Online Appendix to "Coordination and Bandwagon Effects: How Past Rankings Shape the Behavior of Voters and Candidates"

Riako Granzier Vincent Pons Clemence Tricaud

Appendix A. Additional tables and figures 2
Appendix B. Placebo tests on individual outcomes 28
Appendix C. Robustness tests 38
Appendix D. Analysis at the subdistrict level 45
Appendix E. Newspaper articles analysis 47
Appendix F. External validity within France 52
Appendix G. External validity beyond France 57
Appendix H. French political orientations 83

Appendix A. Additional tables and figures

Table A1: Number of races by election type and year

Election type	Year	Number of races	Election type	Year	Number of races
Parliamentary elections	1958	433	Local elections	1979	1,086
	1962	374		1982	1,062
	1967	405		1985	1,230
	1968	319		1988	1,177
	1973	430		1992	1,425
	1978	423		1994	1,369
	1981	334		1998	1,513
	1988	455	2001	1,301	
	1993	497		2004	1,516
	1997	565		2008	1,074
	2002	519		1,564	
	2007	467		1,905	
	2012	541			
	2017	573		Total	16,222

Notes: Parliamentary elections take place every five years. Until a 2013 reform, local elections were held every three years. In a given election, in each département, only half of the cantons were electing their representative, for a length of six years. Since 2013, local elections are held every six years and all cantons participate in each election. Our sample excludes races with a unique candidate in the first round and those with no second round, explaining the important variations in the number of races across election years shown in the table.

Table A2: Summary statistics - Sample 1

	Sample $1(\mathrm{~N}=22,532)$		Close races $(\mathrm{N}=2,581)$	
	Mean	Sd	Mean	Sd
Panel A. $1^{\text {st }}$ round				
Registered voters	28,313	28,161	28,768	28,268
Turnout	0.636	0.125	0.638	0.124
Candidate votes	0.613	0.122	0.616	0.122
Number of candidates	6.5	3.1	6.5	3.0
Panel B. 2				
Turnout round				
Candidate votes	0.628	0.134	0.647	0.132
Number of candidates	2.1	0.4	2.2	0.5

Notes: Sample 1 is used to measure the impact of ranking first instead of second. Compared to the full sample (see Table 2), sample 1 excludes races in which two of the top three candidates obtained an identical number of votes in the first round (25 races out of 22,557). Close races are defined as races in which the vote share difference between the first and second candidates is under 2 percentage points.

Table A3: Summary statistics - Sample 2

	Sample 2 $(\mathrm{N}=8,865)$		Close races $(\mathrm{N}=1,874)$	
	Mean	Sd	Mean	Sd
Panel A. 1 ${ }^{\text {st }}$ round				
Registered voters	26,349	27,339	27,798	27,978
Turnout	0.711	0.092	0.690	0.099
Candidate votes	0.688	0.092	0.667	0.099
Number of candidates	5.6	2.1	6.3	2.3
Panel B. 2 ${ }^{\text {nd }}$ round				
Turnout	0.709	0.100	0.685	0.106
Candidate votes	0.679	0.103	0.656	0.107
Number of candidates	2.4	0.5	2.5	0.6

Notes: Sample 2 is used to measure the impact of ranking second instead of third. Sample 2 is restricted to races where at least three candidates compete in the first round and the third candidate qualifies for the second round, and excludes races in which two of the top four candidates obtain an identical number of votes in the first round. Close races are defined as races in which the vote share difference between the second and third candidates is under 2 percentage points.

Table A4: Summary statistics - Sample 3

	Sample 3 $(\mathrm{N}=1,978)$		Close races (N=758)	
	Mean	Sd	Mean	Sd
Panel A. $1^{\text {st }}$ round				
Registered voters	40,727	29,148	36,951	29,852
Turnout	0.749	0.073	0.742	0.076
Candidate votes	0.728	0.074	0.721	0.077
Number of candidates	5.9	1.8	6.1	1.8
Panel B. 2 ${ }^{\text {nd }}$ round				
Turnout	0.752	0.073	0.743	0.078
Candidate votes	0.726	0.075	0.716	0.079
Number of candidates	2.6	0.7	2.6	0.7

Notes: Sample 3 is used to measure the impact of ranking third instead of fourth. Sample 3 is restricted to races where at least four candidates compete in the first round and the third and fourth candidates qualify for the second round, and excludes races in which two candidates among the second, third, fourth, and fifth obtain an identical number of votes in the first round. Close races are defined as races in which the vote share difference between the third and fourth candidates is under 2 percentage points.

Table A5: General balance test

	(1)	(2)	(3)
Outcome	Predicted treatment		
	1 vs 2	2 vs 3	3 vs 4
	(sample 1)	(sample 2)	(sample 3)
Treatment	-0.002	-0.003	0.008
	(0.006)	(0.005)	(0.007)
Robust p-value	0.618	0.406	0.320
Observations left	12,484	4,996	1,288
Observations right	12,484	4,996	1,288
Polyn. order	1	1	1
Bandwidth	0.112	0.062	0.042
Mean, left of threshold	0.462	0.480	0.489

Notes: Standard errors, shown in parentheses, are clustered at the district level. We compute statistical significance based on the robust p-value. The unit of observation is the candidate. The outcome is the value of the treatment predicted by the baseline variables listed in the text. The independent variable is a dummy equal to 1 if the candidate placed higher in the first round. We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold and compute the bandwidths according to the MSERD procedure. The mean, left of the threshold gives the value of the outcome for the lower-ranked candidate at the threshold.

Table A6: Impact on running in the $2^{\text {nd }}$ round depending on whether the candidate has a party label

Outcome	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	1vs2			2vs3			3vs4		
	Full	Party	Without	Full	Party	Without	Full	Party	Without
Treatment	0.056	0.061	0.034	0.235	0.235	0.233	0.146	0.169	0.051
	(0.005)	(0.006)	(0.009)	(0.018)	(0.020)	(0.039)	(0.040)	(0.042)	(0.100)
R. p-value	0.000	0.000	0.001	0.000	0.000	0.000	0.003	0.001	0.809
Obs. left	12,272	8,974	2,090	5,347	4,305	1,063	1,169	987	200
Obs. right	12,272	9,054	1,970	5,347	4,267	1,092	1,169	1,003	183
Polyn.	1	1	1	1	1	1	1	1	1
Bdw	0.109	0.094	0.105	0.068	0.069	0.067	0.036	0.039	0.029
Mean	0.941	0.937	0.961	0.572	0.571	0.575	0.300	0.275	0.406

Notes: Standard errors, shown in parentheses, are clustered at the district level. We compute statistical significance based on the robust p-value. The unit of observation is the candidate. In columns 2, 5, and 8 (resp. 3, 6, and 9) the analysis is restricted to candidates running under the label of a political party (resp. without party label). The outcome is a dummy equal to 1 if the candidate runs in the second round. The independent variable is a dummy equal to 1 if the candidate placed higher in the first round. We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold and compute the bandwidths according to the MSERD procedure. The mean, left of the threshold gives the value of the outcome for the lower-ranked candidate at the threshold.

Table A7: Impact on running in the $2^{\text {nd }}$ round depending on whether the candidate is an incumbent

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	1vs2			2vs3		
	Full	Incumbent	Non Incumbent	Full	Incumbent	Non Incumbent
Treatment	0.056	0.045	0.056	0.235	0.154	0.239
	(0.005)	(0.010)	(0.006)	(0.018)	(0.072)	(0.020)
R. p-value	0.000	0.000	0.000	0.000	0.080	0.000
Obs. left	12,272	1,822	8,427	5,347	268	4,080
Obs. right	12,272	2,833	6,208	5,347	364	3,899
Polyn.	1	1	1	1	1	1
Bdw	0.109	0.071	0.111	0.068	0.048	0.072
Mean	0.941	0.953	0.943	0.572	0.642	0.582

Notes: In columns 2 and 5 (resp. 3 and 6), the analysis is restricted to incumbent candidates, who won an election in the same département in the last election (resp. non-incumbent candidates). Other notes as in Table A6.

Table A8: Impact on running in the $2^{\text {nd }}$ round depending on whether the candidate is the district incumbent

	(1)	(2)	(3)		(4)	(5)	(6)	
Outcome	1vs2					2 vs 3		
	Full	Incumbent	Non Incumbent		Full	Incumbent	Non Incumbent	
Treatment	0.056	0.048	0.062		0.235	0.019	0.273	
	(0.005)	(0.013)	(0.007)		(0.018)	(0.103)	(0.021)	
R. p-value	0.000	0.001	0.000		0.000	0.869	0.000	
Obs. left	12,272	1,306	5,598		5,347	163	3,600	
Obs. right	12,272	2,124	4,223		5,347	245	3,391	
Polyn.	1	1	1		1	1	1	
Bdw	0.109	0.073	0.098		0.068	0.045	0.086	
Mean	0.941	0.948	0.936		0.572	0.682	0.548	

Notes: In columns 2 and 5 (resp. 3 and 6), the analysis is restricted to incumbent candidates, who won an election in the same district in the last election (resp. non-incumbent candidates). Other notes as in Table A6.

Table A9: Additional tests on the impact on winning and vote shares conditional on staying in

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	1vs2		2vs3		3vs4	
	Win	Vote share	Win	Vote share	Win	Vote share
Panel A. Value of $E\left(W_{0} \mid x=0, R_{1}>R_{0}\right)$ that would bring $E\left[W_{1}-W_{0} \mid x=0, R_{1}=1\right]$ to 0						
Point estimate	1.038	0.708	0.420	0.507	0.152	0.306
Boot. std error	(0.434)	(0.047)	(0.073)	(0.025)	(0.155)	(0.111)

Panel B. Lowest value of $E\left(W_{0} \mid x=0, R_{1}>R_{0}\right)$ for which $E\left[W_{1}-W_{0} \mid x=0, R_{1}=1\right]$ is nonsignificant

Value	0.31	0.61	0.30	0.47	0.00	0.23

Notes: Panel A reports the value of $E\left(W_{0} \mid x=0, R_{1}>R_{0}\right)$ for which there would be no effect on winning (columns 1, 3, and 5) or on vote shares (columns 2, 4, and 6), conditional on staying in the race. We report the point estimate and its bootstrapped standard error. Panel B reports the lowest value of $E\left(W_{0} \mid x=0, R_{1}>R_{0}\right)$ for which the impact on winning or on vote shares conditional on staying in is not statistically significant at the 5% level. See Section 3.3 for more information.

Table A10: Effects on election outcomes outside the threshold

Outcome	(1)	(2)	(3)		(4)	(5)	(6)

Notes: We estimate the fraction of races in which the higher-ranked candidate finishes the second round ahead of the lower-ranked one and in which the distance between the second-round vote shares of the higher- and lower-ranked candidates is smaller than the average effect of ranking on vote share, conditional on staying in. We restrict our attention to races in which the two candidates at the threshold remained in the second round. Columns 1 to 3 (resp. 4 to 6) consider the lower bound (resp. upper bound) of rankings' effects. The second line of the results (resp. third and fourth line) only considers races in which the vote share difference between the two candidates was under 2 percentage points in the first round (resp. between 2 and 5 percentage points, and strictly higher than 5 percentage points).

Table A11: Impact of ranking 1vs2 depending on the difference between candidates' political orientations

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	Probability to run 1vs2			Probability to win 1vs2		
	Full	Same	Distinct	Full	Same	Distinct
Treatment	0.056	0.352	0.002	0.058	0.305	0.017
	(0.005)	(0.023)	(0.002)	(0.017)	(0.039)	(0.018)
Robust p-value	0.000	0.000	0.686	0.004	0.000	0.624
Observations left	12,272	2,059	7,283	8,027	1,399	7,242
Observations right	12,272	2,059	7,283	8,027	1,399	7,242
Polyn. order	1	1	1	1	1	1
Bandwidth	0.109	0.122	0.072	0.066	0.076	0.072
Mean, left of threshold	0.941	0.647	0.996	0.458	0.317	0.482

Notes: Standard errors, shown in parentheses, are clustered at the district level. We compute statistical significance based on the robust p-value. The unit of observation is the candidate. In columns 1 to 3 (resp. 4 to 6), the outcome is a dummy equal to 1 if the candidate runs (resp. wins) in the second round. In columns 2 and 5 (resp. 3 and 6), the two candidates have the same orientation (resp. distinct orientations). The independent variable is a dummy equal to 1 if the candidate placed higher in the first round. We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold and compute the bandwidths according to the MSERD procedure. The mean, left of the threshold gives the value of the outcome for the lower-ranked candidate at the threshold.

Table A12: Impact of ranking 2 vs 3 depending on the difference between candidates' political orientations

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	Probability to run 2vs3			Probability to win 2vs3		
	Full	Same	Distinct	Full	Same	Distinct
Treatment	0.235	0.627	0.052	0.099	0.223	0.041
	(0.018)	(0.029)	(0.021)	(0.013)	(0.027)	(0.013)
Robust p-value	0.000	0.000	0.045	0.000	0.000	0.012
Observations left	5,347	1,493	3,720	4,398	1,343	3,497
Observations right	5,347	1,493	3,720	4,398	1,343	3,497
Polyn. order	1	1	1	1	1	1
Bandwidth	0.068	0.055	0.073	0.052	0.048	0.066
Mean, left of threshold	0.572	0.286	0.704	0.048	0.023	0.060

Notes as in Table A11.

Table A13: Impact of ranking 3vs4 depending on the difference between candidates' political orientations

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	Probability to run 3vs4			Probability to win 3vs4		
	Full	Same	Distinct	Full	Same	Distinct
Treatment	0.146	0.401	0.029	0.022	0.040	0.014
	(0.040)	(0.065)	(0.050)	(0.011)	(0.027)	(0.009)
Robust p-value	0.003	0.000	0.726	0.052	0.127	0.155
Observations left	1,169	349	824	1,116	325	847
Observations right	1,169	349	824	1,116	325	847
Polyn. order	1	1	1	1	1	1
Bandwidth	0.036	0.038	0.036	0.033	0.034	0.037
Mean, left of threshold	0.300	0.231	0.332	0.005	0.011	0.002

Notes as in Table A11.

Table A14: Impact of ranking 1 vs 2 depending on the strength of the $\mathbf{3}^{\text {rd }}$ - Same orientation

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	1vs2 - Same orientation and $3^{\text {rd }}$ qualifies					
	Full		Gap $2^{\text {nd }}-3{ }^{\text {rd }}<5 \%$		Gap $2^{\text {nd }}-3{ }^{\text {rd }}<2.5 \%$	
	Run	Win	Run	Win	Run	Win
Treatment	0.421	0.369	0.481	0.487	0.587	0.492
	(0.036)	(0.046)	(0.045)	(0.049)	(0.055)	(0.066)
Robust p-value	0.000	0.000	0.000	0.000	0.000	0.000
Observations left	880	840	452	495	277	283
Observations right	880	840	452	495	277	283
Polyn. order	1	1	1	1	1	1
Bandwidth	0.072	0.067	0.085	0.093	0.098	0.102
Mean, left of threshold	0.579	0.270	0.522	0.177	0.413	0.167

Notes: Standard errors, shown in parentheses, are clustered at the district level. We compute statistical significance based on the robust p -value. The unit of observation is the candidate. The sample only includes the races where the third candidate qualifies for the second round and where the top-two candidates have the same orientation. In columns 3 and 4 (resp. 5 and 6), the sample is further restricted to elections where the vote share difference between the candidates ranked second and third in the first round is under 5 (resp. 2.5) percentage points. In columns 1,3 , and 5 (resp. 2, 4, and 6), the outcome is a dummy equal to 1 if the candidate runs (resp. wins) in the second round. The independent variable is a dummy equal to 1 if the candidate placed higher in the first round. We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold and compute the bandwidths according to the MSERD procedure. The mean, left of the threshold gives the value of the outcome for the lower-ranked candidate at the threshold.

