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Appendix A. Assets and liabilities in the US

Figure 2 shows the ratio of liabilities to assets for households and firms in the United States,
respectively. All data are taken from FRED (Federal Reserve Economic Data), Federal Reserve
Bank of St. Louis. The primary source is Flow of Funds data from the Board of Governors of
the Federal Reserve System. For business liabilities we use the sum of debt securities and loans
of nonfinancial corporate and noncorporate businesses. For assets we follow Liu et al. (2013)
and use data on both sectors’equipment and software as well as real estate at market value.
For households and nonprofit organizations, we again use the sum of debt securities and loans
as data for liabilities and use as assets both groups’real estate at market value and equipment
and software of nonprofit organizations.
The ratios reported in Figure 2 are aggregate measures, and may therefore not reflect actual

loan-to-value (LTV) requirements for the marginal borrower. Nonetheless, we report these
figures since the flow of funds data deliver a continuous measure of LTV ratios covering the
entire period 1952—2016. For households, the aggregate ratio of credit to assets in the economy
is likely to understate the actual downpayment requirements faced by households applying for
a mortgage loan, since loans and assets are not evenly distributed across households. In our
model we distinguish between patient and impatient households, and we assume that only
the latter group is faced with a collateral constraint. In the data we do not make such a
distinction, so that the LTV ratio for households reported in Figure 2 represents an average of
the LTV of patient households (savers), who are likely to have many assets and small loans,
and that of impatient households (borrowers), who on average have larger loans and fewer
assets. Justiniano et al. (2014) use the Survey of Consumer Finances and identify borrowers
as households with liquid assets of a value less than two months of their income. Based on the
surveys from 1992, 1995, and 1998, they arrive at an average LTV ratio for this group of around
0.8, while our measure fluctuates around 0.5 during the 1990s. Following Duca et al. (2011), an
alternative approach is to focus on first-time home-buyers, who are likely to fully exploit their
borrowing capacity. Using data from the American Housing Survey, these authors report LTV
ratios approaching 0.9 towards the end of the 1990s; reaching a peak of almost 0.95 before the
onset of the recent crisis. While these alternative approaches are likely to result in higher levels
of LTV ratios, we are especially interested in the development of these ratios over a rather
long time span. While we believe the Flow of Funds data provide the most comprehensive and
consistent time series evidence in this respect, substantial increases over time in the LTV ratios
faced by households have been extensively documented; see, e.g., Campbell and Hercowitz
(2009), Duca et al. (2011), Favilukis et al. (2017), and Boz and Mendoza (2014). It should
be noted that for households, various government-sponsored programs directed at lowering the
down-payment requirements faced by low-income or first-time home buyers have been enacted
by different administrations (Chambers et al., 2009). These are likely to have contributed to
the increase in the ratio of loans to assets illustrated in the left panel of Figure 2.
Likewise, the aggregate ratio of business loans to assets in the data may cover for a disparate

distribution of credit and assets across firms. In general, the borrowing patterns and conditions
of firms are more diffi cult to characterize than those of households, as their credit demand is
more volatile, and their assets are less uniform and often more diffi cult to assess. Liu et al.
(2013) also use Flow of Funds data to calibrate the LTV ratio of the entrepreneurs, and arrive
at a value of 0.75. This ratio is based on the assumption that commercial real estate enters
with a weight of 0.5 in the asset composition of firms. The secular increase in firm leverage
over the second half of the 20th century has also been documented by Graham et al. (2014)
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using data from the Compustat database.41,42 These authors report loan-to-asset ratios that
are broadly in line with those we present. More generally, an enhanced access of firms to credit
markets over time has been extensively documented in the literature, as also discussed in the
main text.

A1. Long-run properties of the LTV ratios

In this subsection we investigate the low-frequency properties of the LTV ratios of households
and the corporate sector over the 1952:I-2016:II time window. We follow the approach of Müller
and Watson (2018), who develop methods to investigate the long-run comovement of two time
series.
Since it has been argued that the amplitude of the financial cycle can potentially be much

longer than the business cycle (Borio, 2014), we focus on the very low-frequency movements in
the LTV ratios. In our baseline specification, we focus on fluctuations over periods longer than
30 years. Table A1 reports the long-run correlation coeffi cients, as well as the slope coeffi cient
of a linear regression relating household to corporate debt, together with the 68% confidence
interval. Figure A1 reports the two LTV ratios, together with their low-frequency components.
The two series display strong comovement at the very low frequency, with the slope coeffi cient
containing 1 in the confidence interval. Between 1984 and 2016, this component increased by
20 and 23 basis points for households and firms, respectively. It is also worth emphasizing
that, once we remove low-frequency variation in the LTV ratios, their ‘cyclical’variations are
strongly correlated (about 65%). This evidence supports our modelling choice for the behavior
of the LTV ratios, with the trend components for the household and the corporate sector rising
in tandem by 23 basis points in Section 6.2, and a common cyclical component. The spread
between the household and entrepreneurial steady-state LTV ratios is set to match the average
difference in the low-frequency components over the entire sample, which is roughly equal to
the average difference in the original series.
Table A1 also reports additional robustness results for different choices of the minimum-

length period of the low-frequency component. The results of the baseline specification are
quite robust for reasonable variations of the cut-off choice.

41It should be mentioned that they also show a Flow of Funds-based measure of debt to total assets at
historical cost (or book value) for firms. The increase over time in this measure is smaller. However, we believe
that the ratio of debt to pledgeable assets at market values (as shown in Figure 2) is the relevant measure for
firms’access to collateralized loans, and hence more appropriate for our purposes.
42We emphasize that Figure 2 reports a gross measure of firm leverage. Bates et al. (2009) report that firm

leverage net of cash holdings has been declining since 1980, but that this decline is entirely due to a large
increase in cash holdings.
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Table A1. Household and corporate LTV ratios in the long run

Periods longer than 30 years

ρ̂ β̂
0.847 1.224

[0.511 - 0.947] [0.680 - 1.618]

Periods longer than 35 years

ρ̂ β̂
0.776 1.317

[0.250 - 0.950] [0.439 - 1.952]

Periods longer than 25 years

ρ̂ β̂
0.892 1.160

[0.703 - 0.957] [0.769 - 1.605]

Notes: Table A1 summarizes the long-run covariance (ρ̂ denotes the correlation coeffi cient and β̂
denotes the slope coeffi cient of the linear relationship) and the 68% confidence set (in brackets) for
the household and the corporate LTV ratios.

Figure A1. Low-frequency components of the LTV ratios

Notes: Each plot reports the LTV ratio (solid-blue line) and its low-frequency component (dashed-
green line). The left panel reports data for the household sector, whereas the right panel refers to
the corporate sector.

Appendix B. Additional empirical evidence

B1. Time-varying volatility and skewness

In the main text we report evidence on the skewness of real GDP growth being different
before and during the Great Moderation. The choice of a cut-off date is inspired by a large
literature that has documented a drop in the volatility over the two samples. This exercise
entails a possible drawback: The estimates of the skewness can be biased by the first and
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second moment of the business cycle changing over time. In particular: i) There is now ample
evidence that the volatility of the business cycle displays a cyclical behavior (see, e.g., Kim and
Nelson, 1999; and McConnell and Perez-Quiros, 2000) and ii) the long-run growth rate of the
economy since around 2000 is substantially lower than the average for the entire sample (see,
e.g., Antolin-Diaz et al., 2017). To account for these issues we report a measure of time-varying
skewness of real GDP growth for the entire sample, relying on a nonparametric estimator. To
this end, take a generic time series, yt, so that its variance and skewness can be respectively
calculated as

σ2 = V ar (yt) =
1

T

T∑
t=1

(yt − µ)2 ,

% = Skew (yt) =

{
1

T

T∑
t=1

(yt − µ)2

}−3/2{
1

T

T∑
t=1

(yt − µ)3

}
,

where T denotes the number of observations in the sample and µ = E (yt) = T−1
∑T

t=1 yt is
the sample average. Define the sample autocovariance and autocorrelation as

γτ =
1

T

T−|τ |∑
t=1

(
yt−|τ | − µ

)
(yt − µ) ,

ρτ =
γτ
σ2
.

When yt is a Gaussian process with absolutely summable autocovariances, it can be shown
that the standard errors associated with the two measures are:43

V ar
(
σ2
)

=
2

T

( ∞∑
τ=−∞

γτ

)2

,

V ar (%) =
6

T

∞∑
τ=−∞

ρ3
τ .

