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A The Household’s Problem

The representative Home household maximizes

E
[ˆ ∞

0

e−ρt
(
C1−ω

1− ω
− L1+ϕ

1 + ϕ

)
dt

]
subject to

dA = (WL− PC) dt+A (µAdt+ σAdZ)

with A (µAdt+ σAdZ) = Aidt+ EF [(i∗ − i+ µE) dt+ σEdZ] + dM + dR+ dT , where

C ≡
[
(1− α)

1
η C

η−1
η

H + α
1
ηC

η−1
η

F

] η
η−1

and CF ≡ exp
´ 1

0
lnCidi. The intratemporal first order conditions yield

CH = (1− α)

(
PH
P

)−η
C CF = α

(
PF
P

)−η
C Ci =

(
Pi
PF

)−1

CF

∀i ∈ [0, 1]. Home’s CPI is defined as P ≡
[
(1− α)P 1−η

H + αP 1−η
F

] 1
1−η

. The price of

imported goods is given by PF ≡ exp
´ 1

0
lnPidi. The intertemporal household’s problem is:

V (A,S) = max
C,L

E
[ˆ ∞

0

e−ρt
(
C1−ω

1− ω
− L1+ϕ

1 + ϕ

)
dt

]
subject to

dA = (WL− PC) dt+A (µAdt+ σAdZ)

dS = SµSdt+ SσSdZ
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where S is a generic vector of states and µA and σA are a function of the states only. The

HJB for this problem is

ρV = supC,L

[
C1−ω

1− ω
− L1+ϕ

1 + ϕ
+ A (V )

]
where

A (V ) = VA (WL− PC +AµA) +
∑
i

VSiSiµSi

+
1

2

VAAA2σ2
A + 2

∑
i

ASiσAσSiVASi +
∑
i

∑
j

VSiSjSiSjσSiσSj


is the infinitesimal generator operator. The first order conditions with respect to C and L

are

CωP =
1

VA

Lϕ = VAW

Derive both sides of the HJB with respect to A to obtain the law of motion of VA:

dVA
VA

= (ρ− i) dt+ σVAdZ

where σVA = VAA
VA

AσA+
∑
S
VAS
VA

SσS . Finally I apply Ito’s Lemma to the first order condition

to derive the Euler equation

dC =
1

ω

(
i− µP − ρ+ σ2

P + σCσP +
1 + ω

2ω
σ2
C

)
dt+

1

ω
σCdZ

where σC = −σVA − σP .

B Calvo Pricing in Continuous Time

A Producer Price Dynamics

Domestic producer price indexes are defined by

Pk (t) ≡
[ˆ 1

0

PH,j (t)
1−ε

dj

] 1
1−ε

In order to derive its law of motion, let’s write it down in discrete time first and then take

the limit as the length of the time interval goes to zero. The length of a period is [t, t+ dt).

During a period, a fraction 1−e−θdt of firms receive the Calvo signal that will allow them to
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set a new price at time t+ dt. The remaining fraction e−θdt will not be able to change price

and will be stuck with the price posted at t. Let S (t) be the set of firms not re-optimizing

their posted price at time t. Using the fact that all firms resetting prices will choose an

identical price P̄H (t), I obtain

PH (t+ dt) =

[ˆ 1

0

PH,j (t+ dt)
1−ε

dj

] 1
1−ε

=

[ˆ
S(t)

PH,j (t)
1−ε

dj +
(
1− e−θdt

)
P̄H (t+ dt)

1−ε

] 1
1−ε

=
[
e−θdtPH (t)

1−ε
+
(
1− e−θdt

)
P̄H (t+ dt)

1−ε
] 1

1−ε

where the last equality follows from the fact that the distribution of prices among firms not

adjusting at time t + dt corresponds to the distribution of posted prices at time t, though

with a total mass reduced to e−θdt. The equation above can be rewritten as

PH (t+ dt)
1−ε − PH (t)

1−ε
= −

(
1− e−θdt

)
PH (t)

1−ε
+
(
1− e−θdt

)
P̄H (t+ dt)

1−ε

Now, I cannot take the the limit as dt → 0 since the last term is not time t measurable.

Therefore add and subtract
(
1− e−θdt

)
P̄H (t)

1−ε
to obtain

PH (t+ dt)
1−ε − PH (t)

1−ε
=

(
1− e−θdt

) (
P̄H (t)

1−ε − PH (t)
1−ε
)

+
(
1− e−θ∆t

)
∆P̄H (t)

1−ε

Now Taylor expand e−θdt around dt = 0 and take the limit for dt→ 0 to obtain

πH (t) =
dPH (t)

PH (t)
=

θ

1− ε

[(
P̄H (t)

PH (t)

)1−ε

− 1

]
dt

-

B Price Dispersion

The aggregate loss of efficiency induced by price dispersion among firms is ∆ (t) ≡´ 1

0

[
PH,j(t)
PH(t)

]−ε
dj. Its law of motion can be derived as in the previous section. Let’s write

the discrete time analogue and appropriately shrink the length of the period

∆ (t+ dt) =

ˆ 1

0

[
PH,j (t+ dt)

PH (t+ dt)

]−ε
dj

= PH (t+ dt)
ε

[ˆ
S(t)

PH,j (t)
−ε
dj +

(
1− e−θdt

)
P̄Hk (t+ dt)