Table A15: Impact of ranking 1 vs 2 depending on the political orientation of the $\mathbf{3}^{\text {rd }}$ - Same orientation

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	1vs2 - Same orientation and $3^{\text {rd }}$ qualifies					
	Full		$3^{\text {rd }}$ same		$3^{\text {rd }}$ different	
	Run	Win	Run	Win	Run	Win
Treatment	0.420	0.369	0.128	-0.033	0.480	0.451
	(0.036)	(0.046)	(0.049)	(0.122)	(0.042)	(0.045)
Robust p-value	0.000	0.000	0.023	0.514	0.000	0.000
Observations left	874	841	177	136	708	799
Observations right	874	841	177	136	708	799
Polyn. order	1	1	1	1	1	1
Bandwidth	0.072	0.067	0.088	0.063	0.070	0.081
Mean, left of threshold	0.580	0.270	0.872	0.506	0.521	0.220

Notes: The sample only includes the races where the third candidate qualifies for the second round and did not obtain an identical number of votes as the fourth candidate in the first round, and where the top-two candidates have the same political orientation. In columns 3 and 4 (resp. 5 and 6), the sample is further restricted to elections where the third candidate has the same political orientation as the top two (resp. has a different political orientation). Other notes as in Table A14.

Table A16: Impact of ranking 1 vs 2 depending on the political orientation of the $3^{\text {rd }}$ - Distinct orientations

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	1vs2 - Distinct orientations and $3^{\text {rd }}$ qualifies					
	Full		$3{ }^{\text {rd }}$ same or middle		$3^{\text {rd }}$ on the left or right	
	Run	Win	Run	Win	Run	Win
Treatment	0.003	-0.020	-0.006	-0.003	0.028	-0.021
	(0.005)	(0.026)	(0.004)	(0.027)	(0.015)	(0.057)
Robust p-value	0.743	0.283	0.140	0.780	0.120	0.466
Observations left	2,866	3,171	1,659	2,957	794	647
Observations right	2,866	3,171	1,659	2,957	794	647
Polyn. order	1	1	1	1	1	1
Bandwidth	0.069	0.078	0.050	0.101	0.096	0.075
Mean, left of threshold	0.991	0.488	1.002	0.489	0.962	0.457

Notes: The sample only includes the races where the third candidate qualifies for the second round and did not obtain an identical number of votes as the fourth candidate in the first round, and where the top-two candidates have distinct political orientations. In columns 3 and 4 (resp. 5 and 6), the sample is further restricted to elections where the third candidate has the same political orientation as one of the top two or has a different orientation and is located in the middle of the top two on the left-right axis (resp. has a different political orientation and is located either on the right or on the left of both top two). Other notes as in Table A14.

Table A17: Impact of ranking 1 vs 2 on running in races where the $3^{\text {rd }}$ does not qualify - Leftversus right-wing candidates

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	Running 1vs2-3 ${ }^{\text {rd }}$ does not qualify					
	Left candidates			Right candidates		
	Full	Same	Distinct	Full	Same	Distinct
Treatment	0.039	0.381	-0.001	0.001	0.012	0.000
	(0.008)	(0.056)	(0.001)	(0.003)	(0.021)	(0.001)
Robust p-value	0.000	0.000	0.264	0.656	0.650	0.784
Observations left	3,227	342	1,124	1,785	248	1,889
Observations right	3,049	342	1,111	1,980	248	2,119
Polyn. order	1	1	1	1	1	1
Bandwidth	0.114	0.124	0.041	0.062	0.071	0.076
Mean, left of threshold	0.961	0.619	1.001	0.998	0.988	0.999

Notes: Standard errors, shown in parentheses, are clustered at the district level. We compute statistical significance based on the robust p-value. The unit of observation is the candidate. The sample only includes the races where the third candidate does not qualify for the second round. Columns 1 to 3 (resp. 4 to 6) include only left-wing candidates (resp. right-wing candidates). In columns 2 and 5 (resp. 3 and 6), the sample is further restricted to elections where the two candidates have the same orientation (resp. distinct orientations). The outcome is a dummy equal to 1 if the candidate runs in the second round. The independent variable is a dummy equal to 1 if the candidate placed higher in the first round. We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold and compute the bandwidths according to the MSERD procedure. The mean, left of the threshold gives the value of the outcome for the lower-ranked candidate at the threshold.

Table A18: Impact on winning depending on whether the candidate ran in the last election in the same département

Outcome	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Winning 1vs2			Winning 2vs3			Winning 3vs4		
	Full	Present	Absent	Full	Present	Absent	Full	Present	Absent
Panel A. Impact on winning									
Treatment	0.058	0.063	0.047	0.099	0.098	0.087	0.022	0.015	0.013
	(0.017)	(0.024)	(0.024)	(0.013)	(0.021)	(0.019)	(0.011)	(0.016)	(0.015)
R. p-value	0.004	0.048	0.170	0.000	0.000	0.000	0.052	0.310	0.395
Obs. left	8,027	3,410	4,285	4,398	1,301	2,171	1,116	233	618
Obs. right	8,027	4,192	3,498	4,398	1,460	2,052	1,116	218	626
Polyn.	1	1	1	1	1	1	1	1	1
Bdw	0.066	0.074	0.075	0.052	0.063	0.045	0.033	0.031	0.042
Mean	0.458	0.442	0.482	0.048	0.041	0.049	0.005	-0.001	0.013
Panel B. Bounds on the impact on winning conditional on staying in									
Upper bound	0.059	0.063	0.047	0.122	0.123	0.105	0.050	0.037	0.029
Boot. std error	(0.024)	(0.030)	(0.031)	(0.004)	(0.030)	(0.026)	(0.026)	(0.078)	(0.036)
Lower bound	0.029	0.036	0.021	0.069	0.070	0.059	0.030	0.022	0.014
Boot. std error	(0.023)	(0.029)	(0.030)	(0.015)	(0.024)	(0.021)	(0.020)	(0.070)	(0.031)

Notes: The unit of observation is the candidate. In columns 2,5 , and 8 (resp. 3, 6, and 9), the analysis is restricted to candidates who ran in the same département in the last election (resp. candidates who did not run in the same département in the last election). The independent variable is a dummy equal to 1 if the candidate placed higher in the first round. We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold and compute the bandwidths according to the MSERD procedure. Panel A reports the estimate obtained by taking as outcome a dummy equal to 1 if the candidate wins the second round. Standard errors, shown in parentheses, are clustered at the district level, and we compute statistical significance based on the robust p-value. The mean, left of the threshold gives the value of the outcome for the lower-ranked candidate at the threshold. Panel B reports the lower and upper bounds of the impact on winning conditional on staying in the second round, obtained using the method described in Section 3.3. We use a bootstrapping procedure to estimate the standard errors.

Table A19: Impact on winning depending on whether the candidate ran in the last election in the same district

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	Winning 1vs2			Winning 2vs3		
	Full	Present	Absent	Full	Present	Absent
Panel A. Impact on winning						
Treatment	0.058	0.078	0.068	0.099	0.099	0.085
	(0.017)	(0.025)	(0.026)	(0.013)	(0.024)	(0.020)
R. p-value	0.004	0.018	0.049	0.000	0.001	0.001
Obs. left	8,027	2,929	3,676	4,398	896	1,765
Obs. right	8,027	3,866	2,909	4,398	1,043	1,670
Polyn.	1	1	1	1	1	1
Bdw	0.066	0.094	0.087	0.052	0.059	0.046
Mean	0.458	0.423	0.480	0.048	0.024	0.045
Panel B. Bounds on the impact on winning conditional on staying in						
Upper bound	0.059	0.078	0.069	0.122	0.128	0.102
Boot. std error	(0.024)	(0.033)	(0.035)	(0.004)	(0.033)	(0.028)
Lower bound	0.029	0.050	0.037	0.069	0.079	0.052
Boot. std error	(0.023)	(0.032)	(0.033)	(0.015)	(0.026)	(0.022)

Notes: In columns 2 and 5 (resp. 3 and 6), the analysis is restricted to candidates who ran in the same district in the last election (resp. candidates who did not run in the same district in the last election). Other notes as in Table 18.

Table A20: Impact on winning depending on whether the candidate is an incumbent

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	Winning 1vs2			Winning 2vs3		
	Full	Incumbent	Non Incumbent	Full	Incumbent	Non Incumbent
Panel A. Impact on winning						
Treatment	0.058	0.054	0.049	0.099	0.126	0.088
	(0.017)	(0.031)	(0.021)	(0.013)	(0.052)	(0.015)
R. p-value	0.004	0.229	0.088	0.000	0.065	0.000
Obs. left	8,027	1,864	5,476	4,398	292	3,086
Obs. right	8,027	2,972	4,494	4,398	422	2,985
Polyn.	1	1	1	1	1	1
Bdw	0.066	0.073	0.070	0.052	0.056	0.049
Mean	0.458	0.472	0.460	0.048	0.073	0.043
Panel B. Bounds on the impact on winning conditional on staying in						
Upper bound	0.059	0.054	0.049	0.122	0.159	0.107
Boot. std error	(0.024)	(0.033)	(0.029)	(0.018)	(0.079)	(0.021)
Lower bound	0.029	0.031	0.021	0.069	0.110	0.061
Boot. std error	(0.023)	(0.032)	(0.027)	(0.015)	(0.069)	(0.017)

Notes: In columns 2 and 5 (resp. 3 and 6), the analysis is restricted to incumbent candidates, who won an election in the same département in the last election (resp. non-incumbent candidates). Other notes as in Table A18.

Table A21: Impact on winning depending on whether the candidate is the district incumbent

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	Winning 1vs2			Winning 2vs3		
	Full	Incumbent	Non Incumbent	Full	Incumbent	Non Incumbent
Panel A. Impact on winning						
Treatment	0.058	0.069	0.071	0.099	0.108	0.088
	(0.017)	(0.034)	(0.023)	(0.013)	(0.054)	(0.017)
R. p-value	0.004	0.135	0.017	0.000	0.126	0.000
Obs. left	8,027	1,525	4,735	4,398	171	2,444
Obs. right	8,027	2,777	3,739	4,398	251	2,353
Polyn.	1	1	1	1	1	1
Bdw	0.066	0.093	0.082	0.052	0.048	0.049
Mean	0.458	0.422	0.467	0.048	0.010	0.040
Panel B. Bounds on the impact on winning conditional on staying in						
Upper bound	0.059	0.070	0.071	0.122	0.154	0.107
Boot. std error	(0.024)	(0.036)	(0.032)	(0.018)	(0.084)	(0.023)
Lower bound	0.029	0.046	0.038	0.069	0.149	0.055
Boot. std error	(0.023)	(0.035)	(0.031)	(0.015)	(0.087)	(0.018)

Notes: In columns 2 and 5 (resp. 3 and 6), the analysis is restricted to incumbent candidates, who won an election in the same district in the last election (resp. non-incumbent candidates). Other notes as in Table A18.

Table A22: Impact on campaign expenditures and contributions

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	1vs2		2vs3		3vs4	
	Expenditures	Contributions	Expenditures	Contributions	Expenditures	Contributions
Treatment	-0.009	-0.015	0.033	0.033	0.017	0.007
	(0.012)	(0.014)	(0.022)	(0.023)	(0.079)	(0.082)
Robust p-value	0.367	0.210	0.128	0.149	0.782	0.935
Observations left	5,163	4,928	1,546	1,573	92	92
Observations right	5,163	4,928	1,546	1,573	92	92
Polyn. order	1	1	1	1	1	1
Bandwidth	0.085	0.081	0.053	0.055	0.018	0.018
Mean, left of threshold	0.583	0.611	0.432	0.446	0.353	0.364

Notes: Standard errors, shown in parentheses, are clustered at the district level. We compute statistical significance based on the robust p-value. The unit of observation is the candidate. The sample only includes the elections for which campaign expenditure data are available. In columns 1 and 2 (resp. 3 and 4 , and 5 and 6), we further restrict the analysis to races where campaign expenditures and contributions are available both for the candidate ranked first and the candidate ranked second (resp. second and third, and third and forth). In columns 1,3 , and 5 (resp. 2, 4, and 6), the outcome is the candidate's total expenditures (resp. contributions) spent (resp. received) during the electoral campaign, divided by the number of registered citizens in the district. The independent variable is a dummy equal to 1 if the candidate placed higher in the first round. We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold and compute the bandwidths according to the MSERD procedure. The mean, left of the threshold gives the value of the outcome for the lower-ranked candidate at the threshold.

Table A23: Impact of ranking 1 vs 2 on the presence of same-orientation lower-ranked candidates

Outcome	(1)	(2)	(3)	(4)
	Dummy lower-ranked		Number of lower-ranked	
	Full	Subsample	Full	Subsample
Treatment	-0.002	-0.011	-0.003	-0.017
	(0.005)	(0.013)	(0.005)	(0.014)
Robust p-value	0.506	0.396	0.388	0.222
Observations left	11,432	2,787	11,161	2,662
Observations right	11,433	2,787	11,161	2,662
Polyn. order	1	1	1	1
Bandwidth	0.100	0.067	0.097	0.064
Mean, left of threshold	0.034	0.067	0.037	0.072

Notes: Standard errors, shown in parentheses, are clustered at the district level. We compute statistical significance based on the robust p-value. The unit of observation is the candidate. In columns 2 and 4, we only include races where the third candidate qualifies and the top-two candidates have distinct political orientations. In columns 1 and 2, the outcome is a dummy equal to 1 if a lower-ranked candidate who has the same orientation as the candidate is running in the second round. In columns 3 and 4, the outcome is the number of lower-ranked candidates who have the same orientation as the candidate and are running in the second round. The independent variable is a dummy equal to 1 if the candidate placed higher in the first round. We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold and compute the bandwidths according to the MSERD procedure. The mean, left of the threshold gives the value of the outcome for the lower-ranked candidate at the threshold.

Table A24: Impact of ranking 2 vs 3 on the presence of same-orientation lower-ranked candidates

Outcome	(1)	(2)	(3)	(4)
	Dummy lower-ranked		Number of lower-ranked	
	Full	Subsample	Full	Subsample
Treatment	-0.004	-0.022	-0.005	-0.024
	(0.005)	(0.028)	(0.006)	(0.030)
Robust p-value	0.476	0.433	0.453	0.421
Observations left	5,097	700	4,876	694
Observations right	5,097	700	4,876	694
Polyn. order	1	1	1	1
Bandwidth	0.064	0.048	0.060	0.047
Mean, left of threshold	0.022	0.075	0.023	0.078

Notes: In columns 2 and 4, we only include races where the fourth candidate qualifies and the candidates ranked second and third have distinct political orientations. Other notes as in Table A23.

Table A25: Impact of ranking 3vs4 on the presence of same-orientation lower-ranked candidates

Outcome	(1)	(2)	(3)	(4)
	Dummy lower-ranked		Number of lower-ranked	
	Full	Subsample	Full	Subsample
Treatment	0.013	0.073	0.011	0.067
	(0.009)	(0.047)	(0.008)	(0.045)
Robust p-value	0.112	0.101	0.162	0.138
Observations left	1,204	219	1,319	241
Observations right	1,204	219	1,319	241
Polyn. order	1	1	1	1
Bandwidth	0.037	0.047	0.044	0.054
Mean, left of threshold	0.009	0.031	0.009	0.029

Notes: In columns 2 and 4, we only include races where the fifth candidate qualifies and the candidates ranked third and fourth have distinct political orientations. Other notes as in Table A23.

Figure A1: Turnout in the $2^{\text {nd }}$ round

Notes: Dots represent the local averages of the turnout rate in the second round (vertical axis). Averages are calculated within quantile-spaced bins of the running variable (horizontal axis). The running variable (the vote share difference between the two candidates in the first round) is measured as percentage points. The graph is truncated at 30 percentage points on the horizontal axis to accommodate for outliers. Continuous lines are a quadratic fit. Since we consider the same set of races on each side of the threshold, the graphs are symmetric by construction.

Figure A2: Density of the running variable - McCrary test

Notes: This figure tests if there is is a jump at the threshold in the density of the running variable (the vote share difference between the two candidates in the first round), represented by the solid line. The confidence intervals are represented by thin lines. In our setting, this test is satisfied by construction since we consider the same set of races on both sides of the threshold and, in each race, the higher- and lower-ranked candidates are equally distant to the cutoff.