In practice the two summations are truncated at some appropriate (finite) lag k.
The framework we follow in order to account for time-variation in the variance and skewness

has a long pedigree in statistics, starting with the work of Priestley (1965), who introduced the
concept of slowly varying process. This work suggests that time series may have time-varying
spectral densities which change slowly over time, and proposed to describe those changes as the
result of a non-parametric process. This work has more recently been followed up by Dahlhaus
(1996), as well as Kapetanios (2007) and Giraitis et al. (2014) in the context of time-varying
regression models and economic forecasting, respectively. Specifically, the time-varying variance
and skewness are calculated as

σ2
t = V art (yt) =

t∑
j=1

ωj,t (yj − µt)
2 ,

%t = Skewt (yt) =

{
t∑

j=1

ωj,t (yj − µt)
2

}−3/2{ t∑
j=1

ωj,t (yj − µt)
3

}
,

43The first expression computes the variance as the Newey-West variance of the squared residuals, in order
to account for the autocorrelation of the errors. The second equality follows from Gasser (1975) and Psaradakis
and Sola (2003).
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where µt =
∑t

j=1 ωj,tyj. Thus, the sample moments are discounted by the function ωt,T :

ωj,t = cK

(
t− j
H

)
,

where c is an integration constant and K
(
T−t
H

)
is the kernel function determining the weight

of each observation j in the estimation at time t. This weight depends on the distance to t
normalized by the bandwidth H. Giraitis et al. (2014) show that the estimator has desirable
frequentist properties. They suggest using Gaussian kernels with the optimal bandwidth value
H = T 1/2.
Similarly, we can compute the time-varying standard deviation of variance and skewness

estimates using time-varying estimates of the sample autocovariance and autocorrelations:

γτ ,t =

t−|τ |∑
j=1

ωj,t
(
yj−|τ | − µt

)
(yj − µt) ,

ρτ ,t =
γτ ,t
σ2
t

.

Based on this, Figure B1 reports time-varying measures of volatility and skewness of GDP
growth. The left panel confirms the widely documented decline in volatility. From the right
panel, it is clear that skewness drops in the second subsample, with a first drop being identified
after the 1991 recession and a further one after the Great Recession.

Figure B1. Time-varying volatility and skewness

Notes. Figure B1 reports the time-varying variance and skewness of year-on-year growth of real
GDP (solid-blue lines)– obtained by using a nonparametric estimator in the spirit of Giraitis et
al. (2014)– as well as the associated 68% confidence interval (dashed-blue lines). We also report
the variance and skewness of real GDP growth computed over the pre- and post-Great Moderation
sample (solid-green lines), as well as the associated 68% confidence interval (dashed-green lines).
The vertical shadowed bands denote the NBER recession episodes. Sample: 1947:I-2016:II. The first
10 years of data are dropped to initialize the algorithm. Data source: FRED.

5



B2. Normality tests

Table B1. Normality tests

GDP growth (QoQ)

1947:I-1984:II 1984:III-2016:II

KS 0.638 0.002

AD 0.534 0.000

SW 0.507 0.000

JB �0.50 �0.001

GDP growth (YoY)

1947:I-1984:II 1984:III-2016:II

KS 0.289 0.004

AD 0.060 0.000

SW 0.091 0.000

JB �0.50 �0.001
Notes. Table B1 reports the p-values of a battery of tests assuming the null hypothesis that real
GDP growth is normally distributed in a given sample. KS refers to Kolmogorov-Smirnov test with
estimated parameters (see Liliefors, 1967); AD refers to the test of Anderson and Darling (1954);
SW refers to the Shapiro-Wilk test (Shapiro and Wilk, 1965) with p-values calculated as outlined
by Royston (1992); JB refers to the Jarque-Bera test for normality (Jarque and Bera, 1987). Data
source: FRED.
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B3. Additional evidence on the standardized violence of the US
business cycle

Table B2. Standardized violence of U.S. recessions (Robustness)

(1) (2) (3) (4) (5) (6) (7)
1953:II —1954:II 0.635 1.127 0.734 0.731 0.599 0.664 0.584

1957:III —1958:II 1.629 2.415 1.572 1.767 1.716 1.688 1.785

1960:II —1961:I 0.351 0.595 0.387 0.429 0.307 0.464 0.304

1969:IV —1970:IV 0.163 0.156 0.101 0.248 0.155 0.240 0.158

1973:IV —1975:I 0.662 0.836 0.544 0.847 0.542 0.833 0.509

1980:I —1980:III 0.999 1.454 0.947 1.239 0.972 1.234 0.863

1981:III —1982:IV 0.598 0.885 0.576 0.645 0.448 0.621 0.400

1990:III —1991:I 1.910 1.527 1.132 1.363 1.255 1.229 1.301

2001:I —2001:IV 0.730 0.730 0.541 0.755 0.463 0.701 0.419

2007:IV —2009:II 1.847 1.665 1.234 2.020 1.607 1.915 1.571

Average

Pre-84 0.720 1.067 0.695 0.844 0.677 0.821 0.657

Post-84 1.495 1.307 0.969 1.380 1.108 1.282 1.0967

Notes: Table B2 reports different measures of standardized violence that change depending on the
business cycle volatility employed in the denominator. Column (1) follows the same procedure
employed to obtain standardized violence in Table 3, though the volatility measure is retrieved from
quarter-on-quarter growth rates of real GDP. In the remaining computations, even column numbers
report violence statistics that are standardized by volatility measures retrieved from quarter-on-
quarter growth rates or real GDP, while in odd column numbers the standardization is operated
through volatility measures obtained from year-on-year growth rates. Columns (2) and (3) calculate
the volatility by splitting the data between pre- and post-Great Moderation. In columns (4) and
(5) the standardization is operated by considering the following stochastic volatility model for real
GDP growth: yt = ρ0 + ρ1yt−1 + ρ2yt−2 + σtεt, where σ2t = σ2t−1 + κσ2t

(
ε2t − 1

)
and εt ∼ N (0, 1).

In columns (6) and (7) the standardization is operated by considering a time-varying AR model for
real GDP growth with stochastic volatility similar to that of Stock and Watson (2005), where all
the time-varying parameters follow random walk laws of motion (as in Delle Monache and Petrella,
2017). Data source: NBER.
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B4. Leverage and asymmetry (G7 countries)

Figure B2. Leverage and asymmetry: G7 countries
Households

Firms

Notes: The top panels refer to the household sector, while the bottom panels refer to the corporate
sector. The left panel of each line reports the skewness of GDP growth, computed for each G7 coun-
try, against the loan-to-GDP ratio of a specific sector. In the right panels we replace the skewness
with the ratio between the downside and the upside semivolatility of business fluctuations. The
regression line is obtained by assuming a quadratic relationship between the two variables (account-
ing for sector-specific fixed effects). Data source: OECD and Jordà-Schularick-Taylor Macrohistory
Database.
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B5. Household leverage in the US
Figure B3. U.S. States ordered by households’average debt-to-income ratio

Notes. U.S. States ordered by the average debt-to-income ratio in the household sector, over the
period 2003-2007. Data source: State Level Household Debt Statistics produced by the New York
Fed.

Appendix C. Details on the solution of the two-period
model

Here, we provide details on the computation of the competitive equilibrium of the two-period
model discussed in Section 3. The notation is explained in the main text.

Optimality

We first derive the optimality conditions. Rewrite the maximand with the budget constraints
and the definition of capital accumulation to get

Ũ = log
[
rK1 K0 +W1 −RB0 +B1 −K1 + (1− δ)K0

]
+β log

[(
1 + rK2

)
K1 +W2 −RB1

]
.

We maximize Ũ w.r.t. K1 and B1, subject to (5). Factor payments are taken as given, as these
are co-determined by the demands of all firms in the economy.
We get the first-order conditions

− 1

rK1 K0 +W1 −RB0 +B1 −K1 + (1− δ)K0

+ β
1 + rK2

(1 + rK2 )K1 +W2 −RB1

+ µ
s

R
= 0, (31)

1

rK1 K0 +W1 −RB0 +B1 −K1 + (1− δ)K0

− β R

(1 + rK2 )K1 +W2 −RB1

− µ = 0, (32)

µ

(
B1 − s

K1

R

)
= 0, µ ≥ 0, (33)
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where µ is the multiplier applying to the collateral constraint.
Otherwise, the production factors are remunerated at their marginal product:

rKt = αAtK
α−1
t−1 L

1−α
t , (34)

Wt = (1− α)AtK
α
t−1L

−α
t , t = 1, 2. (35)

The case of an equilibrium with a non-binding constraint

In this case, µ = 0, so that (31) and (32) become

1

C1

= β
1 + rK2
C2

,

1

C1

= β
R

C2

,

and no-arbitrage implies
1 + rK2 = R. (36)

This pins down K1 from (34):

K1 =

[
αA

R− 1

] 1
1−α

. (37)

From (35) we can also recover the wage rate in period 2:

W2 = (1− α)A

[
αA

R− 1

] α
1−α

. (38)

Thus, total income amounts to

(
1 + rK2

)
K1 +W2 =

1

α

[
αA

R− 1

] 1
1−α

(α +R− 1) ,

so that we retrieve
C2 = Γ−RB1, (39)

where Γ ≡ 1
α

[
αA
R−1

] 1
1−α (α +R− 1). Plugging (39) into (32), together with (2), returns

1

rK1 K0 +W1 −RB0 +B1 −K1 + (1− δ)K0︸ ︷︷ ︸
= C1

= β
R

Γ−RB1

,

and, therefore:

Γ−RB1 = βR
[
rK1 K0 +W1 −RB0 +B1 −K1 + (1− δ)K0

]
.

