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A Introduction

In this online appendix, we present a more mathematical treatment of the baseline quantitative
urban model discussed in Redding (2023).

B Baseline Quantitative Urban Model

We begin by developing a baseline quantitative urban model of internal city structure based on
Ahlfeldt, Redding, Sturm and Wolf (2015). This model incorporates agglomeration and disper-
sion forces and an arbitrary number of heterogeneous locations within a city, while remaining
tractable and amenable to analytical analysis.

We consider a city embedded within a wider economy. The city consists of a set of discrete
locations or blocks, which are indexed by i = 1, ..., S. Each block has an e�ective supply of �oor
space Hi. Floor space can be used commercially or residentially, and we denote the endogenous
fractions of �oor space allocated to commercial and residential use by θi and 1− θi, respectively.

The city is populated by an endogenous measure of L̄ workers, who are perfectly mobile
within the city and the larger economy, which provides a reservation level of utility Ū . Workers
decide whether or not to move to the city before observing idiosyncratic utility shocks for each
possible pair of residence and employment blocks within the city. If a worker decides to move to
the city, she observes these realizations for idiosyncratic utility, and picks the pair of residence
and employment blocks within the city that maximizes her utility. Firms produce a single �nal
good, which is costlessly traded within the city and the larger economy, and is chosen as the
numeraire (pi = p = 1). Markets are perfectly competitive.

Blocks di�er in terms of their �nal goods productivity, residential amenities, supply of �oor
space and access to the transport network, which determines travel times between any two blocks
in the city. Productivity depends on production externalities, which are determined by the sur-
rounding density of workers, and production fundamentals, such as topography and proximity
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to natural supplies of water. Amenities depend on residential externalities, which are determined
by the surrounding density of residents, and residential fundamentals, such as access to forests
and lakes. Congestion forces are governed by the elasticity of supply of �oor with respect to its
price and commuting costs that increase with travel time.

The analysis remains tractable despite the large number of asymmetric locations, because
of the introduction of a stochastic formulation of workers commuting decisions. In the base-
line model, workers are ex ante homogenous but ex post heterogeneous, because their draw an
idiosyncratic preference shock for each pair of workplace and residence locations.

B1 Preferences

Worker preferences are de�ned over consumption of a single tradeable �nal good and residential
�oor space. We assume that these preferences take the Cobb-Douglas form, such that the indirect
utility for a worker ω residing in n and working in i is:1

Uni (ω) =
Bnbni(ω)wi
κniPα

nQ
1−α
n

, 0 < α < 1, (B.1)

where we suppress the time subscript; Pn is the price of the tradeable �nal good;Qn is the price of
residential �oor space; wi is the wage; κni = eκτni ∈ [1,∞) is an iceberg commuting cost that is
increasing in the bilateral trade time between residence and workplace (τni) with elasticity ρ > 0;
Bn captures residential amenities that are common across all workers and could be endogenous
to the surrounding concentration of economic activity through agglomeration forces; and bni(ω)

is an idiosyncratic amenity draw that captures all the idiosyncratic factors that can cause an
individual to live and work in particular locations within the city.

We assume that idiosyncratic amenities (bni(ω)) are drawn from an independent extreme
value (Fréchet) distribution for each residence-workplace pair and worker:

G(b) = e−b
−ε
, ε > 1, (B.2)

where we normalize the Fréchet scale parameter in equation (B.2) to one, because it enters the
worker choice probabilities isomorphically to common amenitiesBn in equation (B.1); the smaller
the Fréchet shape parameter ε, the greater the heterogeneity in idiosyncratic amenities, and the
less sensitive are worker location decisions to economic variables.2

1For empirical evidence using U.S. data in support of the constant housing expenditure share implied by the
Cobb-Douglas functional form, see Davis and Ortalo-Magne (2011).

2Modeling idiosyncratic preferences using the extreme value distribution has a long tradition in transportation
economics, dating back to McFadden (1974). A related literature models workers’ migration decisions using extreme
value distributed preferences, as in Grogger and Hanson (2011) and Kennan and Walker (2011).
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Using the properties of for extreme value distributions, the probability that a worker chooses
to reside in n and work in i is given by:

λni =
Lni
LN

=
(Bnwi)

ε (κniP
α
nQ

1−α
n )

−ε∑
k∈N

∑
`∈N (Bkw`)

ε (κk`Pα
k Q

1−α
k

)−ε , (B.3)

where Lni is the measure of commuters from n to i; LN is the measure of workers that choose
the city; and the full derivation is reported in Section C of this online appendix.

