect is given in
degrees, elevation is in meters above sea level, fire cost is in 2017 US $, nearest home
distance is in kilometers, homes is the number of homes within the given distance,
precipitation is in mm, slope is in degrees, temperatures is in Celsius, and Vapor
Pressure Deficit is in millibars.
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Appendix Figure 1: Wildfires by Agency

NPS BIA

USFS BLM Cal Fire

Notes: Figure documents locations of fires included in the dataset. Left four maps are
the federally managed fires between 1995 and 2016 larger than 300 acres. Rightmost
map shows CAL FIRE-managed fires between 2011 and 2016 larger than 300 acres.
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A.B Parcel Data

The homes data include information on home locations, values, year built, and
other property characteristics for 18.5 million parcels, or nearly all of the homes
in the western United States. We also include homes within 50 km of these states
to accurately capture the nearness and number of homes for wildfires that occur
near the eastern borders of our study area. These data represent a compilation
of tax assessor data from individual counties (CoreLogic, Inc. 2014).29 We
inflate home values and prices to 2017 $ using a state-level housing price index
from the Federal Housing Finance Agency (FHFA 2018). A primary advantage
of these data is the inclusion of detailed locational information; specifically
the data include both latitude and longitude as well as street address for each
parcel. While previous studies in this area rely on publicly available data on the
number and value of homes in a Census block (Gebert, Calkin, and Yoder 2007;
Gude et al. 2013), this confidential dataset enables us to precisely locate homes
relative to wildfire ignition points. Because Census blocks can be large in rural
areas and particularly when located near national forests, the standard approach
using Census block centroids introduces substantial noise into the estimate of
distance-to-nearest parcel for each fire. In Section A.B.1 we document the
improved locational precision and the data quality benefits produced by this
approach.

We limit the sample to include only homes in partially vegetated areas that
would be threatened by wildland fires, based on wildland-urban interface (WUI)
categories identified in Radeloff et al. (2005)30. Specifically, we include homes
located in the following vegetation categories: high density interface, high den-
sity intermix, medium density interface, medium density intermix, low density
interface, low density intermix, very low density vegetated, and uninhabited
vegetated.31 We exclude homes in areas without wildland vegetation, and specif-
ically in areas with the following categories: high density no vegetation, medium
density no vegetation, low density no vegetation, very low density no vegeta-
tion, and uninhabited no vegetation. Because the federal government controls
so much land in the West, and so much residential development is in wildland
areas, these sample exclusions are not particularly restrictive. Our analysis

29. This proprietary compilation was provided by CoreLogic© through a data agreement
with Stanford University. Our comparisons to publicly-available home counts at the tract
level, available upon request, confirm the comprehensiveness of the data.
30. We use a more recent version of these data, updated through 2010 (Silvis Lab 2018).
31. Because the WUI data are built from Census records and our parcel data represent

precise locations, occasionally a parcel is located in a so-called “uninhabited vegetated” area.
As we rely on the WUI data to identify vegetated areas, we include homes in these areas as
well.

A11



ONLINE APPENDIX

dataset includes 9,148,972 homes (about 44% of all residential parcels including
homes, condos, and apartments in the West).32 We also link the homes to the
USFS Wildfire Hazard Potential (WHP) ratings to assess physical fire hazard
(Dillon 2015). These risk scores are designed to “depict the relative potential
for wildfire that would be difficult for suppression resources to contain,” and
combine data from a large-scale fire simulator with spatial fuels and vegetation
data to produce indicators of WHP. For each parcel, we assign a categorical and
a continuous measure of WHP for that location as a measure of the hazard faced
by that parcel. We also add a measure of population density (population per
square meter) from the Gridded Population of the World dataset, which reports
density within roughly one km square grid cells (CIESIN 2017). Finally, we use
data from the 2016 American Community Survey to obtain average household
income for the Census Block Group in which each home is located (U.S. Census
Bureau 2017).

The data also include reported transaction values. As is common for real estate
data, many reported transactions do not represent true arms-length sales. We
use only transaction values determined by CoreLogic to be arms-length transac-
tions, and we further remove transactions indicated as refinancing, foreclosures,
or inter-family transfers. We also exclude transaction values below $10,000 or
above $100,000,000 in 2017 dollars, and transactions prior to 1980. After these
cleaning steps, we have usable transaction values for 69% of homes in the raw
data.

A.B.1 Comparison to Census Aggregate Data

Our study uses parcel-level data to assess the locations of homes threatened
by wildfire. Previous studies rely on counts of housing units at the Census
block scale (Gebert, Calkin, and Yoder 2007; Gude et al. 2013). Appendix
Table 2 demonstrates that high-risk regions are systematically likely to have
large Census block sizes. The average Census block size for homes in the highest
decile of firefighting cost is 7.0 square km, and the 95th percentile is 29.7 square
kilometers. This large grid size introduces substantial noise into geographic
analyses of aggregate home counts. Our study instead uses parcel-level data
to assess home locations. This represents a substantial increase in granularity
over existing studies.33 The degree of this advantage over aggregate block-

32. This sample of 9.1 million homes used to estimate Equation (1) also includes homes near
the study area but lying in bordering states in order to appropriately account for all nearby
homes. In our main results, we report the expected protection cost only for homes in the 11
western states.
33. A separate advantage of parcel-level data over Census data is that we know the year in

which a home was constructed, and thus whether the home was present at the time of each
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level data depends on the accuracy with which parcel locations are reported in
the real estate data. The underlying records in this dataset are collected by
county tax assessors, and the quality of the data varies across counties. In the
following section, we describe the process by which we obtain highly accurate
parcel locations for the dataset and the advantages this provides relative to
using Census block centroids.

The process of generating geographic coordinates for individual structure loca-
tions is called geocoding. This section compares the default geocoding for the
homes in our dataset to an alternative geocoding algorithm. We also compare
our results using methods to identify homes based on publicly available data
that have been used in related work (e.g., Gebert, Calkin, and Yoder 2007;
Radeloff et al. 2005; Radeloff et al. 2018).

The housing data used in this project come from a compilation of tax assessor
data. This dataset includes a field identifying the latitude and longitude of
each home in the dataset. Overall, careful investigation of subsamples of the
data imply that these coordinates are quite accurate. However, these default
locations sometimes locate multiple homes in precisely the same geographic
location. To improve the accuracy of parcel locations, we implemented a secure,
locally-hosted geocoding algorithm on a local server to calculate coordinates for
each home. We used a locally hosted instance of the Nominatim geocoder34

to geocode homes in our dataset based on the address field, while maintaining
data confidentiality and security.