−ε

]
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=

(
PH (t+ dt)

PH (t)

)ε ˆ
S(t)

(
PH,j (t)

PH (t)

)−ε
dj

+
(
1− e−θdt

)
PH (t+ dt)

ε
P̄H (t+ dt)

−ε

=

(
PH (t+ dt)

PH (t)

)ε
e−θdt∆ (t) +

(
1− e−θdt

)
PH (t+ dt)

ε
P̄H (t+ dt)

−ε

As before, I add and subtract the last term lagged, Taylor expand the exponential terms

and take the limit as dt→ 0 to obtain

d∆ (t) =

[
θ

(
P̄H (t)

PH (t)

)−ε
+ ∆ (t) (επH (t)− θ)

]
dt

or

d∆ (t) =

[
θ

(
1− ε− 1

θ
πH (t)

) ε
ε−1

+ ∆ (t) (επH (t)− θ)

]
dt

C Optimal Price Setting

A measure one of monopolistic firms (indexed by j ∈ [0, 1]) engage in infrequent price setting

a la Calvo. Each firm re-optimizes its price PH,j (t) only at discrete dates determined by

a Poisson process with intensity θ. The time δ between two re-optimizations is distributed

according to the exponential density: θe−θδ. A firm that is allowed to re-optimize its price

at time t maximizes the present discounted value of future profits1

maxP̄H,j(t)E

[ˆ ∞
t

P (t)

C (t)
−ω

C (u)
−ω

P (u)
e−(ρ+θ)(u−t) {P̄H,j (t)Yj (u|t)− CH (Yj (u|t))

}
du

]

subject to the demand schedule

Yj (u|t) =

[
P̄H,j (t)

PH (u)

]−ε
Y (u)

where C (· ) is the firms nominal cost function. The first-order condition associated with the

problem is

E

[ˆ ∞
t

P (t)

C (t)
−ω

C (u)
−ω

P (u)
e−(ρ+θ)(u−t)Yj (u|t)

{
P̄H,j (t)−MMC (Yj (u|t))

}
du

]
= 0

where MC is the nominal marginal cost function and M ≡ ε
ε−1 . Note that in the limiting

case of no price rigidities (θ → ∞), this condition collapses to the familiar optimal price-

setting condition under flexible prices PH,j (t) =MMC (Yj (t)).

1I assume that firms commit to supply whatever quantity demanded at the posted price, even if that
implies negative profits
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The firm’s cost function is C (Yj (u|t)) = Yj (u|t) (1− τ)W (u), therefore the nominal

marginal cost is

MC (Yj (u|t)) = (1− τ)W (u) ≡MC (u)

The FOC can be rewritten as

P̄H,j (t) = PH (t)
E
[´∞
t

{
e−
´ u
t

[ρ+θ−επH(s)]ds C(u)−ω

P (u) MMC (u)Y (u)
}
du
]

E
[´∞
t

{
e−
´ u
t

[ρ+θ−(ε−1)πH(s)]ds C(u)−ω

P (u) PH (u)Y (u)
}
du
]

where I used the result that the dynamics of the price level is locally deterministic. Let

U (t) ≡ E

[ˆ ∞
t

{
e−
´ u
t

[ρ+θ−επH(s)]dsC (u)
−ω

P (u)
MMC (u)Y (u)

}
du

]

V (t) ≡ E

[ˆ ∞
t

{
e−
´ u
t

[ρ+θ−(ε−1)πH(s)]dsC (u)
−ω

P (u)
PH (u)Y (u)

}
du

]
then, the Feynman-Kac representation formula establishes that U and V are the unique

solutions to the partial differential equations

(ρ+ θ − επH (t))U (t) = A (U) +
C (t)

−ω

P (t)
MMC (t)Y (t)

[ρ+ θ − (ε− 1)πH (t)]V (t) = A (V) +
C (t)

−ω

P (t)
PH (t)Y (t)

where the operator A is the infinitesimal generator of the stochastic process, defined as

A f = µx∇xf (x) + 1
2 tr
[
σxH (f) (σx)

T
]
. Hence, their laws of motion are

dU (t)

U (t)
=

[
ρ+ θ − επH (t)− C (t)

−ω

P (t)

MMC (t)Y (t)

U (t)

]
dt+ σU (t) dZ (t)

dV (t)

V (t)
=

[
ρ+ θ − (ε− 1)πH (t)− C (t)

−ω

P (t)

PH (t)Y (t)

V (t)

]
dt+ σV (t) dZ (t)

Finally, the law of motion of PPI inflation can be derived using πH (t) = θ
ε−1

[
1−

(
U(t)
V(t)

)1−ε
]

and the laws of motion for U and V:

dπH (t) = [(ε− 1)πH (t)− θ]

[
πH (t) +

C (t)
−ω

P (t)
Y (t)

(
MMC (t)

U (t)
− PH (t)

V (t)

)]
dt

+ [(ε− 1)πH (t)− θ]

[(
ε
σπ (t)

2

2
− σπ (t)σV (t)

)
dt+ σπ (t) dZ (t)

]
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where σπ (t) = σV (t)− σU (t).