Figure A3: Vote shares in the first round

Notes: Dots represent the local averages of the candidate's vote share in the first round (vertical axis). Averages are calculated within quantile-spaced bins of the running variable (horizontal axis). The running variable (the vote share difference between the two candidates in the first round) is measured as percentage points. The graph is truncated at 30 percentage points on the horizontal axis to accommodate for outliers. Continuous lines are a quadratic fit.

Figure A4: Impact on $2^{\text {nd }}$ round vote shares

Notes: Dots represent the local averages of the candidate's vote share in the second round (vertical axis). The vote share is set to 0 if the candidate does not run in the second round. Other notes as in Figure A3.

Appendix B. Placebo tests on individual outcomes

We conduct placebo tests to examine whether there is a discontinuity at the threshold for any of the variables used to predict treatment. We first provide information about the construction of each variable. We then show the results in Tables B1 through B3, and visually for four of the variables in Figures B1 through B4.

Candidate's gender: dummy equal to 1 if the candidate is a woman, and 0 otherwise.

- This variable was available in the raw data for most elections. We input it manually based on candidates' first name in elections for which it was missing.
- The variable is set to 0.5 for the 2015 local elections, since each competing ticket was composed of a man and a woman.

Dummies indicating whether the candidate ran and won the previous election, in the same département.

- Constructing these variables required matching candidate names across election years. In parliamentary elections, candidates were matched with candidates in $t-1$. In local elections until 2015, candidates were matched with candidates in $\mathrm{t}-2$, since cantons elected their council members only every other election. In the 2015 local election, candidates were matched with candidates in both $\mathrm{t}-1$ and $\mathrm{t}-2$, since all cantons participated in that year's election.
- We did the matching with the Stata command "reclink", after normalizing first and last names (for instance we dropped accents, special characters, and aristocratic particles). We matched candidates on their first names, last names, and political orientations. We checked all uncertain matches manually.
- The variables are mechanically set to missing for the first elections in the sample: the 1958 parliamentary elections, and the 1979 and 1982 local elections.
- The variables are averaged over the two candidates in the ticket, for the 2015 local elections.

Dummies indicating whether the candidate ran and won the previous election, in the same district.

- These variables were constructed in a similar way as the département-level variables above.
- These variables are set to missing for districts which were created or whose boundaries changed since the last election, including all districts in the 2015 local elections (all districts changed boundaries before that election).

Dummy indicating whether the candidate runs with or without the label of a political party.

- We constructed this variable based on the political labels attributed by the Ministry of the Interior (see Appendix H).

Set of six dummies indicating the candidate's political orientation.

- These variables were constructed by mapping political labels attributed to candidates by the Ministry of the Interior to six political orientations: far-left, left, center, right, far-right, and other. Appendix H shows the mapping between labels and political orientations for each election.

Dummy indicating whether the candidate's orientation is the same as the incumbent's.

- This variable is set to missing for the first elections in the sample and for districts which were created or whose boundaries changed since the last election.
- This variable is set to 0 if the candidate's orientation or the incumbent's orientation is "other".

Number of candidates of the candidate's orientation in the first round.

- This variable includes the candidate in the count.
- This variable is set to 1 if the candidate's orientation is "other": in that case, we consider that no other candidate has the same orientation.

Number of candidates of the candidate's orientation who did not qualify for the second round.

- This variable is set to 0 if the candidate's orientation is "other".

Strength of the candidate in the first round: sum of the first-round vote shares of all candidates of the same orientation.

- This variable includes the candidate's vote share in the sum.
- This variable is equal to the candidate's vote share if her orientation is "other".

Total vote share of non-qualified candidates of the same orientation as the candidate: sum of the first-round vote shares of candidates of the same orientation who did not qualify for the second round.

- This variable is equal to 0 if the candidate's orientation is "other".

Average strength of the candidate's orientation at the national level in the first round.

- This variable is computed using all districts in which at least one first-round candidate had this orientation.
- This variable is set to missing if the candidate's orientation is "other".

Table B1: Placebo tests - 1vs2

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Outcome	Gender	Ran t-1 départe- ment	Ran t-1 district	Won t-1 département	Won t-1 district	Party	Right	Left	Far- right
Treatment	$\begin{gathered} 0.006 \\ (0.008) \end{gathered}$	$\begin{gathered} 0.013 \\ (0.015) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.017) \end{gathered}$	$\begin{gathered} 0.012 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.016 \\ (0.016) \end{gathered}$	$\begin{gathered} 0.008 \\ (0.010) \end{gathered}$	$\begin{gathered} 0.006 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.008 \\ (0.013) \end{gathered}$	$\begin{aligned} & -0.002 \\ & (0.007) \end{aligned}$
Robust p-value	0.462	0.372	0.985	0.481	0.468	0.428	0.689	0.645	0.996
Observations left	13,351	9,563	7,549	9,798	7,522	13,334	13,112	12,854	11,083
Observations right	13,351	9,563	7,549	9,798	7,522	13,335	13,113	12,855	11,083
Polyn. order	1	1	1	1	1	1	1	1	1
Bandwidth	0.122	0.096	0.104	0.099	0.104	0.122	0.120	0.117	0.097
Mean, left of threshold	0.159	0.458	0.485	0.277	0.292	0.823	0.455	0.440	0.061

Table B1: Placebo tests - 1vs2 (continued)

Outcome									
	(10)	(11)	(12)	(13)		(15)			
	Far-left	Center	Other	Same Incum- bent	\# Same	Strength	\# Same	\% votes	National
							not	not	strength
							quali-	quali-	
							fied	fied	
Treatment	0.000	-0.015	0.003	0.005	0.018	-0.001	0.022	0.002	0.001
	(0.001)	(0.005)	(0.003)	(0.018)	(0.029)	(0.004)	(0.028)	(0.002)	(0.002)
Robust p-value	0.777	0.003	0.299	0.936	0.623	0.819	0.451	0.380	0.892
Obs. left	12,265	10,042	12,801	6,821	12,445	12,099	12,325	12,327	11,242
Obs. right	12,266	10,042	12,802	6,821	12,446	12,100	12,326	12,328	11,260
Polyn. order	1	1	1	1	1	1	1	1	1
Bandwidth	0.109	0.086	0.116	0.092	0.112	0.108	0.110	0.110	0.099
Mean, left	0.002	0.036	0.008	0.524	2.187	0.453	0.865	0.057	0.416

Notes: Standard errors, shown in parentheses, are clustered at the district level. We compute statistical significance based on the robust p -value. The unit of observation is the candidate. The outcomes are described in the text and presented in the same order in the table. The independent variable is a dummy equal to 1 if the candidate placed higher in the first round. We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold and compute the bandwidths according to the MSERD procedure. The mean, left of the threshold gives the value of the outcome for the lower-ranked candidate at the threshold.

Table B2: Placebo tests - 2vs3

Outcome	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Gender	Ran t-1 départe- ment	Ran t-1 district	Won t-1 départe- ment	Won t-1 district	Party	Right	Left	Far-right
Treatment	-0.022	0.004	-0.008	-0.012	-0.011	-0.004	0.023	-0.047	0.014
	(0.013)	(0.021)	(0.025)	(0.012)	(0.014)	(0.018)	(0.021)	(0.023)	(0.013)
Robust p-value	0.102	0.888	0.720	0.380	0.376	0.734	0.332	0.040	0.194
Observations left	4,496	4,150	3,162	4,289	3,448	4,564	4,842	4,391	4,453
Observations right	4,496	4,150	3,162	4,289	3,448	4,564	4,842	4,391	4,453
Polyn. order	1	1	1	1	1	1	1	1	1
Bandwidth	0.054	0.065	0.064	0.069	0.072	0.055	0.060	0.052	0.053
Mean, left of threshold	0.129	0.311	0.299	0.097	0.091	0.792	0.381	0.486	0.082

Table B2: Placebo tests - 2 vs 3 (continued)

	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
Outcome	Far-left	Center	Other	Same	\# Same	Strength	\# Same	\% votes not	National strength
				Incum-			not	quali-	quali-

Notes as in Table B1.

Table B3: Placebo tests - 3vs4

| | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Outcome | Gender | Ran | Ran | Won | Won | Party | Right | Left | Far-right |
| | | t-1 | $\mathrm{t}-1$ | $\mathrm{t}-1$ | $\mathrm{t}-1$ | | | | |
| | | départe- | district | départe- | district | | | | |
| ment | | ment | | | | | | | |
| Treatment | -0.026 | -0.052 | -0.048 | 0.027 | 0.020 | 0.042 | -0.052 | 0.087 | -0.013 |
| | (0.020) | (0.039) | (0.043) | (0.016) | (0.015) | (0.033) | (0.039) | (0.042) | (0.018) |
| Robust p-value | 0.158 | 0.260 | 0.355 | 0.098 | 0.215 | 0.165 | 0.208 | 0.050 | 0.420 |
| Observations left | 1,108 | 978 | 801 | 845 | 768 | 1,197 | 1,198 | 1,153 | 1,279 |
| Observations right | 1,108 | 978 | 801 | 845 | 768 | 1,197 | 1,198 | 1,153 | 1,279 |
| Polyn. order | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Bandwidth | 0.033 | 0.049 | 0.045 | 0.037 | 0.042 | 0.037 | 0.037 | 0.035 | 0.042 |
| Mean, left of threshold | 0.069 | 0.327 | 0.312 | 0.020 | 0.020 | 0.780 | 0.357 | 0.426 | 0.070 |

Table B3: Placebo tests - 3vs4 (continued)

	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
Outcome	Far-left	Center	Other	Same	\# Same	Strength	\# Same	\% votes not	National strength
				Incum-			not	quali-	quali-

Notes as in Table B1.

Figure B1: Placebo tests - Candidate's gender

Notes: Dots represent the local averages of the candidate's characteristic (vertical axis). Averages are calculated within quantile-spaced bins of the running variable (horizontal axis). The running variable (the vote share difference between the two candidates in the first round) is measured as percentage points. The graph is truncated at 30 percentage points on the horizontal axis to accommodate for outliers. Continuous lines are a quadratic fit.

Figure B2: Placebo tests - The candidate won the last election in the same district

Notes as in Figure B1.

Figure B3: Placebo tests - Left-wing candidate

Notes as in Figure B1.

Figure B4: Placebo tests - Number of candidates of the same orientation in the first round

Notes as in Figure B1.

Appendix C. Robustness tests

Table C1: Impact on running in the $2^{\text {nd }}$ round and winning - Quadratic specification

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	1vs2		2vs3		3vs4	
	Run	Win	Run	Win	Run	Win
Treatment	0.055	0.050	0.220	0.095	0.144	0.026
	(0.006)	(0.016)	(0.023)	(0.015)	(0.047)	(0.013)
Robust p-value	0.000	0.005	0.000	0.000	0.008	0.041
Observations left	15,067	16,700	6,229	6,277	1,531	1,510
Observations right	15,067	16,700	6,229	6,277	1,531	1,510
Polyn. order	2	2	2	2	2	2
Bandwidth	0.144	0.166	0.088	0.089	0.058	0.057
Mean, left of threshold	0.942	0.461	0.582	0.050	0.312	0.005

Notes: Standard errors, shown in parentheses, are clustered at the district level. We compute statistical significance based on the robust p-value. The unit of observation is the candidate. In columns 1,3 , and 5 (resp. 2, 4, and 6), the outcome is a dummy equal to 1 if the candidate runs (resp. wins) in the second round. The independent variable is a dummy equal to 1 if the candidate placed higher in the first round. We use a quadratic specification: we fit separate polynomials of order 2 on each side of the threshold and compute the bandwidths according to the MSERD procedure. The mean, left of the threshold gives the value of the outcome for the lower-ranked candidate at the threshold.

Table C2: Impact on running in the $2^{\text {nd }}$ round and winning - IK bandwidths

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	1vs2		2vs3		3vs4	
	Run	Win	Run	Win	Run	Win
Treatment	0.056	0.058	0.227	0.099	0.139	0.018
	(0.004)	(0.017)	(0.020)	(0.013)	(0.043)	(0.009)
Robust p-value	0.000	0.004	0.000	0.000	0.006	0.043
Observations left	13,920	7,911	4,334	4,873	1,051	1,553
Observations right	13,920	7,911	4,334	4,873	1,051	1,553
Polyn. order	1	1	1	1	1	1
Bandwidth	0.129	0.065	0.051	0.060	0.031	0.060
Mean, left of threshold	0.941	0.458	0.578	0.048	0.306	0.006

Notes: We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold. We compute the bandwidths according to the IK procedure. Other notes as in Table C1.

Table C3: Impact on running in the $2^{\text {nd }}$ round and winning - MSERD bandwidths divided by 2

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	1 vs 2		2vs3		3vs4	
	Run	Win	Run	Win	Run	Win
Treatment	0.053	0.055	0.214	0.091	0.130	0.027
	(0.006)	(0.023)	(0.025)	(0.018)	(0.056)	(0.016)
Robust p-value	0.000	0.026	0.000	0.000	0.026	0.087
Observations left	6,775	4,205	3,065	2,421	693	656
Observations right	6,775	4,205	3,065	2,421	693	656
Polyn. order	1	1	1	1	1	1
Bandwidth	0.055	0.033	0.034	0.026	0.018	0.017
Mean, left of threshold	0.945	0.460	0.588	0.051	0.325	0.005

Notes: We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold. We compute the bandwidths according to the MSERD procedure, and then divide them by 2. Other notes as in Table C1.

Figure C1: Impact on winning depending on bandwidth choices

Notes: We show the sensitivity of the impact on winning to bandwidth choice, using a linear (left-hand side graphs) or quadratic specification (right-hand side graphs). Dots represent the estimated treatment effect using different bandwidths (horizontal axis). Dotted lines represent the 95% robust confidence interval. When using a polynomial order 1 (resp. 2), we report all estimates for values of the bandwidth from 1 to 10 percentage points (resp. 20 pp), in steps of 0.2 percentage points (resp. 0.4 pp). The vertical red (resp. blue) line gives the value of the MSERD (resp. IK) optimal(bandwidth.

Table C4: Impact on running in the $2^{\text {nd }}$ round and winning - Including controls

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	1vs2		2vs3		3vs4	
	Run	Win	Run	Win	Run	Win
Treatment	0.055	0.053	0.235	0.101	0.154	0.022
	(0.004)	(0.016)	(0.017)	(0.013)	(0.036)	(0.011)
Robust p-value	0.000	0.006	0.000	0.000	0.000	0.049
Observations left	12,584	8,000	4,709	4,431	1,179	1,105
Observations right	12,584	8,000	4,709	4,431	1,179	1,105
Polyn. order	1	1	1	1	1	1
Bandwidth	0.113	0.066	0.057	0.052	0.036	0.033
Mean, left of threshold	0.941	0.330	0.576	0.048	0.299	0.005

Notes: We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold and compute the bandwidths according to the MSERD procedure. We added in the regressions the same baseline variables used to perform the placebo tests (see Appendix B): the candidate's gender; whether she ran in the previous election, in the same département and then in the same district; whether she won a race in the previous election, in the same département and then in the same district; whether she runs with or without the label of a political party; a set of six dummies indicating her political orientation; whether this orientation is the same as the incumbent's; the number of candidates of her orientation who were present in the first round; the number of candidates of her orientation who did not qualify for the second round; her strength in the first round, defined as the sum of first-round vote shares of all candidates of the same orientation; the total vote share of same-orientation candidates who did not qualify for the second round; and the average strength of her orientation at the national level in the first round. To avoid dropping observations, for each control variable, we include a dummy equal to one when the variable is missing and replace missings by 0 s. Other notes as in Table C1.