Overall, the geographic coordinates generated by Nominatim align closely with
the default locations in the homes data. The median distance between reported
locations is 41 meters. For most homes, we believe that the Nominatim locations
represent small shifts that slightly improve location accuracy. The exception is
for addresses that include typographical errors. In this case, Nominatim may
return locations that are not meaningful – for example, that may be hundreds
of kilometers outside of the county containing the home.35 To eliminate these
errors, we backstop the Nominatim locations with the default locations in the
original dataset (which tend to be more accurate but less precise) using the
following rule: if the Nominatim location is A) more than one km outside of the
county given in the tax assessor data, B) differs from the tax assessor location
by more than 5 km, or C) was not obtained using the street address (e.g., was

fire in the dataset. Census data report static housing counts every 10 years.
34. Nominatim uses Open Street Map data to conduct forward and reverse geocoding and

is available at https://github.com/openstreetmap/Nominatim.
35. The County field in the underlying dataset is likely to be particularly reliable, since the

dataset is assembled from individual county tax records.
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Appendix Table 2: Census Blocks in High-Cost Areas are Large

Area in km2

Mean P90 P95 P99 Homes
All populated census blocks 1.2 0.9 3.0 22.9 417,229
Highest decile of firefighting cost 6.8 13.8 27.6 97.4 41,564

Notes: Table shows the distribution of areas for Census blocks, in square
kilometers. Row 1 includes all 2010 Census blocks with greater than zero
housing units. Row 2 includes the 10% subset with the highest average ex-
pected protection costs as identified in our study. While Census blocks tend
to be small overall, the areas of greater interest for understanding firefighting
costs are systematically larger. Data on Census block areas, housing counts,
and locations are from the US Census Bureau.

geolocated by the Nominatim algorithm based only on city and state), we use
the tax assessor location instead. Using this backstop method, we re-code 89%
of the addresses in our full dataset using Nominatim, and the remainder with
the default locations in the original dataset.

Previous studies of wildland-urban interface issues have used publicly-available
Census data to identify approximate home locations. The decennial Census in-
cludes counts of population and housing units at the Census block level. Forestry
studies frequently use these block-level aggregate data to locate homes (e.g., by
average population over the area of the Census block, or assigning population
to the centroid).36 One challenge with using aggregate Census data is that Cen-
sus blocks in areas with high fire hazard tend to be many square kilometers or
more, reducing the accuracy of the approach. Appendix Table 2 shows this. On
the other hand, Census block-based approaches do not rely on the accuracy of
address-based geocoding. In Appendix Section B.A.2, we show our main results
are not sensitive to the geolocation method used.

B Additional Results and Robustness Checks
B.A Effect of Homes on Fire Costs

B.A.1 Robustness Checks

Appendix Table 3 shows the results from Table 1 in the main text, including
coefficients on the control variables as well as an additional “no controls” spec-

36. Martinuzzi et al. (2015) describes one approach in detail, including how raw Census
blocks are processed to remove portions that overlap public land and other steps.
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ification. It also shows an additional specification that includes controls for the
distance from the ignition point to the nearest primary road.37

Appendix Table 4 shows a robustness check proposed by Oster (2019), building
on Altonji, Elder, and Taber (2005) and related work. This sensitivity test
bounds the potential bias from unobservable confounders under an assumption
about δ, the relative degree of selection on observables and unobservables, and
an assumption about Rmax, the R2 of a hypothetical regression containing all
the observables and unobservables. Oster (2019) shows that for δ = 1 (equal
selection on observables and unobservables), the bias-adjusted treatment effect
β∗ is approximately β̃ − [β̇ − β̃]Rmax−R̃

R̃−Ṙ
. Here, β̃ and R̃ are the coefficient and

R2 from a regression with the full set of controls, and β̇ and Ṙ come from a
restricted specification. This approximate formula provides intuition: results are
more robust when including controls produces smaller changes in the coefficient,
and larger increases in the R2.

We implement the exact version of the calculation provided in Oster (2019)
and the software package psacalc. Because Oster’s test is limited to a scalar
treatment, we implement the regression test for a linear version of Equation
1, where Homes is the distance from the ignition point to the nearest home
(this is a mild restriction given the near-linearity apparent in Figure 3). The
restricted specification includes only national forest fixed effects. The controlled
specification is Column (3) from Table 1, the richest set of controls that we
discuss. It includes the weather, topography, and vegetation variables described
in Table 1 and Appendix Table 3. It also includes year-month by state (i.e.,
month of sample by state) dummies that proxy for unobservable changes in fire
risk due to factors such as fuel dryness. We follow Oster (2019) and assume
that Rmax = 1.3R̃. The final column of Appendix Table 4 reports Oster’s
recommended quantity, an “identified set” for the effect of distance to homes on
fire costs. The lower bound is the bias-adjusted treatment effect assuming δ=1,
and the upper bound is β̃. In Oster’s framework, results are considered robust
when this set excludes zero. This condition holds in our case.

As an additional step to investigate the robustness of our results, Appendix
Table 6 repeats the regression analysis reported in Table 1 with differing mini-
mum fire size cutoffs. The United States Forest Service and other agencies only
consistently report per-fire cost data for fires larger than 300 acres. We apply
that restriction uniformly across the datasets we use. In principle, if costly fires
are systematically more likely to be coded as above 300 acres when they occur

37. Road data come from the US Census TIGER/Line shapefile for primary roads for 2016
(U.S. Census Bureau 2016). Primary roads roughly correspond to interstate highways.
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nearer to homes, then this cutoff could explain a portion of the relationship
between home proximity and fire cost we document in the paper. Appendix
Table 6 considers whether our results are sensitive to using other, larger size
cutoffs. The “Baseline” column matches the preferred estimates reported in
column (2) in Table 1, while the remaining four columns estimate the same
model with only fires larger than 400, 500, 750, and 1000 acres. We do not
find that the results are sensitive to these exclusions, providing evidence that
the population of fires that cross these various size thresholds is not selected in
some way that would affect our estimates.

Appendix Table 5 shows additional robustness checks for the effects of the num-
ber of nearby homes on fire costs. Columns (1) through (5) show the same
checks that we showed for the effect of the nearest home in Table 1. Our results
are robust to these various tests. Column (6) shows an additional specification
that measures the stock of nearby homes by total transaction value, instead of
number of homes. Results are again similar.