C Log-linearization

The deterministic laws of motion that describe the equilibrium dynamics are

dΛ = −γΛ
(
Â+ F̂ ∗H + X̂H

)
dt

dÂ =

[
(i− πH) Â− γ

(
Â+ F̂ ∗H + X̂H

)(
(1− β) X̂H − β

(
Â+ F̂ ∗H

))
+ 1− S

Q
C

Y

]
dt− ÂdY

Y

dY = Y
dY ∗

Y ∗
+

1

ω
[Y − αSηY ∗] dΛ

Λ
+

[
ηY +

(
1

ω
− η
)

(1− α) (Y − αSηY ∗)
(
S
Q

)η−1
]
dS
S

dS = S (i− ρ− πH) dt− SωdY
∗

Y ∗
− S dΛ

Λ

dπH = [(ε− 1)πH − θ]

[
πH +

1

V

(
M (1− τ) ∆ϕY 1+ϕ

(
1− ε− 1

θ
πH

)− 1
1−ε

− Y C−ωQ
S

)]
dt

dV =

[
(ρ+ θ − (ε− 1)πH)V − C−ω PHY

P

]
dt

d∆ =

[
θ

(
1− ε− 1

θ
πH

) ε
ε−1

+ ∆ (επH − θ)

]
dt

dY ∗ =
1

ω
Y ∗ (i∗ − ρ− π∗) dt

with

C = (ΛQ)
1
ω C∗

Q =
[
α+ (1− α)Sη−1

] 1
η−1

S =

(
Y

C∗

) 1
η [

(1− α) Λ
1
ωQ 1

ω−η + α
]− 1

η

The log linearized versions are

dλ = −γ
(
â+ f̂∗H − x̂

)
dt

dâ = [ρâ− (s− q + c− y)] dt

dy = dy∗ +
1− α
ω

dλ+

[
η +

(
1

ω
− η
)

(1− α)
2

]
ds

ds = (i− ρ− πH) dt− ωdy∗ − dλ

dπH = ρπH − θ (ρ+ θ) (ϕy + ωc+ αs) dt

dy∗ =
1

ω
(i∗ − ρ− π∗) dt
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and

c = y∗ +
1

ω
(λ+ q)

q = (1− α) s

s =
1

η
(y − y∗)− 1− α

η

(
1

ω
λ+

(
1

ω
− η
)
q

)
where I used the first order approximation x̂H = −x̂. Therefore, I obtain

dλ = −γ
(
â+ f̂∗H − x̂

)
dt

dâ =

(
ρâ− 1

ω
λ− 1− α (1− ω)

ω
s− y∗ + y

)
dt

dy = dy∗ +
1− α
ω

dλ+

[
η +

(
1

ω
− η
)

(1− α)
2

]
ds

ds = (i− ρ− πH) dt− ωdy∗ − dλ

dπH = ρπH − κ (ϕy + ωy∗ + λ+ s) dt

dy∗ =
1

ω
(i∗ − ρ− π∗) dt

where κ ≡ θ (ρ+ θ), with

s =
ω (y − y∗)− (1− α)λ

ωη + (1− ωη) (1− α)
2

Now assume ω = η = 1. Then

dλ = −γ
(
â+ f̂∗H − x̂

)
dt

dâ = (ρâ− αλ) dt

dy = (i− ρ− πH) dt− αdλ

dπH = ρπH − κ (1 + ϕ) y − καλdt

and y∗ does not affect equilibrium variables. The welfare function is

W =

ˆ ∞
0

e−ρt
[
lnC − L1+ϕ

1 + ϕ

]
dt

where

C = ΛS1−αC∗ L = ∆Y

and

S =
YH

[α+ (1− α) Λ]C∗
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Log-linearize both C and L to obtain

lnC = t.i.p.+ ln Λ + (1− α) lnS

= t.i.p.+ ln Λ− (1− α) ln [α+ (1− α) Λ]− (1− α) (1− β) lnY

' t.i.p.+ α (2− α)λ− α (1− α)
2 1

2
λ2 + (1− α) y

L1+ϕ

1 + ϕ
' t.i.p.+ (1− α) (δ + y) + (1 + ϕ)

1− α
2

y2

Thus

W =

ˆ ∞
0

e−ρt

[
t.i.p.+ α (2− α)λ− α(1−α)2

2 λ2

− (1− α) ε
2κπ

2
H − (1− α) 1+ϕ

2 y2

]
dt

Now use the following second order approximation to the budget constraint

ˆ ∞
0

e−ρt
[
αλ+ γ (1− β) x̂2

]
dt = 0

y = γ (1− β)
2− α
1− α

x̂2

to replace the linear term in W and obtain

W =

ˆ ∞
0

e−ρt

[
t.i.p.− γ (2− α) (1− β) x̂2 − α(1−α)2

2 λ2

− (1− α) ε
2κπ

2
H − (1− α) 1+ϕ

2 y2

]
dt

Finally, the loss function is

L =
1

2

ˆ ∞
0

e−ρt
(
φxx̂

2 + φλλ
2 + φππ

2
H + φyy

2
)
dt

where

φx = 2γ (2− α) (1− β)

φλ = α (1− α)
2

φπ =
ε

κ
(1− α)

φy = (1− α) (1 + ϕ)
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D Proofs

Proof of Proposition 1

Proof Under flexible prices, the deterministic planner problem is

max
X̂H ,C,Y,S,Q

ˆ ∞
0

e−ρt
(
C1−ω

1− ω
− Y 1+ϕ

1 + ϕ

)
dt

subject to

C = (ΛQ)
1
ω C∗

Y = C∗Sη
[
(1− α) Λ

1
ωQ 1

ω−η + α
]