Table C5: Impact on running in the $2^{\text {nd }}$ round and winning - Using the "ivreg2" command and clustering on both sides of the threshold

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	1 vs 2		2vs3		3vs4	
	Run	Win	Run	Win	Run	Win
Treatment	0.058	0.061	0.242	0.103	0.162	0.022
	(0.004)	(0.021)	(0.019)	(0.013)	(0.033)	(0.010)
Observations left	12,272	8,027	5,347	4,398	1,169	1,116
Observations right	12,272	8,027	5,347	4,398	1,169	1,116
Polyn. order	1	1	1	1	1	1
Bandwidth	0.109	0.066	0.068	0.052	0.036	0.033
Mean, left of threshold	0.941	0.458	0.572	0.048	0.300	0.005

Notes: We run the regressions using the "ivreg2" command, instead of "rdrobust". Standard errors, shown in parentheses, are clustered at the district level, with each cluster encompassing observations on both sides of the threshold. The unit of observation is the candidate. In columns 1, 3, and 5 (resp. 2, 4, and 6), the outcome is a dummy equal to 1 if the candidate runs (resp. wins) in the second round. The independent variable is a dummy equal to 1 if the candidate placed higher in the first round. We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold and compute the bandwidths according to the MSERD procedure. The mean, left of the threshold gives the value of the outcome for the lower-ranked candidate at the threshold.

Table C6: Impact of ranking 2 vs 3 - Excluding races in which the $2^{\text {nd }}$ is close to the $1^{\text {st }}$

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	Full sample 2vs3		Gap $1^{\text {st }}-2^{\text {nd }}>2 \mathrm{pp}$		Gap $1^{\text {st }}-2^{\text {nd }}>4 \mathrm{pp}$	
	Run	Win	Run	Win	Run	Win
Treatment	0.235	0.099	0.254	0.086	0.271	0.087
	(0.018)	(0.013)	(0.019)	(0.013)	(0.020)	(0.011)
Robust p-value	0.000	0.000	0.000	0.000	0.000	0.000
Observations left	5,347	4,398	4,825	3,894	4,254	4,265
Observations right	5,347	4,398	4,825	3,894	4,254	4,265
Polyn. order	1	1	1	1	1	1
Bandwidth	0.068	0.052	0.071	0.052	0.073	0.074
Mean, left of threshold	0.572	0.048	0.555	0.039	0.533	0.023

Notes: Standard errors, shown in parentheses, are clustered at the district level. We compute statistical significance based on the robust p-value. The unit of observation is the candidate. In columns 3 and 4 (resp. 5 and 6), the sample is restricted to elections where the vote share difference between the first and the second candidates in the first round is strictly higher than 2 (resp. 4) percentage points. In columns 1, 3, and 5 (resp. 2, 4, and 6), the outcome is a dummy equal to 1 if the candidate runs (resp. wins) in the second round. The independent variable is a dummy equal to 1 if the candidate placed higher in the first round. We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold and compute the bandwidths according to the MSERD procedure. The mean, left of the threshold gives the value of the outcome for the lower-ranked candidate at the threshold.

Table C7: Impact of ranking $3 v s 4$ - Excluding races in which the $3^{\text {rd }}$ is close to the $2^{\text {nd }}$

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	Full sample 3vs4		Gap $2^{\text {nd }}-3^{\text {rd }}>2 \mathrm{pp}$		Gap $2^{\text {nd }}-3^{\text {rd }}>4 \mathrm{pp}$	
	Run	Win	Run	Win	Run	Win
Treatment	0.146	0.022	0.142	0.020	0.138	0.007
	(0.040)	(0.011)	(0.046)	(0.009)	(0.052)	(0.007)
Robust p-value	0.003	0.052	0.012	0.049	0.035	0.502
Observations left	1,169	1,116	852	929	628	622
Observations right	1,169	1,116	852	929	628	622
Polyn. order	1	1	1	1	1	1
Bandwidth	0.036	0.033	0.035	0.040	0.034	0.034
Mean, left of threshold	0.300	0.005	0.266	-0.001	0.226	-0.001

Notes: In columns 3 and 4 (resp. 5 and 6), the sample is restricted to elections where the vote share difference between the second and the third candidates in the first round is strictly higher than 2 (resp. 4) percentage points. Other notes as in Table C6.

Appendix D. Analysis at the subdistrict level

As discussed in Section 3.3 of the paper, we use within-district variation to identify which types of voters drive the conditional effects of rankings. The finest level of aggregation of electoral results is the precinct (polling station). Results at the precinct level are available for all local elections beginning in 2001, and all parliamentary elections beginning in 2002. An intermediate level of aggregation between the precinct and the district is the municipality. We collected results at the municipality level for the 1993 and 1997 parliamentary elections, for the 1992, 1994, and 1998 local elections, and for a few districts for which precinct-level results could not be used in the 2001, 2008, and 2011 local elections. All disaggregate results were obtained from the French Ministry of the Interior. Disaggregate results at the level of the precinct or the municipality are unavailable before 1992.

We ran quality checks on the precinct- and municipality-level data, to verify their internal consistency as well as their consistency with district-level results. We dropped 2 percent of the observations which failed these checks and could not be corrected.

Overall, we have disaggregate results for 14,511 races, accounting for 64.4 percent of all races used to measure the effects of ranking 1vs2. There are 33 precinct- or municipality-level results for the average race, totaling up to 475,501 subdistrict-level results.

In each district and race, we split precincts or municipalities into terciles. Terciles are defined based on the first-round total vote share of candidates placed first and second in the district; on the total vote share of lower-ranked candidates; and on the share of non-candidate votes (encompassing non-voters and blank and null votes), respectively. These three fractions are computed using the number of registered citizens in the first round as denominator, and their sum is equal to 1 . On average, the vote share of the top-two candidates is equal to 31.3 percent, 38.3 percent, and 45.9 percent in the first, second, and third terciles, in the first set of terciles. In the second set of terciles, the average vote share of lower-ranked candidates per tercile is equal to 15.9 percent, 20.8 percent, and 27.1 percent, respectively. In the last set of terciles, the average share of non-voters and blank and null votes per tercile is equal to 34.1 percent, 40.6 percent, and 47.1 percent, respectively.

All regressions use candidates' unconditional vote shares in the precinct or in the municipality as outcome. The running variable is defined at the district race level.

Table D1: Impact of ranking 1vs2 on vote share - Subdistrict level analysis

Outcome	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	Vote share in the second round 1vs2 - subdistrict level analysis									
	Full Sample	Vote share top2			Vote share other candidates			Share non-candidate votes		
		T1	T2	T3	T1	T2	T3	T1	T2	T3
Treatment	0.022	0.016	0.023	0.024	0.026	0.014	0.024	0.025	0.023	0.018
	(0.000)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Robust p-val.	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
P-val. $T 1=T 3$				0.000			0.193			0.000
Obs. left	40,966	22,125	20,893	47,017	24,481	33,315	24,430	24,340	22,095	20,690
Obs. right	40,966	22,125	20,893	47,017	24,481	33,315	24,430	24,340	22,095	20,690
Polyn. order	1	1	1	1	1	1	1	1	1	1
Bandwidth	0.015	0.024	0.024	0.057	0.027	0.039	0.029	0.027	0.025	0.025
Mean	0.468	0.462	0.465	0.469	0.468	0.468	0.457	0.464	0.464	0.467

Notes: The outcome is defined at the subdistrict race level (precinct or municipality) and the analysis run at this level. The running variable is defined at the district race level, and standard errors are clustered at that level. We compute statistical significance based on the robust p-value. The unit of observation is the candidate. The outcome is the vote share of the candidate in the second round, equal to 0 if the candidate does not stay in the second round. In each district and race, we allocate precincts to terciles. In column 2 (resp. 3 and 4), the sample is restricted to precincts for which the share of non-candidate votes in the first round falls in the first tercile (resp. second and third terciles). In column 5 (resp. 6 and 7), the sample is restricted to precincts where the vote share of the top-two candidates in the first round falls in the first tercile (resp. second and third terciles). In column 8 (resp. 9 and 10), the sample is restricted to precincts where the vote share of candidates other than the top two in the first round falls in the first tercile (resp. second and third terciles). All heterogeneity variables are expressed in terms of the number of registered citizens. We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold and compute the bandwidths according to the MSERD procedure. The mean, left of the threshold gives the value of the outcome for the lower-ranked candidate at the threshold. Below the robust p-value, we provide the result of a test of the hypothesis that the coefficients computed in the first and third terciles are equal to each other.

Appendix E. Newspaper articles analysis

We used Factiva's research tool (Dow Jones \& Company) to collect all newspaper articles released between the two rounds of all parliamentary elections since 1997 and containing the entities élection*, électoral*, législative*, candidat*, or circonscription*, as well as all articles released between the two rounds of all local elections since 1998 and containing the entities élection*, électoral*, cantonale*, or candidat*, or the word "canton" or "cantons". ${ }^{1}$ For the 2015 local elections, we also collected articles containing the entity départementale* since these elections were called "départementales" instead of "cantonales" as the previous ones. Articles ranked by Factiva under the "sport" category were discarded. Table E1 displays the number of articles collected for each election.

Table E1: Number of newspaper articles by election type and year

Election type	Year	Number of articles	Election type	Year	Number of articles
Parliamentary elections	1997	378	Local elections	1998	370
	2002	766		2001	511
	2007	6,396		2004	3,832
	2012	11,789		2008	10,313
	2017	14,434		2011	9,561
				2015	18,329
	Total	33,763		Total	42,916

Quantitative analysis

To identify articles mentioning candidates' names and to count the number of mentions, we proceeded in two steps. First, we normalized the first and last names of all candidates ranked first to fourth in the first round of each race, in the election results. For instance, we dropped accents, special characters, and aristocratic particles, and we completed compound first names to the extent possible when one of the components was only indicated by its first letter. In the 2015 local

[^0]elections, where the names of both candidates in each ticket were concatenated in a single field, we separated the two names and, for each candidate, the first and last name. Second, we harmonized the text of all newspaper articles in Python. For instance, we separated words wrongly tied together and removed accents, aristocratic particles, and extra blank spaces. We then counted the total number of articles mentioning the candidate's first and last names at least once; the total number of mentions (counting twice the articles in which the candidate is mentioned twice, thrice the articles in which they are mentioned thrice, etc.); and the total number of articles mentioning the candidate in the title. For the 2015 local elections, we computed the average number of mentions of the two candidates of each ticket. The results are reported in Table E2 and shown graphically for the number of articles mentioning the candidate in Figure E1.

Table E2: Impact on press coverage

Outcome	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	1 vs 2			2vs3			3 vs 4		
	Articles	Mentions	Titles	Articles	Mentions	Titles	Articles	Mentions	Titles
Treatment	-0.155	-0.013	0.035	0.055	0.184	0.048	0.085	0.111	-0.009
	(0.558)	(0.995)	(0.048)	(0.593)	(1.009)	(0.035)	(0.138)	(0.263)	(0.008)
R. p-value	0.793	0.981	0.472	0.925	0.921	0.280	0.620	0.669	0.266
Obs left	5,136	5,182	6,398	1,371	1,453	1,462	131	126	280
Obs right	5,136	5,182	6,398	1,371	1,453	1,462	131	126	280
Polyn.	1	1	1	1	1	1	1	1	1
Bdw	0.085	0.086	0.113	0.043	0.046	0.046	0.019	0.019	0.130
Mean	4.449	7.296	0.234	2.037	3.143	0.041	0.108	0.186	0.009

Notes: Standard errors, shown in parentheses, are clustered at the district level. We compute statistical significance based on the robust p -value. The unit of observation is the candidate. The sample only includes the elections for which newspaper articles are available. In columns 1,4 , and 7 , the outcome is the total number of articles mentioning the candidate at least once. In columns 2,5 , and 8 , the outcome is the total number of mentions. In columns 3,6 , and 9 , the outcome is the total number of articles mentioning the candidate in the title. We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold and compute the bandwidths according to the MSERD procedure. The mean, left of the threshold gives the value of the outcome for the lower-ranked candidate at the threshold.

Figure E1: Impact on the number of articles mentioning the candidate

Notes: Dots represent the local averages of the number of articles mentioning the candidate at least once (vertical axis). Averages are calculated within quantile-spaced bins of the running variable (horizontal axis). The running variable (the vote share difference between the two candidates in the first round) is measured as percentage points. The graph is truncated at 30 percentage points on the horizontal axis to accommodate for outliers. Continuous lines are a quadratic fit.

Qualitative analysis

Articles read and annotated manually were chosen as follows. We identified all races with a vote share difference between the top-two candidates smaller than 2 percentage points and in which the first or second candidate was cited in at least one article collected through Factiva. We selected a random subset of 201 of these races and, out of all articles covering these races, up to two articles. Before selecting articles, we removed outliers: articles citing candidates who were cited in a total of 50 articles or more. Using the same process, we selected a random subset of 104
races for the 2 vs 3 discontinuity and 20 races for the 3 vs 4 discontinuity and again, for each of these races, up to two articles. The proportion of close races selected from each discontinuity (201, 104, and 20 races) corresponds to their proportion in the full sample of races starting with the 1997 parliamentary election ($1,347,697$, and 134). Races and articles were drawn independently for each discontinuity, meaning that the same race or the same article could be drawn multiple times. The final dataset includes 613 entries (race*discontinuity*article). We dropped 66 entries after reading the corresponding article and realizing that it did not cover the race or did not cover the candidate but an homonym, leaving us with 547 entries, 517 unique articles, and 296 unique races.

For most of the race*discontinuities, our sample includes two articles. For 55 race*discontinuities, only one article was available. To give equal weight to each race*discontinuity, this article receives a weight of two in all statistics reported in Table E3. This table reports the fractions of articles which:

- mostly cover the higher-ranked (resp. lower-ranked) candidate,
- report speech from the higher-ranked (resp. lower-ranked) candidate,
- report the vote share of the higher-ranked (resp. lower-ranked) candidate,
- mention that a public figure supports the higher-ranked (resp. lower-ranked) candidate for the second round,
- express positive expectations from the higher-ranked (resp. lower-ranked) candidate about their likelihood to win the second round,
- express positive expectations from someone else (e.g., the journalist, a public figure, or another candidate) about the likelihood that the higher-ranked (resp. lower-ranked) candidate wins the second round,
- and mention only candidate rankings (either the ranking of one of the two candidates or both); only the vote shares of both candidates, the gap between them, or the closeness of the race; or both.

Table E3: Newspaper articles analysis

Variables	Full Sample $(\mathrm{N}=547)$	Running variable $\leq 1 p p(\mathrm{~N}=271)$	Sample 1vs2 $(\mathrm{N}=348)$
Panel A. Coverage of the higher- and lower-ranked candidates			
Coverage centered			
On the higher-ranked	16.0	15.4	14.1

Notes: The numbers reported in the table are percentages. The level of analysis is the race*discontinuity*article. For race*discontinuities for which only one article was available, this article receives a weight of two in all statistics. The first column reports the statistics on the full sample, the second column focuses on races where the vote share difference between the two candidates is smaller than 1 percentage point, and the third column focuses on races of sample 1 where we compare close first and close second candidates. Information on the sampling procedure and on the statistics reported in the table is provided in the text above.

Appendix F. External validity within France

Table F1: Summary statistics on parliamentary versus local elections

	Parliamentary $(\mathrm{N}=6,335)$		Local (N=16,222)	
	Mean	Sd	Mean	Sd
Panel A. 1 ${ }^{\text {st }}$ round				
Registered voters	69,560	16,843	12,178	8,181
Turnout	0.682	0.116	0.617	0.123
Candidate votes	0.664	0.114	0.593	0.119
Number of candidates	9.1	4.3	5.5	1.6
Panel B. 2				
Turnout round				
Candidate votes	0.680	0.131	0.608	0.130
Number of candidates	2.2	0.138	0.573	0.132

Notes: This table presents some descriptive statistics on races with two rounds and at least two candidates in the first round, separately for parliamentary and local elections.