Appendix Figure 2 shows results using different radii around the ignition point
to count threatened homes. The omitted category in each regression is fires with
zero homes within the radius. The other bins in each regression are defined by
deciles of number of homes, conditional on any homes within the radius. For all
three radii, there is a clear pattern of quick increases across the first two bins,
and then roughly constant costs at higher numbers of homes. Note that direct
comparisons of these coefficients across bins are difficult, since the compari-
son group of fires with zero threatened homes is systematically different across
columns (e.g., for 40 km, all fires with zero homes are very remote by construc-
tion). Several other effects also presumably occur simultaneously as we widen
the radius: since further-away homes have less effect on costs, these measures at-
tenuate somewhat; however, because calculating density over a wider area may
reduce noise in our assessment of the number of threatened homes, there may
be another factor making these measurements more precise. Finally, note that
the actual bin endpoints vary across models. Importantly, however, the obvious
non-linear pattern of costs by number of homes exists for any radius.

Appendix Figure 3 plots covariate overlap for the covariates included in the
regressions.
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Appendix Table 3: The Effect of Proximity to Homes on Firefighting Costs:
Full Results

(1) (2) (3)

Distance to Homes (km)
10–20 -0.49 -0.44 -0.48

(0.17) (0.15) (0.16)
20–30 -1.06 -1.04 -1.10

(0.32) (0.28) (0.29)
30–40 -2.43 -1.80 -1.87

(0.38) (0.47) (0.53)
40+ -3.05 -2.40 -2.45

(0.28) (0.42) (0.46)
Temperature 0.17 0.17

(0.09) (0.09)
Temperature2 -0.01 -0.01

(0.00) (0.00)
Wind speed 0.05 0.06

(0.03) (0.03)
Wind speed2 -0.00 -0.00

(0.00) (0.00)
Slope 0.04 0.04

(0.02) (0.02)
Slope2 -0.00 -0.00

(0.00) (0.00)
Vapor pressure deficit 0.07 0.06

(0.06) (0.06)
Vapor pressure deficit2 -0.00 0.00

(0.00) (0.00)
Precipitation -0.03 -0.03

(0.05) (0.04)
Precipitation2 0.00 0.00

(0.00) (0.00)
Southern aspect 0.28 0.28

(0.14) (0.14)
Distance to primary road 0.01

(0.01)
Distance to primary road2 -0.00

(0.00)

Fuel model No Yes Yes

Fixed-effects
Unit No Yes Yes
State × month No Yes Yes
State × year No Yes Yes

Fires 2,080 2,080 2,080
R2 0.09 0.46 0.46

Notes: Table documents additional sensitivity tests of effect of distance to nearest
home on wildfire suppression costs. Column (2) reproduces Column (2) of Table 1,
showing coefficients for the controls. Column (1) shows a no-controls specification
for comparison. Terrain slope is the linear slope of the ground surface. Wind speed
is average speed on the day of ignition at the reference weather station listed in
FAMWEB (in miles per hour). Vapor pressure deficit is for the ignition location
and day, from PRISM, and measured in hectopascals (millibars). Precipitation is the
amount of precipitation on the ignition day in mm, from PRISM. Fuel model fixed
effects include twelve categories corresponding to LANDFIRE fuel models for brush,
grass, timber, and barren/urban/other with varying levels of burnability within each.
Forest unit fixed effects include 86 national forests in the western US. Standard errors
clustered by national forest.
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Appendix Table 4: Oster’s (2019) Coefficient Stability Test

Restricted Controlled Identified
Specification Specification Set

Coefficient -0.061 -0.058 (-0.026,-0.058)
Standard Error 0.006 0.007
R2 0.27 0.56

Included Controls National Forest FEs National Forest FEs,
Weather, Topography,

Vegetation, Month-of-sample
by state dummies

Notes: Table implements a procedure proposed by Oster (2019) to bound potential selection bias
due to unobservable confounders. See the text of Appendix B.A.1 for details.
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Appendix Table 5: The Effect of Number or Value of Homes

Number Value
(1) (2) (3) (4) (5) (6)

Quintile of homes/value in 30 km
1 0.90 0.91 0.89 0.93 1.23 0.96

(0.31) (0.32) (0.34) (0.35) (0.61) (0.37)
2 1.47 1.43 1.35 1.40 1.47 1.29

(0.38) (0.38) (0.39) (0.41) (0.50) (0.49)
3 1.55 1.54 1.32 1.40 1.92 1.23

(0.43) (0.42) (0.45) (0.44) (0.63) (0.35)
4 1.80 1.78 1.79 1.72 2.39 1.38

(0.38) (0.38) (0.43) (0.43) (0.63) (0.34)
5 1.81 1.85 1.57 1.83 2.08 1.51

(0.42) (0.40) (0.44) (0.47) (0.70) (0.37)

Weather, topography, vegetation No Yes Yes Yes Yes Yes

Fixed-effects
Unit Yes Yes Yes Yes Yes Yes
State × month Yes Yes No Yes Yes Yes
State × year Yes Yes No Yes Yes Yes
State × month of sample No No Yes No No No

Sub-sample Lightning Timber

Fires 2,080 2,080 2,080 1,457 765 2,080
R2 0.43 0.45 0.56 0.46 0.58 0.45

Notes: Table documents effect of number (or value) of homes on wildfire suppression costs.
Columns (1) through (5) reproduce estimates from Figure 4 in the main text, using bins of the
number of homes within 30 kilometers as the variables of interest. The bins are equal observation
bins for fires with at least one nearby home (see Figure 4 for bin ranges). The omitted category
is fires with zero nearby homes. Column (6) shows an alternative specification that measures
the stock of homes within 30 km by total transaction value. Again, bins are equal observation
bins for fires with at least one nearby home, and the excluded category is fires with zero nearby
homes. Homes with unusable transaction values, as defined in Section A.B, are assigned the
average transaction value of other homes withing 30 km of the ignition point. See Table 1 for
details on controls for weather, topography, and vegetation. Standard errors are clustered by
national forest.
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Appendix Table 6: The Effect of Proximity to Homes on Firefighting Costs
(Sensitivity to Fire Size Cutoff)

(1) (2) (3) (4) (5)
Distance to Homes (km)
10–20 -0.44 -0.45 -0.35 -0.42 -0.34

(0.15) (0.16) (0.17) (0.18) (0.21)
20–30 -1.04 -1.10 -1.12 -1.02 -0.90

(0.28) (0.30) (0.30) (0.29) (0.28)
30–40 -1.80 -1.89 -2.01 -2.11 -2.19

(0.47) (0.50) (0.51) (0.59) (0.55)
40+ -2.40 -2.32 -2.35 -2.15 -2.24

(0.42) (0.39) (0.38) (0.45) (0.41)