Q =
[
α+ (1− α)Sη−1

] 1
η−1

and the laws of motion

dΛ = −γΛ
(
Â+ X̂H

)
dt

dÂ = Â

{
i− πH −

1

ω

[
ωη + (1− ωη) (1− α)

(
1− αSη Y

∗

Y

)(
S
Q

)η−1
]

(i− ρ− πH)

}
dt{(

1− S
Q
C

Y

)
− γ

(
Â+ X̂H

) [
(1− β) X̂H + Â (η − β)

]}
dt

− γ
ω
Â
(
Â+ X̂H

)(
(1− ωη) (1− α)

(
S
Q

)η−1

− 1

)(
1− αSη Y

∗

Y

)
dt

Notice that in steady state it must be the case that X̂H = Â. This implies that, in steady

state, the central bank uses FX intervention only to correct the financial friction and not to

permanently alter the terms of trades or the real exchange rate. Therefore, in a symmetric

steady state X̂H = Â = 0 and Λ = Q = S = 1. The Lagrangian is

L =
C1−ω

1− ω
− Y 1+ϕ

1 + ϕ
+ λC

[
C − (ΛQ)

1
ω C∗

]
+ λQ

{
Q−

[
α+ (1− α)Sη−1

] 1
η−1

}
+λY

[
Y − C∗Sη

[
(1− α) Λ

1
ωQ 1

ω−η + α
]]

+ λAµA + λΛµΛ

The FOCs evaluated at the symmetric steady state are

0 = Y 1−ω + Y λC − λA
0 = −Y 1+ϕ + Y λY + λA

0 = −Y λC
1

ω
+ λY (α− 1)Y

(
1

ω
− η
)

+ λQ + λA
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0 = −Y λY η − λQ (1− α)− λA
0 = −λΛγΛ

and

dλA =

{
λA

{[
i− πH −

1

ω

[
ωη + (1− ωη) (1− α)

2
]

(i− ρ− πH)

]}
− γΛλΛ

}
dt

dλΛ =

{
ρλΛ + λC

1

ω
Y + λY Y (1− α)

1

ω

}
dt

Therefore, steady state output is given by

Y ω+ϕ =
(2− α) η − 1

(2− α) η − 1 + α

When prices are flexible

PH = (1− τ)
ε

ε− 1
W = (1− τ)

ε

ε− 1
Y ω+ϕP

Hence, the optimal labor subsidy is

τ = 1− ε− 1

ε

(2− α) η − 1 + α

(2− α) η − 1

Proof of Proposition 2

Proof When prices are flexible and the central bank does not intervene in the asset

market, the allocation solves

dλ = −γ
(
â+ f̂∗H

)
dt

dâ = (ρâ− αλ) dt

df̂∗H = −%f̂∗H

given the initial conditions f̂∗H (0) = ε, â (0) = 0 and the terminal condition

limt→∞ e−ρtâ (t) = 0.

Let z> =
[
λ â f̂∗H

]
. The natural allocation solves the system of differential equa-

tions dz = Axdt, where

A =

 0 −γ −γ
−α ρ 0

0 0 −%


The eigenvalues of A are

[
−% −ν ρ+ ν

]
, where ν =

−ρ+
√
ρ2+4αγ

2 > 0. The first two
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eigenvectors of A are

v1 =

 −
γ(ρ+%)

(ν−%)(ρ+%+ν)

− ν(ρ+ν)
(ν−%)(ρ+%+ν)

1

 v2 =


ρ+ν
α

1

0


The solution is  λ

â

f̂∗H

 = ζ1

 −
γ(ρ+%)

(ν−%)(ρ+%+ν)

− ν(ρ+ν)
(ν−%)(ρ+%+ν)

1

 e−%t + ζ2


ρ+ν
α

1

0

 e−νt
where the parameters ζ1 and ζ2 are determined by the initial conditions â (0) = 0 and

f̂∗H (0) = ε. Thus, I obtain

λ =

[
γ
ν
γ

ρ+%+ν

]> [
â

f̂∗H

]
where the states evolve as follows[

dâ

df̂∗H

]
=

[
−ν −ν ρ+ν

ρ+%+ν

0 −%

][
â

f̂∗H

]
dt

with
[
â (0) f̂∗H (0)

]
=
[

0 ε
]
. The solution for λ can be rewritten as

λ = γε
(ρ+ ν) e−νt − (ρ+ %)e−%t

(ν − %) (ρ+ %+ ν)

and thus obtain

L =
φ

2

(γε)
2

ρ+ 2%

ρ (ρ+ ν + %) + 2%ν

(ρ+ %+ ν)
3

(ρ+ 2ν)

φ

2

(γε̄%)
2

ρ+ 2%

ρ (ρ+ ν + %) + 2%ν

(ρ+ %+ ν)
3

(ρ+ 2ν)

where φ = φF = α (1− α) 1+ϕ−αϕ
1+ϕ . Finally, I take derivatives to obtain

∂L
∂γ

=
2L
γ

2%
(
ν3 + 5ν2ρ+ 4νρ2 + ρ3

)
(ν + ρ) + %2(2ν + ρ)3 + ρ(ν + ρ)4

(ρ+ %+ ν) (ρ+ 2ν)
2

(ρ (ρ+ ν + %) + 2%ν)
> 0

∂L
∂%

%

L
= 2

ρ2(ν + ρ)2 − %3(2ν + ρ) + 4ν%2(ν + ρ) + 2ρ%(ν + ρ)(2ν + ρ)