Table F2: Impact on running in the $2^{\text {nd }}$ round and winning - Parliamentary elections

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	1vs2		2vs3		3 vs 4	
	Run	Win	Run	Win	Run	Win
Treatment	0.064	0.094	0.240	0.113	0.185	0.006
	(0.009)	(0.025)	(0.035)	(0.023)	(0.052)	(0.012)
Robust p-value	0.000	0.002	0.000	0.000	0.001	0.676
Observations left	3,598	3,434	1,487	1,696	633	682
Observations right	3,598	3,434	1,487	1,696	633	682
Polyn. order	1	1	1	1	1	1
Bandwidth	0.114	0.107	0.064	0.078	0.038	0.042
Mean, left of threshold	0.934	0.438	0.542	0.057	0.241	0.010

Notes: The sample is restricted to parliamentary elections. Standard errors, shown in parentheses, are clustered at the district level. We compute statistical significance based on the robust p-value. The unit of observation is the candidate. In columns 1,3 , and 5 (resp. 2, 4, and 6), the outcome is a dummy equal to 1 if the candidate runs (resp. wins) in the second round. The independent variable is a dummy equal to 1 if the candidate placed higher in the first round. We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold and compute the bandwidths according to the MSERD procedure. The mean, left of the threshold gives the value of the outcome for the lower-ranked candidate at the threshold.

Table F3: Impact on running in the $2^{\text {nd }}$ round and winning - Local elections

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	1vs2		2vs3		3vs4	
	Run	Win	Run	Win	Run	Win
Treatment	0.053	0.044	0.231	0.094	0.105	0.047
	(0.005)	(0.020)	(0.021)	(0.016)	(0.059)	(0.021)
Robust p-value	0.000	0.111	0.000	0.000	0.181	0.033
Observations left	9,042	5,473	3,798	2,903	542	423
Observations right	9,042	5,473	3,798	2,903	542	423
Polyn. order	1	1	1	1	1	1
Bandwidth	0.114	0.063	0.069	0.048	0.034	0.024
Mean, left of threshold	0.944	0.467	0.586	0.043	0.360	-0.003

Notes: The sample is restricted to local elections. Other notes as in Table F2.

Figure F1: Impact on winning across time

Notes: We divided the sample into four time periods (horizontal axis). Dots represent the estimated impact on winning using only elections from the given period (vertical axis). Vertical lines represent the 95% robust confidence interval. The red dotted horizontal line represents the value of the estimate on the full sample.

Table F4: Impact on running in the $2^{\text {nd }}$ round and winning - Left-wing candidates

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	1vs2		2vs3		3vs4	
	Run	Win	Run	Win	Run	Win
Treatment	0.091	0.084	0.298	0.134	0.203	-0.001
	(0.008)	(0.024)	(0.025)	(0.020)	(0.053)	(0.014)
Robust p-value	0.000	0.004	0.000	0.000	0.001	0.976
Observations left	5,945	3,822	2,950	2,507	587	549
Observations right	5,624	3,711	2,864	2,453	634	589
Polyn. order	1	1	1	1	1	1
Bandwidth	0.118	0.071	0.080	0.064	0.037	0.034
Mean, left of threshold	0.908	0.588	0.495	0.058	0.230	0.013

Notes: The sample is restricted to left-wing candidates. Other notes as in Table F2.

Table F5: Impact on running in the $2^{\text {nd }}$ round and winning - Right-wing candidates

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	1vs2		2vs3		3 vs 4	
	Run	Win	Run	Win	Run	Win
Treatment	0.030	0.034	0.202	0.091	0.116	0.068
	(0.006)	(0.023)	(0.035)	(0.021)	(0.073)	(0.025)
Robust p-value	0.000	0.355	0.000	0.000	0.248	0.008
Observations left	4,296	3,726	1,462	1,592	315	364
Observations right	4,729	4,047	1,620	1,783	307	376
Polyn. order	1	1	1	1	1	1
Bandwidth	0.083	0.070	0.047	0.053	0.030	0.038
Mean, left of threshold	0.967	0.396	0.601	0.045	0.331	0.000

Notes: The sample is restricted to right-wing candidates. Other notes as in Table F2.

Table F6: Impact on running in the $2^{\text {nd }}$ round and winning - Excluding local elections which took place on the same date as regional or municipal elections

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	1vs2		2vs3		3vs4	
	Run	Win	Run	Win	Run	Win
Treatment	0.056	0.073	0.274	0.121	0.161	0.024
	(0.005)	(0.019)	(0.022)	(0.015)	(0.045)	(0.012)
Robust p-value	0.000	0.002	0.000	0.000	0.003	0.095
Observations left	8,652	6,048	3,574	3,756	912	926
Observations right	8,652	6,048	3,574	3,756	912	926
Polyn. order	1	1	1	1	1	1
Bandwidth	0.108	0.070	0.070	0.075	0.036	0.037
Mean, left of threshold	0.943	0.452	0.525	0.049	0.240	0.007

Notes: We exclude from the sample the 1992, 1998, 2001, 2004, and 2008 local elections, which took place on the same date as regional or municipal elections. Other notes as in Table F2.

Table F7: Impact on running in the $2^{\text {nd }}$ round and winning - Local elections, excluding those which took place on the same date as regional or municipal elections

Outcome	(1)	(2)	(3)	(4)	(5)	(6)
	1 vs 2		2vs3		3vs4	
	Run	Win	Run	Win	Run	Win
Treatment	0.051	0.058	0.300	0.128	0.057	0.061
	(0.007)	(0.025)	(0.031)	(0.021)	(0.083)	(0.027)
Robust p-value	0.000	0.081	0.000	0.000	0.763	0.042
Observations left	5,231	3,457	1,916	1,756	208	301
Observations right	5,231	3,457	1,916	1,756	208	301
Polyn. order	1	1	1	1	1	1
Bandwidth	0.110	0.066	0.066	0.059	0.022	0.037
Mean, left of threshold	0.948	0.462	0.513	0.042	0.277	0.000

Notes: The sample is restricted to local elections and excludes the 1992, 1998, 2001, 2004, and 2008 local elections, which took place on the same date as regional or municipal elections. Other notes as in Table F2.

Appendix G. External validity beyond France

Appendix G1: Sampling frame

We systematically collected data for worldwide parliamentary elections using a two-round plurality rule and in which the set of eligible voters is identical in both rounds. In all cases, the set of candidates present in the second round are a subset of those present in the first round, with one exception. In Norway's parliamentary elections, candidates can decide to run in the second round even if they did not compete in the first round. This happened in only 24 races, accounting for 8.8 percent of Norway's races and 0.6 percent of the entire sample. We kept both single-member and multi-member constituencies in which voting was conducted at the ticket level so that candidates on the same ticket were either all elected or all defeated.

We first identified elections satisfying these criteria with the following three databases:

- The National Elections across Democracy and Autocracy (NELDA) database (Hyde and Marinov, 2012): This database provides information on all elections for a national executive figure or national legislative body in which voters directly elect the persons appearing on the ballot and mass voting takes place, from 1945 to 2010. Using this source, the following countries were identified as having held two-round parliamentary elections at some point in their history: Albania, Argentina, Armenia, Azerbaijan, Bahrain, Belarus, Benin, Bulgaria, Burkina Faso, Cambodia, Central African Republic, Chad, Comoros, Congo (Brazzaville), Cote d’Ivoire, Croatia, Czech Republic, Democratic Republic of Congo, Egypt, France, Gabon, Georgia, Haiti, Hungary, Iran, Kazakhstan, Kyrgyz Republic, Lebanon, Lithuania, Macedonia, Mali, Mauritania, Morocco, Peru, Poland, Serbia, Sri Lanka, Swaziland, Switzerland, Syria, Tajikistan, Tanzania, Thailand, Togo, Ukraine, Uzbekistan, Vietnam, and Zimbabwe.
- The Constituency-Level Elections Archive (CLEA) (Kollman et al., 2018): This database provides constituency-level results for lower house legislative elections around the world. This source enabled us to identify the following additional countries: Belgium, Bhutan, Germany, Netherlands, Norway, and San Marino.
- The ACE Electoral Knowledge Network (2018): This online repository includes an Encyclopedia of Elections. Using this source, four additional countries were identified: Cuba, Kiribati, Montserrat, and Tokelau.
We then used the following additional sources to make sure that all elections identified in the first step did take place under a two-round system and to record information on the specific electoral system used to elect each parliamentary body: Nohlen's Elections Data handbooks (Nohlen, 2005;

Nohlen and Stöver, 2010), the inter-parliamentary union's PARLINE database on national parliaments (Inter-Parliamentary Union Parline, 2018), the countries' election pages on Wikipedia, and Adam Carr's Election database (Carr, 1999-2022). We discovered that the following countries did not, in fact, hold two-round parliamentary elections satisfying our criteria:

- The two-round election did not occur for the upper or lower house of Parliament but for a different body of government in Bulgaria (elections for a Grand National Assembly, convened to draft a new constitution).
- The two rounds were not conducted with the same type of candidates in Bhutan and San Marino.
- The two rounds were not conducted with the same voters in Zimbabwe.
- A rerun took place due to fraud, not as part of a two-round election in Benin, Burkina Faso, Morocco, Peru, Sri Lanka, Tanzania, and Thailand.
- Our three initial sources incorrectly identified the electoral system, and/or a second round never occurred in Cuba, Monserrat, and Togo.
- Certain districts had multi-member constituencies in which voting did not exclusively occur at the ticket level (for example, voters could place multiple votes for multiple candidates) in Belgium, Kiribati, Cuba, Monserrat, and Togo. In these countries, we kept the singlemember constituencies but removed the multi-member constituencies.
In total we identified 44 countries which held two-round parliamentary elections at some point in their history, and a total of 201 distinct elections. We searched for election results at the constituency level using the following sources: CLEA, Adam Carr's Election Archive, David Lublin's Election Passport dataset, and electoral commissions websites.
- Electoral commissions websites: We first checked whether governments make constituencylevel electoral results available through the websites of their electoral commission. This was the case for Bahrain's 2002, 2006, 2010, and 2014 elections; the Czech Republic's 1996, 1998, 1999, 2000, 2002, 2003, 2004, 2006, 2007, 2008, 2010, 2011, 2012, 2014, 2016, 2017, and 2018 elections; Georgia's 2016 election; Lithuania’s 2016 election; Mauritania’s 2013 election; New Zealand's 1908 and 1911 elections; Poland's 1989 election; and Switzerland's 1990, 1991, 1994, 1995, 1998, 1999, 2003, 2007, 2011, and 2015 elections.
- Bahrain: Bahrain Directorate of Elections and Referendum (2018)
- Czech Republic: Czech Statistical Office (2018)
- Lithuania: The Central Electoral Commission of the Republic of Lithuania (2018)
- Mauritania: Islamic Republic of Mauritania Independent National Electoral Commission
- New Zealand: National Library of New Zealand
- Poland: The official website of the President of the Republic of Poland (2018)
- Switzerland: Swiss Federal Statistics Office
- CLEA database (Kollman et al., 2018): We supplemented the electoral commissions websites with the CLEA dataset, which provides constituency-level voter information for Albania's 2001 election; Belgium's 28 elections between 1847 and 1898; Croatia's 1990 election; Germany's 11 elections between 1877 and 1912; Hungary's 1998, 2002, 2006, and 2010 elections; Lithuania's 2004, 2008, and 2012 elections; the Netherland's eight elections between 1888 and 1913; and Norway's 1906, 1909, 1912, and 1915 elections.
- Psephos (Carr, 1999-2022): Adam Carr's Electoral Archive: This online archive of election statistics is maintained by Adam Carr and includes detailed statistics for presidential and legislative elections from 182 countries. This source supplied information for Comoros' 2004 and 2009 elections, Kiribati's 2002, 2007, and 2016 elections, and Mali's 2013 elections.
- Election Passport (Lublin): This dataset, compiled by David Lublin of American University, comprises constituency election results in 110 countries and territories. It provided detailed information for Haiti's 2015 lower house election and 2016 upper house election.
- National Democratic Institute (NDI) website (Georgia National Democratic Institute): Georgia's data for the 2016 election were gathered from a website created by the National Democratic Institute, a nonprofit organization that supports democratic institutions.
- For countries in which some variables were missing, we supplemented our data with additional sources.
- Georgia: We retrieved blank and null vote count information from a government data file (Election Administration of Georgia).
- Kiribati: We used an additional source to retrieve blank and null vote count information (Stories from Kiribati, 2016).
Overall, we found election results for 72 elections in 19 countries, listed in Table G1.1, and corresponding to a total of 4,075 races with two rounds. ${ }^{2}$ In some elections, our sample only includes a subset of the races because we removed multi-member constituencies, as indicated above, and

[^1]results for some races were not available. ${ }^{3}$ In Table G1.2, we indicate the specific electoral rules used in each country, namely the vote share cutoff required for a candidate to win in the first round and the qualification rule for the second round if the election was not won in the first round.

After gathering these data, we conducted the seven following checks to verify the quality of the data (we focused our tests on elections where a second round took place, as they are the ones included in our analysis):

- Check that the sum of all candidates' votes is within 5 percent of the number of valid votes in the first round. This check was performed on 4,039 elections with two rounds (99.1 percent of the sample), due to data availability.
- Check that the sum of all candidates' votes is within 5 percent of the number of valid votes in the second round. This check was performed on 4,039 elections with two rounds (99.1 percent of the sample).
- Check that only qualified candidates participate in the second round. This check was performed on all elections with two rounds.
- Check that a second round did not occur when an absolute majority was won in the first round. This check was performed on the entire sample.
- Check that a second round did occur when the electoral law dictates it. This check was performed on the entire sample.
- Check that the first round results are consistent, i.e. turnout < registered voters, valid votes $<$ registered voters, and valid votes < turnout. This check was performed on 3,557 elections with two rounds (87.3 percent of the sample).
- Check that the second round results are consistent, i.e. turnout $>$ registered voters, valid votes > registered voters, and valid votes > turnout. This check was performed on 3,254 elections with two rounds (79.9 percent of the sample).

When inconsistencies were found, we cross-checked the results with other sources if multiple sources had been identified. For example, the original data for Lithuania's elections were collected from CLEA and were double-checked with Adam Carr's election dataset. Table G5.4 tests the robustness of the results to excluding the 4.5 percent of races failing any of these tests and whose inconsistencies could not be corrected using alternative sources.