A �rst key implication of the extreme value speci�cation for idiosyncratic amenities is that bi-
lateral commuting �ows in equation (B.3) satisfy a gravity equation. Therefore, the probability of
commuting between residence n and workplace i depends on the characteristics of that residence
n, the attributes of that workplace i and bilateral commuting costs and amenities (“bilateral resis-
tance”). Furthermore, this probability also depends on the characteristics of all residences k, all
workplaces ` and all bilateral commuting costs (“multilateral resistance”). A large reduced-form
literature in urban economics provides empirical evidence that the gravity equation provides a
good approximation to commuting �ows, as reviewed in Fortheringham and O’Kelly (1989) and
McDonald and McMillen (2010).

Summing across workplaces i in equation (B.3), we obtain the probability that a worker
chooses to live in residence n (λRn = Rn/L̄):

λRn =
Rn

L̄
=

∑
i∈N (Bnwi)

ε (κniP
α
nQ

1−α
n )

−ε∑
k∈N

∑
`∈N (Bkw`)

ε (κk`Pα
k Q

1−α
k

)−ε , (B.4)

where Rn is the measure of residents that choose to live in location n and L̄ is the measure of
residents that choose to live somewhere in the city.

Similarly, summing across residences n in equation (B.3), we obtain the probability that a
worker chooses workplace i (λLi = Li/L̄):

λLi =
Li
L̄

=

∑
n∈N (Bnwi)

ε (κniP
α
nQ

1−α
n )

−ε∑
k∈N

∑
`∈N (Bkw`)

ε (κk`Pα
k Q

1−α
k

)−ε , (B.5)

where Li is the measure of residents that choose to work in location i and L̄ is de�ned above.
A second key implication of the extreme value speci�cation for idiosyncratic amenities is

that each location faces an upward-sloping curve for labor. Other things equal, in order to attract
additional workers (higher λLi ), a location must o�er a higher wage (wi) relative to other locations
(wk) in equation (B.5). Although individual workers experience idiosyncratic random preference
draws for locations, with a continuous measure of workers, there is no uncertainty in the supply
of workers to each location.
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We can also evaluate the probability that a worker commutes to location i conditional on
having chosen to live in location n, which takes the following form:

λRni|n =
λni
λRn

=
(wi/κni)

ε∑
`∈N (w`/κn`)

ε . (B.6)

Commuter market clearing requires that the measure of workers employed in each location
i (Li) equals the sum across all locations n of their measures of residents (Rn) times their condi-
tional probabilities of commuting to i (λRni|n):

Li =
∑
n∈N

λRni|nRn (B.7)

=
∑
n∈N

(wi/κni)
ε∑

`∈N (w`/κn`)
εRn.

Expected worker income conditional on living in location n equals the wages in all possible
workplace locations weighted by the probabilities of commuting to those locations conditional
on living in n:

v̄n = E [w|n] (B.8)

=
∑
i∈N

λRni|nwi,

=
∑
i∈N

(wi/κni)
ε∑

`∈N (w`/κn`)
εwi,

where E denotes the expectations operator and the expectation is taken over the distribution for
idiosyncratic amenities. Intuitively, expected worker income is high in locations that have low
commuting costs (low κni) to high-wage employment locations.

A third key implication of the extreme value speci�cation is that expected utility is equalized
across all pairs of residences and workplaces within the city and is equal to the reservation level
of utility in the wider economy:

Ū = ϑ

[∑
k∈N

∑
`∈N

(Bkw`)
ε (κk`Pα

k Q
1−α
k

)−ε] 1
ε

, (B.9)

where the expectation is taken over the distribution for idiosyncratic amenities; ϑ ≡ Γ((ε−1)/ε);
and Γ(·) is the Gamma function.

The intuition for this second result is that bilateral commutes with attractive economic
characteristics (high workplace wages and low residence cost of living) attract additional com-
muters with lower idiosyncratic amenities, until expected utility (taking into account idiosyn-
cratic amenities) is the same across all bilateral commutes and equal to the reservation utility. A
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closely related implication is that workplaces and residences face upward-sloping supply func-
tions in real wages for workers and residents respectively (as captured in the choice probabilities
(B.3)). To obtain additional workers, a location must pay higher wages to attract workers with
lower realizations for idiosyncratic amenities for that workplace. Similarly, to acquire additional
residents, a location must o�er a lower cost of living to entice residents with lower realization
for idiosyncratic amenities for that residence.

