Online Appendix for

A Linear Panel Model with Heterogeneous Coefficients and Variation in Exposure

Liyang Sun, UC Berkeley and CEMFI
Jesse M. Shapiro, Harvard University and NBER ${ }^{8}$

April 2022

This appendix formalizes claims made in the paper.
Claim 1. In the setting of Section "The Possibility of Heterogeneous Coefficients," the expected value of the two-way fixed effects (TWFE) estimator of the exposure model, given the data $x=\left\{x_{10}, \ldots, x_{S 0}\right\}$ for states $s \in\{1, \ldots, S\}$, is given by

$$
\mathrm{E}(\hat{\beta} \mid x)=\frac{\operatorname{Cov}\left(\beta_{s}\left(1-x_{s 0}\right),\left(1-x_{s 0}\right)\right)}{\operatorname{Var}\left(1-x_{s 0}\right)}
$$

where $\operatorname{Cov}(\cdot, \cdot)$ and $\operatorname{Var}(\cdot)$ denote the sample covariance and variance, respectively, and the expectation $\mathrm{E}(\hat{\beta} \mid x)$ is taken with respect to the distribution of the errors $\varepsilon_{s t}$ conditional on the data $x=\left\{x_{10}, \ldots, x_{S 0}\right\}$.

Proof. With only two time periods the TWFE estimator of the exposure model is equivalent to an OLS estimator of the first-differenced model

$$
y_{s 1}-y_{s 0}=\delta_{1}-\delta_{0}+\beta\left(1-x_{s 0}\right)+\varepsilon_{s 1}-\varepsilon_{s 0} .
$$

Therefore the TWFE estimator based on the given sample is

$$
\hat{\beta}=\frac{\operatorname{Cov}\left(y_{s 1}-y_{s 0}, 1-x_{s 0}\right)}{\operatorname{Var}\left(1-x_{s 0}\right)} .
$$

[^0]From the heterogeneous model we have that

$$
y_{s 1}-y_{s 0}=\delta_{1}-\delta_{0}+\beta_{s}\left(1-x_{s 0}\right)+\varepsilon_{s 1}-\varepsilon_{s 0}
$$

and therefore

$$
\hat{\beta}=\frac{\operatorname{Cov}\left(\beta_{s}\left(1-x_{s 0}\right), 1-x_{s 0}\right)}{\operatorname{Var}\left(1-x_{s 0}\right)}+\frac{\operatorname{Cov}\left(\varepsilon_{s 1}-\varepsilon_{s 0}, 1-x_{s 0}\right)}{\operatorname{Var}\left(1-x_{s 0}\right)} .
$$

If $\left(\varepsilon_{s 1}-\varepsilon_{s 0}\right)$ is mean zero conditional on $\left(1-x_{s 0}\right)$ then the expected value of $\hat{\beta}$ conditional on the data $x=\left\{x_{10}, \ldots, x_{S 0}\right\}$ is

$$
\mathrm{E}(\hat{\beta} \mid x)=\frac{\operatorname{Cov}\left(\beta_{s}\left(1-x_{s 0}\right), 1-x_{s 0}\right)}{\operatorname{Var}\left(1-x_{s 0}\right)}
$$

Corollary 1. In the setting of Section "The Possibility of Heterogeneous Coefficients," if β_{s} is independent of $x_{s 0}$ across states s, then the expected value of the two-way fixed effects (TWFE) estimator of the exposure model, given the data $x=\left\{x_{10}, \ldots, x_{S 0}\right\}$ for states $s \in\{1, \ldots, S\}$, is given by

$$
\mathrm{E}(\hat{\beta} \mid x)=\mathrm{E}\left(\beta_{s}\right)
$$

for $\mathrm{E}\left(\beta_{s}\right)$ the expected value of β_{s}. Here the expectation $\mathrm{E}(\hat{\beta} \mid x)$ is taken with respect to the distribution of the errors $\varepsilon_{s t}$ and coefficients β_{s} conditional on the data x.

