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This appendix formalizes claims made in the paper.

Claim 1. In the setting of Section “The Possibility of Heterogeneous Coefficients,” the

expected value of the two-way fixed effects (TWFE) estimator of the exposure model,

given the data x = {x10, ..., xS0} for states s ∈ {1, ..., S}, is given by

E
(
β̂|x
)
=

Cov (βs (1− xs0) , (1− xs0))

Var (1− xs0)

where Cov (·, ·) and Var (·) denote the sample covariance and variance, respectively,

and the expectation E
(
β̂|x
)
is taken with respect to the distribution of the errors εst

conditional on the data x = {x10, ..., xS0}.

Proof. With only two time periods the TWFE estimator of the exposure model is

equivalent to an OLS estimator of the first-differenced model

ys1 − ys0 = δ1 − δ0 + β (1− xs0) + εs1 − εs0.

Therefore the TWFE estimator based on the given sample is

β̂ =
Cov (ys1 − ys0, 1− xs0)

Var (1− xs0)
.
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From the heterogeneous model we have that

ys1 − ys0 = δ1 − δ0 + βs (1− xs0) + εs1 − εs0

and therefore

β̂ =
Cov (βs (1− xs0) , 1− xs0)

Var (1− xs0)
+

Cov (εs1 − εs0, 1− xs0)

Var (1− xs0)
.

If (εs1 − εs0) is mean zero conditional on (1− xs0) then the expected value of β̂

conditional on the data x = {x10, ..., xS0} is

E
(
β̂|x
)
=

Cov (βs (1− xs0) , 1− xs0)

Var (1− xs0)
.

Corollary 1. In the setting of Section “The Possibility of Heterogeneous Coefficients,”

if βs is independent of xs0 across states s, then the expected value of the two-way fixed

effects (TWFE) estimator of the exposure model, given the data x = {x10, ..., xS0} for

states s ∈ {1, ..., S}, is given by

E
(
β̂|x
)
= E (βs)

for E (βs) the expected value of βs. Here the expectation E
(
β̂|x
)
is taken with respect

to the distribution of the errors εst and coefficients βs conditional on the data x.

Proof. Based on a similar proof for Claim 1, we have that

E
(
β̂|x
)
=

E (Cov (βs (1− xs0) , 1− xs0))

Var (1− xs0)

where the expectation is now taken with respect to the distribution of the errors εst

as well as βs conditional on the data x = {x10, ..., xS0}. By the independence of βs

and xs0, we have that

E (Cov (βs (1− xs0) , 1− xs0)) = Cov (E (βs) (1− xs0) , 1− xs0) = E (βs)Var (1− xs0) ,
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and therefore that

E
(
β̂|x
)
= E (βs) .

Corollary 2. In the numerical example of Section “The Possibility of Heterogeneous

Coefficients,” the expected value of the two-way fixed effects (TWFE) estimator of the

exposure model, given the data x = {x10, ..., xS0} for states s ∈ {1, ..., S}, lies outside
the range of coefficients [mins βs,maxs βs] if and only if λ ̸= 0. The same continues

to hold when the sample is extended to include a totally unaffected state.

Proof. From Claim 1 we have that

E
(
β̂|x
)
=

Cov (βs (1− xs0) , 1− xs0)

Var (1− xs0)
.

Because in the numerical example βs = 1 + 0.5λ− λxs0, we have that

E
(
β̂|x
)
= 1 + 0.5λ− λC

for

C =
Cov (xs0 (1− xs0) , (1− xs0))

Var (1− xs0)
.

In the setting of Section“The Possibility of Heterogeneous Coefficients,”given the data

x = {x10, ..., xS0} where xs0 = 0.245 + s/100 for s = 1, . . . , 50, by direct calculation

we have that C = 0, which means that

E
(
β̂|x
)
= 1 + 0.5λ.

If we add to the sample a totally unaffected state s = 0 with x00 = 1, and the

remaining states s = 1, . . . , 50 continue to follow xs0 = 0.245 + s/100, by direct

calculation we have that C ≈ 0.087, which means that

E
(
β̂|x
)
≈ 1 + 0.413λ.

Therefore, with or without a totally unaffected state, when λ > 0 we have

E
(
β̂|x
)

> βs for all s because maxs βs = 1 + 0.245λ. Similarly, with or without

a totally unaffected state, when λ < 0 we have E
(
β̂|x
)

< βs for all s because
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mins βs = 1+0.245λ. Finally, with or without a totally unaffected state, when λ = 0

we have E
(
β̂|x
)
= 1 = E (βs) = maxs βs = mins βs.

Claim 2. In the setting of Section “The Possibility of Heterogeneous Coefficients,”

there exists no estimator β̂′ that can be expressed as a function of the data {(xs0, ys0, ys1)}Ss=1

and whose expected value is guaranteed to be contained in [mins βs,maxs βs] for any

heterogeneous model and any {xs0}Ss=1.