Plugging in the solutions for W1, rK1 and K1 results into

Γ−RB1 = βR

[
A1K

α
0 −RB0 +B1 −

(
αA

R− 1

) 1
1−α

+ (1− δ)K0

]
,
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from which we can characterize B1 as

B1 =
Γ

R (1 + β)
− β

1 + β

[
A1K

α
0 −RB0 −

(
αA

R− 1

) 1
1−α

+ (1− δ)K0

]
. (40)

We can then derive I1, C1 and C2. We have, by solution of K1, that

I1 =

(
αA

R− 1

) 1
1−α

− (1− δ)K0. (41)

We find C2 by combining (40) with (39):

C2 =
βΓ

1 + β
+

βR

1 + β

[
A1K

α
0 −RB0 −

(
αA

R− 1

) 1
1−α

+ (1− δ)K0

]
.

Finally, using 1/C1 = βR/C2 in the unconstrained case, we get

C1 =
Γ

R (1 + β)
+

1

1 + β

[
A1K

α
0 −RB0 −

(
αA

R− 1

) 1
1−α

+ (1− δ)K0

]
.

The case of a binding constraint

In this case, µ > 0. We first use (31) and (32):

− 1

C1

+ β
1 + rK2
C2

+ µ
s

R
= 0, (42)

1

C1

− β R
C2

− µ = 0. (43)

Adding the left- and the right-hand side terms gives

β
1 + rK2 −R

C2

= µ
(

1− s

R

)
> 0. (44)

This shows how a binding borrowing constraint induces a wedge between the return on bor-
rowing and capital; i.e., (36) ceases to hold. Specifically, investment is depressed, which drives
the gross marginal return of capital above R.

C2 depends on K1 andW2 as before, but B1 and K1 are now linked by the credit constraint.
However, rK2 does not pin down K1 as in the unconstrained case, as µ > 0; cf. (44). Using (42)
and (43) eliminate µ:

1

C1

= β
1 + rK2 − s
C2

(
1− s

R

) .
Thus, using (2) and (3):

1

rK1 K0 +W1 −RB0 +B1 −K1 + (1− δ)K0

= β
1 + rK2 − s

[(1 + rK2 )K1 +W2 −RB1]
(
1− s

R

) .
We can now use the expressions for rK1 , r

K
2 ,W1 and W2 to get

1

A1Kα
0 −RB0 +B1 −K1 + (1− δ)K0

= β
1 + αAKα−1

1 − s
[K1 + AKα

1 −RB1]
(
1− s

R

) .
11



Finally, we use the binding credit constraint,

B1 = s
K1

R
,

to eliminate B1:

1

A1Kα
0 −RB0 −

(
1− s

R

)
K1 + (1− δ)K0

= β
1 + αAKα−1

1 − s
[(1− s)K1 + AKα

1 ]
(
1− s

R

) . (45)

This provides a non-linear characterization of K1 (and, thus, investment). The expression
above can be reshuffl ed to get

Ψ (K1;A1) = 0,

where

Ψ (K1;A1) ≡ β
(
1 + αAKα−1

1 − s
) [
A1K

α
0 −RB0 −

(
1− s

R

)
K1 + (1− δ)K0

]
− [(1− s)K1 + AKα

1 ]
(

1− s

R

)
.

Appendix D. Details on the design and solution of the
DSGE model

This appendix reports further information on the design and solution of the DSGE model.
We first provide some details on the modeling and calibration of the debt contracts. We then
proceed to state the first-order conditions, the steady state, and the log-linearization of the
model.

D1. Debt contracts

Impatient households and entrepreneurs take up debt with maturity greater than one period.
The borrowing constraints presented in the main text, (18) and (24), are rationalized in line
with Kydland et al. (2016). Let Lit denote the flow of lending to agent i = {I, E} in period t.
This consists of two elements: Agent i’s share of existing, non-amortized debt that is refinanced
in period t, ϑi(1− ξi)Bi

t−1, and new ‘net’lending, L
i,net
t . Thus:

Lit = Li,nett + ϑi(1− ξi)Bi
t−1. (46)

The flow of lending is related to the stock of debt via the following law of motion:

Bi
t =

(
1− ϑi

) (
1− ξi

)
Bi
t−1 + Lit, (47)

or, using (46):
Bi
t =

(
1− ξi

)
Bi
t−1 + Li,nett .

When taking on new debt, borrowers can pledge as collateral only the fraction of their assets
not already used to secure the existing stock of debt. Since ϑi denotes the fraction of existing
debt that is refinanced, the remaining share 1 − ϑi of existing debt is collateralized by the
same fraction of the borrower’s assets. This implies the upper bounds on new lending, for each
agent:

LIt ≤ ϑIsIt
Et {Qt+1}HI

t

Rt

,
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LEt ≤ ϑEsEt Et

{
QK
t+1Kt +Qt+1H

E
t

Rt

}
.

Combining these two expressions with the law of motion for debt, (47), we obtain the borrowing
constraints presented in the main text:

BI
t ≤ ϑIsIt

Et {Qt+1}HI
t

Rt

+
(
1− ϑI

) (
1− ξI

)
BI
t−1,

BE
t ≤ ϑEsEt Et

{
QK
t+1Kt +Qt+1H

E
t

Rt

}
+
(
1− ϑE

) (
1− ξE

)
BE
t−1.

Steady state and calibration of the debt contracts

It is useful to introduce Λi
t (for i = {I, E}) to denote the fraction of total lending that goes

into the refinancing of old debt. From (46), it follows that:

Λi
t ≡

Lit − L
i,net
t

Lit
= ϑi(1− ξi)

Bi
t−1

Lit
.

In the steady state, this becomes:

Λi = ϑi(1− ξi)B
i

Li
.

We can obtain an expression for Bi

Li
from the steady-state version of the debt-accumulation

equation (47):
Bi

Li
=

1

1−
(
1− ϑi

) (
1− ξi

) ,
which can be inserted into the previous expression to obtain:

Λi =
ϑi(1− ξi)

1−
(
1− ϑi

) (
1− ξi

) .
This pins down the steady-state value of the refinancing parameter, ϑi, for given values of the
amortization rate, ξi, and the share of refinancing to total loans, Λi. Solving for ϑi, we obtain:

ϑi =
Λiξi

(1− Λi)
(
1− ξi

) . (48)

As discussed in Section 5.1.1, this expression is employed in our calibration strategy: For both
household and corporate debt, we set empirical values of Λi and ξi. We then use (48) to calibrate
the refinancing parameter for each of the two agents. For households, we set ξI = 0.014 and
ΛI = 0.39, thus obtaining ϑI = 0.009. For firms, we set ξI = 0.125 and ΛI = 0.83, so that
ϑI = 0.698.

D2. First-order conditions

Here we report the first-order conditions from the optimization problems faced by the three
types of agents in the model.
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Patient households

Patient households’optimal behavior is described by the following first-order conditions:

1

CP
t − θPCP

t−1

− βθP

Et
{
CP
t+1

}
− θPCP

t

= λPt , (49)

νP
(
1−NP

t

)−ϕP
= λPt W

P
t , (50)

λPt = βPRtEt
{
λPt+1

}
, (51)

Qt =
εt

λPt H
P
t

+ βPEt

{
λPt+1

λPt
Qt+1

}
, (52)

where λPt is the multiplier associated with (15).

Impatient households

The first-order conditions of the impatient households are given by:

1

CI
t − θICI

t−1

− βθI

Et
{
CI
t+1

}
− θICI

t

= λIt , (53)

νI
(
1−N I

t

)−ϕI
= λItW

I
t , (54)

λIt − µIt = βIRtEt
{
λIt+1

}
− βI

(
1− ϑI

) (
1− ξI

)
Et
{
µIt+1

}
, (55)

Qt =
εt

λItH
I
t

+ βIEt

{
λIt+1

λIt
Qt+1

}
+ ϑIsIt

µIt
λIt

Et {Qt+1}
Rt

, (56)

where λIt is the multiplier associated with (17), and µ
I
t is the multiplier associated with (18).