Proof. Based on a similar proof for Claim 1, we have that

$$
\mathrm{E}(\hat{\beta} \mid x)=\frac{\mathrm{E}\left(\operatorname{Cov}\left(\beta_{s}\left(1-x_{s 0}\right), 1-x_{s 0}\right)\right)}{\operatorname{Var}\left(1-x_{s 0}\right)}
$$

where the expectation is now taken with respect to the distribution of the errors $\varepsilon_{s t}$ as well as β_{s} conditional on the data $x=\left\{x_{10}, \ldots, x_{S 0}\right\}$. By the independence of β_{s} and $x_{s 0}$, we have that
$\mathrm{E}\left(\operatorname{Cov}\left(\beta_{s}\left(1-x_{s 0}\right), 1-x_{s 0}\right)\right)=\operatorname{Cov}\left(\mathrm{E}\left(\beta_{s}\right)\left(1-x_{s 0}\right), 1-x_{s 0}\right)=\mathrm{E}\left(\beta_{s}\right) \operatorname{Var}\left(1-x_{s 0}\right)$,
and therefore that

$$
\mathrm{E}(\hat{\beta} \mid x)=\mathrm{E}\left(\beta_{s}\right) .
$$

Corollary 2. In the numerical example of Section"The Possibility of Heterogeneous Coefficients," the expected value of the two-way fixed effects (TWFE) estimator of the exposure model, given the data $x=\left\{x_{10}, \ldots, x_{S 0}\right\}$ for states $s \in\{1, \ldots, S\}$, lies outside the range of coefficients $\left[\min _{s} \beta_{s}, \max _{s} \beta_{s}\right]$ if and only if $\lambda \neq 0$. The same continues to hold when the sample is extended to include a totally unaffected state.

Proof. From Claim 1 we have that

$$
\mathrm{E}(\hat{\beta} \mid x)=\frac{\operatorname{Cov}\left(\beta_{s}\left(1-x_{s 0}\right), 1-x_{s 0}\right)}{\operatorname{Var}\left(1-x_{s 0}\right)} .
$$

Because in the numerical example $\beta_{s}=1+0.5 \lambda-\lambda x_{s 0}$, we have that

$$
\mathrm{E}(\hat{\beta} \mid x)=1+0.5 \lambda-\lambda C
$$

for

$$
C=\frac{\operatorname{Cov}\left(x_{s 0}\left(1-x_{s 0}\right),\left(1-x_{s 0}\right)\right)}{\operatorname{Var}\left(1-x_{s 0}\right)} .
$$

In the setting of Section "The Possibility of Heterogeneous Coefficients," given the data $x=\left\{x_{10}, \ldots, x_{S 0}\right\}$ where $x_{s 0}=0.245+s / 100$ for $s=1, \ldots, 50$, by direct calculation we have that $C=0$, which means that

$$
\mathrm{E}(\hat{\beta} \mid x)=1+0.5 \lambda
$$

If we add to the sample a totally unaffected state $s=0$ with $x_{00}=1$, and the remaining states $s=1, \ldots, 50$ continue to follow $x_{s 0}=0.245+s / 100$, by direct calculation we have that $C \approx 0.087$, which means that

$$
\mathrm{E}(\hat{\beta} \mid x) \approx 1+0.413 \lambda
$$

Therefore, with or without a totally unaffected state, when $\lambda>0$ we have $\mathrm{E}(\hat{\beta} \mid x)>\beta_{s}$ for all s because $\max _{s} \beta_{s}=1+0.245 \lambda$. Similarly, with or without a totally unaffected state, when $\lambda<0$ we have $\mathrm{E}(\hat{\beta} \mid x)<\beta_{s}$ for all s because
$\min _{s} \beta_{s}=1+0.245 \lambda$. Finally, with or without a totally unaffected state, when $\lambda=0$ we have $\mathrm{E}(\hat{\beta} \mid x)=1=\mathrm{E}\left(\beta_{s}\right)=\max _{s} \beta_{s}=\min _{s} \beta_{s}$.

Claim 2. In the setting of Section "The Possibility of Heterogeneous Coefficients," there exists no estimator $\hat{\beta}^{\prime}$ that can be expressed as a function of the data $\left\{\left(x_{s 0}, y_{s 0}, y_{s 1}\right)\right\}_{s=1}^{S}$ and whose expected value is guaranteed to be contained in $\left[\min _{s} \beta_{s}, \max _{s} \beta_{s}\right]$ for any heterogeneous model and any $\left\{x_{s 0}\right\}_{s=1}^{S}$.