[ρ (ρ+ ν + %) + 2%ν] (ρ+ %+ ν) (ρ+ 2%)
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∂L
∂α

α

L
=

1− 2α+ (1− 3α) (1− α)ϕ

(1− α) (1 + ϕ− αϕ)
− 2ν (ρ+ ν)

3ν2(ρ+ 2%) + νρ(5ρ+ 6%) + 2ρ2(ρ+ %)

[ρ (ρ+ ν + %) + 2%ν] (ρ+ %+ ν) (ρ+ 2ν)
2

It is easy to show that

lim
%↓0

L = 0 lim
%↓0

∂L
∂%

%

L
> 0

lim
%↑∞

L = 0 lim
%↑∞

∂L
∂%

%

L
< 0

and the discriminant of the cubic polynomial at the numerator of ∂L
∂% is negative. Hence,

∃!%̃ ∈ (0,∞) such that ∂L
∂% > 0 for % < %̃, and ∂L

∂% < 0 for % > %̃. Similarly

lim
α↓0

L = 0 lim
α↓0

∂L
∂α

α

L
> 0

lim
α↑1

L = 0 lim
α↑1

∂L
∂α

α

L
< 0

The first term in the expression for ∂L
∂α

α
L is decreasing in α, going from 1 to −∞, while

the second is increasing, going from 0 to a positive number. Hence, ∃!α̃ ∈ (0, 1) such that
∂L
∂α > 0 for α < α̃, and ∂L

∂α < 0 for α > α̃.

Proof of Propositions 3

Proof The planner’s problem is

min
x̂

1

2

ˆ ∞
0

e−ρt
(
x̂+ φλ2

)
dt

subject to

dλ = −γ
(
â+ f̂∗H − x̂

)
dt

dâ = (ρâ− αλ) dt

df̂∗H = −%f̂∗Hdt

given the initial conditions f̂∗H (0) = ε, â (0) = 0 and the terminal condition

limt→∞ e−ρtâ (t) = 0. The Hamiltonian associated with this problem is

H =
φ

2
λ2 +

1

2
x̂2 + µλ

(
−γâ+ γx̂− γf̂∗H

)
+ µa (ρâ− αλ)

The FOC is x̂ = −γµλ, while the laws of motion of the costates are

dµλ = ρµλ − φλ+ αµa
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dµa = γµλ

subject to the initial condition µλ (0) = 0. The first order conditions can be used to replace

µλ and dµa and obtain a second order differential equation that the optimal foreign exchange

intervention must satisfy:

ddx̂ = ρdx̂+
(
αγ + φγ2

)
x̂− φγ2

(
â+ f̂∗H

)
with x̂ (0) = 0. Let z> =

[
dx̂ x̂ λ â f̂∗H

]
, then the system of differential equations

that must be solved is dz = Azdt, where

A =


ρ αγ + φγ2 0 −φγ2 −φγ2

1 0 0 0 0

0 γ 0 −γ −γ
0 0 −α ρ 0

0 0 0 0 −%


The eigenvalues of A are

[
−% −ν −ν ρ+ ν ρ+ ν

]
, where

ν ≡
−ρ+

√
ρ2 + 2γ

(
2α+ φγ −

√
φγ (4α+ φγ)

)
2

ν ≡
−ρ+

√
ρ2 + 2γ

(
2α+ φγ +

√
φγ (4α+ φγ)

)
2

The solution can be written as
dx̂

x̂

λ

â

f̂∗H

 = ζ1



%2(ρ+%)φγ2

(ν−%)(ρ+%+ν)(ν−%)(ρ+%+ν)
−%(ρ+%)φγ2

(ν−%)(ρ+%+ν)(ν−%)(ρ+%+ν)
γ(ρ+%)(%(ρ+%)−αγ)

(ν−%)(ρ+%+ν)(ν−%)(ρ+%+ν)
αγ(%(ρ+%)−αγ)

(ν−%)(ρ+%+ν)(ν−%)(ρ+%+ν)

1


e−%t+ζ2



ν(ρ+ν)−αγ
αγ ν

−ν(ρ+ν)−αγ
αγ

ρ+ν
α

1

0

 e
−νt+ζ3



ν(ρ+ν)−αγ
αγ ν

−ν(ρ+ν)−αγ
αγ

ρ+ν
α

1

0

 e
−νt

where the coefficients
[
ζ1 ζ2 ζ3

]
are determined using the initial conditions â (0) = 0,

x̂ (0) = 0 and f̂∗H (0) = ε. Thus, I obtain

λ =


− γ
ρ+ν+ν

ξ
ν γ + 1−ξ

ν γ
ξγ

ρ+%+ν + (1−ξ)γ
ρ+%+ν


>  x̂

â

f̂∗H
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with ξ ≡ αγ
αγ+ν(ρ+ν) . The states

[
x̂ â f̂∗H

]
evolve as

 dx̂

dâ

df̂∗H

 =


−ξν − (1− ξ) ν αγ

ρ+ν+ν 0
φγ2

ρ+ν+ν −ξν − (1− ξ) ν 0

φγ2 ρ+%+ νν
ρ+ν+ν

(ρ+%+ν)(ρ+%+ν) − αγξ
ρ+%+ν −

αγ(1−ξ)
ρ+%+ν −%


>  x̂

â

f̂∗H



with
[
x̂ (0) â (0) f̂∗H (0)

]
=
[

0 0 ε
]
.