Additionally, the complementary slackness condition

µIt

(
BI
t − ϑIsIt

Et {Qt+1}HI
t

Rt

−
(
1− ϑI

) (
1− ξI

)
BI
t−1

)
= 0, (57)

must hold along with µIt ≥ 0 and (18).

Entrepreneurs

The optimal behavior of the entrepreneurs is characterized by:

1

CE
t − θECE

t−1

− βθE

Et
{
CE
t+1

}
− θECE

t

= λEt , (58)

λEt − µEt = βERtEt
{
λEt+1

}
− βE

(
1− ϑE

) (
1− ξE

)
Et
{
µEt+1

}
, (59)

λEt = ψEt

[
1− Ω

2

(
It
It−1

− 1

)2

− Ω
It
It−1

(
It
It−1

− 1

)]
+ βEΩEt

{
ψEt+1

(
It+1

It

)2(
It+1

It
− 1

)}
,

(60)

14



ψEt = βErKt Et
{
λEt+1

}
+ βE (1− δ)Et

{
ψEt+1

}
+ ϑEµEt s

E
t

Et
{
QK
t+1

}
Rt

, (61)

Qt = βErHt Et

{
λEt+1

λEt

}
+ βEEt

{
λEt+1

λEt
Qt+1

}
+ ϑEsEt

µEt
λEt

Et {Qt+1}
Rt

, (62)

where λEt , ψ
E
t , and µ

E
t are the multipliers associated with (22), (23), and (24), respectively.

Moreover,

µEt

(
BE
t − ϑEsEt Et

{
QK
t+1Kt +Qt+1H

E
t

Rt

}
−
(
1− ϑE

) (
1− ξE

)
BE
t−1

)
= 0, (63)

holds along with µEt ≥ 0 and (24). Finally, the definition of QK
t implies that

QK
t = ψEt /λ

E
t . (64)

Firms

Firms’first-order conditions determine the optimal demand for the input factors:

αγYt/N
P
t = W P

t , (65)

(1− α) γYt/N
I
t = W I

t , (66)

(1− γ) (1− φ)Et {Yt+1} /Kt = rKt , (67)

(1− γ)φEt {Yt+1} /HE
t = rHt . (68)

D3. Steady state

The deterministic steady state of the model is described in the following. Variables without
time subscripts indicate their steady-state values. We first consider the implications of the
patient households’optimality conditions. From (49) and (50), we get

1− βP θP(
1− θP

)
CP

= λP (69)

and
νP
(
1−NP

)−ϕP
= λPW P , (70)

respectively. The steady-state gross interest rate on loans is recovered from (51):

R =
1

βP
, (71)

emphasizing that it is the time preference of the most patient individual that determines the
steady-state rate of interest. From (52) we find

HP =
ε

QλP
(
1− βP

) . (72)

Turning to impatient households, (53) and (54) lead to

1− βIθI(
1− θI

)
CI

= λI , (73)
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and
νI
(
1−N I

)−ϕI
= λIW I , (74)

respectively. From (55) we obtain the steady-state value of the multiplier on the credit con-
straint:

µI =
λI
(
1− βIR

)
1− βI

(
1− ϑI

) (
1− ξI

) ,
which, by use of (71), yields

µI =
λI
(

1− βI

βP

)
1− βI

(
1− ϑI

) (
1− ξI

) . (75)

From (75) we see that, in the steady state, µI > 0 provided that βP > βI , which implies that
the credit constraint (18) is binding. In a similar fashion, from (59) we get

µE =
λE
(

1− βE

βP

)
1− βE

(
1− ϑE

) (
1− ξE

) . (76)

Hence, µE > 0 provided that βP > βE, implying that the entrepreneurs’credit constraint,
(24), is also binding in the steady state. From (56) we get

HI =
ε

QλI
[
1− βI −

(
1− βI

βP

)
1−βI(1−ϑI)(1−ξI)

ϑIsIβP
] , (77)

where the last line makes use of (71) and (75).
Turning to the remaining optimality conditions of the entrepreneurs, (58) gives

1− βEθE(
1− θE

)
CE

= λE, (78)

and (60) implies

ψE

[
1− Ω

2

(
I

I
− 1

)2
]
− ψEΩ

I

I

(
I

I
− 1

)
+ βEψEΩ

(
I

I

)2(
I

I
− 1

)
= λE,

leading to
ψE = λE. (79)

This reflects that there are no investment adjustment costs in the steady state. Therefore, the
shadow value of a unit of capital equals the shadow value of wealth. Combining (79) with (64),
we obtain

QK = 1. (80)

After imposing (71), (76), and (79), (61) returns

rK =

[
1− βE

(
1− ϑE

) (
1− ξE

)] [
1− βE (1− δ)

]
−
(
βP − βE

)
ϑEsEQK

βE
[
1− βE

(
1− ϑE

) (
1− ξE

)] . (81)
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From (62), instead, we find

rH =

(
1− βE

)
Q

βE
− µEϑEsE

λEβE
Q

R
. (82)

We then turn to the remaining equilibrium conditions in the steady state. As we saw above,
the two credit constraints are binding in the steady state. Hence,

BI =
ϑIsI

1−
(
1− ϑI

) (
1− ξI

)QHI

R
, (83)

BE =
ϑEsE

1−
(
1− ϑE

) (
1− ξE

)QKK +QHE

R
. (84)

The production function is

Y =
[(
NP
)α (

N I
)1−α

]γ [(
HE
)φ
K1−φ

]1−γ
. (85)

The steady-state counterparts of firms’first-order conditions, (65)—(68), are:

αγ
Y

NP
= W P , (86)

(1− α) γ
Y

N I
= W I , (87)

(1− γ) (1− φ)
Y

K
= rK , (88)

(1− γ)φ
Y

HE
= rH . (89)

In the steady state, the law of motion for capital implies

I = δK. (90)

We have the following steady-state resource constraints:

Y = CP + CI + CE + I, (91)

H = HP +HI +HE, (92)

BP +BI +BE = 0. (93)

Also, we have the steady-state versions of the agents’budget constraints:

CP = W PNP − (R− 1)BP , (94)

CI = W IN I − (R− 1)BI , (95)

CE + I = rKK + rHHE − (R− 1)BE (96)

We therefore have that the steady state is characterized by the vector[
Y,CP , CI , CE, I,HP , HI , HE, K,NP , N I , BP , BI , BE,
Q,QK , R, rK , rH ,W P ,W I , λP , λI , λE, µI , µE, ψE

]
.

These 27 variables are determined by the 27 equations: (69), (70), (71), (72), (73), (74), (75),
(76), (77), (78), (79), (80), (81), (82), (83), (84), (85), (86), (87), (88), (89), (90), (91), (92),
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(93), (94), and (95).
We now briefly proceed with the characterization of the steady state, finding some vari-

ables’equilibrium in a closed form. To this end, we define these variables as a ratio of total
output. The resulting system, which comprises seven equations, is then solved numerically.
The remaining variables then follow from the characterizations above.
First, combine (81) and (88) to get an expression for capital-output ratio:

K

Y
=

(1− γ) (1− φ) βE
[
1− βE

(
1− ϑE

) (
1− ξE

)][
1− βE

(
1− ϑE

) (
1− ξE

)] [
1− βE (1− δ)

]
−
(
βP − βE

)
ϑEsE

, (97)

where we have used QK = 1 from (80). Thus, we combine (82) and (89) to get an expression
for entrepreneurs’land-output ratio:

QHE

Y
=

(1− γ)φβE
[
1− βE

(
1− ϑE

) (
1− ξE

)](
1− βE

) [
1− βE

(
1− ϑE

) (
1− ξE

)]
−
(
βP − βE

)
ϑEsE

, (98)

where we have made use of (76). Again, based on QK = 1, the entrepreneurial borrowing
constraint can be rewritten as

BE

Y
=

ϑE

1−
(
1− ϑE

) (
1− ξE

) sE
R

(
K

Y
+
QHE

Y

)
, (99)

where we can insert from (71), (97), and (98). The resulting closed-form solution of the
entrepreneurial steady-state loan-to-output ratio is central in setting up a sub-system of seven
central variables. First, it can be plugged into the entrepreneurs’budget constraint, (96), so
as to obtain:

CE

Y
+
I

Y
= rK

K

Y
+ rH

HE

Y
− (R− 1)

BE

Y
,

which, by use of (90), becomes

CE

Y
=
(
rK − δ

) K
Y

+ rH
HE

Y
− (R− 1)

BE

Y
.

