Online Appendix for

A Linear Panel Model with Heterogeneous Coefficients and Variation in Exposure

Liyang Sun, UC Berkeley and CEMFI Jesse M. Shapiro, Harvard University and NBER⁸

April 2022

This appendix formalizes claims made in the paper.

Claim 1. In the setting of Section "The Possibility of Heterogeneous Coefficients," the expected value of the two-way fixed effects (TWFE) estimator of the exposure model, given the data $x = \{x_{10}, ..., x_{S0}\}$ for states $s \in \{1, ..., S\}$, is given by

$$\operatorname{E}\left(\hat{\beta}|x\right) = \frac{\operatorname{Cov}\left(\beta_{s}\left(1-x_{s0}\right),\left(1-x_{s0}\right)\right)}{\operatorname{Var}\left(1-x_{s0}\right)}$$

where $\operatorname{Cov}(\cdot, \cdot)$ and $\operatorname{Var}(\cdot)$ denote the sample covariance and variance, respectively, and the expectation $\operatorname{E}(\hat{\beta}|x)$ is taken with respect to the distribution of the errors ε_{st} conditional on the data $x = \{x_{10}, ..., x_{S0}\}$.

Proof. With only two time periods the TWFE estimator of the exposure model is equivalent to an OLS estimator of the first-differenced model

$$y_{s1} - y_{s0} = \delta_1 - \delta_0 + \beta \left(1 - x_{s0} \right) + \varepsilon_{s1} - \varepsilon_{s0}.$$

Therefore the TWFE estimator based on the given sample is

$$\hat{\beta} = \frac{\text{Cov} (y_{s1} - y_{s0}, 1 - x_{s0})}{\text{Var} (1 - x_{s0})}.$$

⁸E-mail: lsun20@berkeley.edu, jesse_shapiro@fas.harvard.edu.

From the heterogeneous model we have that

$$y_{s1} - y_{s0} = \delta_1 - \delta_0 + \beta_s \left(1 - x_{s0}\right) + \varepsilon_{s1} - \varepsilon_{s0}$$

and therefore

$$\hat{\beta} = \frac{\operatorname{Cov}\left(\beta_{s}\left(1-x_{s0}\right), 1-x_{s0}\right)}{\operatorname{Var}\left(1-x_{s0}\right)} + \frac{\operatorname{Cov}\left(\varepsilon_{s1}-\varepsilon_{s0}, 1-x_{s0}\right)}{\operatorname{Var}\left(1-x_{s0}\right)}.$$

If $(\varepsilon_{s1} - \varepsilon_{s0})$ is mean zero conditional on $(1 - x_{s0})$ then the expected value of β conditional on the data $x = \{x_{10}, ..., x_{S0}\}$ is

$$\mathbf{E}\left(\hat{\beta}|x\right) = \frac{\operatorname{Cov}\left(\beta_{s}\left(1-x_{s0}\right), 1-x_{s0}\right)}{\operatorname{Var}\left(1-x_{s0}\right)}.$$

Corollary 1. In the setting of Section "The Possibility of Heterogeneous Coefficients," if β_s is independent of x_{s0} across states s, then the expected value of the two-way fixed effects (TWFE) estimator of the exposure model, given the data $x = \{x_{10}, ..., x_{S0}\}$ for states $s \in \{1, ..., S\}$, is given by

$$\mathbf{E}\left(\hat{\beta}|x\right) = \mathbf{E}\left(\beta_s\right)$$

for $E(\beta_s)$ the expected value of β_s . Here the expectation $E(\hat{\beta}|x)$ is taken with respect to the distribution of the errors ε_{st} and coefficients β_s conditional on the data x.