B2 Production

Production of the tradeable �nal good occurs under conditions of perfect competition and con-
stant returns to scale. For simplicity, we assume that the production technology takes the Cobb-
Douglas form, so that output of the �nal good in location i (yi) is:

yi = AiL
β
i (θiHi)

1−β , 0 < β < 1, (B.10)

where Ai is �nal goods productivity; Li is employment; Hi is the supply of �oor space; and θi is
the fraction of �oor space used commercially.

Firms choose their location of production and their inputs of workers and commercial �oor
space to maximize pro�ts, taking as given �nal goods productivity Ai, the distribution of id-
iosyncratic utility, goods and factor prices, and the location decisions of other �rms and workers.
Pro�t maximization implies that equilibrium employment in location i is increasing in produc-
tivity (Ai), decreasing in the wage (wi), and increasing in the supply of commercial �oor space
(θiHi):

Li =

(
βAi
wi

) 1
1−β

θiHi, (B.11)

where the equilibrium wage is determined by the requirement that the demand for workers in
each employment location (B.11) equals the supply of workers choosing to commute to that lo-
cation (B.7).

From the �rst-order conditions for pro�t maximization and zero pro�ts, equilibrium commer-
cial �oor prices (qi) in each block with positive employment must satisfy the following zero-pro�t
condition:

qi = (1− β)

(
β

wi

) β
1−β

A
1

1−β
i . (B.12)

Intuitively, �rms in blocks with higher productivity (Ai) and/or lower wages (wi) are able to pay
higher commercial �oor prices and still make zero pro�ts.
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B3 Land Market Clearing

Land market equilibrium requires no-arbitrage between the commercial and residential use of
�oor space after the tax equivalent of land use regulations. The share of �oor space used com-
mercially (θi) is:

θi = 1 if qi > ξiQi,
θi ∈ [0, 1] if qi = ξiQi,
θi = 0 if qi < ξiQi,

(B.13)

where ξi ≥ 1 captures one plus the tax equivalent of land use regulations that restrict commercial
land use relative to residential land use. We allow this wedge between commercial and residential
�oor prices to vary across blocks.

We follow the standard approach in the urban literature of assuming that �oor space Hi is
supplied by a competitive construction sector that uses landKi and capitalMi as inputs. Follow-
ing Combes, Duranton and Gobillon (2018) and Epple, Gordon and Sieg (2010), we assume that
the production function takes the Cobb-Douglas form:

Hi = Mµ
i K

1−µ
i . (B.14)

Therefore, pro�t maximization and zero pro�ts in the construction sector implies that the
price for commercial �oor space in blocks with positive commercial land use satis�es:

qi = µ−µ(1− µ)−(1−µ)PµR1−µ
i .

where P is the common price for capital across all blocks, and Ri is the price for land. Since
the price for capital is the same across all locations, the relationships between the quantities and
prices of �oor space and land can be summarized as:

Hi = ϕiK
1−µ
i (B.15)

qi = χR1−µ
i ,

where we refer to ϕi = Mµ
i as the density of development (since it determines the relationship

between �oor space and land area) and χ is a constant.
Residential land market clearing implies that the demand for residential �oor space equals

the supply of �oor space allocated to residential use in each location:

(1− α)
v̄iRi

Qi

= (1− θi)Hi. (B.16)

Commercial land market clearing requires that the demand for commercial �oor space equals
the supply of �oor space allocated to commercial use in each location: θiHi. Using the �rst-order
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conditions for pro�t maximization, this commercial land market clearing condition can be written
as follows:

1− β
β

wiLi
qi

= θiHi. (B.17)

Finally, we require that the overall land market clears such that the demand for residential �oor
space (B.16) plus the demand for commercial �oor space (B.17) equals the total supply of �oor
space from equation (B.15):

(1− θi)Hi + θiHi = Hi = ϕiK
1−µ
i . (B.18)

B4 Agglomeration Forces

The attractiveness of a location for residence and production can depend both on exogenous
natural advantages (locational fundamentals) and endogenous agglomeration forces.