Using (81) and (89), we get

CE

Y
=

((
1− βE

) [
1− βE

(
1− ϑE

) (
1− ξE

)]
−
(
βP − βE

)
ϑEsEQK

βE
[
1− βE

(
1− ϑE

) (
1− ξE

)] )
K

Y
+(1− γ)φ−(R− 1)

BE

Y
,

which, by use of (97), returns the entrepreneurs’consumption-to-output ratio:

CE

Y
=

(1− γ) (1− φ)
[(

1− βE
) [

1− βE
(
1− ϑE

) (
1− ξE

)]
−
(
βP − βE

)
ϑEsE

][
1− βE

(
1− ϑE

) (
1− ξE

)] [
1− βE (1− δ)

]
−
(
βP − βE

)
ϑEsE

(100)

+ (1− γ)φ− 1− βP

βP
BE

Y
.

We then turn to the impatient households. Their budget constraint can be written as

CI

Y
=
W IN I

Y
− (R− 1)

BI

Y
,
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which, by use of (71) and (87), becomes

CI

Y
= (1− α) γ − 1− βP

βP
BI

Y
.

Likewise, patient households’budget constraint can be written as

CP

Y
=
W PNP

Y
− (R− 1)

BP

Y
,

which, by use of (71) and (86), becomes

CP

Y
= αγ − 1− βP

βP
BP

Y
.

Adding up these constraints gives

CI + CP

Y
= γ +

1− βP

βP
BE

Y
, (101)

where (93) has been invoked. Note that the right-hand-side of (101) is known, by virtue of
(99).
Combining (69), (70) and (86) gives the steady-state equilibrium condition for patient

households’labor:

νP
(
1−NP

)−ϕP
CP 1− θP

1− βP θP
= αγ

Y

NP
. (102)

Similarly, (73), (74) and (87) characterize impatient households’equilibrium labor:

νI
(
1−N I

)−ϕI
CI 1− θI

1− βIθI
= (1− α) γ

Y

N I
. (103)

Combining the two households’land-demand expressions, (72) and (77), gives

HI

HP
=

λP
(
1− βP

) [
1− βI

(
1− ϑI

) (
1− ξI

)]
λI
{(

1− βI
) [

1− βI
(
1− ϑI

) (
1− ξI

)]
−
(
βP − βI

)
ϑIsI

} .
Eliminating the multipliers by (69) and (73), and eliminating HP through (92), we obtain the
following land-market equilibrium characterization:

HI

H −HI −HE

CP

CI
=

(
1− βP θP

) (
1− θI

) (
1− βP

) [
1− βI

(
1− ϑI

) (
1− ξI

)](
1− βIθI

) (
1− θP

) {(
1− βI

) [
1− βI

(
1− ϑI

) (
1− ξI

)]
−
(
βP − βI

)
ϑIsI

} .
(104)

We also take the impatient households’borrowing constraint into consideration. Using (83) to
eliminate BI in the budget constraint,

CI

Y
= (1− α) γ −

(
1− βP

) ϑI

1−
(
1− ϑI

) (
1− ξI

) sIQHI

Y
. (105)
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Relying on (77),

QHI =
ε
[
1− βI

(
1− ϑI

) (
1− ξI

)]
λI
{(

1− βI
) [

1− βI
(
1− ϑI

) (
1− ξI

)]
−
(
βP − βI

)
ϑIsI

} ,
and, again, (73), we obtain

QHI =
ε
[
1− βI

(
1− ϑI

) (
1− ξI

)] (1−θI)
1−βIθIC

I(
1− βI

) [
1− βI

(
1− ϑI

) (
1− ξI

)]
−
(
βP − βI

)
ϑIsI

, (106)

Q =
ε
[
1− βI

(
1− ϑI

) (
1− ξI

)] (1−θI)
1−βIθIC

I

HI
{(

1− βI
) [

1− βI
(
1− ϑI

) (
1− ξI

)]
−
(
βP − βI

)
ϑIsI

} . (107)

We then use (106) to rewrite the consumption-output ratio for impatient households, (105), as

CI

Y
= (1− α) γ

−
(
1− βP

) ϑI

1−
(
1− ϑI

) (
1− ξI

) sI
Y

ε
[
1− βI

(
1− ϑI

) (
1− ξI

)] (1−θI)
1−βIθIC

I(
1− βI

) [
1− βI

(
1− ϑI

) (
1− ξI

)]
−
(
βP − βI

)
ϑIsI

.

(108)

Likewise, we can use (107) to eliminate Q from (98), and obtain:

HE

Y
=

(1− γ)φβE
[
1− βE

(
1− ϑE

) (
1− ξE

)](
1− βE

) [
1− βE

(
1− ϑE

) (
1− ξE

)]
−
(
βP − βE

)
ϑEsE

· (109)

·
{(

1− βI
) [

1− βI
(
1− ϑI

) (
1− ξI

)]
−
(
βP − βI

)
ϑIsI

}
ε
[
1− βI

(
1− ϑI

) (
1− ξI

)] (1−θI)
1−βIθI

HI

CI
.

Thus, the production function (85) is rewritten as a function of the derived ratios:

Y γ = A
[(
NP
)α (

N I
)1−α

]γ [(HE

Y

)φ(
K

Y

)1−φ
]1−γ

,

Using (97), we finally obtain

Y = A
1
γ
(
NP
)α (

N I
)1−α ·

·

(HE

Y

)φ( (1− γ) (1− φ) βE
[
1− βE

(
1− ϑE

) (
1− ξE

)][
1− βE

(
1− ϑE

) (
1− ξE

)] [
1− βE (1− δ)

]
−
(
βP − βE

)
ϑEsEQK

)1−φ


1−γ
γ

.

(110)

We have now reduced the steady state to a matter of finding the vector[
Y,CP , CI , HI , HE, NP , N I

]
,

which satisfies the equations (101), (102), (103), (104), (108), (109) and (110), given the
solution for BE/Y , (99), and given all the parameters and exogenous variables of the model.
We compute the vector numerically using fsolve in Matlab. The remaining variables then
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follow analytically from the steady-state equations presented above.

D4. Log-linearization

We log-linearize the model around the steady state found in the previous section. In the
following, we let X̂t denote the log-deviation of a generic variable Xt from its steady state
value X, except for the following variables: For the interest rates, R̂t ≡ Rt−R, r̂Ht ≡ rHt − rH
and r̂Kt ≡ rKt − rK ; for debt, B̂i

t ≡ (Bi
t −Bi) /Y , i = {P, I, E}. We first derive the log-linear

versions of the agents’ optimality conditions and conclude with the expressions for market
clearing.

Optimality Conditions of Patient Households

Once log-linearized, equations (49), (50) and (51) become

βP θPEt
{
ĈP
t+1

}
−
(

1 + βP
(
θP
)2
)
ĈP
t + θP ĈP

t−1 =
(
1− θP

) (
1− βP θP

)
λ̂
P

t , (111)

ϕP
NP

1−NP
N̂P
t = λ̂

P

t + Ŵ P
t , (112)

βP R̂t + Et
{
λ̂
P

t+1

}
= λ̂

P

t , (113)

Log-linearizing (52) yields

ε

HP

(
ε̂t − ĤP

t

)
+ βPλPQEt

{
λ̂
P

t+1 + Q̂t+1

}
= λPQ

(
λ̂
P

t + Q̂t

)
.

Now use steady-state equation (72) to get

−QλP
(
1− βP

)
ĤP
t +QλP

(
1− βP

)
ε̂t + βPλPQEt

{
λ̂
P

t+1 + Q̂t+1

}
= λPQ

(
λ̂
P

t + Q̂t

)
,

and thereby

βPEt
{
λ̂
P

t+1 + Q̂t+1

}
−
(
1− βP

)
ĤP
t +

(
1− βP

)
ε̂t = λ̂

P

t + Q̂t. (114)

Moreover, the log-linearized budget constraint reads as

CP

Y
ĈP
t +

QHP

Y

(
ĤP
t − ĤP

t−1

)
+
BP

Y
R̂t−1 +

1

βP
B̂P
t−1

= B̂P
t + αγ

(
Ŵ P
t + N̂P

t

)
.

where we have used (86).

Optimality Conditions of Impatient Households

From (53), (54) and (55) we obtain

βIθIEt
{
ĈI
t+1

}
−
(

1 + βI
(
θI
)2
)
ĈI
t + θIĈI

t−1 =
(
1− θI

) (
1− βIθI

)
λ̂
I

t , (115)

ϕI
N I

1−N I
N̂ I
t = λ̂

I

t + Ŵ I
t , (116)
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and
λI λ̂

I

t − µI µ̂It = βIλIR̂t + βIRλIEt
{
λ̂
I

t+1

}
− βI

(
1− ϑI

) (
1− ξI

)
µIEt

{
µ̂It+1

}
,

respectively. The last expression is rewritten, by means of (75), as

λ̂
I

t = βIR̂t + βIREt
{
λ̂
I

t+1

}
+

(
1− βI

βP

)
1− βI

(
1− ϑI

) (
1− ξI

) µ̂It (117)

−βI
(
1− ϑI

) (
1− ξI

) (
1− βI

βP

)
1− βI

(
1− ϑI

) (
1− ξI

)Et {µ̂It+1

}
.