Proof. Based on a similar proof for Claim 1, we have that

$$\operatorname{E}\left(\hat{\beta}|x\right) = \frac{\operatorname{E}\left(\operatorname{Cov}\left(\beta_{s}\left(1-x_{s0}\right),1-x_{s0}\right)\right)}{\operatorname{Var}\left(1-x_{s0}\right)}$$

where the expectation is now taken with respect to the distribution of the errors ε_{st} as well as β_s conditional on the data $x = \{x_{10}, ..., x_{S0}\}$. By the independence of β_s and x_{s0} , we have that

$$E(Cov(\beta_{s}(1-x_{s0}), 1-x_{s0})) = Cov(E(\beta_{s})(1-x_{s0}), 1-x_{s0}) = E(\beta_{s})Var(1-x_{s0})$$

and therefore that

$$\mathbf{E}\left(\hat{\beta}|x\right) = \mathbf{E}\left(\beta_s\right).$$

Corollary 2. In the numerical example of Section "The Possibility of Heterogeneous Coefficients," the expected value of the two-way fixed effects (TWFE) estimator of the exposure model, given the data $x = \{x_{10}, ..., x_{S0}\}$ for states $s \in \{1, ..., S\}$, lies outside the range of coefficients $[\min_s \beta_s, \max_s \beta_s]$ if and only if $\lambda \neq 0$. The same continues to hold when the sample is extended to include a totally unaffected state.

Proof. From Claim 1 we have that

$$\operatorname{E}\left(\hat{\beta}|x\right) = \frac{\operatorname{Cov}\left(\beta_{s}\left(1-x_{s0}\right), 1-x_{s0}\right)}{\operatorname{Var}\left(1-x_{s0}\right)}.$$

Because in the numerical example $\beta_s = 1 + 0.5\lambda - \lambda x_{s0}$, we have that

$$\mathbf{E}\left(\hat{\beta}|x\right) = 1 + 0.5\lambda - \lambda C$$

for

$$C = \frac{\text{Cov}\left(x_{s0}\left(1 - x_{s0}\right), \left(1 - x_{s0}\right)\right)}{\text{Var}\left(1 - x_{s0}\right)}.$$

In the setting of Section "The Possibility of Heterogeneous Coefficients," given the data $x = \{x_{10}, ..., x_{S0}\}$ where $x_{s0} = 0.245 + s/100$ for s = 1, ..., 50, by direct calculation we have that C = 0, which means that

$$\mathbf{E}\left(\hat{\beta}|x\right) = 1 + 0.5\lambda.$$

If we add to the sample a totally unaffected state s = 0 with $x_{00} = 1$, and the remaining states $s = 1, \ldots, 50$ continue to follow $x_{s0} = 0.245 + s/100$, by direct calculation we have that $C \approx 0.087$, which means that

$$\mathrm{E}\left(\hat{\beta}|x\right) \approx 1 + 0.413\lambda.$$

Therefore, with or without a totally unaffected state, when $\lambda > 0$ we have $\mathrm{E}\left(\hat{\beta}|x\right) > \beta_s$ for all s because $\max_s \beta_s = 1 + 0.245\lambda$. Similarly, with or without a totally unaffected state, when $\lambda < 0$ we have $\mathrm{E}\left(\hat{\beta}|x\right) < \beta_s$ for all s because

 $\min_s \beta_s = 1 + 0.245\lambda$. Finally, with or without a totally unaffected state, when $\lambda = 0$ we have $E\left(\hat{\beta}|x\right) = 1 = E\left(\beta_s\right) = \max_s \beta_s = \min_s \beta_s$.

Claim 2. In the setting of Section "The Possibility of Heterogeneous Coefficients," there exists no estimator $\hat{\beta}'$ that can be expressed as a function of the data $\{(x_{s0}, y_{s0}, y_{s1})\}_{s=1}^{S}$ and whose expected value is guaranteed to be contained in $[\min_{s} \beta_{s}, \max_{s} \beta_{s}]$ for any heterogeneous model and any $\{x_{s0}\}_{s=1}^{S}$.