[^2]Table G1.1: Number of races by country, election type, and year

Country	Election Type	Year	Number of Races	Number of Races with a 2nd Round
Albania	Lower	2001	100	45
Bahrain	Lower	2002	38	21
Bahrain	Lower	2006	39	11
Bahrain	Lower	2010	35	9
Bahrain	Lower	2014	39	34
Bahrain	Lower	2018	40	31
Belgium	Lower	1850	4	1
Comoros	Lower	2004	12	4
Comoros	Lower	2009	23	21
Comoros	Lower	2015	23	21
Croatia	Lower	1990	80	51
Czech Republic	Upper	1996	81	77
Czech Republic	Upper	1998	27	27
Czech Republic	Upper	2000	27	26
Czech Republic	Upper	2002	29	28
Czech Republic	Upper	2004	29	28
Czech Republic	Upper	2006	29	29
Czech Republic	Upper	2008	27	26
Czech Republic	Upper	2010	28	28
Czech Republic	Upper	2012	27	27
Czech Republic	Upper	2014	29	29
Czech Republic	Upper	2016	27	27
Czech Republic	Upper	2018	29	27
Georgia	Lower	2016	73	50
Germany	Lower	1877	70	70
Germany	Lower	1878	67	67
Germany	Lower	1881	104	104
Germany	Lower	1884	99	99
Germany	Lower	1887	62	62
Germany	Lower	1890	151	151
Germany	Lower	1893	181	181
Germany	Lower	1898	187	187
Germany	Lower	1903	180	180
Germany	Lower	1907	159	159
Germany	Lower	1912	191	191
Haiti	Upper	2016	10	8
Haiti	Lower	2015	94	86
Haiti	Lower	2015	25	23

Table G1.1: Number of races by country, election type, and year (continued)

Country	Election Type	Year	Number of Races	Number of Races with a 2nd Round
Hungary	Lower	1998	176	175
Hungary	Lower	2002	176	129
Hungary	Lower	2006	176	110
Hungary	Lower	2010	176	57
Kiribati	Lower	2002	9	6
Kiribati	Lower	2007	7	1
Kiribati	Lower	2016	7	1
Lithuania	Lower	1992	71	61
Lithuania	Lower	1996	71	65
Lithuania	Lower	2004	71	66
Lithuania	Lower	2008	71	68
Lithuania	Lower	2012	71	67
Lithuania	Lower	2016	71	68
Mali	Lower	2013	54	45
Mauritania	Lower	2013	39	15
Mauritania	Lower	2018	49	12
Netherlands	Lower	1888	83	25
Netherlands	Lower	1891	80	24
Netherlands	Lower	1894	67	27
Netherlands	Lower	1897	92	50
Netherlands	Lower	1901	89	42
Netherlands	Lower	1905	94	40
Netherlands	Lower	1909	89	36
Netherlands	Lower	1913	95	47
New Zealand	Lower	1908	76	23
New Zealand	Lower	1911	75	30
Norway	Lower	1906	122	70
Norway	Lower	1909	123	75
Norway	Lower	1912	123	63
Norway	Lower	1915	123	66
Poland	Lower	1989	425	262
Switzerland	Upper	1991	3	1
Switzerland	Upper	1999	4	1
Switzerland	Upper	2015	5	1
Total			5,538	4,075

Table G1.2: Electoral rules by country

Country	First round vote share victory cutoff	Candidates qualified for the second round
Albania	50\%	Top two vote earners in the first round
Bahrain	50\%	Top two vote earners in the first round
Belgium	50\%	Top two vote earners in the first round
Comoros	50\%	Top two vote earners in the first round
Croatia	50% of at least 33.3% of registered voters	All candidates with more than 7\% of the votes in the first round
Czech Republic (Upper and lower house)	50\%	Top two vote earners in the first round
Georgia	50\%	Top two vote earners in the first round
Germany	50\%	Top two vote earners in the first round
Haiti	50% or a lead equal to or greater than 35%	Top two vote earners in the first round
Hungary	50\%	Top three vote earners and any candidate who received more than 15% of the votes in the first round. If voter turnout is less than 50%, all candidates qualify for the second round
Kiribati	50\%	Top three vote earners in the first round
Lithuania	50% or the highest vote getter if turnout is under 40% and that candidate gets more than 20% of the votes cast by registered voters.	Top two vote earners in the first round
Mali	50\%	Top two vote earners in the first round
Mauritania	50\%	Top two vote earners in the first round
The Netherlands	50\%	Top two vote earners in the first round
New Zealand	50\%	Top two vote earners in the first round
Norway	50\%	Any candidate, even those not present in the first round
Poland	50\%	Top two vote earners in the first round
Switzerland	50\%	Top two vote earners in the first round

Appendix G2: Descriptive statistics

Table G2.1 shows descriptive statistics for the full sample of races with two rounds in countries other than France. In the average race, 6.2 candidates competed in the first round, 65.0 percent of registered citizens voted in it, and 63.9 percent cast a valid vote for one of the candidates, as opposed to casting a blank or null vote. In the second round, the number of competing candidates ranged from 1 to 9 , with an average of 2.2. Turnout and the fraction of candidate votes were both slightly lower in the second round compared to the first (63.6 and 62.7 percent, on average).

Tables G2.2 and G2.3 show descriptive statistics for the subsets of races used to measure the impact of ranking 1vs2 (sample 1) and 2vs3 (sample 2), defined similarly as in the French sample. Sample 1 includes all races in which at least two candidates participated in the first round of the election, there was a second round, and the top three candidates all obtained different numbers of votes in the first round. Sample 2 is further restricted to races in which at least three candidates participated in the first round and all top four candidates obtained different numbers of votes in the first round.

Table G2.1: Summary statistics beyond France - Full sample

	Mean	Sd	Min	Max	Observations
Panel A. $1^{\text {st }}$ round					
Registered voters	37,699	30,961	426	387,626	3,557
Turnout	0.650	0.169	0.109	0.966	3,535
Candidate votes	0.639	0.174	0.108	0.959	3,557
Number of candidates	6.2	3.3	2	50	4,075
Panel B. 2 ${ }^{\text {nd }}$ round					
Turnout	0.636	0.214	0.087	0.983	3,250
Candidate votes	0.627	0.214	0.086	0.981	3,254
Number of candidates	2.2	0.5	1	9	4,075

Notes: Not all data sources provide registration, turnout, and counts of blank and null votes. Each variable is available for at least 80 percent of the races.

Table G2.2: Summary statistics beyond France - Sample 1

	Mean	Sd	Min	Max	Observations
Panel A. lst round					
Registered voters	37,716	30,966	426	387,626	3,554
Turnout	0.650	0.170	0.109	0.966	3,532
Candidate votes	0.639	0.174	0.108	0.959	3,554
Number of candidates	6.2	3.3	2	50	4,069
Panel B. 2					

Notes: Sample 1 is used to measure the impact of ranking first instead of second. Compared to the full sample, sample 1 excludes races in which two of the top three candidates obtained an identical number of votes in the first round. Other notes as in Table G2.1.

Table G2.3: Summary statistics beyond France - Sample 2

	Mean	Sd	Min	Max	Observations
Panel A. I $^{\text {st }}$ round					
Registered voters	32,285	19,660	426	74,365	783
Turnout	0.638	0.117	0.300	0.925	783
Candidate votes	0.628	0.114	0.265	0.9000	783
Number of candidates	5.9	2.5	3	13	790
Panel B. 2 ${ }^{\text {nd }}$ round					
Turnout	0.645	0.115	0.339	0.903	737
Candidate votes	0.635	0.115	0.271	0.898	738
Number of candidates	2.8	1.0	1	9	790

Notes: Sample 2 is used to measure the impact of ranking second instead of third. Sample 2 is restricted to races where at least three candidates competed in the first round and the third candidate qualified for the second round, and excludes races in which two of the top four candidates obtained an identical number of votes in the first round. Other notes as in Table G2.1.

Appendix G3: Validity tests

Construction of political orientation variables

We build a measure of candidates' political orientation on the left-right axis when information on their political party is available. For 32.1 percent of candidates, party information is either unknown or impossible to locate on the left-right axis, resulting in 64.6 percent of races in which the political orientation of one or more candidates cannot be assessed.

In order to locate political parties on the left-right axis, we used the following process. First, we collected data from the Manifesto Project, ParlGov, and Wikipedia.

- Manifesto Project (Lehmann et al., 2022): The Manifesto Project covers over 1,000 parties from 1945 until today in over 50 countries. From this source, we use party names and abbreviations, party families, and right-left party positions. Political parties are grouped into the following party families: ecological, socialist or other left parties; social democratic; liberal; Christian democracy; conservative; nationalist; agrarian; ethnic and regional; and special issue. This variable is discrete and constant over time. By contrast, the right-left position of parties is continuous and time-variant. It is based on party manifestos. Specifically, the Manifesto Project attributes a value to each of the components listed below, corresponding to the share of manifestos' quasi-sentences falling in the corresponding category. The leftright variable sums the value of the following components: military positiveness, freedom and human rights, constitutionalism positiveness, political authority, free market economy, incentives positiveness, protectionism negativeness, economic orthodoxy, welfare state limitation, national way of life positiveness, traditional morality, law and order positiveness, and civic mindedness positiveness; and subtracts anti-imperialism, military negativeness, peace, internationalism positiveness, market regulation, economic planning, protectionism positiveness, controlled economy, nationalism, welfare state expansion, education expansion, labour groups positiveness, and democracy.
- ParlGov (Döring et al., 2018): ParlGov is a dataset containing parliamentary and government information for all EU and most OECD democracies. It includes approximately 1,700 parties, 980 elections, and 1,500 cabinets. From this source, we use party names, party families, and party positions. Party positions on economic and cultural left-right dimensions are time-invariant unweighted mean values of expert responses. Eight party families are defined based on these positions: communist/socialist, green/ecologist, social democracy, liberal, Christian democracy, agrarian, conservative, and right-wing.
- Wikipedia: We supplement data from the Manifesto Project and ParlGov with information collected from Wikipedia. We use party names, ideology, and political position, that can be found in the summary box on the right side of each party's Wikipedia page. For example, Wikipedia indicates that the ideology of the Armenian Democratic Liberal Party includes Armenian nationalism, National liberalism, Classical liberalism, Pro-Europeanism, and ProNATO, and that its political position is center-right.

Using these three sources we map political parties onto party families and separate party families into left-right bins. The mapping from political parties to party families is taken from the Manifesto Project, and Parlgov if not available in the Manifesto Project. We then create the mapping from party families to bins as follows.

We averaged parties' left-right position within each party family separately for the Manifesto Project and ParlGov and placed each party family in one of seven bins accordingly: 1 (far-left), 2 (left), 3 (center-left), 4 (center), 5 (center-right), 6 (right), and 7 (other). These bins were created based on the distance between party families on the left-right axis. We placed parties whose platforms revolve around ethnic/regional issues or special issues in the "other" bin.

- For the Manifesto Project, this method results in the following six bins: $1=[$ socialist or other left parties], $2=$ [social democratic], $3=$ [ecological], $4=$ [Christian democratic], $5=[$ agrarian, liberal, nationalist], $6=$ [conservative]. The gap between the average left-right position of the right-most party family in bin 1 and left-most party family in bin 2 (resp. 2 and 3, 3 and 4, 4 and 5, and 5 and 6) is 5.6 (resp. 8.3, 7.2, 3.9, and 3.0). Overall, the Manifesto Project's left-right variable ranges from -74.3 to 91.9 .
- For ParlGov, this method results in the following six bins: $1=$ [communist/socialist], $2=$ [green/ecologist, social democracy], 4=[liberal, agrarian, Christian democracy], $5=[$ conservative], $6=[r i g h t-$ wing]. The gap between the average left-right position of the right-most party family in bin 1 and left-most party family in bin 2 (resp. 2 and 4,4 and 5, and 5 and 6) is 1.8 (resp. 2.7, 1.2 , and 1.2). Note that since Parlgov's left-right variable is measured on a $0-10$ scale and there are six bins, the 2.7 gap between bins 2 and 4 was deemed sufficiently large to create an empty bin 3 .

The two classifications agree on all party families except for conservative (placed in bin 6 in the Manifesto Project classification and 5 in the ParlGov classification), liberal (5 and 4), green/ecological (3 and 2), and agrarian (5 and 4). Since the Manifesto Project's left-right variable is time-variant and the underlying methodology is more transparent, we rely on the Manifesto Project classifica-
tion of party families. This results in the following final seven bins: $1=[$ left, socialist, communist], $2=$ [social democratic], $3=$ [ecological/green], $4=$ [Christian democratic], $5=[$ liberal, agrarian, nationalist], $6=[$ right-wing, conservative], $7=$ [ethnic and regional parties, special issue parties].

All political parties present in the ParlGov or Manifesto Project data are allocated to the seven bins based on the mapping between political parties and party families on one hand, and party families and bins on the other. Parties that belong to different party families according to the Manifesto Project and ParlGov are placed in the bin corresponding to their Manifesto Project party family (The two sources agree on party family labels for 80.6 percent of parties).

Parties for which information is only available on Wikipedia are allocated to the seven bins based on their political position, when stated, and based on their list of ideologies otherwise. For ideologies also present in the Manifesto Project and ParlGov, the mapping into bins is immediate. Furthermore, democratic socialism, Marxism-Leninism, and African socialism are allocated to bin 1 (which already includes socialism), social conservatism to bin 6 (which already includes right-wing and conservative parties), and national conservatism to bin 5 (which already includes nationalist, agrarian, and liberal). We allocate other Wikipedia ideologies into bins as follows: we consider all parties for which this ideology is listed; compute each of these parties' average bin, based on other ideologies also listed for this party which were already allocated to bins; ${ }^{4}$ and compute again the average bin, over all parties with that ideology. Finally, we take the average of all ideologies' bins in the ideology list of each party.

In some cases, the ideological information available for parties does not allow us to place them into one of the bins on the left-right axis. Examples of these are single-issue ideologies such as human rights or anti-corruption, as well as candidates running as independents. These parties and candidates are labeled as "other."

In the end, after allocating all parties to seven bins, we mapped these bins into four orientations to ensure sufficient statistical power. The bins 1 and 2 were mapped into orientation "left," 3 and 4 into "center," 5 and 6 into "right," and 7 into "other."

[^3]
Placebo tests

We conduct placebo tests to examine whether there is a discontinuity at the threshold for any of the following variables. The variables are defined the same way as for French elections, as detailed in Appendix B.

- Set of four dummies indicating the candidate's political orientation (left, center, right, and other).
- Missing orientation: a dummy equal to 1 if the candidate's orientation is missing.
- Number of candidates of the candidate's orientation in the first round.
- Number of candidates of the candidate's orientation who did not qualify for the second round.
- Strength of the candidate in the first round: sum of the first-round vote shares of all candidates of the same orientation.
- Total vote share of non-qualified candidates of the same orientation as the candidate: sum of the first-round vote shares of candidates of the same orientation who did not qualify for the second round.
The results are shown in Tables G3.1 and G3.2. None of the 18 coefficients shown in these two tables is statistically significant.

Table G3.1: Placebo tests beyond France - 1vs2
$\left.\begin{array}{lccccccccc}\hline & (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\ \text { Outcome } & \text { Right } & \text { Left } & \text { Center } & \text { Other } & \begin{array}{c}\text { Missing } \\ \text { Orientation }\end{array} & & \text { \# Same } & \text { Strength } & \begin{array}{c}\text { \# Same } \\ \text { not qualified }\end{array}\end{array} \begin{array}{c}\text { \% votes } \\ \text { not qualified }\end{array}\right]$

Notes: Standard errors, shown in parentheses, are clustered at the district level. We compute statistical significance based on the robust p-value. The unit of observation is the candidate. The outcomes are described in the text and presented in the same order in the table. The independent variable is a dummy equal to 1 if the candidate placed higher in the first round. We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold and compute the bandwidths according to the MSERD procedure. The mean, left of the threshold gives the value of the outcome for the lower-ranked candidate at the threshold.

Table G3.2: Placebo tests beyond France - 2vs3

Outcome	(1) Right	(2) Left	(3) Center	(4) Other	(5) Missing Orientation	$\begin{gathered} \text { (6) } \\ \text { \# Same } \end{gathered}$	(7) Strength	(8) \# Same not qualified	(9) $\%$ votes not qualified
Treatment	$\begin{gathered} 0.100 \\ (0.119) \end{gathered}$	$\begin{aligned} & -0.056 \\ & (0.106) \end{aligned}$	$\begin{gathered} 0.021 \\ (0.048) \end{gathered}$	$\begin{aligned} & \hline-0.032 \\ & (0.043) \end{aligned}$	$\begin{gathered} 0.125 \\ (0.072) \end{gathered}$	$\begin{aligned} & -0.216 \\ & (0.231) \end{aligned}$	$\begin{aligned} & \hline-0.021 \\ & (0.021) \end{aligned}$	$\begin{aligned} & -0.008 \\ & (0.192) \end{aligned}$	$\begin{aligned} & -0.007 \\ & (0.011) \end{aligned}$
Robust p-value	0.301	0.478	0.878	0.541	0.202	0.557	0.462	0.787	0.742
Observations left	203	206	337	337	293	306	353	262	264
Observations right	165	169	278	278	293	251	292	215	217
Polyn. order	1	1	1	1	1	1	1	1	1
Bandwidth	0.095	0.096	0.162	0.163	0.119	0.146	0.170	0.124	0.127
Mean, left of threshold	0.524	0.339	0.053	0.073	0.170	2.148	0.328	0.504	0.029

Notes: Same notes as in Table G3.1.

General balance tests

We conduct the same general test for imbalance as the one described in Section 2.4, using the nine baseline variables described above. Figure G3.1 shows the lack of any jump at the cutoff for predicted assignment to first rank (instead of second). There is an apparent small jump at the cutoff for predicted assignment to second rank (instead of third) but, as shown in Table G3.3, the coefficients are not statistically significant.

Figure G3.1: General balance test beyond France

Notes: Dots represent the local averages of the predicted treatment status (vertical axis). Averages are calculated within quantile-spaced bins of the running variable (horizontal axis). The running variable (the vote share difference between the two candidates in the first round) is measured as percentage points. The graph is truncated at 50 percentage points on the horizontal axis to accommodate for outliers. Continuous lines are a quadratic fit.