Furthermore, (56) becomes

QQ̂t =
ε

HIλI

(
ε̂t − λ̂

I

t − ĤI
t

)
+ βIQEt

{
λ̂
I

t+1 + Q̂t+1 − λ̂
I

t

}
+
µI

λI
ϑIsIQ

R

[
µ̂It − λ̂

I

t + ŝt + Et
{
Q̂t+1

}
− βP R̂t

]
,

which, by use of (75) and (77), becomes

Q̂t =

[
1− βI −

(
βP − βI

)
1− βI

(
1− ϑI

) (
1− ξI

)ϑIsI](ε̂t − λ̂It − ĤI
t

)
+ βIEt

{
λ̂
I

t+1 + Q̂t+1 − λ̂
I

t

}
+

(
βP − βI

)
1− βI

(
1− ϑI

) (
1− ξI

)ϑIsI [µ̂It − λ̂It + ŝt + Et
{
Q̂t+1

}
− βP R̂t

]
, (118)

where, again, we have used (71). The budget constraint becomes

CI

Y
ĈI
t +

QHI

Y

(
ĤI
t − ĤI

t−1

)
+
BI

Y
R̂M,I
t−1 +

1

βP
B̂I
t−1 = B̂I

t + (1− α) γ
(
Ŵ I
t + N̂ I

t

)
, (119)

where we have used (87). Finally, the log-linearized version of the collateral constraint is:

Y B̂I
t ≤

ϑIsIQHI

R

(
ŝIt + Et

{
Q̂t+1

}
+ ĤI

t − βP R̂t

)
+
(
1− ϑI

) (
1− ξI

)
Y B̂I

t−1. (120)

Optimality Conditions of the Entrepreneurs

From (58) and (59) we get

βEθEEt
{
ĈE
t+1

}
−
(

1 + βE
(
θE
)2
)
ĈE
t + θEĈE
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(
1− θE

) (
1− βEθE

)
λ̂
E

t , (121)

λEλ̂
E

t − µEµ̂Et = βEλER̂t + βERλEEt
{
λ̂
E

t+1

}
− βE

(
1− ϑE

) (
1− ξE

)
µEEt

{
µ̂Et+1

}
,

respectively. The latter we can be rewritten using (76):

λ̂
E

t = βER̂t + βEREt
{
λ̂
E

t+1

}
+

(
1− βE

βP

)
1− βE

(
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) (
1− ξE

) µ̂Et (122)

−βE
(
1− ϑE

) (
1− ξE

) (
1− βE

βP

)
1− βE

(
1− ϑE

) (
1− ξE

)Et {µ̂Et+1

}
.
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From (60) we get

ψ̂
E

t − Ω
(
1 + βE

)
Ît + ΩÎt−1 + βEΩEt

{
Ît+1

}
= λ̂

E

t , (123)

where we have made use of (79). Equation (61) becomes
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}
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)sEQK
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]
, (124)

where we have used (71), (76), and (79). Moreover, (64) becomes

ψ̂
E

t = λ̂
E

t + Q̂K
t . (125)

Finally, (62) is approximated as

QQ̂t = βErH
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,

which we can rewrite, using (71) and (76), as

QQ̂t = βErH
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E
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}
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)ϑEsEQ [ŝEt + µ̂Et − λ̂
E

t + Et
{
Q̂t+1

}
− βP R̂t

]
.(126)

Furthermore, the budget constraint becomes

CE

Y
ĈE
t +

I

Y
Ît +

QHE

Y

(
ĤE
t − ĤE
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)
+
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Y
R̂M,E
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1

βP
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t−1
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K

Y
r̂Kt−1 +

HE

Y
r̂Ht−1 + (1− γ)φĤE

t−1 + (1− γ) (1− φ) K̂t−1, (127)

where we have used (88) and (89). Finally, the borrowing constraint reads as

Y B̂E
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(
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)
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+ϑEsE
QHE

R
Et
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Q̂t+1 + ĤE
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}
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(
1− ϑE

) (
1− ξE

)
Y B̂E

t−1.

Firms’Optimality Conditions

Firms’first-order conditions, (65), (66), (67) and (68), are log-linearized as

Ŷt − N̂P
t = Ŵ P

t , (129)

Ŷt − N̂ I
t = Ŵ I

t , (130)

Et
{
Ŷt+1

}
− K̂t =

(
rK
)−1

r̂Kt , (131)
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Et
{
Ŷt+1

}
− ĤE

t =
(
rH
)−1

r̂Ht , (132)

respectively.

Market Clearing and Resource Constraints

From the law of motion for capital, (23), we get

K̂t = (1− δ) K̂t−1 + δÎt, (133)

where we have used (90). Moreover, from the resource constraint, (30), we have

Ŷt =
CP

Y
ĈP
t +

CI

Y
ĈI
t +

CE

Y
ĈE
t + δ

K

Y
Ît. (134)

We also have the log-linearized versions of (26), (28) and (29):

Ŷt = Ât + αγN̂P
t + (1− α) γN̂ I

t + (1− γ) (1− φ) K̂t−1 + (1− γ)φĤE
t−1, (135)

0 = HP ĤP
t +HIĤI

t +HEĤE
t , (136)

0 = B̂P
t + B̂I

t + B̂E
t . (137)

As for the shocks processes, (27), (14) and (19) imply

Ât = ρAÂt−1 + zt, (138)

ε̂t = ρεε̂t−1 + ut, (139)

ŝt = ρsŝt−1 + vt, (140)

respectively. This completes our list of log-linearized equations.
The log-linearized system consists of 30 equations: 18 first-order conditions, 2 budget con-

straints, 2 credit constraints, 1 production function, 3 market clearing conditions, 1 capital
accumulation equation, and 3 shock processes. The 30 variables of the system are given by the
vector [

ĈP
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I
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E
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I
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E
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K
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H
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K
t , K̂t, Ît, Ŷt, B̂

P
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I
t , B̂

E
t , Ât, ε̂t, ŝt

]
,

and are determined by equations (111)-(140).
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Appendix E. Solution method

We solve the model numerically, as described in the following. When solving the model, we treat
the collateral constraints as inequalities, accounting for two complementary slackness conditions
(57) and (63). We then adopt the solution method of Holden and Paetz (2012), on which this
appendix builds. In turn, Holden and Paetz (2012) expand on previous work by Laséen and
Svensson (2011). With first-order perturbations, this solution method is equivalent to the
piecewise linear approach discussed by Guerrieri and Iacoviello (2015). We have verified that
their proposed solution method does indeed produce identical results. Furthermore, Holden
and Paetz (2012) and Guerrieri and Iacoviello (2015) evaluate the accuracy of their respective
methods against a global solution based on projection methods. This is done for a very simple
model with a borrowing constraint, for which a highly accurate global solution can be obtained
and used as a benchmark. They find that the local approximations are very accurate. For the
model used in this paper, the large number of state variables (14 endogenous state variables
and three shocks) renders the use of global solution methods impractical due to the curse of
dimensionality typically associated with such methods.
The collateral constraints put an upper bound on the borrowing of each of the two con-

strained agents. While the constraints are binding in the steady state, this may not be the
case outside the steady state, where the constraints may not bind. Observe that we can re-
formulate the collateral constraints in terms of restrictions on each agent’s shadow value of
borrowing; µjt , j = {I, E}: We know that µjt ≥ 0 if and only if the optimal debt level of agent
j is exactly at or above the collateral value. In other words, we need to ensure that µjt ≥ 0. If
this restriction is satisfied with inequality, the constraint is binding, so the slackness condition
is satisfied. If it holds with equality, the collateral constraint becomes non-binding, but the
slackness condition is still satisfied. If instead µjt < 0, agent j’s optimal level of debt is lower
than the credit limit, so that treating his collateral constraint as an equality implies that we
are forcing him to borrow ‘too much’. In this case, the slackness condition is violated. We then
need to add shadow price shocks so as to ‘push’µjt back up until it exactly equals its lower
limit of zero and the slackness condition is satisfied. To ensure compatibility with rational
expectations, these shocks are added to the model as ‘news shocks’. The idea of adding such
shocks to the model derives from Laséen and Svensson (2011), who use such an approach to
deal with pre-announced paths for the interest rate setting of a central bank. The contribution
of Holden and Paetz (2012) is to develop a numerical method to compute the size of these
shocks that are required to obtain the desired level for a given variable in each period, and to
make this method applicable to a general class of potentially more complicated problems than
the relatively simple experiments conducted by Laséen and Svensson (2011).
We first describe how to compute impulse responses to a single generic shock, e.g., a tech-