Proof or Lemma 1

Proof The optimal intervention rule can be derived by manipulating the closed form

solutions of Proposition 3. The explicit expressions of the derivatives with respect to % are

∂ |ψλ|
∂%

=
φγ

ρ+ ν + ν

ξν (ρ+ ν) + (1− ξ) ν (ρ+ ν)

[ρ+ %+ ξν + (1− ξ) ν]
2 > 0

∂ |ψa|
∂%

=
φγ

α

(
ρ+

νν

ρ+ ν + ν

)
ξν + (1− ξ) ν

[ρ+ %+ ξν + (1− ξ) ν]
2 > 0

∂ |ψx|
∂%

= − (1− ξ) ξ (ν − ν)
2

[ρ+ %+ ξν + (1− ξ) ν]
2 < 0

The explicit expressions of the derivatives with respect to φ and γ have been derived using

the symbolic toolkit available in Wolfram Mathematica. Their expressions are too big to be

reported here and are available upon request.

Optimal Joint FX and Monetary Policies The planner’s problem is

min
x̂,i

1

2

ˆ ∞
0

e−ρt
[
x̂+ φλλ

2 + φππ
2
H + φyy

2
]
dt

subject to

dλ = −γ
(
â+ f̂∗H − x̂

)
dt

dâ = (ρâ− αλ) dt

dy =
[
i− ρ− πH + αγ

(
â+ f̂∗H − x̂

)]
dt

dπH = [ρπH − κ (1 + ϕ) y − ακλ] dt

df̂∗H = −%f̂∗H
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given the initial conditions f̂∗H (0) = ε, â (0) = 0 and the terminal condition

limt→∞ e−ρtâ (t) = 0. The Hamiltonian associated with this problem is

H =
1

2
x̂2 +

φλ
2
λ2 +

φπ
2
π2
H +

φy
2
y2 + µλ

(
−γâ− γf̂∗H + γx̂

)
+ µa (ρâ− αλ)

+µy
[
i− ρ− πH + αγ

(
â+ f̂∗H − x̂

)]
+ µπH [ρπH − κ (1 + ϕ) y − ακλ]

The FOCs are µy = 0 and x̂ = αγµy − γµλ, while the laws of motion of the costates are

dµλ = ρµλ − φλλ+ αµa + ακµπH

dµa = γµλ − αγµy

dµy = ρµy − φyy + κ (1 + ϕ)µπH

dµπH = −φππH + µy

The optimal monetary policy is

i− ρ =

[
1− κ (1 + ϕ)

φπ
φy

]
πHdt− αγ

(
â+ f̂∗H − x̂

)
while the optimal foreign intervention satisfies

ddx̂ = ρdx̂+
(
αγ + φλγ

2
)
x̂− φλγ2â− φλγ2f̂∗H + γακφππH

Let z> =
[
y πH dx̂ x̂ λ â f̂∗H

]
, then the system of differential equations that

must be solved is dz = Azdt where

A =



0 −κ (1 + ϕ) φπφy 0 0 0 0 0

−κ (1 + ϕ) ρ 0 0 −ακ 0 0

0 καγφπ ρ αγ + γ2φλ 0 −φλγ2 −φλγ2

0 0 1 0 0 0 0

0 0 0 γ 0 −γ −γ
0 0 0 0 −α ρ 0

0 0 0 0 0 0 −%


The solution has the following form

z = ζ1v1e
ν1t + ζ2v2e

ν2t + ζ3v3e
ν3t + ζ4v4e

ν4t + ζ5v5e
ν5t + ζ6v6e

ν6t + ζ7v7e
ν7t

where νj and vj are the eigenvalues and associated eigenvectors of A. Unfortunately, the

eigenvalues of A cannot be derived analytically, therefore the system can only be solved

numerically.
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Optimal Monetary Policy

Proof The problem is similar to the one solved before, but this time x̂ = 0. Let

z> =
[
y πH λ â f̂∗H

]
, then the system of differential equations that must be solved

is dz = Azdt where

A =


0 −κ (1 + ϕ) φπφy 0 0 0

−κ (1 + ϕ) ρ −ακ 0 0

0 0 0 −γ −γ
0 0 −α ρ 0

0 0 0 0 −%


given the initial conditions f̂∗H (0) = ε, â (0) = yH (0) = 0 and the terminal condition

limt→∞ e−ρtâ (t) = 0. The eigenvalues of A are
[
−% −ν −ι ρ+ ν ρ+ ι

]
where ι =

−ρ+
√
ρ2+4κ2(1+ϕ)2 φπφy

2 . The solution is


y

πH

λ

â

f̂∗H

 = ζ1


−ν(ρ+ν)(ρ+%)ι(ρ+ι)

(%−ι)(ρ+%+ι)

−κν(ρ+ν)%(ρ+%)
(%−ι)(ρ+%+ι)

−γ (ρ+ %)

−ν (ρ+ ν)

(ν − %) (ρ+ %+ ν)

 e
−%t + ζ2



(ρ+ν)ι(ρ+ι)
(ν−ι)(ρ+ν+ι)