Proof. It is sufficient to establish this claim for a special case with S = 2, some x_{s0} 's with $0 < x_{20} \le x_{10} < 1$, $\beta_1 < \beta_2$, and δ_0 known to be zero. The model for the data is then

$$y_{s0} = \alpha_s + \beta_s \cdot x_{s0} + \varepsilon_{s0}$$
$$y_{s1} = \alpha_s + \delta_1 + \beta_s + \varepsilon_{s1}$$

with parameters $\theta = (\{(\alpha_s, \beta_s)\}_{s=1}^2, \delta_1, F_{\varepsilon|X})$, for $F_{\varepsilon|X}$ the distribution of $(\varepsilon_{s0}, \varepsilon_{s1})$ conditional on x_{s0} . Pick some estimator $\hat{\beta}'$. Given any parameter θ , define the distinct parameter $\theta' = (\{(\alpha'_s, \beta'_s)\}_{s=1}^2, \delta'_1, F_{\varepsilon|X})$ given by

$$\theta' = \left(\left\{ \left(\alpha_s + \frac{\Delta \cdot x_{s0}}{1 - x_{s0}}, \beta_s - \frac{\Delta}{1 - x_{s0}} \right) \right\}_{s=1}^2, \delta_1 + \Delta, F_{\varepsilon|X} \right)$$

for some $\Delta > (\beta_2 - \beta_1) \cdot (1 - x_{20}) > 0$.

We show that the two parameter values θ and θ' are observationally equivalent, which means the expected value of $\hat{\beta}'$ must be the same under θ and θ' . To see this, note that the distribution of (y_{s0}, y_{s1}) conditional on x_{s0} is the same under θ and θ' :

$$\begin{split} F_{Y_0,Y_1|X}\left(y_0,y_1 \mid x_{s0} = x;\theta\right) \\ &= \Pr\left\{\varepsilon_{s0} \leq y_0 - \alpha_s - \beta_s \cdot x, \ \varepsilon_{s1} \leq y_1 - \alpha_s - \delta_1 - \beta_s \mid x_{s0} = x;\theta\right\} \\ &= \Pr\left\{\varepsilon_{s0} \leq y_0 - \alpha_s - \beta_s \cdot x, \ \varepsilon_{s1} - \varepsilon_{s0} \leq y_1 - y_0 - \delta_1 - \beta_s \left(1 - x\right) \mid x_{s0} = x;\theta\right\} \\ &= \Pr\left\{ \begin{array}{c} \varepsilon_{s0} \leq y_0 - \left(\alpha_s + \frac{\Delta \cdot x}{1 - x}\right) - \left(\beta_s - \frac{\Delta}{1 - x}\right) \cdot x, \\ \varepsilon_{s1} - \varepsilon_{s0} \leq y_1 - y_0 - \left(\delta_1 + \Delta\right) - \left(\beta_s - \frac{\Delta}{1 - x}\right) \left(1 - x\right) \right| x_{s0} = x;\theta \right\} \\ &= \Pr\left\{ \begin{array}{c} \varepsilon_{s0} \leq y_0 - \alpha'_s - \beta'_s \cdot x, \\ \varepsilon_{s1} - \varepsilon_{s0} \leq y_1 - y_0 - \delta'_1 - \beta'_s \left(1 - x\right) \right| x_{s0} = x;\theta' \right\} \\ &= F_{Y_0,Y_1|X}\left(y_0,y_1 \mid x_{s0} = x;\theta'\right). \end{split}$$

However, the Δ is chosen such that $\beta'_1 = \beta_1 - \frac{\Delta}{1-x_{10}} < \beta_2 - \frac{\Delta}{1-x_{20}} = \beta'_2 < \beta_1 < \beta_2$. Therefore the expected value of $\hat{\beta}'$ cannot be contained in both $[\beta_1, \beta_2]$ and $[\beta'_1, \beta'_2]$, because these intervals do not intersect.

