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A.1 logTFPRrr and fundamentals

We derive the properties of logTFPRrr
is under the more general specification of demand given by

PisQis = PsQ
1−ρs
s Qρs−1

is ξρsisQis = PsQ
1−ρs
s Qρs

is ξ
ρs
is , where ρs = σs−1

σs
as in section I. In this case, log

plant level revenues can be written as

logPis + logQis =ρs logQis + (1− ρs) logQs + logPs + ρs ln ξis

=ρs

(∑
j

αjs logXijs + logAis

)
+ (1− ρs) logQs + logPs + ρs ln ξis.(A.1)

This permits characterizing logTFPRrr
is as:

logPis + logQis − ρs
∑
j

αjs logXijs = logPis + logQis −
∑
j

βjsxijs

=ρs logAis + ρs ln ξis + (1− ρs) logQs + logPs,(A.2)

which says that logTFPRrr
is is a function of logTFPQis (logAis), demand shocks (log ξis), and

sectoral variables (Qs, Ps, and ρs). In the main text, we abstract from idiosyncratic demand shocks

and sectoral variables for transparency. We estimate the βjs using a control function approach. In

some robustness analysis, we also use the Klette and Griliches (1996) approach to jointly estimate βjs

and ρs by including a measure of industry-level output as a regressor. This permits us to back out αjs

from the combined estimates and provides an alternative method to cost shares for estimating αjs.

The advantage of this approach is that is does not impose CRS. The disadvantage of this approach is

that, in the absence of data on plant level prices and quantities, this is pushing the data quite hard.

Foster et al. (2016) discuss the latter limitations in more depth.

A.2 AE under NCRS

A.2.1 Industry-level prices

Defining τis =
∏

j(1 + τ jis)
αjs
γs , we have:

(A.3) Ps = Q
1−γs
γs

s
1

κs

(∑
i

(
Ais
τ γsis

) ρs
1−ρsγs

) ρsγs−1
ρsγs
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where κs =

(
ρs
∏

j

(
αjs
wjs

)αjs/γs)−1
is a function of input prices and parameters.

A.2.2 Industry-level distortions

It can be shown that industry-level distortions can be written as a function of TFPRs and a constant:1

(A.4) τ̃s = κsTFPRs = κs
PsQs∏
j X

αjs/γs
js

.

As noted in Bils, Klenow and Ruane (2020) (hereafter BKR), this can be expressed as a product of

sectoral input distortions, which are in turn revenue-weighted harmonic means of plant-level input

distortions. Note that τ̃s can be written as a function of idiosyncratic physical productivities and

distortions using TFPRcs
s =

∑
i

Iis∑
i Iis

TFPRcs
is , where Iis denotes the plant’s cost-share based input

index.2 Expressing Iis as a function of Ais, τis and parameters implies:

τ̃s =

∑
iA

ρs
1−ρsγs
is (τis)

−ρsγs
1−ρsγs∑

iA
ρs

1−ρsγs
is (τis)

−1
1−ρsγs

=
S1

S2

.(A.5)

A.2.3 Industry-level TFP

We define the industry-productivity measure consistent with Hsieh and Klenow (2009) and BKR,

where the denominator is the input index weighted by cost shares TFPs =
(∏

j X
αjs/γs
js

)−1
Qs.

Multiplying and dividing by P γs
s yields:

(A.6) TFPs =
P γs
s Qs

P γs
s

∏
j X

αjs
γs
js

.