κ ν(ρ+ν)
(ν−ι)(ρ+ν+ι)

γ
ν

1

0

 e
−νt + ζ3



ρ+ι
κ

1

0

0

0

 e
−ιt

Thus, I obtain [
πH

λ

]
=


κ 1+ϕ
ρ+ι 0

κ ρ+ν
ρ+ν+ι

γ
ν

καγ(1+ ρ+ν
%−ι )

(ρ+%+ι)(ρ+%+ν)
γ

ρ+%+ν


>  y

â

f̂∗H



πH =
καγ

(
1 + ρ+ν

%−ι

)
(ρ+ %+ ι) (ρ+ %+ ν)

f̂∗H + κ
ρ+ ν

ρ+ ν + ι
â+ κ

(1 + ϕ)

ρ+ ι
y

with  dy

dâ

df̂∗H

 =


−ι 0 0

−ι(ρ+ι)(ρ+ν)
(1+ϕ)(ρ+ν+ι) −ν 0
−ι2(ρ+ι)ν(ρ+ν)

(1+ϕ)(ρ+%+ν)(ρ+%+ι)(ρ+ν+ι) −ν ρ+ν
ρ+%+ν −%


>  y

â

f̂∗H


and the initial conditions

[
y (0) â (0) f̂∗H (0)

]
=
[

0 0 ε
]
.

Proof of Proposition 4
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Proof The planner solves

min
i

1

2

ˆ ∞
0

e−ρt
(
φππ

2
H + φyy

2
)
dt

subject to

dy =
[
i− ρ− πH + αγ

(
â+ f̂∗H − x̂

)]
dt

dπH = (ρπH − κy − ακλ) dt

df̂∗H = −%f̂∗H

The optimal monetary policy is still

i− ρ =

(
1− κφπ

φy

)
πHdt+ αdλ

while the foreign exchange intervention satisfies

ddx̂ = ρdx̂+
(
αγ + φγ2

)
x̂− φγ2

(
â+ f̂∗H

)
Let z> =

[
y πH dx̂ x̂ λ â f̂∗H

]
, then the system of differential equations that

must be solved is dz = Azdt where

A =



0 −κ (1 + ϕ) φπφy 0 0 0 0 0

−κ (1 + ϕ) ρ 0 0 −ακ 0 0

0 0 ρ αγ + φγ2 0 −φγ2 −φγ2

0 0 1 0 0 0 0

0 0 0 γ 0 −γ −γ
0 0 0 0 −α ρ 0

0 0 0 0 0 0 −%


given the initial conditions f̂∗H (0) = ε, â (0) = x̂ (0) = y (0) = 0

and the terminal condition limt→∞ e−ρtâ (t) = 0. The eigenvalues of A are[
−% −ν −ν −ι ρ+ ν ρ+ ν ρ+ ι

]
. Using the same approach as before I obtain

[
πH

λ

]
=



κ 1+ϕ
ρ+ι 0

−αγικ
(ρ+ν+ν)(ρ+ι+ν)(ρ+ι+ν)

γ
ρ+ν+ν

κξ ρ+ν
ρ+ι+ν + κ (1− ξ) ρ+ν

ρ+ι+ν
ξ
ν γ + 1−ξ

ν γ

αγ
ν−%

ρ%+%2−αγ
ρ+%+ν

κ
ν−%

ρ+%
ρ+ι+%

ρ+%+ν+

1−ξ
ν−%

αγκ ρ+ν
ρ+ι+ν

ρ+%+ν + ξ
ν−%

αγκ ρ+ν
ρ+ι+ν

ρ+%+ν

ξγ
ρ+%+ν + (1−ξ)γ

ρ+%+ν



> 
y

x̂

â

f̂∗H
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while the states s =
[
y x̂ â f̂∗H

]>
evolve as ds = −Msdt where

M =



ι 0 0 0
−αγι2(ρ+ι)

(1+ϕ)(ρ+ν+ν)(ρ+ι+ν)(ρ+ι+ν) ξν + (1− ξ) ν − αγ
ρ+ν+ν 0

ι ρ+ι1+ϕ

[
ξ ρ+ν
ρ+ι+ν + (1− ξ) ρ+ν

ρ+ι+ν

]
− φγ2

ρ+ν+ν ξν + (1− ξ) ν 0

ιαγ
ν−%

ρ%+%2−αγ
1+ϕ

ρ+%+ν
ρ+ι
ν−%

ρ+%
ρ+ι+%

ρ+%+ν+

ρ+ι
ν−%

ιαγ(1−ξ) ρ+ν
ρ+ι+ν

(1+ϕ)(ρ+%+ν) + ρ+ι
ν−%

ιαγξ ρ+ν
ρ+ι+ν

(1+ϕ)(ρ+%+ν)

−φγ2

ρ+%+ν

ρ+%+ νν
ρ+ν+ν

ρ+%+ν
αγξ

ρ+%+ν + αγ(1−ξ)
ρ+%+ν %



>

with
[
y (0) x̂ (0) â (0) f̂∗H (0)

]
=
[

0 0 0 ε
]
.