Claim 3. In the setting of Section "A Difference-in-Differences Perspective," the exposureadjusted difference-in-differences estimator $\hat{\beta}_{s,s'}^{DID}$ is equivalent to the TWFE estimator $\hat{\beta}$ based on the two states s and s'. Moreover, the expected value of $\hat{\beta}_{s,s'}^{DID}$, given the data $x = \{x_{s0}, x_{s'0}\}$ for states s and s', is given by

$$\mathbf{E}\left(\hat{\beta}_{s,s'}^{DID}|x\right) = \frac{(1-x_{s0})\,\beta_s - (1-x_{s'0})\,\beta_{s'}}{x_{s'0} - x_{s0}}$$

where the expectation $E\left(\hat{\beta}_{s,s'}^{DID}|x\right)$ is taken with respect to the distribution of the errors ε_{st} conditional on the data $x = \{x_{s0}, x_{s'0}\}$.

Proof. For the first part of the claim, note that from the proof of Claim 1 we have

$$\hat{\beta} = \frac{\text{Cov}\left(y_{s1} - y_{s0}, 1 - x_{s0}\right)}{\text{Var}\left(1 - x_{s0}\right)}$$

where $Cov(\cdot, \cdot)$ and $Var(\cdot)$ denote the sample covariance and variance, respectively.

Since the sample includes only two states s and s', for the numerator we have

$$Cov (y_{s1} - y_{s0}, 1 - x_{s0})$$

= $\frac{1}{4} ((y_{s1} - y_{s0}) - (y_{s'1} - y_{s'0})) (1 - x_{s0}) + \frac{1}{4} ((y_{s'1} - y_{s'0}) - (y_{s1} - y_{s0})) (1 - x_{s'0})$
= $\frac{1}{4} ((1 - x_{s0}) - (1 - x_{s'0})) ((y_{s1} - y_{s0}) - (y_{s'1} - y_{s'0}))$

where the first equality applies the definition of sample covariance and $a - \frac{a+b}{2} = \frac{a-b}{2}$. Similarly, for the denominator we have

Var
$$(1 - x_{s0}) = \frac{1}{4} \left((1 - x_{s0}) - (1 - x_{s'0}) \right)^2$$
.

Plugging the above expressions into $\hat{\beta}$ gives the equivalence to $\hat{\beta}_{s,s'}^{DID}$.

Given the equivalence between $\hat{\beta}$ and $\hat{\beta}_{s,s'}^{DID}$ when the sample includes only two states s and s', we apply Claim 1 to derive the expected value of $\hat{\beta}_{s,s'}^{DID}$. Specifically, Claim 1 implies that given the data $x = \{x_{s0}, x_{s'0}\}$ for states s and s', we have

$$\operatorname{E}\left(\hat{\beta}_{s,s'}^{DID}|x\right) = \frac{\operatorname{Cov}\left(\beta_s\left(1-x_{s0}\right), 1-x_{s0}\right)}{\operatorname{Var}\left(1-x_{s0}\right)}.$$

Based on a similar simplification to the expression of $\hat{\beta}^{DID}_{s,s'}$, we have

$$\operatorname{Cov}\left(\beta_{s}\left(1-x_{s0}\right),1-x_{s0}\right) = \frac{1}{4}\left(\left(1-x_{s0}\right)-\left(1-x_{s'0}\right)\right)\left(\left(1-x_{s0}\right)\beta_{s}-\left(1-x_{s'0}\right)\beta_{s'}\right)$$

and therefore

$$\frac{\operatorname{Cov}\left(\beta_{s}\left(1-x_{s0}\right),1-x_{s0}\right)}{\operatorname{Var}\left(1-x_{s0}\right)} = \frac{\left(1-x_{s0}\right)\beta_{s}-\left(1-x_{s'0}\right)\beta_{s'}}{x_{s'0}-x_{s0}}.$$