Combining this expression with equation (A.3) yields TFPs =

(∏
j X

αjs
γs
js

)−1(∑
i

(
Ais
τγsis

) ρs
1−ρsγs

) 1−ρsγs
ρs

×

κγss P
γs
s Q

γs−1
s Qs, which can be rearranged as:

TFPs =

(∑
i

(
Ais
τ γsis

) ρs
1−ρsγs

) 1−ρsγs
ρs

(
κsPsQs∏
j X

αjs
γs
js

)γs

(∏
j X

αjs
γs
js

)1−γs =

(∏
j

X
αjs
γs
js

)γs−1(∑
i

(
Ais
τ γsis

) ρs
1−ρsγs

) 1−ργs
ρ

τ̃ γss

=

(∏
j

X
αjs
γs
js

)γs−1(∑
i

A
ρs

1−ρsγs
is

(
τis
τ̃s

) ρsγs
1−ρsγs

) 1−ρsγs
ρs

(A.7)

This is analogous to the expression obtained in Appendix 1 of HK.

1The formula can be obtained by writing TFPRs as a geometric average of sectoral marginal revenue product where
the weights are based on the cost shares of respective inputs.

2Note
∑
i

Iis∑
i Iis

TFPRcsis =
∑
i

Iis∑
i Iis

Ris
Iis

=
∑
i Ris∑
i Iis

= TFPRcss .
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A.2.4 Maximum of TFPs

This section outlines the solution to the constrained optimization that yields AEs under NCRS. Using

the notation in (A.5), the Lagrangean of the problem is given by:

L(τis) =

(∑
i

A
ρs

1−ρsγs
is

(
τis
τ̃s

)− ρsγs
1−ρsγs

) 1−ρsγs
ρs

+ λ

(
τ̃s −

∑
i

θIi τis

)
= τ̃ γs S

1−ρsγs
ρs

1 + λ

(
τ̃s −

S1

S2

)
,

(A.8)

where S1=
∑

iA
ρs

1−ρsγs
is τ

−ρsγs
1−ρsγs
is and S2=

∑
iA

ρs
1−ρsγs
is τ

−1
1−ρsγs
is . The first derivative of L(τis) is shown below:

∂L
∂τis

= −γsτ̃ γss S
1−ρsγs
ρs

−1
1 A

ρs
1−ρsγs
is τ

− 1
1−ρsγs

is + λ
ρsγsA

ρs
1−ρsγs
is τ

−1
1−ρsγs
is S2 − S1A

ρs
1−ρsγs
is τ

−1
1−ρsγs

−1
is

(1− ρsγs)S2
2

.(A.9)

Summing (A.9) over i yields a condition that can be solved for λ. Plugging the resulting expression

back to (A.9) and rearranging implies τis = τ̃s. Differentiating (A.9) with respect to τis yields

−2γs(1− ρsγs)−1S−22 S
1−ρsγs
ρs

1 A
ρs

1−ρsγs
is τ̃

−2
1−ρsγs

−2+γs
s

∑
j 6=iA

ρs
1−ρsγs
js . Since 0 < Ais, τis, ρs, γs, the sign of the

second derivative depends on the sign of (1 − ρsγs). If ρsγs < 1 then ∂2TFPs
∂τ2i

∣∣∣
τ̃s
< 0, and therefore

τis = τ̃s is a maximum point. However, if 1 < ρsγs then 0 < ∂2TFPs
∂τ2is

∣∣∣
τ̃s

, and τis = τ̃s cannot be a

maximum point.

A.2.5 Aggregate and sectoral production

Aggregate output is assumed to be a Cobb Douglas CRS aggregate of sectoral output. This implies:

(A.10) Q =
S∏
s

Qθs
s =

S∏
s

(
As
∏
j

X
αjs
γs
js

)θs

It can then be shown that aggregate output Q can be written as a product of the geometric averages

of industry-level technical efficiencies, revenue shares, cost shares, distortions and inputs:

Q =
S∏
s

Aδs1s ×
S∏
S

θδs1s ×
S∏
s

[∏
j

(
αjs
γs

)αjs
γs

]δs1
×

S∏
s

ττ−δs1s × (1 + τX)−δs2

×
∏
j 6=M

Xj

(∑
s

θsρsαjs

(
1− αMs

γs

)
1 + τ j

1 + τ js

)−1δs3 ,(A.11)

where δs1=
θs∑S

s θs(1−
αMs
γs

)
, δs2=

∑S
s θs

αMs
γs∑s

s θs(1−
αMs
γs

)
, δs3=

∑S
s θs

αjs
γs

(1−αMs
γs

)∑s
s θs(1−

αMs
γs

)
. Defining α̃j=

∑S
s θs(

αMs
γs

)αjs∑S
s θs(

αMs
γs

)
and ag-

gregate consumption or value added as output less intermediate input C=Q-M , the expression for

aggregate TFP is given by TFP=C/
∏

j 6=M X
α̃j
j . Let T denote the part of the expression that

depends only on sectoral distortions and parameters. In addition, adjust equation (A.11) for inter-
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mediate input use. Then the following expression can be obtained for aggregate TFP :

(A.12) TFP = T ×
S∏
s

TFP

θs∑
s θs(1−αMs

γs )
s .

A.2.6 Accounting for input demand

It can be shown that if sectoral level inputs with inelastic aggregate supply, so long as average

sectoral distortions are the same under a new distribution of distortions, sectoral capital and labor

are unchanged in the “undistorted” counterfactual. For our analysis, we ignore between sector

distortions and assume that average sectoral distortions are the same. Since aggregate labor and

capital supply is assumed to be inelastic, AEs is given by:

(A.13) AEs =
As
A∗s

=

(∑
i

(
Ais

Ãs

) ρs
1−ρsγs

(
τis
τs

) ρsγs
1−ρsγs

) 1−ρsγs
ρs

(
M∗

s

Ms

)αMs(1−γs)
γs

.

In addition, sectoral intermediate input demand is proportional to total output: Ms = θsQρsγs(1−
γs)

1
1+τMs

. So long as sectoral average intermediate distortions are held constant, the ratio of undis-

torted inputs to distorted inputs in industry s can be expressed as:

(A.14) M∗
s /Ms = Q∗s/Q,

where Q∗s is the aggregate output under the regime where distortions in sector s are equalized, hold-

ing average distortions constant. Thus, the ratio of aggregate “s-undistorted” output to realized

output is equivalent to the ratio of intermediates. Using equation (A.11), we can obtain an expres-

sion for Q∗s. On th condition that average distortions are held constant between the actual and

counterfactual cases, the only change relative to (A.11) is that the leading term of Q∗s is given by

(A∗s)

θs∑
k θk(1−αMk

γk
) ∏

k 6=sA

θk∑
k θk(1−αMk

γk
)

k , i.e. only the sectoral productivity of the sth industry changes.

It follows that the ratio in equation (A.14) can be written as a function of allocative efficiency:

(A.15) Q∗s/Q = (A∗s/As)

θs∑
k θk(1−αMk

γk
) = (AEs)

−θs∑
k θk(1−αMk

γk
) .

Substituting (A.15) into (A.13), we see that allocative efficiency is a function of AECOV
k and itself:

AEs =

(∑
i

(
Ais

Ãs

) ρs
1−ρsγs

(
τis
τ̃s

) ρsγs
1−ρsγs

) 1−ρsγs
ρs

× AE
−θsαMs(1−γs)/γs∑
k θk(1−αMk/γk)

s ,

which means we can solve for AEs:

(A.16) AEs =

(∑
i

(
Ais

Ãs

) ρs
1−ρsγs

(
τis
τ̃s

) ρsγs
1−ρsγs

) 1−ρsγs
ρs


∑
k θk(1−αMk

γk
)∑

k θk(1−αMk
γk

)+θsαMs
1−γs
γs

.
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As in BKR, the contribution of sectoral TFP to aggregate TFP can be written as:

TFP ∝
∏
s

AE

θs∑
s θs(1−αMs

γs )
s

∏
s

(A∗s)

θs∑
s θs(1−αMs

γs )

Thus, we can separate the “undistorted” effect of sectoral TFP (which incorporates the influence of

returns to scale) on aggregate TFP from the allocative efficiency effect on TFP . To relate to the

variance-covariance term, we would need to aggregate expand the exponent, yielding:

(A.17) TFP ∝
∏
s

(
AECOV

s

) θs∑
k θk(1−αMk

γk
)+θs

αMs
γs

(1−γs)

A.2.7 Impacts of ρs and γs

To understand why ρs and γs enter asymmetrically into sectoral TFP given the following CES

aggregator, note we can write plant level output as follows:

(A.18) Qis = (ρsγsPsQ
1−ρs
s )

γs
1−ρsγs

(
Ais
τ γsis

) 1
1−ρsγs

[∏
j

(
αjs
wjs

)αjs] γs
1−ρsγs

Note here that if the plant does not account for the impact of its decisions on aggregate output and

prices (which by assumption it does not), then the elasticity of production with respect to a change

in Ais is 1/(1 − ρsγs). Here we see that both returns to scale γs and downward-sloping demand ρs

play a role in the impact of shocks on output. Demand parameter ρs impacts output through prices.

As TFP increases, the plant can produce more output, but prices fall in response, dampening the

effect of TFP shocks on output. In the CRS case, with a lower ρs (higher markups), the lower the

elasticity. Now consider returns to scale: if γs < 1, i.e. DRS, then the elasticity of output with

respect to changes in technical efficiency is smaller than the CRS case, and vice versa for increasing

returns.

Now consider the aggregator for output in the sector again:

(A.19) Qs =

(
Ns∑
i=1

Qρs
is

) 1
ρs

Here note that the elasticity of total Qs with respect to plant-level output is the following:

(A.20) εQs,Qis =

(
Qs

Qis

)1−ρs

Note that this is independent of any returns to scale at the plant-level. We see ρs impacts output

in two ways. First, ρs impacts output through the impact on firm-level decisions, as firms take into

account the impact of their choice of output on prices. This effect can be amplified or mitigated by

returns to scale 6= 1. Second, given an increase in output of a plant, ρs dampens the effect of a single

plant on sectoral output.
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A.3 Implementing the AE decomposition

In order to assess the overall effect of the two revenue productivity measures on AECOV
s , we implement

equation (12) empirically. This is exercise is useful because it helps gauge the relative importance

of the mean and dispersion of within-industry distribution. Figures A1(a)-A1(b) show the contribu-

tions of the two terms of the right hand side of equation (12), which suggest that the second term

contributes more to overall allocative efficiency (see figure A1(c)). The dynamics of logTFPQis and

logTFPRcs
is moments are useful interpreting the findings in the main text: the increasing dispersion

and increasing positive correlation yield a negative contribution for the second term in equation (12),

which accounts for the majority of the decrease in AE.

A.4 Full Industry Sample

For the full industry analysis, we compute cost shares for materials, energy, capital, and labor using

the full (450) industry sample. For the time invariant estimates, we compute the averages for the SIC

and NAICS sample periods separately (i.e., 1972-96 for SIC and 1997-2010 for NAICS). Therefore,

we do not need to use concordances between the two classification systems. In addition, unreported

results suggest the change in the distribution of the cost shares between the SIC and NAICS periods

is small. We find that the location and shape of the cost shares under the full sample are very similar

to those of the 50-industry sample (results available upon request). We also implement the DW

methodology for ρs for the full industry sample.

A.5 Sensitivity Analysis of Aggregation and Time Varying Parameters

for 50 industry sample

In this appendix, we consider industry-specific changes in ρst using the DW method, and combine

those changes with CS (which imposes CRS throughout the time period but we allow cost shares to

vary over time) and with OPH (where we permit the revenue curvature parameters to change over

time).3 For this analysis, we consider the original 50-industry sample with two 15-year subperiods:

1972-1986 and 1996-2010. We omit 1987-1995 to highlight potential changes in the parameter dis-

tributions. We recognize that combining OPH estimates of revenue elasticities with DW estimates

of ρst that require CRS is inconsistent with the specification test of CRS under OPH reported above

for most industries. However, as discussed in the main text, we think it is instructive to consider the

sensitivity of estimates of AE across the range of parameter estimates.