Production Agglomeration Forces We allow �nal goods productivity to depend on produc-
tion fundamentals (ai) and production externalities (Ai). Production fundamentals capture fea-
tures of physical geography that make a location more or less productive independently of the
surrounding density of economic activity (for example access to natural water). Production exter-
nalities impose structure on how the productivity of a given block is a�ected by the characteristics
of other blocks. Speci�cally, we follow the standard approach in urban economics of modeling
these externalities as depending on the travel-time weighted sum of workplace employment den-
sity in surrounding blocks:

Ai = aiAηL

i , Ai ≡
∑
n∈N

e−δ
Lτin

(
Ln
Kn

)
, (B.19)

where Ln/Kn is workplace employment density per unit of land area; production externalities
decline with travel time (τin) through the iceberg factor e−δLτin ∈ (0, 1]; δL determines their rate
of spatial decay; and ηL controls their relative importance in determining overall productivity.

Residential Agglomeration Forces We model the externalities in workers’ residential
choices analogously to the externalities in �rms’ production choices. We allow residential ameni-
ties to depend on residential fundamentals (bi) and residential externalities (Bi). Residential fun-
damentals capture features of physical geography that make a location a more or less attractive
place to live independently of the surrounding density of economic activity (for example green
areas). Residential externalities again impose structure on how the amenities in a given block are
a�ected by the characteristics of other blocks. Speci�cally, we adopt a symmetric speci�cation as
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for production externalities, and model residential externalities as depending on the travel-time
weighted sum of residential employment density in surrounding blocks:

Bi = biBη
R

i , Bi ≡
∑
n∈N

e−δ
Rτin

(
Rn

Kn

)
, (B.20)

where Rn/Kn is residence employment density per unit of land area; residential externalities
decline with travel time (τin) through the iceberg factor e−δRτin ∈ (0, 1]; δR determines their rate
of spatial decay; and ηR controls their relative importance in overall residential amenities. The
parameter ηR captures the net e�ect of residence employment density on amenities, including
negative spillovers such as air pollution and crime, and positive externalities through the avail-
ability of urban amenities.

B5 General Equilibrium

Given the model’s parameters {α, β, µ, ε, ρ, ηL, δL, ηR, δR}, the reservation level of utility in
the wider economy Ū and exogenous location characteristics {τni, ai, bi, ϕi, Ki, ξi}, the general
equilibrium of the model is referenced by the following seven endogenous variables in each lo-
cation { λLi , λRi , Qi, qi, wi, θi, Hi} and total city population L̄. These eight components of the
equilibrium vector are determined by the following system of eight equations: the residential
choice probability (B.4), the workplace choice probability (B.5), population mobility (B.9), pro�t
maximization and zero pro�ts (B.12), no-arbitrage between alternative uses of land (B.13), res-
idential land market clearing (B.16), commercial land market clearing (B.17), and overall land
market clearing (B.18), where productivity and amenities satisfy (B.19) and (B.20).

In general, there can be a unique equilibrium or multiple equilibria in the model, depend-
ing on the strength of agglomeration and dispersion forces. Ahlfeldt, Redding, Sturm and Wolf
(2015) establish the existence of a unique equilibrium in the absence of agglomeration forces.
Allen, Arkolakis and Li (2021) provide conditions for the existence of a unique equilibrium in the
presence of agglomeration forces, which require that these agglomeration forces are su�ciently
weak relative to the dispersion forces in the model.

B6 Residential Choices

We now use the characterization of commuting choices in Section B1 of this online appendix to
derive the partial equilibrium representation of residential choices in Figure 2 in the paper.

In equilibrium, the expected utility for each residence and workplace pair is equal to the
reservation level of utility in the wider economy. Using expected utility (B.9) and the residential
choice probabilities (B.4), we can write this population mobility condition for each location n in
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terms of its own characteristics and the probability of residing in that location:

Ū = ϑ

[∑
`∈N (Bnw`)

ε (κn`P
α
nQ

1−α
n )

−ε

λRn

] 1
ε

, (B.21)

which can be further re-written as:

Ū =
ϑL̄

1
εBnRMAn

Pα
nQ

1−α
n (Rn)

1
ε

, RMAn ≡

[∑
i∈N

(wi/κni)
ε

] 1
ε

, (B.22)

where we have de�nedRMAn is a measure of residents commuting market access to employment
opportunities in surrounding locations.