Weather, topography, vegetation Yes Yes Yes Yes Yes

Fixed-effects
Unit Yes Yes Yes Yes Yes
State × month Yes Yes Yes Yes Yes
State × year Yes Yes Yes Yes Yes

Minimum fire size (acres) 300+ 400+ 500+ 750+ 1,000+

Fires 2,080 1,861 1,708 1,439 1,284
R2 0.46 0.46 0.48 0.48 0.50

Notes: Table reports the sensitivity of the main regression results to a range of
cutoffs for minimum fire size. Column (1) in this table corresponds to column (2)
of Table 1, while columns (2)-(5) report estimates using the same specification but
restricting the sample to fires that are 400, 500, 750, or 1,000 or more acres.
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Appendix Figure 2: Costs by Number of Homes: Alternative Radii
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Notes: Figure reproduces Figure 4 from the main text using alternative radii. Each set
of markers shows coefficients from a single regression using a different radius around
the ignition point of the fire. The bins correspond to deciles of the distribution of
number of homes within the radius, conditional on any homes within the radius. The
omitted category in each regression is fires with zero homes within the radius. For
all three radii, there is a clear pattern of quick increases across the first three to four
bins, and then roughly constant costs at higher numbers of homes.
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Appendix Figure 3: Covariate Overlap by Distance to Nearest Home

Temperature Vapor pressure deficit Wind speed

Day of year Distance to primary road Slope

0 10 20 30 0 10 20 30 40 50 0 10 20 30 40

0 100 200 300 0 50 100 150 200 0 20 40 60

Lightning Southern aspect Timber

FALSE TRUE FALSE TRUE FALSE TRUE

<7.5 km 7.5 − 15 km 15+ km

Notes: Figure shows covariate distributions for the US Forest Service fires analyzed
in Table 1 and Figures 3 and 4. Day of year is the day of the year in which the fire
ignited. Distance to primary road is distance to nearest highway in km. Slope is
the slope percentage, where 100 corresponds to a slope of 1 (i.e., a 45 degree line).
Temperature (C) and vapor pressure deficit are mean daily values from PRISM. Wind
speed is average wind speed from the reference weather station reported in FAMWEB.
Lightning indicates fires caused by lightning. Southern aspect indicates fires igniting
on south and southwest-facing aspects. Timber indicates fires igniting in timber areas
(as defined using Anderson Fire Behavior Fuel Models).
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B.A.2 Sensitivity to geolocation method

The figures and tables in this section explore the robustness of our results to
three possible methods to locating homes: our geolocation method, a method
that follows previous work in using Census block centroids for homes’ locations,
and a method using the Census-based list of places (which include both incor-
porated and unincorporated communities). Appendix Figure 4 reproduces the
regression from Figure 3 in the main text. The results are not qualitatively
sensitive to the choice of location method. However, both of the Census-based
approaches identify few fires with homes more than 40 km away and the cor-
responding standard errors for the estimate of the effect of home nearness on
fire suppression cost are noisier. In our view, both of these facts reflect that the
Census-based approaches systematically underestimate (on average) the dis-
tance to nearest home for fires in remote areas for the reasons we describe
above.
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Appendix Figure 4: Cost by distance to nearest home: Geolocation method
sensitivity
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Notes: Figure documents sensitivity of estimates to alternative geolocation methods.
Each panel estimates the impact of nearest home distance, as measured using three
different methods of locating homes, on log suppression cost. “Parcel Data” uses the
parcel real estate data with the geocoding and backstop method described in paper.
“Census Blocks” uses Census block centroids. “Populated Places” uses the location
information given in the Census Populated Places dataset. Each regression includes
national forest fixed effects, state by month-of-year fixed effects, and state by year
fixed effects. Standard errors are clustered by national forest.

A24



ONLINE APPENDIX

B.A.3 Non-USFS Agencies

The analysis of the effect of home construction on firefighting costs in Section IV
focuses on fires managed by the US Forest Service. Forest Service fires represent
the largest group of expenditures and longest time series in our dataset. The
national forests also provide a useful source of identifying variation, in that
each national forest represents a mostly-contiguous area of public land with
broadly similar landscapes and vegetation. This contiguity allows us to take
advantage of variation in ignition locations within each of these 86 units using
a fixed effects strategy. In comparison, Bureau of Land Management lands
are less likely to consist of large contiguous units of land (instead, patches of
BLM land in each state are managed by a system of district offices). Similarly,
CAL FIRE incidents take place on diffuse private and state lands throughout
California.

For completeness, this section shows the relationship between homes and ig-
nition costs for each of the agencies from which we were able to obtain data.
Given that the empirical design used in the main text is not available for these
other agencies, we focus on raw correlations. Appendix Figure 5 plots log fire-
fighting costs against the distance from the ignition point to the nearest home.
Across agencies, costs decline for fires located further from homes. Given that
the data represent independent administrative databases compiled separately
by each agency, the broad similarities across agencies are notable. For the
US Forest Service, CAL FIRE, the Bureau of Indian Affairs, and the National
Park Service, there is a clear downward relationship with a linear slope between
-0.036 and -0.073. Bureau of Land Management incidents show a different rela-
tionship, with a slope near zero and a lower intercept. One possible explanation
for this difference is that it may reflect the characteristics of fires managed by
BLM. Compared to USFS fires, the fires managed by BLM are more likely to
occur in easier-to-manage grass areas, and less likely to occur in timber fuels.
Notwithstanding this pattern for BLM, the broad agreement across the other
four agencies is reassuring. This is particularly true given the relatively small
size of BLM expenditures relative to USFS and CAL FIRE, both overall and in
per-incident terms (see Appendix Table 1).