Proof. It is sufficient to establish this claim for a special case with $S=2$, some $x_{s 0}$'s with $0<x_{20} \leq x_{10}<1, \beta_{1}<\beta_{2}$, and δ_{0} known to be zero. The model for the data is then

$$
\begin{aligned}
& y_{s 0}=\alpha_{s}+\beta_{s} \cdot x_{s 0}+\varepsilon_{s 0} \\
& y_{s 1}=\alpha_{s}+\delta_{1}+\beta_{s}+\varepsilon_{s 1}
\end{aligned}
$$

with parameters $\theta=\left(\left\{\left(\alpha_{s}, \beta_{s}\right)\right\}_{s=1}^{2}, \delta_{1}, F_{\varepsilon \mid X}\right)$, for $F_{\varepsilon \mid X}$ the distribution of $\left(\varepsilon_{s 0}, \varepsilon_{s 1}\right)$ conditional on $x_{s 0}$. Pick some estimator $\hat{\beta}^{\prime}$. Given any parameter θ, define the distinct parameter $\theta^{\prime}=\left(\left\{\left(\alpha_{s}^{\prime}, \beta_{s}^{\prime}\right)\right\}_{s=1}^{2}, \delta_{1}^{\prime}, F_{\varepsilon \mid X}\right)$ given by

$$
\theta^{\prime}=\left(\left\{\left(\alpha_{s}+\frac{\Delta \cdot x_{s 0}}{1-x_{s 0}}, \beta_{s}-\frac{\Delta}{1-x_{s 0}}\right)\right\}_{s=1}^{2}, \delta_{1}+\Delta, F_{\varepsilon \mid X}\right)
$$

for some $\Delta>\left(\beta_{2}-\beta_{1}\right) \cdot\left(1-x_{20}\right)>0$.
We show that the two parameter values θ and θ^{\prime} are observationally equivalent, which means the expected value of $\hat{\beta}^{\prime}$ must be the same under θ and θ^{\prime}. To see this, note that the distribution of $\left(y_{s 0}, y_{s 1}\right)$ conditional on $x_{s 0}$ is the same under θ and θ^{\prime} :

$$
\left.\begin{array}{rl}
& F_{Y_{0}, Y_{1} \mid X}\left(y_{0}, y_{1} \mid x_{s 0}=x ; \theta\right) \\
= & \operatorname{Pr}\left\{\varepsilon_{s 0} \leq y_{0}-\alpha_{s}-\beta_{s} \cdot x, \varepsilon_{s 1} \leq y_{1}-\alpha_{s}-\delta_{1}-\beta_{s} \mid x_{s 0}=x ; \theta\right\} \\
= & \operatorname{Pr}\left\{\varepsilon_{s 0} \leq y_{0}-\alpha_{s}-\beta_{s} \cdot x, \varepsilon_{s 1}-\varepsilon_{s 0} \leq y_{1}-y_{0}-\delta_{1}-\beta_{s}(1-x) \mid x_{s 0}=x ; \theta\right\} \\
= & \operatorname{Pr}\left\{\left.\begin{array}{c}
\varepsilon_{s 0} \leq y_{0}-\left(\alpha_{s}+\frac{\Delta x}{1-x}\right)-\left(\beta_{s}-\frac{\Delta}{1-x}\right) \cdot x, \\
\varepsilon_{s 1}-\varepsilon_{s 0} \leq y_{1}-y_{0}-\left(\delta_{1}+\Delta\right)-\left(\beta_{s}-\frac{\Delta}{1-x}\right)(1-x)
\end{array} \right\rvert\, x_{s 0}=x ; \theta\right\} \\
= & \operatorname{Pr}\left\{\left.\begin{array}{c}
\varepsilon_{s 0} \leq y_{0}-\alpha_{s}^{\prime}-\beta_{s}^{\prime} \cdot x, \\
\varepsilon_{s 1}-\varepsilon_{s 0} \leq y_{1}-y_{0}-\delta_{1}^{\prime}-\beta_{s}^{\prime}(1-x)
\end{array} \right\rvert\, x_{s 0}=x ; \theta^{\prime}\right\}
\end{array}\right\}
$$

However, the Δ is chosen such that $\beta_{1}^{\prime}=\beta_{1}-\frac{\Delta}{1-x_{10}}<\beta_{2}-\frac{\Delta}{1-x_{20}}=\beta_{2}^{\prime}<\beta_{1}<\beta_{2}$. Therefore the expected value of $\hat{\beta}^{\prime}$ cannot be contained in both $\left[\beta_{1}, \beta_{2}\right]$ and $\left[\beta_{1}^{\prime}, \beta_{2}^{\prime}\right]$, because these intervals do not intersect.