Table G3.3: General balance test beyond France

	(1)	(2)
Outcome	Predicted	
	1vs2	2 vs 3
	(sample 1)	(sample 2)
Treatment	0.001	0.064
	(0.009)	(0.051)
Robust p-value	0.996	0.338
Observations left	3,140	301
Observations right	3,140	301
Polyn. order	1	1
Bandwidth	0.156	0.122
Mean, left of threshold	0.492	0.428

Notes: The outcome is the predicted treatment status. Other notes as in Table G3.1.

Density of the running variable - McCrary test

Figure G3.2 shows the McCrary test both for ranking 1vs2 and 2vs3. As stated in Section 2.4, this test is satisfied by construction in our setting.

Figure G3.2: Density of the running variable beyond France - McCrary test

Notes: This figure tests if there is a jump at the threshold in the density of the running variable (the vote share difference between the two candidates in the first round), represented by the solid line. The confidence intervals are represented by thin lines. In our setting, this test is satisfied by construction since we consider the same set of races on both sides of the threshold and, in each race, the higher- and lower-ranked candidates are equally distant to the cutoff.

Appendix G4: Impact on vote shares

Figure G4.1 plots the unconditional vote shares of the lower- and higher-ranked candidates against the running variable. The point estimates on the effects on unconditional vote shares are shown in Table G4.1.

Figure G4.1: Impact on $2^{\text {nd }}$ round vote shares - beyond France

Notes: Dots represent the local averages of the candidate's vote share in the second round (vertical axis). Averages are calculated within quantile-spaced bins of the running variable (horizontal axis). The vote share is set to 0 if the candidate does not run in the second round. The running variable (the vote share difference between the two candidates in the first round) is measured as percentage points. The graph is truncated at 50 percentage points on the horizontal axis to accommodate for outliers. Continuous lines are a quadratic fit.

Table G4.1: Impact on $2^{\text {nd }}$ round vote shares - beyond France

	(1)	
	Voteshare $2^{\text {nd }}$ round	
	1 vs 2	2 vs 3
Treatment	0.017	0.093
	(0.005)	(0.024)
Robust p-value	0.001	0.002
Observations left	2,432	370
Observations right	2,432	370
Polyn. order	1	1
Bandwidth	0.109	0.152
Mean, left of threshold	0.483	0.215

Notes: Standard errors, shown in parentheses, are clustered at the district level. We compute statistical significance based on the robust p-value. The outcome is the unconditional vote share of the candidate, meaning that the vote share is set to 0 if the candidate does not run in the second round. The independent variable is a dummy equal to 1 if the candidate placed higher in the first round. We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold and compute the bandwidths according to the MSERD procedure. The mean, left of the threshold gives the value of the outcome for the lower-ranked candidate at the threshold.

Appendix G5: Robustness tests

As we do in Appendix C for French elections, we conduct several robustness tests.
First, we estimate the treatment impacts using the optimal bandwidths computed according to Imbens and Kalyanaraman (2012) (Table G5.1) or tighter bandwidths obtained by dividing the MSERD bandwidths by 2 (Table G5.2). All estimates obtained using these different bandwidths are very close in magnitude to the estimates obtained with the MSERD bandwidth, but the estimates on the probability to win the election are not statistically significant with the MSERD bandwidths divided by 2 and, for 2 vs 3 , with the IK bandwidth.

Second, Table G5.3 shows that the effects of ranking 2 vs 3 are robust to excluding races in which the second candidate is less than 2 or 4 percentage points behind the first in the first round. This indicates that our estimates are not driven by cases in which the 1 vs 2 and 2 vs 3 vote share discontinuities overlap.

Third, we run the analysis on the subsample excluding races which failed one of the seven checks described in Section G1. The impacts of placing 1vs2 or 2 vs 3 in the first round on winning
are robust to dropping all flagged elections (Figure G5.1 and Table G5.4).

Table G5.1: Impact on running in the $2^{\text {nd }}$ round and winning beyond France - IK bandwidths

	(1)		(2)		(3)
	1vs2			2vs3	
	Run	Win		Run	Win
Treatment	0.009	0.056		0.086	0.173
	(0.005)	(0.031)		(0.047)	(0.037)
Robust p-value	0.164	0.096		0.250	0.312
Observations left	3,129	2,178		493	668
Observations right	3,129	2,178		493	668
Polyn. order	1	1		1	1
Bandwidth	0.155	0.094		0.215	0.331
Outcome mean	0.983	0.469		0.825	0.049

Notes: Standard errors, shown in parentheses, are clustered at the district level. We compute statistical significance based on the robust p-value. The unit of observation is the candidate. In columns 1 and 3 (resp. 2 and 4), the outcome is a dummy equal to 1 if the candidate runs (resp. wins) in the second round. The independent variable is a dummy equal to 1 if the candidate placed higher in the first round. We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold. We compute the bandwidths according to the IK procedure. The mean, left of the threshold gives the value of the outcome for the lower-ranked candidate at the threshold.

Table G5.2: Impact on running in the $2^{\text {nd }}$ round and winning beyond France - MSERD bandwidths divided by 2

	(1)		(2)		(3)	(4)
	1 vs 2			2 vs 3		
	Run	Win		Run	Win	
Treatment	0.006	0.047		0.131	0.175	
Robust p-value	(0.008)	(0.034)		(0.097)	(0.107)	
Observations left	1,472	1,905		140	149	
Observations right	1,472	1,905		140	149	
Polyn. order	1	1		1	1	
Bandwidth	0.059	0.081		0.059	0.062	
Mean, left of threshold	0.985	0.474		0.771	0.113	

Notes: We compute the bandwidths according to the MSERD procedure, and then divide them by 2. Other notes as in Table G5.1.

Table G5.3: Impact of ranking 2 vs 3 beyond France - Excluding races in which the $2^{\text {nd }}$ is close to the $1^{\text {st }}$

	Full sample 2vs3		Gap $1^{\text {st }}-2^{\text {nd }}>2 \mathrm{pp}$		Gap $1^{\text {st }}-2^{\text {nd }}>4 \mathrm{pp}$	
	Run	Win	Run	Win	Run	Win
Treatment	$\begin{gathered} 0.082 \\ (0.064) \end{gathered}$	$\begin{gathered} 0.158 \\ (0.069) \end{gathered}$	$\begin{gathered} 0.090 \\ (0.073) \end{gathered}$	$\begin{gathered} 0.161 \\ (0.072) \end{gathered}$	$\begin{gathered} 0.081 \\ (0.080) \end{gathered}$	$\begin{gathered} 0.168 \\ (0.078) \end{gathered}$
Robust p-value	0.271	0.069	0.345	0.081	0.470	0.089
Observations left	295	307	254	277	221	238
Observations right	295	307	254	277	221	238
Polyn. order	1	1	1	1	1	1
Bandwidth	0.119	0.123	0.110	0.122	0.108	0.116
Mean, left of threshold	0.837	0.074	0.841	0.079	0.841	0.079

Notes: Standard errors, shown in parentheses, are clustered at the district level. We compute statistical significance based on the robust p-value. The unit of observation is the candidate. In columns 3 and 4 (resp. 5 and 6), the sample is restricted to elections where the vote share difference between the first and the second candidates in the first round is strictly higher than 2 (resp. 4) percentage points. In columns 1, 3, and 5 (resp. 2,4 , and 6), the outcome is a dummy equal to 1 if the candidate runs (resp. wins) in the second round. The independent variable is a dummy equal to 1 if the candidate placed higher in the first round. We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold and compute the bandwidths according to the MSERD procedure. The mean, left of the threshold gives the value of the outcome for the lower-ranked candidate at the threshold.

Figure G5.1: Impact on running in the $2^{\text {nd }}$ round and winning beyond France - non-flagged elections

Notes: The sample includes only elections that pass all seven checks described in Section G1. Triangles (resp. circles) represent the local averages of the probability that the candidate runs (resp. wins) in the second round (vertical axis). Averages are calculated within quantile-spaced bins of the running variable (horizontal axis). The running variable (the vote share difference between the two candidates in the first round) is measured as percentage points. The graph is truncated at 50 percentage points on the horizontal axis to accommodate for outliers. Continuous lines are a quadratic fit.

Table G5.4: Impact on running in the $2^{\text {nd }}$ round and winning beyond France - non-flagged elections

	(1)		(2)		(3)	(4)
	1 vs 2			2 vs 3		
Outcome	Run	Win		Run	Win	
Treatment	0.006	0.066		0.083	0.163	
	(0.006)	(0.027)		(0.066)	(0.073)	
Robust p-value	0.346	0.059		0.285	0.078	
Observations left	2,225	2,656		284	274	
Observations right	2,225	2,656		284	274	
Polyn. order	1	1		1	1	
Bandwidth	0.098	0.125		0.126	0.121	
Mean, left of threshold	0.985	0.464		0.830	0.080	

Notes: The sample includes only elections that pass all seven checks described in Section G1. Standard errors, shown in parentheses, are clustered at the district level. We compute statistical significance based on the robust p-value. The unit of observation is the candidate. In columns 1 and 3 (resp. 2 and 4), the outcome is a dummy equal to 1 if the candidate runs (resp. wins) in the second round. The independent variable is a dummy equal to 1 if the candidate placed higher in the first round. We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold and compute the bandwidths according to the MSERD procedure. The mean, left of the threshold gives the value of the outcome for the lower-ranked candidate at the threshold.

Appendix G6: Individual country results

Of all 19 countries represented in our sample of parliamentary elections outside of France, seven count at least 250 races: the Czech Republic, Germany, Hungary, Lithuania, the Netherlands, Norway, and Poland. The impact of placing higher in the first round on winning the second round in each of these seven countries is shown below.

Figure G6.1: Impact on winning by country

Notes: Dots represent the local averages of the probability that the candidate wins the second round (vertical axis). Averages are calculated within quantile-spaced bins of the running variable (horizontal axis). The running variable (the vote share difference between the two candidates in the first round) is measured as percentage points. The graph is truncated at 50 percentage points on the horizontal axis to accommodate for outliers. Continuous lines are a quadratic fit.

Table G6.1: Impact on winning by country

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Probability to win $2^{\text {nd }}$ round						
	Czech Republic	Germany	Hungary	Lithuania	Netherlands	Norway	Poland
Treatment	0.211	-0.005	-0.038	0.086	0.089	0.160	0.316
	(0.095)	(0.039)	(0.092)	(0.080)	(0.096)	(0.083)	(0.104)
Robust p-value	0.023	0.794	0.500	0.383	0.435	0.082	0.003
Observations left	212	1,191	223	258	211	191	184
Observations right	212	1,191	223	258	211	191	184
Polyn. order	1	1	1	1	1	1	1
Bandwidth	0.094	0.175	0.072	0.134	0.119	0.160	0.154
Mean, left of threshold	0.394	0.502	0.513	0.457	0.456	0.411	0.342

Notes: Standard errors, shown in parentheses, are clustered at the district level. We compute statistical significance based on the robust p-value. The unit of observation is the candidate. The outcome is a dummy equal to 1 if the candidate wins the second round. The independent variable is a dummy equal to 1 if the candidate placed higher in the first round. We use local polynomial regressions: we fit separate polynomials of order 1 on each side of the threshold and compute the bandwidths according to the MSERD procedure. The mean, left of the threshold gives the value of the outcome for the lower-ranked candidate at the threshold.

Appendix H. French political orientations

We allocate candidates to six political orientations (far-left, left, center, right, far-right, and other) based on labels attributed to them by the Ministry of the Interior. The following tables show our mapping between political labels and orientations, for each election. The third column also indicates whether the political label corresponds to a specific political party. We use this variable to classify candidates as "party" or "non-party" candidates. The 1978 and 1981 parliamentary elections, as well as the 1982 and 1985 local elections are shown together because the sets of political parties competing in both elections were identical.

1958 parliamentary elections		
Political label	Political orientation	Party
Centre National des Indépendants	Right	1
Centre de la Réforme Républicains	Left	1
Démocratie chrétienne de France	Right	1
Divers Extrême Droite	Far-right	0
Divers Gaullistes	Right	0
Modérés	Other	0
Mouvement Républicain Populaire	Center	1
Non Classés	Other	0
Parti Communiste	Left	1
Parti Poujadiste	Far-right	1
Parti Socialiste Autonome	Left	1
Radicaux du Centre	Center	1
Radicaux Socialistes	Left	1
Radicaux - Union des Forces Démocratiques	Left	1
Rassemblement des Gauches Républicaines	Center	1
Section Française de l'Internationale Ouvrière	Left	1
Union Démocratique et Socialiste de la Résistance	Left	1
Union des Forces Démocratiques	Left	1
Union de la gauche socialiste	Left	1
Union pour la Nouvelle République	Right	1

1962 parliamentary elections

Political label	Political orientation	Party
Centre National des Indépendants	Right	1
Divers Extrême Droite	Far-right	0
Divers Extrême Gauche	Far-left	0
Divers Gaullistes	Right	0
Indépendants	Other	0
Indépendants - Vème République	Other	0
Modérés	Other	0
Mouvement Républicain Populaire	Center	1
Mouvement Républicain Populaire - Vème République	Center	1
Non Classés	Other	0
Parti Communiste	Left	1
Parti Poujadiste	Far-right	1
Parti Socialiste Unifié	Far-left	1
Radicaux du Centre	Center	1
Radicaux Socialistes	Left	1
Section Française de l'Internationale Ouvrière	Left	1
Union pour la Nouvelle République	Right	1

1967 parliamentary elections

Political label	Political orientation	Party
Alliance Républicaine	Center	1
Apparentés Parti Communiste	Left	0
Centre Démocrate	Center	1
Divers Extrême Droite	Far-right	0
Divers Gaullistes	Right	0
Extrême Gauche	Far-left	0
Modérés	Other	0
Parti Communiste	Left	1
Parti Socialiste Unifié	Far-left	1
Radicaux de Droite	Right	1
Ralliés Gaullistes	Right	0
Régionalistes	Other	0
Républicains Indépendants	Right	1
Parti Socialiste et Fédération de Gauche	Left	1
Union pour la Nouvelle République	Right	1

1968 parliamentary elections

Political label	Political orientation	Party
Alliance Républicaine	Center	1
Apparentés Parti Communiste et Parti Communiste	Left	1
Centre Démocrate	Center	1
Centre Démocrate/Centre Progrès et Démocratie Moderne	Center	1
Centre Progrès et Démocratie Moderne	Center	1
Divers Extrême Droite	Far-right	0
Divers Gaullistes	Right	0
Divers Gaulliste/Union pour la Nouvelle République	Right	1
Extrême Gauche	Far-left	0
Indépendants	Other	0
Modérés	Other	0
Modérés/Centre Progrès et Démocratie Moderne	Center	1
Modérés/Radicaux Socialistes	Left	1
Modérés/Républicains Indépendants	Right	1
Mouvement pour la Réforme	Center	1
Non Classés	Other	0
Parti Communiste Français	Left	1
Parti Socialiste Unifié	Far-left	1
Radicaux de Droite	Right	1
Radicaux de Droite/Républicains Indépendants	Right	1
Radicaux Socialistes	Left	1
Radicaux Socialistes/Républicains Indépendants	Right	1
Régionalistes	Other	0
Républicains Indépendants (RI)	Right	1
RI /Divers Gaulliste	Right	1
RI/Union des Démocrates pour la République (UDR)	Right	1
RI/UDR/Union pour la Nouvelle République	Right	1
Parti Socialiste et Fédération de Gauche	Left	1
Technique et Démocratie	Other	1
Union pour la Nouvelle République	Right	1
		1