Appendix Figure 6 plots log firefighting costs against the total number of nearby
homes. Across agencies, these ln-ln plots imply small or near-zero increases in
firefighting costs as the number of nearby homes grows large.
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Appendix Figure 5: Cost vs. Distance to Nearest Home, by Agency
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Notes: Figure shows binned scatterplots of the relationship between suppression cost
and distance to nearest home for each agency from which we obtained incident ex-
penditure data. The dots show average log incident costs for each decile of distance
to nearest home. The red lines show a linear fit. CAL FIRE is the California Depart-
ment of Forestry and Fire Protection; BIA is the Bureau of Indian Affairs; BLM is
the Bureau of Land Management; and NPS is the National Park Service.
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Appendix Figure 6: Cost vs. Number of Nearby Homes, by Agency
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Notes: Figure shows binned scatterplots of the relationship between suppression cost
and number of nearby homes for each agency from which we obtained incident expen-
diture data. The dots show average log incident costs for each decile of log number
of nearby homes (fires with zero nearby homes are not plotted). The red lines show a
quadratic fit. CAL FIRE is the California Department of Forestry and Fire Protec-
tion; BIA is the Bureau of Indian Affairs; BLM is the Bureau of Land Management;
and NPS is the National Park Service.
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B.A.4 Effect of Homes on the Number of Fires

To evaluate whether adding homes increases the number of fires (in addition to
increasing expenses on each fire), we use panel variation in home construction
near national forests in our dataset. We construct a year-by-national forest panel
including 76 national forests and 20 years. Because new homes are most likely
to affect the number of ignitions in places with relatively low levels of existing
development, we exclude national forests with more than 100,000 homes within
30 kilometers of the national forest boundary in 1995 (this excludes 20% of
national forest areas with the highest 1995 populations).

We implement a range of panel regression specifications. The outcome variable
is the number of fires larger than 300 acres in each forest-year. Our preferred
statistical approach is a Poisson regression, since the number of large fires is a
count variable.38 The key identification challenge in this setting is to separate
the effect of new home construction from other time-varying determinants of fire
probability. Because homes are durable, the number of homes near each national
forest increases monotonically across the sample. We adopt a variety of time
trends and year fixed effects specifications to control as flexibly as possible for
potential secular trends in the number of fires in each national forest caused
by factors like climate change or annual drought cycles. Our results in this
section should be interpreted with caution, since they rest on the assumption
that, conditional on these controls, the trend in new home construction near
each national forest is uncorrelated with other trends in fire occurrence.

Appendix Table 7 shows the results. All of these regressions include national
forest fixed effects to account for time-invariant determinants of fire hazard,
such as local topography. Across specifications, new home development has a
small positive effect on the number of large fires each year. In Column (1), the
estimated coefficient in the Poisson regression is 0.042. This implies that adding
1,000 new homes increases the annual number of fires in this national forest by
about 4.3%. The mean number of large fires in each national forest-year is 1.48,
so this implies that an additional 1,000 homes lead to 0.06 additional large fires
per year. Columns (2)–(5) include alternative polynomial time trends and find
similar results. Column (6) instead includes year fixed effects, which allows for
arbitrary annual trends at the West-wide level. Column (7) shows the same
fixed effects specification in an OLS regression.

38. We use a cluster-robust variance estimator to eliminate the typical limitation of classical
Poisson regression, which is that that the mean and variance of the estimates must be equal.
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Appendix Table 7: The Effect of Homes on the Number of Fires

(1) (2) (3) (4) (5) (6) (7)
Poisson Poisson Poisson Poisson Poisson Poisson OLS

Homes in 30 km (1000s) 0.040 0.049 0.040 0.050 0.042 0.042 0.036
(0.008) (0.011) (0.013) (0.011) (0.012) (0.012) (0.017)

Linear trend No Yes No No No No No
Quadratic trend No No Yes No No No No
Regional trend No No No Yes No No No
Regional quadratic trend No No No No Yes Yes Yes

National Forest FE Yes Yes Yes Yes Yes Yes Yes
Year FE No No No No No Yes Yes

Observations 1,160 1,160 1,160 1,160 1,160 1,160 1,160

Notes: Table reports the results of seven separate regressions examining the relationship between number
of homes in a national forest and the number of fires. In each regression the dependent variable is the
number of fires larger than 300 acres in each national forest-year. Columns (1)-(6) show results for
several Poisson regression specifications, and Column (7) shows an OLS specification for comparison.
The variable of interest is the number homes within 30 kilometers of the national forest boundary, in
thousands. The table reports regression coefficients and standard errors, which are calculated using
a cluster robust variance estimator at the national forest level. For the Poisson specifications, the
coefficients can be converted to expected percentage changes in the number of large fires using calculation
eβ−1. See text for details. The mean number of fires in each national forest-year is 1.5. “Regional Linear
Trends” and “Regional Quadratic Trends” indicate that the regression includes separate polynomial time
trends for each of the five forest service regions included in the study area.
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C Computing Realized and Expected Protection Costs
(Detail)

This section describes the calculations of realized and expected protection costs
in more detail and compares those calculations to alternative approaches. Sec-
tion C.A describes how we compute the counterfactual cost of a fire had no
homes been nearby, including an alternative based on a generalized linear model
(GLM) approach. Section C.B describes in detail the method by which we com-
pute realized protection costs. Section C.C.1 describes the variables that define
the expected protection cost actuarial groups, and Section C.C.2 plots maps of
alternative measures of expected protection cost.

C.A Calculating Counterfactual Costs With No Nearby Homes

Main approach. For each fire i, we use the regression results from Section IV
to calculate ∆i, the increase in firefighting costs relative to what would have
been spent on the incident if there were no nearby homes. Our main approach
computes ∆i using the binned model in Section IV.A. Consider a specification
with 5 bins, corresponding to 0, 10, 20, 30, and 40+ kilometers distance to
nearest home, where the omitted category is the 40+ kilometer bin. Let βd
represent the regression coefficient on the dummy variable for bin d. These
coefficients give the increase in log firefighting costs when the nearest home is
located d km away, relative to 40+ km. The percentage increase in firefighting
costs in raw dollars can be calculated as eβd−0.5s − 1, where s is the sample
analog of the variance of βd (Halvorsen and Palmquist 1980; Kennedy 1981). In
other words, the regression provides an estimate of the average effect of distance
to nearest home on firefighting costs. We use these average effect estimates to
calculate counterfactual costs in the absence of any homes within 40 km. For
homes in bin d, letting ci be the observed cost and c̃i the counterfactual cost,
we calculate c̃i = ci

eβd−0.5s . Then ∆i is ci − c̃i.

Alternative Approaches: GLM and Retransformation. These counterfactual
costs could be computed in other ways. A similar approach with the same OLS
semi-log regression is to use the regression coefficients to generate predicted log
costs under the counterfactual, and then “re-transform” these predicted val-
ues to predictions in dollar units (Duan 1983; Manning et al. 1987; Manning
1998). These counterfactual predicted costs can then be subtracted from pre-
dicted costs given the observed distance to home, ĉi. In practice, the various
retransformation estimators are vulnerable to specification error, especially in
the presence of heteroskedasticity (Manning and Mullahy 2001).