Proof. It is sufficient to establish this claim for a special case with S = 2, some xs0’s

with 0 < x20 ≤ x10 < 1, β1 < β2, and δ0 known to be zero. The model for the data is

then

ys0 = αs + βs · xs0 + εs0

ys1 = αs + δ1 + βs + εs1

with parameters θ =
(
{(αs, βs)}2s=1, δ1, Fε|X

)
, for Fε|X the distribution of (εs0, εs1)

conditional on xs0. Pick some estimator β̂′. Given any parameter θ, define the

distinct parameter θ′ =
({(

α
′
s, β

′
s

)}2
s=1

, δ
′
1, Fε|X

)
given by

θ′ =

({(
αs +

∆ · xs0

1− xs0

, βs −
∆

1− xs0

)}2

s=1

, δ1 +∆, Fε|X

)

for some ∆ > (β2 − β1) · (1− x20) > 0.

We show that the two parameter values θ and θ′ are observationally equivalent,

which means the expected value of β̂′ must be the same under θ and θ′. To see this,

note that the distribution of (ys0, ys1) conditional on xs0 is the same under θ and θ′:
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FY0,Y1|X (y0, y1 | xs0 = x; θ)

=Pr {εs0 ≤ y0 − αs − βs · x, εs1 ≤ y1 − αs − δ1 − βs | xs0 = x; θ}

=Pr {εs0 ≤ y0 − αs − βs · x, εs1 − εs0 ≤ y1 − y0 − δ1 − βs (1− x) |xs0 = x; θ}

=Pr

{
εs0 ≤ y0 −

(
αs +

∆·x
1−x

)
−
(
βs − ∆

1−x

)
· x,

εs1 − εs0 ≤ y1 − y0 − (δ1 +∆)−
(
βs − ∆

1−x

)
(1− x)

∣∣∣∣xs0 = x; θ

}

=Pr

{
εs0 ≤ y0 − α′

s − β′
s · x,

εs1 − εs0 ≤ y1 − y0 − δ′1 − β′
s (1− x)

∣∣∣∣xs0 = x; θ′

}
=FY0,Y1|X (y0, y1 | xs0 = x; θ′) .

However, the ∆ is chosen such that β
′
1 = β1 − ∆

1−x10
< β2 − ∆

1−x20
= β

′
2 < β1 < β2.

Therefore the expected value of β̂′ cannot be contained in both [β1, β2] and [β′
1, β

′
2],

because these intervals do not intersect.

Claim 3. In the setting of Section“A Difference-in-Differences Perspective,”the exposure-

adjusted difference-in-differences estimator β̂DID
s,s′ is equivalent to the TWFE estimator

β̂ based on the two states s and s′. Moreover, the expected value of β̂DID
s,s′ , given the

data x = {xs0, xs′0} for states s and s′, is given by

E
(
β̂DID
s,s′ |x

)
=

(1− xs0) βs − (1− xs′0) βs′

xs′0 − xs0

where the expectation E
(
β̂DID
s,s′ |x

)
is taken with respect to the distribution of the

errors εst conditional on the data x = {xs0, xs′0}.

Proof. For the first part of the claim, note that from the proof of Claim 1 we have

β̂ =
Cov (ys1 − ys0, 1− xs0)

Var (1− xs0)

where Cov (·, ·) and Var (·) denote the sample covariance and variance, respectively.
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Since the sample includes only two states s and s′, for the numerator we have

Cov (ys1 − ys0, 1− xs0)

=
1

4
((ys1 − ys0)− (ys′1 − ys′0)) (1− xs0) +

1

4
((ys′1 − ys′0)− (ys1 − ys0)) (1− xs′0)

=
1

4
((1− xs0)− (1− xs′0)) ((ys1 − ys0)− (ys′1 − ys′0))

where the first equality applies the definition of sample covariance and a− a+b
2

= a−b
2
.

Similarly, for the denominator we have

Var (1− xs0) =
1

4
((1− xs0)− (1− xs′0))

2 .

Plugging the above expressions into β̂ gives the equivalence to β̂DID
s,s′ .

Given the equivalence between β̂ and β̂DID
s,s′ when the sample includes only two

states s and s′, we apply Claim 1 to derive the expected value of β̂DID
s,s′ . Specifically,

Claim 1 implies that given the data x = {xs0, xs′0} for states s and s′, we have

E
(
β̂DID
s,s′ |x

)
=

Cov (βs (1− xs0) , 1− xs0)

Var (1− xs0)
.

Based on a similar simplification to the expression of β̂DID
s,s′ , we have

Cov (βs (1− xs0) , 1− xs0) =
1

4
((1− xs0)− (1− xs′0)) ((1− xs0) βs − (1− xs′0) βs′)

and therefore

Cov (βs (1− xs0) , 1− xs0)

Var (1− xs0)
=

(1− xs0) βs − (1− xs′0) βs′

xs′0 − xs0

.
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