nology shock. The first step is to add independent sets of shadow price shocks to each of the
two log-linearized collateral constraints. To this end, we need to determine the number of
periods T for which we conjecture that the collateral constraints may be non-binding. This
number may be smaller than or equal to the number of periods for which we compute impulse
responses; T ≤ T IRF . For each period t ≤ T , we then add shadow price shocks which hit the
economy in period t but become known at period 0, that is, at the same time the economy is
hit by the technology shock.
Let X̂t denote the log-deviation of a generic variableXt from its steady-state valueX, except

for the following variables: For the interest rates, R̂t ≡ Rt−R, r̂Ht ≡ rHt −rH and r̂Kt ≡ rKt −rK ,
and for debt, B̂i

t ≡ (Bi
t −Bi) /Y , i = P, I, E. We can then write the log-linearized collateral
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constraints, augmented with the shadow price shocks, as follows:
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where εSP,js,t−s is the shadow price shock that hits agent j in period t = s, and is anticipated by
all agents in period t = t − s = 0 ensuring consistency with rational expectations. We let all
shadow price shocks be of unit magnitude. We then need to compute two sets of weights αµI
and αµE to control the impact of each shock on µ

I
t and µ

E
t . The ‘optimal’sets of weights ensure

that µIt and µ
E
t are bounded below at exactly zero. The weights are computed by solving the

following quadratic programming problem:

α∗ ≡
[
α∗′µI α∗′µE

]′
= arg min

[
α′µI α′µE

] [[ µI + µ̃I,A

µE + µ̃E,A

]
+

[
µ̃I,ε

SP,I

µ̃I,ε
SP,E

µ̃E,ε
SP,I

µ̃E,ε
SP,E

][
αµI
αµE

]]
,

subject to
α′µj ≥ 0,

µj + µ̃j,A + µ̃j,ε
SP,j

αµj + µ̃j,ε
SP,k

αµk ≥ 0,

j = {I, E}. Here, µj and µ̃j,A denote, respectively, the steady-state value and the unrestricted
relative impulse response of µj to a technology shock, that is, the impulse-response of µj when

the collateral constraints are assumed to always bind. In this respect, the vector
[
µI + µ̃I,A

µE + µ̃E,A

]
contains the absolute, unrestricted impulse responses of the two shadow values stacked. Further,
each matrix µ̃j,ε

SP,k

contains the relative impulse responses of µj to shadow price shocks to
agent k’s constraint for j, k = {I, E}, in the sense that column s in µ̃j,εSP,k represents the
response of the shadow value to a shock εSP,js,t−s, i.e. to a shadow price shock that hits in
period s but is anticipated at time 0, as described above.44 The off-diagonal elements of the

matrix
[
µ̃I,ε

SP,I

µ̃I,ε
SP,E

µ̃E,ε
SP,I

µ̃E,ε
SP,E

]
take into account that the impatient household may be affected if

the collateral constraint of the entrepreneur becomes non-binding, and vice versa. Following
the discussion in Holden and Paetz (2012), a suffi cient condition for the existence of a unique

solution to the optimization problem is that the matrix
[
µ̃I,ε

SP,I

µ̃I,ε
SP,E

µ̃E,ε
SP,I

µ̃E,ε
SP,E

]
+

[
µ̃I,ε

SP,I

µ̃I,ε
SP,E

µ̃E,ε
SP,I

µ̃E,ε
SP,E

]′
is positive definite. We have checked and verified that this condition is in fact always satisfied.
We can explain the nature of the optimization problem as follows. First, note that µj +

µ̃j,A + µ̃j,ε
SP,j

αµj + µ̃j,ε
SP,k

αµk denotes the combined response of µ
j
t to a given shock (here, a

44Each matrix µ̃j,ε
SP,k

needs to be a square matrix, so if the number of periods in which we guess the
constraints may be non-binding is smaller than the number of periods for which we compute impulse responses,
T < T IRF , we use only the first T rows of the matrix, i.e., the upper square matrix.
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technology shock) and a simultaneous announcement of a set of future shadow price shocks
for a given set of weights. Given the constraints of the problem, the objective is to find a
set of optimal weights so that the impact of the (non-negative) shadow-price shocks is exactly
large enough to make sure that the response of µjt is never negative. The minimization ensures
that the impact of the shadow price shocks will never be larger than necessary to obtain this.
Finally, we only allow for solutions for which the value of the objective function is zero. This
ensures that at any given horizon, positive shadow price shocks occur if and only if at least one
of the two constrained variables, µIt and µ

E
t , are at their lower bound of zero in that period. As

pointed out by Holden and Paetz (2012), this can be thought of as a complementary slackness
condition on the two inequality constraints of the optimization problem. Once we have solved
the minimization problem, it is straightforward to compute the bounded impulse responses of
all endogenous variables by simply adding the optimally weighted shadow price shocks to the
unconstrained impulse responses of the model in each period.
We rely on the same method to compute dynamic simulations. In this case, however, we

need to allow for more than one type of shock. For each period t, we first generate the shocks
hitting the economy. We then compute the unrestricted path of the endogenous variables given
those shocks and given the simulated values in t − 1. The unrestricted paths of the bounded
variables (µIt and µ

E
t ) then take the place of the impulse responses in the optimization problem.

If the unrestricted paths of µIt and µ
E
t never hit the bounds in future periods, our simulation for

period t is fine. If the bounds are hit, we follow the method above and add anticipated shadow
price shocks for a suffi cient number of future periods. We then compute restricted values for
all endogenous variables, and use these as our simulation for period t. Note that, unlike the
case for impulse responses, in our dynamic simulations not all anticipated future shadow price
shocks will eventually hit the economy, as other shocks may occur before the realization of the
expected shadow price shocks and push the restricted variables away from their bounds.

Appendix F. Data description and estimation strategy

As described in the main text, we use data for the following five macroeconomic variables of
the U.S. economy spanning the period 1952:I—1984:II: The year-on-year growth rates (in log-
differences) of real GDP, real private consumption, real non-residential investment, and real
house prices, and the cyclical component of the LTA series in Figure 2, with the trend being
computed as in Müller and Watson (2018). Since the cyclical components of the two LTA series
are strongly correlated, we use the one obtained for the households.45 All data series are taken
from the Federal Reserve’s FRED database, with the exception of the house price, which is
provided by the US Census Bureau. The series are the following:

• Growth rate of Real Gross Domestic Product, billions of chained 2009 dollars, seasonally
adjusted, annual rate (FRED series name: GDPC1).

• Growth rate of Real Personal Consumption Expenditures, billions of chained 2009 dollars,
seasonally adjusted, annual rate (FRED series name: PCECC96).

• Growth rate of Real private fixed investment: Nonresidential (chain-type quantity index),
index 2009=100, seasonally adjusted (FRED series name: B008RA3Q086SBEA).

• Growth rate of Price Index of New Single-Family Houses Sold Including Lot Value, index
2005=100, not seasonally adjusted. This series is available only from 1963:Q1 onwards.

45All results are robust to using the corporate one.
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—To obtain the house price in real terms, this series is deflated using the GDP defla-
tor (Gross Domestic Product: Implicit Price Deflator, index 2009=100, seasonally
adjusted, FRED series name: GDPDEF).

• LTA data: We employ the series in the right panel of Figure 2 for the period up until
1984:II. As described in Appendix A1, we extract the trend from these series using
the method of Müller and Watson (2018). We then use the cyclical component in the
estimation of the model. Since the cyclical components of the two series are strongly
correlated, we use the series for households, but all results are robust to using the series
for firms instead.