Claim 3. In the setting of Section "A Difference-in-Differences Perspective," the exposureadjusted difference-in-differences estimator $\hat{\beta}_{s, s^{\prime}}^{D I D}$ is equivalent to the TWFE estimator $\hat{\beta}$ based on the two states s and s^{\prime}. Moreover, the expected value of $\hat{\beta}_{s, s^{\prime}}^{D I D}$, given the data $x=\left\{x_{s 0}, x_{s^{\prime} 0}\right\}$ for states s and s^{\prime}, is given by

$$
\mathrm{E}\left(\hat{\beta}_{s, s^{\prime}}^{D I D} \mid x\right)=\frac{\left(1-x_{s 0}\right) \beta_{s}-\left(1-x_{s^{\prime} 0}\right) \beta_{s^{\prime}}}{x_{s^{\prime} 0}-x_{s 0}}
$$

where the expectation $\mathrm{E}\left(\hat{\beta}_{s, s^{\prime}}^{D I D} \mid x\right)$ is taken with respect to the distribution of the errors $\varepsilon_{s t}$ conditional on the data $x=\left\{x_{s 0}, x_{s^{\prime} 0}\right\}$.

Proof. For the first part of the claim, note that from the proof of Claim 1 we have

$$
\hat{\beta}=\frac{\operatorname{Cov}\left(y_{s 1}-y_{s 0}, 1-x_{s 0}\right)}{\operatorname{Var}\left(1-x_{s 0}\right)}
$$

where $\operatorname{Cov}(\cdot, \cdot)$ and $\operatorname{Var}(\cdot)$ denote the sample covariance and variance, respectively.

Since the sample includes only two states s and s^{\prime}, for the numerator we have

$$
\begin{aligned}
& \operatorname{Cov}\left(y_{s 1}-y_{s 0}, 1-x_{s 0}\right) \\
& =\frac{1}{4}\left(\left(y_{s 1}-y_{s 0}\right)-\left(y_{s^{\prime} 1}-y_{s^{\prime} 0}\right)\right)\left(1-x_{s 0}\right)+\frac{1}{4}\left(\left(y_{s^{\prime} 1}-y_{s^{\prime} 0}\right)-\left(y_{s 1}-y_{s 0}\right)\right)\left(1-x_{s^{\prime} 0}\right) \\
& =\frac{1}{4}\left(\left(1-x_{s 0}\right)-\left(1-x_{s^{\prime} 0}\right)\right)\left(\left(y_{s 1}-y_{s 0}\right)-\left(y_{s^{\prime} 1}-y_{s^{\prime} 0}\right)\right)
\end{aligned}
$$

where the first equality applies the definition of sample covariance and $a-\frac{a+b}{2}=\frac{a-b}{2}$. Similarly, for the denominator we have

$$
\operatorname{Var}\left(1-x_{s 0}\right)=\frac{1}{4}\left(\left(1-x_{s 0}\right)-\left(1-x_{s^{\prime} 0}\right)\right)^{2} .
$$

Plugging the above expressions into $\hat{\beta}$ gives the equivalence to $\hat{\beta}_{s, s^{\prime}}^{D I D}$.
Given the equivalence between $\hat{\beta}$ and $\hat{\beta}_{s, s^{\prime}}^{D I D}$ when the sample includes only two states s and s^{\prime}, we apply Claim 1 to derive the expected value of $\hat{\beta}_{s, s^{\prime}}^{D I D}$. Specifically, Claim 1 implies that given the data $x=\left\{x_{s 0}, x_{s^{\prime} 0}\right\}$ for states s and s^{\prime}, we have

$$
\mathrm{E}\left(\hat{\beta}_{s, s^{\prime}}^{D I D} \mid x\right)=\frac{\operatorname{Cov}\left(\beta_{s}\left(1-x_{s 0}\right), 1-x_{s 0}\right)}{\operatorname{Var}\left(1-x_{s 0}\right)} .
$$

Based on a similar simplification to the expression of $\hat{\beta}_{s, s^{\prime}}^{D I D}$, we have

$$
\operatorname{Cov}\left(\beta_{s}\left(1-x_{s 0}\right), 1-x_{s 0}\right)=\frac{1}{4}\left(\left(1-x_{s 0}\right)-\left(1-x_{s^{\prime} 0}\right)\right)\left(\left(1-x_{s 0}\right) \beta_{s}-\left(1-x_{s^{\prime} 0}\right) \beta_{s^{\prime}}\right)
$$

and therefore

$$
\frac{\operatorname{Cov}\left(\beta_{s}\left(1-x_{s 0}\right), 1-x_{s 0}\right)}{\operatorname{Var}\left(1-x_{s 0}\right)}=\frac{\left(1-x_{s 0}\right) \beta_{s}-\left(1-x_{s^{\prime} 0}\right) \beta_{s^{\prime}}}{x_{s^{\prime} 0}-x_{s 0}} .
$$

[^0]: ${ }^{8}$ E-mail: lsun20@berkeley.edu, jesse_shapiro@fas.harvard.edu.