A potentially more attractive approach is to use a statistical model that does
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not require retransformation. Instead of semilog OLS, Manning and Mullahy
(2001) recommends the use of a generalized linear model (GLM) with a log
link function. Among other advantages, the GLM model generates predicted
values in raw dollar units. We implement the GLM approach as a check on
the robustness of our main estimates. Following the results of the selection
algorithm in Manning and Mullahy (2001), we use a GLM model with a gamma
distribution and a log link.39 With the GLM approach, ∆i can be calculated
either by using the implied average change in costs in each distance bin (as
we did for the OLS estimates), or by directly generating predicted costs given
the observed and counterfactual x’s. We show results for both approaches.
Appendix Table 8 shows that the average predicted cost differences are similar
across approaches. The approach using OLS generates slightly smaller predicted
cost differences, implying that the cost differences we use in the main text are
conservative.

C.B Realized Protection Costs (detail)

The incident-specific weight wij assigned to each threatened home j corresponds
to the expected increase in costs if home j were the nearest home to the fire,
relative to a fire threatening no homes. Protection cost ∆i is then allocated
proportionally using the normalized weights w̄ij = wij/

∑
j wij. Compared to

the common alternative of inverse distance weighting (IDW), our approach is
conservative in that it allocates costs more evenly. Under IDW, a home 1 km
from the ignition point would receive more than 15 times the cost allocation
of a home 15 km from the ignition point. Using the regression coefficients as
weights, the 1 km home receives 2 times the cost allocation of the 15 km home.
This exercise divides ∆i across j potentially threatened homes, yielding costs
δij for each home, where

∑J
j=1 δij = ∆i.

Finally, each home’s costs are summed across all observed fires in the dataset.
For home j, this is ρj =

∑I
i=1 δij. We call this quantity the realized protection

cost because it represents the total firefighting costs attributable to the home
during the study period. While the dataset in Section IV was limited to USFS
fires in order to take advantage of variation in ignition locations within national
forests, the calculation of historical firefighting costs described in this section
also includes expenditures by BLM, NPS, and BIA to more fully capture federal
expenditures.

C.C Expected Protection Costs (detail)

C.C.1 Variables Used to Define Actuarial Groups

39. See page 471 in Manning and Mullahy (2001). The resulting value of λ is about 2.3.
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Appendix Table 8: Counterfactual cost differences

(1) (2) (3)
Observed distance OLS GLM GLM

Panel A. Average Percentage Change in Costs
0-10 89 90 90
10-20 85 88 88
20-30 73 82 82
30-40 43 52 52
40+ 0 0 0

Panel B. Average Dollar Difference (thousands)
0-10 4,231 4,278 4,728
10-20 3,021 3,149 3,233
20-30 1,491 1,661 1,785
30-40 562 684 337
40+ 0 0 0

Notes: Table calculates counterfactual costs using alternative estimation methods.
Panel A shows the average percentage decrease in cost for an otherwise-identical fire
with no homes within 40 km. Panel B shows the average difference in expenditures for
an otherwise-identical fire with no homes within 40 km (in thousands of dollars). Col-
umn (1) uses the percentage changes implied by the semilog OLS regression coefficients
to scale the observed costs. Column (2) uses the percentage changes implied by the
GLM regression coefficients to scale the observed costs. Column (3) also uses GLM,
but reports the difference in predicted costs using the observed values of the covariates
and predicted costs with no homes within 40 km.
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Appendix Figure 7: Variables Used to Define Actuarial Groups
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Notes: Wildfire hazard potential from Dillon (2015). Population density from CIESIN
(2017). Regions represent area managed by Geographic Area Coordination Centers,
or GACC (National Interagency Fire Center 2019).
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C.C.2 Maps of Suppression Only and California Measures

Appendix Figure 8 reproduces the map in Figure 6 using the alternative mea-
sures of expected protection cost described in Section V.A.2 of the main text.
Panel A uses the “Suppression Only” cost measure and Panel B uses the “California-
specific” cost measure. The California measure is displayed as zero for all areas
outside California.

Appendix Figure 8: Expected Protection Cost, Alternative Measures

(a) “Suppression Only”

0 10,000 20,000 30,000 40,000 50,000+

Expected Protection Cost (NPV)

(b) California-specific

0 10,000 20,000 30,000 40,000 50,000+

Expected Protection Cost (NPV)

Notes: Figure reproduces Figure 6 showing alternative measures of expected pro-
tection cost. See Section V for a detailed description of the construction of these
measures. Units for the color scale are 2017 dollars per home. The California-specific
measure in Panel (b) is displayed as zero for areas outside California.

C.C.3 Alternative EPC calculations

This section describes two alternative approaches to calculate the expected pro-
tection costs (EPCs). Appendix Table 9 compares implicit subsidy estimates
using different methods to measure the share of expenditures devoted to pro-
tecting homes. Rows 1, 4, and 7 show the main estimates from Table 3. Rows
2, 5, and 8 compute analogous subsidy estimates under the alternative assump-
tion that 72.5% of all fire costs are attributable to protecting homes, based on
USDA (2006). Finally, rows 3, 6, and 9 compute implicit subsidies following a
regression tree approach described below. Each method yields roughly similar
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distributions of expected protection costs.

Appendix Table 9: Expected Protection Costs, Alternative Estimates

N Mean P50 P90 P95 P99
Suppression only ($, NPV) 8.63 1,317 825 2,607 4,189 13,582
Suppression only (interview, $, NPV) 8.63 1,098 664 2,119 3,484 12,246
Suppression only (regression tree, $, NPV) 8.63 1,317 766 2,888 3,560 14,662
All sources ($, NPV) 8.63 3,749 2,314 7,394 11,718 38,284
All sources (interview, $, NPV) 8.63 3,530 2,106 6,889 11,067 38,920
All sources (regression tree, $, NPV) 8.63 3,749 2,196 8,184 10,163 41,178
California ($, NPV) 3.48 4,345 2,638 9,883 13,859 27,516
California (interview, $, NPV) 3.48 3,822 2,322 8,628 12,066 24,547
California (regression tree, $, NPV) 3.48 4,345 2,638 9,883 14,219 27,516

Notes: Table documents expected protection costs calculated using alternative approaches. Rows
1, 4, and 7 are identical to Table 3. Rows 2, 5, and 8 assume that 72.5% of all fire costs are
attributable to homes. Rows 3, 6, and 9 estimate expected protection costs using the regression
tree approach. “N” column is the number of homes represented, in millions. Remainder of columns
are NPV in 2017 $. The method used to divide protection expenditures across individual homes is
the same as in the main analysis.