Figure D.1 plots the allocation implemented by the solution of the sequential problem,

blue line, and the solution of the joint problem, red line. The two allocations are almost

indistinguishable from each other. In light of the discussion developed in the main body

of the paper on the relationship between the two tools, this is not a surprising result. The

planner wants to stabilize the path of λ for two reasons. First, because it enters directly into

the loss function with weight φλ. Second, because it shifts the Phillips curve and improves

the trade-off between the output gap and domestic inflation. The sequential problem does

not ignore the second channel, but rather it collapses both channels into the choice of a

single parameter, φ. In fact, the optimal φ that minimizes total welfare in Proposition 4 is

strictly greater than φλ. The remaining difference between the two solutions is only due to

the relative dynamics of λ, y, and πH , and is therefore negligible.
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Figure D.1: Sequential Problem vs Joint Problem

Impulse responses for the solution to the joint problem (blue line) and to
the sequential problem (red line).
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E Details of the Empirical Analysis and Robustness

Checks

Discrete-Time Model

The equations of the model used to estimate the parameters γ and χ are the discrete-time

versions of the log-linearized equations in Section C. The complete system is

∆qt+1 = rt − ω∆y∗t+1 + γ (ât + χvix∗t )

∆ât = ρât−1 +
α

1− α

[
y∗t − yt +

(
2− α
1− α

η − 1

)
qt

]
∆yt+1 = α∆y∗t+1 +

1− α
ω

rt + αη
2− α
1− α

∆qt+1

where r is the domestic real interest rate

rt = it − πH,t+1 −
α

1− α
∆qt+1

and

∆πH,t+1 = ρπH,t −
ακ

1− α

[
ω + ϕ (1− α)

α
yt − ωy∗t +

(
1− ωη 2− α

1− α

)
qt

]
it − ρ = ψπ

(
πH,t +

α

1− α
∆qt

)
+ ψyyt

with κ = 1−θ
θ (1 + ρ− θ). The exogenous variables vix∗t and y∗ follow a VAR(1) process as

estimated on the observed data.

Robustness Checks

To gauge the robustness of the empirical analysis I perform four robustness exercises. First,

I re-estimate the VAR model including the Swiss real interest rate. The real interest rate is

computed as the difference between the 3-month interbank rate and the one quarter ahead

realized core CPI inflation, where the core CPI index excludes food, beverage, tobacco, and

energy prices. The impulse responses plotted in Figure E.1 show that an increase in the

foreign demand for domestic assets is associated with a fall in the domestic real interest

rate of up to 0.6 percentage points. This strengthens the case for using foreign exchange

intervention in response to capital flow shocks, as monetary policy alone is unable to stabilize

the real interest rate. Second, I re-estimate both the VAR model and the economic model

using a mixture of EU and US data. Foreign output and global risk aversion are obtained as

weighted averages of EU and US data, with weights of 0.7 and 0.3 respectively. US output is

measured by real GDP figures published by the U.S. Bureau of Economic Analysis, while US
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global risk aversion is proxied by the CBOE Volatility Index (VIX). Results of the estimation

are reported in Figure E.2. The empirical impulse responses are very similar to those

obtained with the baseline specification. The main difference is the smaller appreciation

of the Swiss franc real exchange rate, which is also reflected in the slightly lower estimate

obtained for γ. Both, however, are still statistically significant. This is unsurprising and

is due to the fact that the dollar is itself a reserve currency and tends to appreciate in

times of global uncertainty. The third robustness check involves the identification of the

global risk-aversion shock. I re-estimate the VAR and the model by ordering vix∗ first, to

allow foreign output to respond contemporaneously to innovation in the VSTOXX. Results

are reported in Figure E.3. Again, the empirical impulse responses are quite similar to

the baseline specification. Interestingly enough, the estimation of the structural parameters

shifts some weight from χ to γ. The estimates for γ is 50 percent higher than in the baseline.

By inspecting the empirical impulse responses, it becomes apparent that this result is driven

by the larger response of capital outflow. Finally, in the fourth robustness check, I relax the

assumption of unitary elasticities of intertemporal and intratemporal substitution. Following

Bäurle and Menz (2008) and Bäurle and Kaufmann (2014), I set ω equal to 1.2 and η equal

to 1.5. Results are reported in Figure E.4. The estimate for γ is remarkably close to the

baseline estimate, while the estimate for χ is higher. With this calibration, however, the

model does a better job at matching the empirical impulse responses. While the theoretical

impulse response for the real exchange rate is barely affected, the impulse response for net

capital outflow is closer to its empirical counterpart and lies entirely within the 90 percent

confidence interval.
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Figure E.1: VAR-based Impulse Responses (Augmented VAR)
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Figure E.2: Estimation Results and Impulse Responses (EU and US Data)

Parameter Description Value S. E.

γ Financial sector inverse risk-bearing capacity 0.171 0.062

χ Proportionality between vix and investors’ demand 0.756 0.313
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Figure E.3: Estimation Results and Impulse Responses (Alternative Identification)

Parameter Description Value S. E.

γ Financial sector inverse risk-bearing capacity 0.296 0.125

χ Proportionality between vix and investors’ demand 0.573 0.245
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Figure E.4: Estimation Results and Impulse Responses (Alternative Calibration)

Parameter Description Value S. E.

γ Financial sector inverse risk-bearing capacity 0.145 0.072

χ Proportionality between vix and investors’ demand 1.236 0.613
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path in percentage of GDP. All other variables are expressed as percentage
deviation from their unshocked path.
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