Estimation

We use 16 empirical moments in the SMM estimation: The standard deviations and first-order
autoregressive parameters of each of the five variables described above, the correlation of con-
sumption, investment, and house prices with output, and the skewness of output, consumption,
and investment. These moments are matched to their simulated counterparts from the theoret-
ical model. Our estimation procedure seeks to minimize the sum of squared deviations between
empirical and simulated moments. As some of the moments are measured in different units
(e.g., standard deviations vs. correlations), we use the percentage deviation from the empirical
moment in each case. In order for the minimization procedure to converge, it is crucial to use
the same set of shocks repeatedly, making sure that the only change in the simulated moments
from one iteration to the next is that arising from updating the parameter values. In practice,
since the list of parameter values to be estimated includes the variance of the shocks in the
model, we draw from the standard normal distribution with zero mean and unit variance, and
then scale the shocks by the variance of each of the three shock processes, allowing us to esti-
mate the latter. We use a draw of 2000 realizations of each of the three shocks in the model,
thus obtaining simulated moments for 2000 periods.46 To make sure that the draw of shocks
used is representative of the underlying distribution, we make 501 draws of potential shock
matrices, rank these in terms of the standard deviations of each of the three shocks, and select
the shock matrix closest to the median along all three dimensions. This matrix of shocks is then
used in the estimation. In the estimation, we impose only very general bounds on parameter
values: All parameters are bounded below at zero, and the habit formation parameters along
with all AR(1)-coeffi cients are bounded above at 0.99– a bound that is never attained.
To initiate the estimation procedure a set of initial values for the estimated parameters are

needed. These are chosen based on values reported in the existing literature. The estimation
results proved robust to changes in the set of initial values, as long as these remain within the
range of available estimates. In line with the existing literature, we set the initial values of
the investment adjustment cost parameter (Ω) and the parameters governing habit formation
in consumption for the three agents to 4 and 0.5, respectively.47 For the technology shock, we
choose values similar to those used in most of the real business cycle literature, ρA = 0.97 and
σA = 0.005 (see, e.g., Mandelman et al., 2011). For the land-demand shock, we set ρε = 0.99

46Our simulated sample is thus more than 15 times longer than the actual dataset (which spans 130 quarters).
Ruge-Murcia (2012) finds that SMM is already quite accurate when the simulated sample is five or ten times
longer than the actual data.
47Unlike the other estimated parameters, θP and θI also affect the steady state of the model. To account

for this, we rely on the following iterative procedure: We first calibrate the model based on the starting value
for θP and θI . Upon estimation, but before simulating the model, we recalibrate it for the estimated values of
the habit parameters. This leads only to a very small change in the values of ε, φ, and sI , while the remaining
parameters are unaffected.

28



and σε = 0.03, in line with Liu et al. (2013). Finally, for the credit limit shock, we set the
persistence parameter ρs = 0.95, while the standard deviation is set to σs = 0.04.
We abstain from using an optimal weighting matrix in the estimation. This choice is based

on the findings of Altonji and Segal (1996), who show that when GMM is used to estimate
covariance structures and, potentially, higher-order moments such as variances, as in our case,
the use of an optimal weighting matrix causes a severe downward bias in estimated parameter
values. Similar concerns apply to SMM as to GMM. The bias arises because the moments
used to fit the model itself are correlated with the weighting matrix, and may thus be avoided
by the use of fixed weights in the minimization. Altonji and Segal (1996) demonstrate that
minimization schemes with fixed weights clearly dominate optimally weighted ones in such
circumstances. Ruge-Murcia (2012) points out that parameter estimates remain consistent
for any positive-definite weighting matrix, and finds that the accuracy and effi ciency gains
associated with an optimal weighting matrix are not overwhelming. The empirical moments
and their model counterparts upon estimation are reported in Table F1.
When computing standard errors, we rely on a version of the delta method, as described,

e.g., in Hamilton (1994). We approximate the numerical derivative of the moments with respect
to the estimated parameters using the secant that can be computed by adding and subtracting
ε to/from the estimates, where ε is a very small number. The covariance (or spectral density)
matrix is estimated using the Newey-West estimator.

Table F1. Empirical and simulated moments

Model simulations U.S. data (1952:I—1984:II)
Standard deviations (percent)

Output 2.72 2.84
Consumption 1.87 2.23
Investment 6.52 6.91
House price 4.26 3.05
LTV ratio 6.32 5.68

Skewness
Output −0.14 −0.38
Consumption −0.21 −0.31
Investment −0.02 −0.41

Autocorrelations
Output 0.90 0.82
Consumption 0.85 0.81
Investment 0.94 0.84
House price 0.63 0.79
LTV ratio 0.85 0.94

Correlations with output
Consumption 0.92 0.85
Investment 0.93 0.75
House price 0.73 0.38
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Appendix G. Additional numerical evidence

G1. Impulse responses

Figure G1. Impulse responses to a technology shock

Notes: Impulse responses of key macroeconomic variables (in percentage deviation from the steady
state) to a one-standard deviation shock to technology. Left column: sI = 0.67, sE = 0.76; right
column: sI = 0.85, sE = 0.94. The shadowed bands indicate the periods in which the entrepreneurs
are financially unconstrained.
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Figure G2. Impulse responses to a land demand shock

Notes: Impulse responses of key macroeconomic variables (in percentage deviation from the steady
state) to a two-standard deviations shock to land demand. Left column: sI = 0.67, sE = 0.76; right
column: sI = 0.85, sE = 0.94. The shadowed bands indicate the periods in which the entrepreneurs
are financially unconstrained.
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Figure G3. Impulse responses to a credit limit shock

Notes: Impulse responses of key macroeconomic variables (in percentage deviation from the steady
state) to a one-standard deviation shock to credit limits. Left column: sI = 0.67, sE = 0.76; right
column: sI = 0.85, sE = 0.94. The shadowed bands indicate the periods in which the entrepreneurs
are financially unconstrained.

32



G2 On the occurrence of non-binding collateral constraints
Figure G4. Leverage and non-binding collateral constraints

Notes: Frequency of non-binding constraints for the entrepreneurs (solid-blue line) and the impatient
households (dashed-green line). Both statistics are graphed for different average LTV ratios faced
by the impatient household. Across all the simulations the entrepreneurial average LTV ratio is
adjusted so as to be 9 basis points greater than any value we consider for impatient households’
credit limits, in line with the baseline calibration of the model.

G3. The model with no household debt

In this appendix we report numerical evidence from an alternative model with no role for
collateralized household debt. We effectively exclude impatient households from the model by
setting their income share to a very low number (i.e., 1− α = 0.01). All other parameters are
as described in Section 5.1. We then perform the same simulation exercise as that reported
in Section 6.2. The results are reported below.48 As displayed by Figure G5, the alternative
model generates an amount of skewness similar to that of the baseline framework. However, as
illustrated in the left panel of Figure G6, the model’s ability to reproduce the increase in the
duration of expansions observed in the data is impaired substantially. This can be explained
based on the fact that impatient households contract long-term debt, which induces a certain
smoothness in the consumption/investment profiles of all agents in the model. In addition, the
left panel of Figure G7 indicates that the alternative model implies a much larger increase in
output volatility when leverage increases, and a much smaller reversal. This pattern represents
a further challenge to a model with no household borrowing, as it makes our findings harder
to reconcile with the Great Moderation in output volatility. In fact, attaining such a fall in
volatility would entail a rather large scaling of the structural shocks (recall the analysis in
Section 6.3.1).

48Note that the impatient household is still present in the model, albeit playing a very small role. Thus,
when reporting the results from this model, we choose to keep sI on the horizontal axis, so as to facilitate
comparison with the results in the main text.
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Figure G5. Business cycle asymmetry

Notes: The left panel of the figure reports the skewness of the year-on-year growth rate of output,
consumption and investment, while the right panel displays the ratio between the downside and the
upside semivolatility of year-on-year output growth, for different average LTV ratios faced by the
financially constrained agents. To identify the recessionary episodes in the simulated series, we use
the Harding and Pagan (2002) algorithm. Across all the simulations the entrepreneurial average LTV
ratio is adjusted to be 9 basis points greater than any value we consider for impatient households’
credit limits, in line with the baseline calibration of the model.
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Figure G7. Leverage and volatility

Notes: The left panel reports the standard deviation of year-on-year output growth, while the right
panel reports the standard deviation of expansions (solid-blue line) and contractions (dashed-green
line) in economic activity. These are determined based on whether output is above or below its
steady-state level. Across all the simulations the entrepreneurial average LTV ratio is adjusted so
as to be 9 basis points greater than any value we consider for impatient households’credit limits, in
line with the baseline calibration of the model.

G4. Asymmetry and collateral prices

In this appendix we report results obtained by simulating an alternative version of the model
where the collateral assets are pledged at their steady-state prices. We also report results from
our baseline model for comparison.
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G5. Counterfactual exercise
Figure G9. Scaling factor

Notes: Scaling factor applied to the shocks to attain a 40% reduction in the volatility of output
growth over the 1984-1989 time window.

Figure G10. Sequences of LTV ratios

Notes: Sequence of LTV ratios used in each of the two counterfactual scenarios reported in Figure
10. We use the long-term components reported in Figure A1, to which we add a constant in order
to match the calibrated LTV ratios from Section 5.1.1 in 1984. If the resulting LTV ratio exceeds
0.99, we cap it at this value.
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