Machine learning to define actuarial groups. The main analysis assigns homes
to actuarial groups and then averages historical costs for homes in each group
to yield expected protection costs. Instead of having the researcher define these
actuarial groups, it is possible to use a machine learning technique to define
groups. To evaluate the robustness of the actuarial groups used in the main text,
we implemented such an approach using a regression tree. Using right-hand-
side variables supplied by the researcher, the regression tree algorithm groups
homes in order to minimize the prediction error for historical firefighting costs in
each group. The number of groups is governed by a complexity parameter that
specifies the minimum required improvement in prediction accuracy to justify
additional splits. Appendix Figure 9 illustrates the approach. For this figure,
we use a high value for the complexity parameter so that there are relatively few
splits in the tree. The right-hand-side variables are the classes of wildfire hazard
potential (WHP) and six bins of development density as predictors.
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Appendix Figure 9: Illustrative Regression Tree for Defining Actuarial Groups
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Notes: Figure illustrates the regression tree approach to defining actuarial groups
using a restricted set of predictors and a limited complexity parameter. The top
number in each node is the predicted protection cost. The number of homes in each
group is given as “n”.
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D Theory Appendix
This section develops the stylized economic model that guides the empirical
analysis. Sections D.A and D.B introduce the model. Section D.C shows how
behavioral responses depend on average protection costs and marginal protec-
tion costs, yielding a plan for the empirical analysis.

D.A Setup

There are N households indexed by i that choose one of two locations: “safe” or
“risky”. The safe place delivers constant utility ū. Individual i’s utility from the
risky location is ψi − π− s(n). We define θi = ψi − ū as an individual’s relative
taste for the risky place, which has cumulative distribution function Fθ. π is
expected disaster-related costs, which we develop below. s(n) represents the
marginal cost of supplying homes in the risky place given population n. The
amount of land available to be developed in the risky place is unconstrained
in the sense that there is more than sufficient land for all households to locate
there if desired. Excess risky place land is employed in an alternative use that
generates profit w (e.g. farming, timber). Thus, the marginal cost s(n) is the
sum of the land price (w) and the (potentially upward-sloping) marginal cost of
construction. Housing is supplied in a competitive market and all households
consume a single unit of it.40 We adopt a static framework in which development
in the risky place happens all at once. The risky place population is the number
of households whose relative taste for the risky place exceeds housing and private
disaster costs, or n = N [(1− Fθ(π + s(n))].

The probabilities of a natural disaster in the risky and safe locations are ϕ and
0, respectively. During a disaster, the central government chooses an amount
of defensive expenditures, f (e.g. firefighting effort). These expenditures affect
the expected property damages to each individual risky place resident, H(f).
Defensive expenditures reduce expected damages and do so with diminishing
returns: H ′(f) < 0 and H ′′(f) > 0. The optimal response f ∗ minimizes the
sum of defensive expenditures and total property damage, f + nH(f), where n
is population in the risky place.41 Thus, the function f ∗(n) defines the optimal
response for a given population in the risky place. Henceforth we drop the ∗

and write f(n).

40. Furthermore, wages in each location are fixed and each household supplies a single unit
of labor inelastically.
41. This rule mimics the principle of “least cost plus net value change” in the natural re-

sources literature on fire suppression.
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D.B The Market for Housing in the Risky Place

First, consider how the financing of defensive expenditures affects population in
the risky place. One intuitive benchmark is a policy that requires households
to reimburse the central government for their per capita share of defensive ex-
penditures after a disaster.42 In the absence of a disaster, realized household
benefit from living in the risky place is θi. If a disaster occurs, realized house-
hold benefit in the risky place is θi − f(n)

n
− H(f(n)). The last two terms

represent per capita disaster-related cost. This per capita disaster-related cost
shrinks as local population increases.43 Assuming risk-averse households and
perfectly competitive insurance markets, households in the risky place will pur-
chase full insurance covering property losses and defensive expenditures. Pre-
miums will equal expected losses, ϕ[f(n)

n
+H(f(n))]. Thus, the expected benefit

of choosing to live in the risky location is θi − ϕ[f(n)
n

+ H(f(n))]. Equilib-
rium population in the risky place will be the share of households for whom
the expected benefit of the risky location exceeds the cost of locating there, or
n0 = N [(1 − Fθ(ϕ[

f(n)
n

+ H(f(n0))] + s(n0))]. Compare this to an alternative
policy where the central government does not require reimbursement for defen-
sive expenditures. The expected disaster costs borne by households (and thus
the households’ insurance premiums) include only expected property damages,
ϕH(f(n)).44 Private net benefits from locating in the risky place are corre-
spondingly higher.

D.C Potential Distortions Due to Moral Hazard

Having shown how the financing of defensive expenditures affects individual
decisions, we now consider the optimal amount of development in the risky
place. This section explores three potential distortions due to moral hazard and
shows how they relate to empirically observable quantities.

The total net benefit of development in the risky place is,∫ n

0

θidn−
∫ n

0

s(n)dn− ϕf(n)− ϕH(f(n))n (2)

The first term is total WTP of risky place residents; the second is the total
cost of supplying housing; the third is expected defensive expenditures; and the

42. An alternative assumption would be that local governments reimburse the central gov-
ernment (or even self-supply defensive expenditures) and recover these costs through local
taxes. These local taxes would reduce private utility from choosing the risky place.
43. This result comes from the envelope theorem, noting that f(n) is chosen to minimize

disaster costs. The proof is in Appendix Section D.C.
44. The externalized costs of defensive expenditures are assumed to be borne equally by all

households regardless of location through a constant budget-balancing tax equal to 1
N f(n)
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fourth is total expected property damage to all risky place residents.

Expansion into undeveloped high-risk areas

The first potential distortion concerns whether any development occurs in the
risky place. For development in the risky place to be welfare-improving, there
must be some non-zero population for which Expression 2 is positive. This
condition can be re-written in terms of average net benefits as,

ϕ

n
f(n) ≤ 1

n

∫ n

0

[θi − s(n)]dn− ϕH(f(n)) (3)

The right-hand side of Equation 3 is average private net benefit among risky
place residents: WTP for the risky place minus housing costs and expected
private property damage. In order for development in the risky place to be
welfare-improving, average private net benefit must at least equal the quantity
on the left-hand side, which is the expected per-resident cost of defending homes
during a disaster.45 This condition may not hold when the central government
pays for defensive expenditures. When private net benefits are greater than zero
but less than expected protection costs, development occurs and yields negative
net social benefits.