Using the fact that the �nal good is costlessly traded and chosen as our numeraire (pn =

1), and using the residential land market clearing condition (B.16), we can further re-write this
expression to obtain the population mobility condition shown in Figure 2 in the paper:

Ū = (Rn)−(1−α+ 1
ε ) ϑL̄

1
εBnRMAn

(
(1− θn)Hn

v̄n

)1−α

. (B.23)

The left-hand side of this population mobility condition (B.23) is the reservation level of utility
in the wider economy (Ū ), which is shown as the horizontal line in the �gure. The right-hand
side of this population mobility condition is the expected utility of living in location n, which is
shown as the downward-sloping line in the �gure. Given the supply of residential �oor space ((1−
θn)Hn) and wages (which determine residents commuting market access (RMAn) and residents’
expected income (v̄n)), an increase in the number of residents in a given location bids up the price
of �oor space and brings residents with lower idiosyncratic realizations for preferences for that
location, thereby reducing expected utility for that location.

The equilibrium number of residents (Rn) is determined by the intersection of the two lines,
at which the expected utility of living in location n is equal to the expected utility in the wider
economy. Shifts in the supply of residential �oor space ((1 − θn)Hn) and wages (and hence
residents commuting market access (RMAn) and residents expected income (v̄n)) lead to shifts
in the downward-sloping line for the expected utility of living in location n, and hence shifts in
the number of residents. In general equilibrium, both the supply of residential �oor space and
wages are endogenously determined, as characterized above.

B7 Labor Demand and Supply

We now use the characterization of commuting choices and production in Sections B1 and B2 of
this online appendix to derive the partial equilibrium representation of labor supply and demand
in Figure 2 in the paper.
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In equilibrium, the demand for labor in each location must equal the supply of labor from
workers choosing to commute to that location. We derive the downward-sloping labor demand
curve in Figure 2 from the production technology (B.10). From pro�t maximization in competitive
markets subject to this production technology, the requirement that the value marginal product
of labor equals the wage (wn) in location n implies:

wn = (1− β)An (θnHn)β L−βn . (B.24)

Other things equal, an increase in the number of workers (Ln) implies a decline in the value
marginal product of labor on the right-hand side of this equation, and hence a decline in the wage
(wn), as shown in the downward-sloping labor demand curve. Changes in productivity (An) and
the supply of commercial �oor space (θnHn) shift this labor demand curve and are endogenously
determined in general equilibrium.

We derive the upward-sloping labor supply in Figure 2 from workers commuting choices.
Using the workplace choice probability (B.5), expected utility (B.9) and our choice of numeraire,
we can write the number of workers choosing to commute to location n as follows:

Ln = L̄

(
Ū

δ

)−ε(
wn

WMAn

)ε
, WMAn =

[∑
k∈N

Bε
k

(
κknQ

1−α
k

)−ε]− 1
ε

, (B.25)

where WMAn is a measure of workplace market access, which summarizes the access of work-
place n to commuters from surrounding locations.

Other things equal, a location must o�er a higher wage (wn) in order to attract workers with
lower idiosyncratic preferences for that location, and hence increase labor supply (Ln) on the
right-hand side of this equation, as shown in the upward-sloping labor supply curve. Changes in
total city population (L̄), the reservation utility (Ū ), amenities (Bk), commuting costs (κnk) and
prices of residential �oor space (Qn) shift this labor supply curve. All of these variables, except
for commuting costs, are endogenously determined in general equilibrium.

C Derivation of Choice Probabilities and Expected Utility

In this section of the online appendix, we provide the derivation of the worker commuting prob-
abilities and expected utility in the baseline quantitative urban model.

C1 Distribution of Utility

From the indirect utility function in equation (B.1), we have the following monotonic relationship
between idiosyncratic amenities (bni(ω)) and utility (Uni(ω)):

bni(ω) =
Uni (ω)κniP

α
nQ

1−α
n

Bnwi
. (C.1)
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We assume that idiosyncratic amenities (bni(ω)) are drawn from an independent extreme value
(Fréchet) distribution for each residence-workplace pair and each worker:

Gni(b) = e−b
−ε
, ε > 1, (C.2)

where we normalize the Fréchet scale parameter in equation (C.2) to one, because it enters worker
choice probabilities isomorphically to the common bilateral amenities parameter Bn.