1973 parliamentary elections		
Political label	Political orientation	Party
Centre Démocratie et Progrès (CDP)	Right	1
CDP/Union des Républicains de Progrès (URP)	Right	1
Divers Gaullistes	Right	0
Groupe des Réformateurs Démocrates Sociaux	Center	1
Divers Droite	Right	0
Divers Gauche	Left	0
Extrême Droite	Far-right	0
Extrême Gauche	Far-left	0
Indépendants	Other	0
Ligue Communiste Révolutionnaire	Far-left	1
Lutte Ouvrière	Far-left	1
Union de la Gauche	Left	1
Non Classés	Other	0
Organisation Communiste Internationale	Far-left	1
Parti Communiste Français	Left	1
Parti Socialiste Unifié	Far-left	1
Parti Socialiste Unifié - Gauche Sociale Unifiée	Left	1
Radicaux Réformateurs	Center	1
Républicains Indépendants	Right	1
Républicains Indépendants/URP	Right	1
Union des Démocrates pour la République	Right	1
Union des Démocrates pour la République/URP	Right	1
Union des Républicains de Progrès	Right	1

1978 and 1981 parliamentary elections		
Political label	Political orientation	Party
Divers Droite	Right	0
Divers Gauche	Left	0
Ecologistes	Other	1
Extrême Droite	Far-right	0
Extrême Gauche	Far-left	0
Indépendants	Other	0
Non Classés	Other	0
Parti Communiste Français	Left	1
Parti Socialiste	Left	1
Rassemblement Pour la République	Right	1
Union pour la Démocratie Française	Right	1

1979 local elections

Political label	Political orientation	Party
Communistes	Left	1
"DMF": Divers Droite - Républicains Indépendants	Right	0
Divers Droite	Right	0
Divers Gauche	Left	0
Ecologistes	Other	1
Extrême Gauche	Far-left	0
Radicaux De Gauche	Left	1
Rassemblement Pour la République	Right	1
Socialistes	Left	1
Union pour la Démocratie Française	Right	1

	$\mathbf{1 9 8 2}$ and $\mathbf{1 9 8 5}$ local elections	
Political label	Political orientation	Party
Communistes	Left	1
Divers Droite	Right	0
Divers Gauche	Left	0
Ecologistes	Other	1
Extrême Droite	Far-right	0
Extrême Gauche	Far-left	0
Radicaux De Gauche	Left	1
Rassemblement Pour la République	Right	1
Socialistes	Left	1
Union pour la Démocratie Française	Right	1

1988 parliamentary elections

Political label	Political orientation	Party
Communistes	Left	1
Divers Droite	Right	0
Ecologistes	Other	1
Extrême Droite	Far-right	0
Extrême Gauche	Far-left	0
Front National	Far-right	1
Majorité Présidentielle	Left	0
Radicaux De Gauche	Left	1
Régionalistes	Other	0
Rassemblement Pour la République	Right	1
Socialistes	Left	1
Union pour la Démocratie Française	Right	1

1988 local elections		
Political label	Political orientation	Party
Divers Droite	Right	0
Divers Gauche	Left	0
Ecologistes	Other	1
Extrême Droite	Far-right	0
Extrême Gauche	Far-left	0
Front National	Far-right	1
Parti Communiste	Left	1
Parti Socialiste	Left	1
Radicaux De Gauche	Left	1
Régionalistes	Other	0
Rassemblement Pour la République	Right	1
Sans Etiquette	Other	0
Union pour la Démocratie Française	Right	1

1992 local elections		Political orientation
Political label	Party	
Communistes	Left	1
Divers Droite	Right	0
Extrême Droite	Far-right	0
Extrême Gauche	Far-left	0
Front National	Far-right	1
Génération Ecologie	Other	1
Majorité Présidentielle	Left	0
Radicaux De Gauche	Left	1
Régionalistes	Other	0
Rassemblement Pour la République	Right	1
Socialistes	Left	1
Union pour la Démocratie Française	Right	1
Les Verts	Left	1

1993 parliamentary elections		
Political label	Political orientation	Party
Communistes	Left	1
Divers	Other	0
Divers Droite	Right	0
Extrême Droite	Far-right	0
Extrême Gauche	Far-left	0
Front National	Far-right	1
Génération Ecologie	Other	1
Majorité Présidentielle	Left	0
Radicaux De Gauche	Left	1
Régionalistes	Other	0
Rassemblement Pour la République	Right	1
Socialistes	Left	1
Union pour la Démocratie Française	Right	1
Les Verts	Left	1

1994 local elections		Political orientation
Political label	Party	
Communistes	Other	1
Divers	Right	0
Divers Droite	Left	0
Divers Gauche	Far-right	0
Extrême Droite	Far-left	0
Extrême Gauche	Far-right	1
Front National	Other	1
Génération Ecologie	Left	1
Radicaux De Gauche	Other	0
Régionalistes	Right	1
Rassemblement Pour la République	Left	1
Socialistes	Right	1
Union pour la Démocratie Française	Left	1
Les Verts		

1997 parliamentary elections

Political label	Political orientation	Party
Communistes	Left	1
Divers	Other	0
Divers Droite	Right	0
Divers Gauche	Left	0
Ecologistes	Other	1
Extrême Droite	Far-right	0
Extrême Gauche	Far-left	0
Front National	Far-right	1
Parti Radical Socialiste	Left	1
Rassemblement Pour la République	Right	1
Socialistes	Left	1
Union pour la Démocratie Française	Right	1

1998 local elections		
Political label	Political orientation	Party
Communistes	Left	1
Divers	Other	0
Divers Droite	Right	0
Divers Gauche	Left	0
Ecologistes	Other	0
Extrême Droite	Far-right	0
Extrême Gauche	Far-left	0
Front National	Far-right	1
Mouvement Des Citoyens	Left	1
Radicaux De Gauche	Left	1
Rassemblement Pour la République	Right	1
Socialistes	Left	1
Union pour la Démocratie Française	Right	1
Les Verts	Left	1

2001 local elections		
Political label	Political orientation	Party
Communistes	Left	1
Chasse, Pêche, Nature et Traditions	Right	1
Divers	Other	0
Démocratie Libérale	Right	1
Divers Droite	Right	0
Divers Gauche	Left	0
Ecologistes	Other	0
Extrême Gauche	Far-left	0
Front National	Far-right	1
Mouvement Des Citoyens	Left	1
Mouvement National Républicain	Far-right	1
Parti Radical de Gauche	Left	1
Régionalistes	Other	0
Rassemblement du Peuple Français	Right	1
Rassemblement Pour la République	Right	1
Socialistes	Left	1
Union pour la Démocratie Française	Center	1
Les Verts	Left	1

2002 parliamentary elections		
Political label	Political orientation	Party
Communistes	Left	1
Chasse, Pêche, Nature et Traditions	Right	1
Divers	Other	0
Démocratie Libérale	Right	1
Divers Droite	Right	0
Divers Gauche	Left	0
Ecologistes	Other	0
Extrême Droite	Far-right	0
Extrême Gauche	Far-left	0
Front National	Far-right	1
Ligue Communiste Révolutionnaire	Far-left	1
Lutte Ouvrière	Far-left	1
Mouvement National Républicain	Far-right	1
Mouvement Pour la France	Right	1
Pôle Républicain	Left	1
Radicaux De Gauche	Left	1
Régionalistes	Other	0
Rassemblement Pour la France	Right	1
Socialistes	Left	1
Union pour la Démocratie Française	Center	1
Union pour un Mouvement Populaire	Right	1
Les Verts	Left	1

2004 local elections		
Political label	Political orientation	Party
Communistes	Left	1
Chasse, Pêche, Nature et Traditions	Right	1
Divers	Other	0
Divers Droite	Right	0
Divers Gauche	Left	0
Ecologistes	Other	0
Extrême Droite	Far-right	0
Extrême Gauche	Far-left	0
Front National	Far-right	1
Radicaux De Gauche	Left	1
Régionalistes	Other	0
Socialistes	Left	1
Union pour la Démocratie Française	Center	1
Union pour un Mouvement Populaire	Right	1
Les Verts	Left	1

2007 parliamentary elections		
Political label	Political orientation	Party
Communistes	Left	1
Chasse, Pêche, Nature et Traditions	Right	1
Divers	Other	0
Divers Droite	Right	0
Divers Gauche	Left	0
Ecologistes	Other	0
Extrême Droite	Far-right	0
Extrême Gauche	Far-left	0
Front National	Far-right	1
Majorité présidentielle	Right	0
Mouvement Pour la France	Right	1
Radicaux De Gauche	Left	1
Régionalistes	Other	0
Socialistes	Left	1
Union pour la Démocratie Française - Mouvement Démocrate	Center	1
Union pour un Mouvement Populaire	Right	1
Les Verts	Left	1

2011 local elections		Political orientation
Political label	Pther	0
Autres	Left	1
Communiste	Right	0
Divers Droite	Left	0
Divers Gauche	Other	0
Ecologistes	Far-right	0
Extrême Droite	Far-left	0
Extrême Gauche	Far-right	1
Front National	Right	1
Majorité présidentielle	Right	1
Nouveau Centre	Center	1
Modem	Left	1
Parti de Gauche	Left	1
Radicaux De Gauche	Other	0
Régionalistes	Left	1
Socialistes	Right	1
Union pour un Mouvement Populaire	Left	1
Europe Ecologie les Verts		

2012 parliamentary elections		
Political label	Political orientation	Party
Alliance Centriste	Center	1
Autres	Other	0
Centre pour la France	Center	0
Divers Droite	Right	0
Divers Gauche	Left	0
Ecologistes	Other	0
Extrême Droite	Far-right	0
Extrême Gauche	Far-left	0
Front de Gauche	Left	1
Front National	Far-right	1
Nouveau Centre	Right	1
Parti Radical	Right	1
Radicaux De Gauche	Left	1
Régionalistes	Other	0
Socialistes	Left	1
Union pour un Mouvement Populaire	Right	1
Europe Ecologie les Verts	Left	1

2015 local elections		Political orientation
Political label	Party	
Communistes	Other	1
Divers	Right	0
Debout La France	Right	1
Divers Droite	Left	0
Divers Gauche	Far-right	0
Extrême Droite	Far-left	0
Extrême Gauche	Left	1
Front de Gauche	Far-right	1
Front National	Center	1
Modem	Left	1
Parti De Gauche	Left	1
Radicaux De Gauche	Left	1
Socialistes	Center	1
Union Centriste	Right	1
Union pour la Démocratie	Right	1
Union des Démocrates et Indépendants	Left	1
Union de Gauche	Right	1
Union pour un Mouvement Populaire	Left	1
Europe Ecologie les Verts		

	2017 parliamentary elections	
Political label	Political orientation	Party
Communistes	Left	1
Divers	Other	0
Debout La France	Right	1
Divers Droite	Right	0
Divers Gauche	Left	0
Ecologistes	Left	0
Extrême Droite	Far-right	0
Extrême Gauche	Far-left	0
France Insoumise	Left	1
Front National	Far-right	1
Les Républicains	Right	1
Modem	Center	1
Radicaux De Gauche	Left	1
Régionalistes	Other	0
Républicque En Marche	Center	1
Socialistes	Left	1
Union des Démocrates et Indépendants	Right	1

References

ACE Electoral Knowledge Network, "Comparative Data," https://aceproject.org/ epic-en/ 2018. Accessed: June 2018.

Bahrain Directorate of Elections and Referendum, "Election Data," http://www.vote.bh/ ar/114?http://www.vote.bh/En/index. 55 2018. Accessed: June 2018.

Carr, Adam, "Adam Carr's Election Archive," http://psephos.adam-carr.net/ 1999-2022. Accessed: June 2018.

Czech Statistical Office, "Results of Elections and Referendums," https://www.volby.cz/. 2018. Accessed: December 2018.

Döring, Holger, Huber Constantin, and Manow Philip, "Parliaments and governments database (ParlGov): Information on parties, elections and cabinets in established democracies.," https: //www.parlgov.org/data-info/ 2018. Accessed: June 2018.

Dow Jones \& Company, "Factiva," https://global.factiva.com. Accessed: 2018.
Election Administration of Georgia, http://cesko.ge/eng/static/2473/ batili-biuletenebis-statistika-2002-tslidan-dghemde-saqartveloshi-chatarebuli-archevn Accessed: June 2018.

Georgia National Democratic Institute, "Georgia Election Data, Election Portal," https:// data.electionsportal.ge/en. Accessed: June 2018.

Hyde, Susan and Nikolay Marinov, "Which Elections Can Be Lost?," 2012, pp. 191-201.
Imbens, Gguido and Karthik Kalyanaraman, "Optimal bandwidth choice for the regression discontinuity estimator," Review of Economic Studies, 2012, 79 (3), 933-959.

Inter-Parliamentary Union Parline, "Parliamentary Elections," https://data.ipu.org/ elections 2018. Accessed: June 2018.

Islamic Republic of Mauritania Independent National Electoral Commission, "Constituency level Election Data," https://web.archive.org/web/20140211222525;http:// www.ceni.mr:80/spip.php?page=article\&id_article=79. Accessed: June 2018.

Kollman, Ken, Allen Hicken, Daniele Caramani, David Backer, and David Lubin, "Constituency-level elections archive [data file and codebook]," http://www. electiondataarchive.org/clea-lower-chamber-elections-archive.php 2018. Accessed: June 2018.

Lehmann, Pola, Tobias Burst, Theres Matthieß, Sven Regel, Andrea Volkens, Bernhard Weßels, and Lisa Zehnter, "The Manifesto Data Collection. Manifesto Project (MRG/CMP/MARPOR). Version 2022a," 2022.

Lublin, David, "Election Passport," http://www.electionpassport.com/. Accessed: June 2018.

National Library of New Zealand, https://atojs.natlib.govt.nz/cgi-bin/atojs?a=d\& d=A JHR1912-II.2.4.2.20. Accessed: January 2019.

Nohlen, Dieter, Elections in the Americas A Data Handbook Volume 1: North America, Central America, and the Caribbean, OUP Oxford, 2005.
_ and Philip Stöver, Elections in Europe, Nomos Verlagsgesellschaft mbH \& Co. KG, 2010.
Stories from Kiribati, "Resuls of the Second Round of Elections," https://www.storiesfromkiribati.com/apps/blog/show/ 43739689-results-ofthe-second-round-of-elections 2016. Accessed: June 2018.

Swiss Federal Statistics Office, "Élections au Conseil des États: résultats des candidats," https://www.bfs.admin.ch/bfs/fr/home/statistiques/politique/elections/ conseil-etats.assetdetail.239523.html. Accessed: June 2018.

The Central Electoral Commission of the Republic of Lithuania, "In 2016 Elections of the Republic of Lithuania," https://www.vrk.lt/en/atviriduomenys. 2018. Accessed: June 2018.

The official website of the President of the Republic of Poland, "Election Data," http://www.prezydent.pl/kancelaria/archiwa-przelomu/ zasob-archiwum-prezydentarp/kancelaria-rady-panstwa-krp/ panstwowa-komisja-wyborcza-pkw----wybory-do-sejmuprl-i-senatu-prl-z-8-i-19-czerwca/ obwieszczenie-pkw-o-wynikach-glosowania-i-wynikachwyborow-do-sejmu-prl-przeprowadzony 2018. Accessed: June 2018.

Wikipedia, "http://wikipedia.org/." Accessed: February to June 2019.

[^0]: ${ }^{1}$ Looking for the entity canton* instead of the specific words "canton" or "cantons" would have generated false positives since several French words unrelated to cantonal elections begin with this entity, including "cantonade" and "cantonner".

[^1]: ${ }^{2}$ When counting the number of elections in our sample, we disregard elections where all races had only one round, due to the first candidate winning directly in the first round. By-elections, which occur out of schedule due for instance to the death of an elected official, are not counted as separate elections.

[^2]: ${ }^{3}$ For instance, there were 146 seats up for election in Mauritania in 2013 but the government's website only includes the results of 39 races. Similarly, there were 147 seats up for election in Mali in 2013 but Adam Carr was only able to find results for 54 of them, based on media websites.

[^3]: ${ }^{4}$ Specifically, when the average between the bins corresponding to the different ideologies of a party falls between bins, we choose the most extreme bin. For example, the orientation of a party with one left ideology and one center ideology would be center-left. The orientation of a party with one left ideology and one center-left ideology would be left. The orientation of a party with two center ideologies and one center-left ideology would be center-left.