We begin by exploring evidence of changing markups and returns to scale over time for the 50-

industry sample. Figure A2(a) shows both the unweighted and revenue-weighted average ρst decline

from the first sub-period to the second sub-period with the weighted mean indicating a steeper

decline. These patterns are broadly consistent with the results reported in the main text for the full

3As in section IV.C, if the estimated 4-digit curvature implied by OPH is not below one we use the 2-digit estimate
in a sub-period. We do not pursue OPHD in this case since it exploits within industry variation over time and is not
well suited to estimate ρst in shorter panels.
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(b) Term 2
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Figure A.1: AE decomposition.

Note: In industries where 1 < ρsγs at the 4-digit level, 2-digit estimates are used. ρDW
s denotes industry-specific time

series averages calculated as in De Loecker and Warzynski (2012).
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sample. Figure A2(b) shows the changes in the average overall revenue curvature (ρstγst). We find

evidence that ρstγst has declined modestly across the two sub-periods. The decline is only about

0.02 on an unweighted basis and is less than 0.01 using revenue weights. For the rise in markups to

be consistent with only modest declines in revenue elasticities, returns to scle might be rising. To

show this, we combine the ρst from A2(a) with ρstγst from A2(b) to show the implied rising γst in

Figure A2(c). This is admittedly speculative but highlights both the potentially offsetting effects of

rising markups and returns to scale along with the challenges of estimating time varying markups

and returns to scale simultaneously.

0.6

0.7

0.8

0.9

1

1972-1986 1996-2010

Unweighted Weighted

(a) ρDW
st

0.9

0.91

0.92

0.93

0.94

0.95

1972-1986 1996-2010

Unweighted Weighted

(b)
∑
j βjst

1

1.2

1.4

1.6

1.8

2

1972-1986 1996-2010

Unweighted Weighted

(c) γst

Figure A.2: Means of time-varying parameters for 1972-86 and 1996-2010

Note: “Unweighted” denotes averages where industries have equal weight. “Weighted” denotes averages where
industries are weighted by revenue.

Figures A3(a), A3(b), and A3(c) show the implications for average sectoral AE, fixed-supply-based

AE, and roundabout-production-based AE, respectively.4 In order to illustrate the effect of time-

4See equations (14) and (16).
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varying parameters, we present pairs of AE estimates under each estimator and assumption, where

the first element of the pair repeats results under time invariant parameters as a point of reference.

The second element of the pair shows AE under time-varying parameters. It is useful to start with

CS-based sectoral average AE. Figure A3(a) shows that the modest decline in the unweighted average

ρst from A2(a) has little impact on the decline in AE compared to using time-invariant parameters.

In contrast, the two bounds in A3(b) and A3(c) for aggregate AE show that the more pronounced

decline in weighted average ρst has a larger impact. Figure A3(b) shows the fixed-supply assumption

yields aggregate AE that mimics the patterns of average AE under CS but yields lower AE levels and

declines relative to the time-invariant case. Specifically, the declining average weighted ρst mitigates

the decline in AE. Decreasing ρst in the CS case reduces the decline in AE from 23% to 16% in the

fixed supply aggregation and from 30% to 20% in the roundabout production case. These patterns

are consistent with the insight from the main text that a decrease in ρs tends to raise AE if returns

to scale is held constant. In contrast, OPH implies a different pattern of changes in AE with time

varying parameters. Here the decline in average ρst is (potentially) accompanied by an increase in

γst, and therefore the mitigating effect on the decline in AE is smaller when using time varying

parameters.
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Figure A.3: AE: Aggregation and time-varying parameters
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A.6 Additional Tables

Table A.1: Sample size (number of plant-year observations in thousands) for the specifications shown
in Table 3

OLS CS OPH OPHD
overall growth 424 424 405 405
exit 424 424 405 405
conditional growth 407 407 388 388
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