In our empirical analysis, we directly calculate the expected protection cost
ϕ
n
f(n) on the left-hand side of Equation 3 in a spatially disaggregated way for

homes throughout the western United States. Thus, our expected protection
cost estimates can be interpreted as a lower bound on the private net benefits
required for new development in a given risky area to be efficient.

Number of homes in developed areas

Conditional on development occurring, the financing of defensive expenditures
may also have an intensive margin effect on the number of homes in the risky
place. This intensive margin effect depends on the marginal increase in de-
fensive expenditures with population, f ′(n), which depends on the shape of
H(f). Differentiating Expression 2 with respect to n yields the change in net
benefits,

θn − s(n)− ϕf ′(n)− ϕ

[
H(f(n)) +

∂H

∂f(n)
f ′(n)n

]
(4)

45. The cost of defensive expenditures does not have to be divided equally among risky place
residents. In fact, welfare may be higher when costs are allocated in proportion to residents’
WTP for the risky place. Such differentiation makes it possible to balance the marginal resi-
dent’s WTP against marginal (instead of average) defensive expenditures. Absent contracting
frictions, households could in principle reproduce this efficient allocation of protection costs
through private contracts regardless of the statutory assignment of costs.
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The first term is WTP of the marginal risky place resident. The second is the
marginal cost of supplying housing. The third is the expected marginal increase
in defensive expenditures. The final term in brackets is the change in expected
property damages, which includes expected damages for one more home and
decreased expected losses for all inframarginal homes due to increased defensive
expenditures during a disaster.

We can apply the envelope theorem to further simplify Expression 4 to θn −
s(n) − ϕH(f(n)).46 Compare this expression for social marginal benefit to
the private marginal benefit for risky place residents, θn − s(n) − ϕH(f(n)) −
ϕ ∂H

∂f(n)
f ′(n)n. The latter expression includes an additional term equalling the

benefit to inframarginal residents. Thus, private marginal benefit in the risky
place exceeds social marginal benefit (recall that ∂H

∂f
< 0).

Welfare analysis on the intensive margin depends on assumptions about how
development is coordinated. If we assume the marginal resident internalizes all
costs and benefits of their location decision except central government expen-
ditures, then failure to price marginal defensive expenditures leads to excess
development in the risky place. Such an assumption may be justified if a local
government manages risky place development to maximize local benefits, or if
risky place residents arrange private side payments. If we instead assume that
the marginal resident receives no compensation for benefits to inframarginal
households, then the failure to price marginal defensive expenditures is offset
by this second externality. If dispatch of defensive expenditures during disas-
ters is exactly optimal and we only consider small changes in population, these
externalities offset exactly and providing defensive expenditures for free yields
the optimal result on the intensive margin.

Stepping back from this ambiguous result and considering the empirical analysis,
we find that f ′(n) is near zero in already-developed areas. This means that any
intensive margin distortion due to subsidized marginal protection costs would
be small. It also means that spillover benefits to inframarginal residents must
be small because there is little actual change in firefighting dispatch. Thus,
regardless of what one assumes about how development proceeds in already-
developed places, our results imply that any intensive margin distortions are
small. What matters for welfare is instead new development in undeveloped
and sparsely-developed high-risk places, where the large average protection costs
that we measure imply that total benefits may not exceed total social cost.

Private risk-reducing investments

46. Rewrite θn−s(n)−ϕH(f(n))−ϕf ′(n)[1+ ∂H
∂f n]. Optimality of f means that 1+ ∂H

∂f n = 0.
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To explore one more effect of publicly-financed property protection, we extend
the model to allow for durable private investments that reduce vulnerability to
disasters. For wildfires, examples are investments in fire-resistant construction
or vegetation maintenance to create “defensible space.”

Let g represent the amount of private risk-reducing investment by each identical
homeowner in the risky place. Private damages in the event of a disaster are now
H(f, g), with ∂H

∂g
< 0 and ∂2H

∂g2
> 0. Assume that the central government takes

g and n as given when choosing f during a disaster (as happens for wildfire and
other natural hazards). The optimal emergency defensive expenditure f during
a disaster is now given by,

f ∗(n, g) = arg min
f

f + nH(f, g)

so that f ∗ is defined by the first order condition −n∂H(f,g)
∂f

= 1.

If ∂2H
∂f∂g

= 0, private protection has no effect on the government’s choice of
emergency defensive expenditures. If ∂2H

∂f∂g
> 0, private investments g reduce

the rate at which damages decrease with increases in f (the marginal benefit
of emergency defensive expenditures), and thus the optimal choice of f during
a disaster. For example, increased g may reduce a structure’s vulnerability
to wildfire, reducing the need for an aggressive firefighting response (the final
possibility, ∂2H

∂f∂g
< 0, seems unlikely in practice).

Knowing the central government’s dispatch rule for aid during a disaster, home-
owners in the risky place choose g to minimize their private disaster-related
costs. When homeowners must reimburse the central government for their share
of per-capita defensive expenditures, they solve

min
g

g + ϕ
1

n
f ∗(n, g) + ϕH(f ∗(n, g), g)

When homeowners do not pay for defensive expenditures, they solve

min
g

g + ϕH(f ∗(n, g), g)

The first order conditions for these problems are identical except for an ad-
ditional ϕ

n
∂f∗(n,g)

∂g
term for the fully accountable household. This term is the

marginal reduction in future expected emergency defensive expenditures due
to investments in self-protection. Fully accountable households consider this
benefit when choosing g. When emergency defensive expenditures are provided
for free, households do not consider this benefit and thus choose less than the
socially optimal investment in self-protection.
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The importance of this distortion in practice depends on expected emergency
defensive expenditures f and the derivative ∂f

∂g
. Our empirical setting allows us

to observe the former but not the latter, since we do not observe individual risk-
reducing investments. As we discuss in Section VI, the large expected defensive
expenditures that we measure make measuring ∂f

∂g
an important goal for future

empirical work.

Proof that Per-Capita Disaster Costs Decrease in Population

Claim: Per-capita disaster-related costs f(n)
n

+H(f(n)) decrease with n. Proof :
Take the derivative with respect to n and re-arrange.

f ′(n)

n

(
1 + nH ′(f)

)
− f(n)

n2
(5)

Recall f is chosen to minimize f + nH(f), so that the derivative 1 + nH ′(f)

equals zero. Expression 5 reduces to −f(n)
n2 , which is negative.
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