Together equations (C.1) and (C.2) imply that the distribution of utility for residence n and
workplace i is:

Gni(u) = e−Ψniu
−ε
, Ψni ≡ (Bnwi)

ε (κniPα
nQ

1−α
n

)−ε
. (C.3)

From all possible pairs of residence and workplace, each worker chooses the bilateral commute
that o�ers the maximum utility. Since the maximum of a sequence of Fréchet distributed ran-
dom variables is itself Fréchet distributed, the distribution of utility across all possible pairs of
residence and workplace is:

1−G(u) = 1−
∏
k∈N

∏
`∈N

e−Ψk`u
−ε
,

where the left-hand side is the probability that a worker has a utility greater than u, and the right-
hand side is one minus the probability that the worker has a utility less than u for all possible
pairs of residence and employment locations. Therefore we have:

G(u) = e−Ψu−ε , Ψ =
∑
k∈N

∑
`∈N

Ψk`. (C.4)

Given this Fréchet distribution for utility, expected utility is:

E [u] =

∫ ∞
0

εΨu−εe−Ψu−εdu. (C.5)

Now de�ne the following change of variables:

y = Ψu−ε, dy = −εΨu−(ε+1)du. (C.6)

Using this change of variables, expected utility can be written as:

E [u] =

∫ ∞
0

Ψ1/εy−1/εe−ydy, (C.7)

which can be in turn written as:

E [u] = ϑΨ1/ε, ϑ = Γ

(
ε− 1

ε

)
, (C.8)

where Γ(·) is the Gamma function. Therefore we obtain the following expression for expected
utility:

E [u] = ϑΨ1/ε = ϑ

[∑
k∈N

∑
`∈N

(Bkw`)
ε (κk`Pα

k Q
1−α
k

)−ε]1/ε

. (C.9)
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C2 Residence and Workplace Choices

Using the distribution of utility for pairs of residence and employment locations, the probability
that a worker chooses the bilateral commute from n to i out of all possible bilateral commutes is:

λni = Pr [uni ≥ max{uk`};∀k, `] , (C.10)

=

∫ ∞
0

∏
6̀=i

Gn`(u)

[∏
k 6=n

∏
`∈N

Gk`(u)

]
gni(u)du,

=

∫ ∞
0

∏
k∈N

∏
`∈N

εΨniu
−(ε+1)e−Ψk`u

−ε
du,

=

∫ ∞
0

εΨniu
−(ε+1)e−Ψu−εdu.

Note that:
d

du

[
1

Ψ
e−Ψu−ε

]
= εu−(ε+1)e−Ψu−ε . (C.11)

Using this result to evaluate the integral above, the probability that the worker chooses to live in
location n and work in location i is:

λni =
Lni
L̄

=
Ψni

Ψ
=

(Bnwi)
ε (κniP

α
nQ

1−α
n )

−ε∑
k∈N

∑
`∈N (Bkw`)

ε (κk`Pα
k Q

1−α
k

)−ε , (C.12)

where Lni is the measure of commuters from residence n to workplace i; L̄ is the overall measure
of workers that choose to live in the city.

Summing across workplaces i in equation (C.12), we obtain the probability that a worker
ichooses to live in residence n (Rn/L̄):

λRn =
Rn

L̄
=

∑
i∈N (Bnwi)

ε (κniP
α
nQ

1−α
n )

−ε∑
k∈N

∑
`∈N (Bkw`)

ε (κk`Pα
k Q

1−α
k

)−ε . (C.13)

Similarly, summing across residences n in equation (C.12), we obtain the probability that a
worker chooses workplace i (Li/L̄):

λLi =
Li
L̄

=

∑
n∈N (Bnwi)

ε (κniP
α
nQ

1−α
n )

−ε∑
k∈N

∑
`∈N (Bkw`)

ε (κk`Pα
k Q

1−α
k

)−ε . (C.14)

For the measure of workers in location i (Li), we can evaluate the conditional probability that
they commute from location n (conditional on having chosen to work in location i):

λLni|i =
λni
λLi

= Pr [uni ≥ max{uri};∀r] , (C.15)

=

∫ ∞
0

∏
r 6=n

Gri(u)gni(u)du,

=

∫ ∞
0

e−ΨLi u
−ε
εΨniu

−(ε+1)du.
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where
ΨL
i ≡

∑
k∈N

(Bkwi)
ε (κkiPα

k Q
1−α
k

)−ε
. (C.16)

Using the result (C.11) to evaluate the integral in equation (C.15), the probability that a worker
commutes from residence n to workplace i conditional on having chosen to work in location i is:

λLni|i =
λni
λLi

=
(Bnwi)

ε (κniP
α
nQ

1−α
n )

−ε∑
k∈N (Bkwi)

ε (κkiPα
k Q

1−α
k

)−ε . (C.17)

which further simpli�es to:

λLni|i =
Bε
n (κniP

α
nQ

1−α
n )

−ε∑
k∈N B

ε
k

(
κkiPα

k Q
1−α
k

)−ε . (C.18)

For the measure of residents of location n (Rn), we can evaluate the conditional probability that
they commute to location i (conditional on having chosen to live in location n):

λRni|n =
λni
λRn

= Pr [uni ≥ max{un`};∀`] , (C.19)

=

∫ ∞
0

∏
`6=i

Gn`(u)gni(u)du,

=

∫ ∞
0

e−ΨRnu
−ε
εΨniu

−(ε+1)du,

where
ΨR
n ≡

∑
`∈N

(Bnw`)
ε (κn`Pα

nQ
1−α
n

)−ε
. (C.20)

Using the result (C.11) to evaluate the integral in equation (C.19), the probability that a worker
commutes to location i conditional on having chosen to live in location n is:

λRni|n =
λni
λRn

=
(Bnwi)

ε (κniP
α
nQ

1−α
n )

−ε∑
`∈N (Bnw`)

ε (κn`Pα
nQ

1−α
n )−ε

, (C.21)

which further simpli�es to:

λRni|n =
(wi/κni)

ε∑
`∈N (w`/κn`)

ε . (C.22)

Commuter market clearing requires that the measure of workers employed in each location
i (Li) equals the sum across all locations n of their measures of residents (Rn) times their condi-
tional probabilities of commuting to i (λRni|n):

Li =
∑
n∈N

λRni|nRn (C.23)

=
∑
n∈N

(wi/κni)
ε∑

`∈N (w`/κn`)
εRn,
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where, since there is a continuous measure of workers residing in each location, there is no
uncertainty in the supply of workers to each employment location.

Expected worker income conditional on living in location n equals the wages in all possible
workplace locations weighted by the probabilities of commuting to those locations conditional
on living in n:

v̄n = E [w|n] (C.24)

=
∑
i∈N

λRni|nwi,

=
∑
i∈N

(wi/κni)
ε∑

`∈N (w`/κn`)
εwi,

where E denotes the expectations operator and the expectation is taken over the distribution for
idiosyncratic amenities. Intuitively, expected worker income is high in locations that have low
commuting costs (low κni) to high-wage employment locations.

C3 Equalization of Expected Utility

Another implication of the Fréchet distribution of utility is that the distribution of utility condi-
tional on residing in location n and commuting to location i is the same across all bilateral pairs
of locations with positive residents and employment, and is equal to the distribution of utility for
the economy as a whole. To establish this result, note that the distribution of utility conditional
on residing in location n and commuting to location i is:

=
1

λni

∫ u

0

∏
s 6=i

Gns(u)

[∏
k 6=n

∏
`∈N

Gk`(u)

]
gni(u)du, (C.25)

=
1

λni

∫ u

0

[∏
k∈N

∏
`∈N

e−Ψk`u
−ε

]
εΨniu

−(ε+1)du,

=
Ψ

Ψni

∫ u

0

e−Ψu−εεΨniu
−(ε+1)du,

= e−Ψu−ε .

On the one hand, lower land prices in location n or a higher wage in location i raise the utility of
a worker with a given realization of idiosyncratic amenities b, and hence increase the expected
utility of residing in n and working in i. On the other hand, lower land prices or a higher wage
induce workers with lower realizations of idiosyncratic amenities b to reside in n and work in i,
which reduces the expected utility of residing in n and working in i. With a Fréchet distribution
of utility, these two e�ects exactly o�set one another. Pairs of residence and employment loca-
tions with more attractive characteristics attract more commuters on the extensive margin until

14



expected utility is the same across all pairs of residence and employment locations within the
economy.

An implication of this result is that expected utility conditional on choosing a residence n and
workplace i is the same across all residence-workplace pairs and equal to expected utility in the
economy as a whole in equation (C.9):

Ū = ϑΨ1/ε = ϑ

[∑
k∈N

∑
`∈N

(Bkw`)
ε (κk`Pα

k Q
1−α
k

)−ε]1/ε

. (C.26)
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