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Online Appendix

Bayesian estimation

This section explains how we estimate the VAR in (1) and reports some prior sensitivity analysis.

B1. The baseline prior

The VAR in (1) in matrix notation is

(B1)
(
M Y

)
= X

(
0 B

)
+
(
Um Uy

)
.

where M = (m1, ...,mT )′, Y = (y1, ..., yT )′, X is a matrix that collects the right-hand-side variables,

with a typical row x′t = (m′t−1 y
′
t−1 ...m

′
t−P y

′
t−P 1), B =

(
B1
YM , B

1
Y Y , ..., B

P
YM , B

P
Y Y , cy

)′
, Um =

(um1 , ..., u
m
T )′, and Uy =

(
uy1, ..., u

y
T

)′
. Let mo denote the vector collecting the observed values in M

and m∗ denote a vector collecting the missing values in M .

The prior about B and Σ is independent normal-inverted Wishart, p(B,Σ) = p(B)p(Σ), where

(B2) p(Σ|S, v) = IW (S, v) ∝ |Σ|−v/2 exp

(
−1

2
trSΣ−1

)
,

(B3) p(vecB|B,Q) = N (vecB,Q) ∝ exp

(
−1

2
vec(B −B)′Q−1 vec(B −B)

)
,

IW denotes the Inverted Wishart distribution and N denotes the normal distribution.

In B the coefficient of the first own lag of each variable is 1 and the remaining entries are zero.
Q is a diagonal matrix implying that the standard deviation of lag p of variable j in equation i is

λ−1
1 σi/σjp

−λ2 . Following Litterman (1986) we take λ1 = 5, λ2 = 1 and σi (σj) is the standard error
in the autoregression of order P of variable i (j). We set v = N + 2 and S is a diagonal matrix with
σ2
i , i = 1, ..., Nm +Ny on the diagonal.

To handle the missing values in M we cast model (1) in the state-space form. The prior about m∗,
p(m∗|B,Σ) is implicit from model (1) (?, Ch.8). We assume that the initial values are m−P+1 =
... = m0 = 0.

We use a Gibbs sampler to compute the posterior. The Gibbs sampler consists of drawing in turn
Σ, B and m∗ from their conditional posteriors until the sampler converges.

B2. The conditional posteriors

The conditional posteriors are as follows.
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• The conditional posterior of Σ:

(B4) p(Σ|Y,M,B) = IW
(
S, v

)
where

S =
((
M Y

)
−X

(
0 B

))′ ((
M Y

)
−X

(
0 B

))
+ S,(B5)

v = T + v.(B6)

• The conditional posterior of B:

(B7) p(vecB|Y,M,Σ) = N
(
B,Q

)
where

Q =
(
Q−1 + Σ−1

Y Y.1 ⊗X
′X
)−1

,(B8)

vecB = Q
(
Q−1 vecB +

(
Σ−1
Y Y.1 ⊗X

′) vec
(
Y +MΣ−1

MMΣMY

))
(B9)

and we use the notation Σ =

(
ΣMM ΣMY

ΣYM ΣY Y

)
and ΣY Y.1 = ΣY Y − ΣYMΣ−1

MMΣMY .

• The conditional posterior of m∗ is given by the simulation smoother. We use the simulation
smoother of Durbin and Koopman (2002) implemented as explained in Jarociński (2015).

B3. Derivation of the conditional posteriors

The conditional posteriors of Σ and m∗ are standard.

To obtain the conditional posterior of B we write down the density of Y,M conditional on the
parameters B and Σ

(B10) p(Y,M |B,Σ) ∝ |Σ|−T/2

exp

(
−1

2
tr
((
M Y

)
−X

(
0 B

))′ ((
M Y

)
−X

(
0 B

))
Σ−1

)
.

and decompose it as follows:

(B11) p(Y,M |B,Σ) = p(Y |M,B,Σ)p(M |B,Σ)

where

(B12) p(M |B,Σ) = p(M |ΣMM ) ∝ |ΣMM |−T/2 exp

(
−1

2
trM ′MΣ−1

MM

)
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and

(B13) p(Y |M,B,Σ) ∝ |ΣY Y.1|−T/2

exp

(
−1

2
tr
(
Y −XB +MΣ−1

MMΣMY

)′ (
Y −XB +MΣ−1

MMΣMY

)
Σ−1
Y Y.1

)
with ΣY Y.1 = ΣY Y −ΣYMΣ−1

MMΣMY . See e.g. Bauwens, Lubrano and Richard (1999) Section A.2.3.
We notice that the only terms in the posterior that involve B are p(Y |M,B,Σ)p(B). We multiply

them out and collect the terms involving B in the standard way.

B4. Prior sensitivity analysis

In this section we use a more general prior and report the marginal data densities for alternative
hyperparameter values. We follow the analysis and the notation of Del Negro and Schorfheide
(2011). Specifically, we add to the prior a ‘sums-of-coefficients dummy observation prior’ with
weight λ4 and a ‘co-persistence dummy observation prior’ with weight λ5.

We adapt these priors to our setup of a VAR with zero restrictions and an independent (and
hence, non-conjugate) normal-inverted Wishart prior. That is, we write down the new Q and B
that reflect both the Litterman (1986) prior and the dummy observation priors. More in detail, we
specify the dummy observations Y d, Xd that correspond to the ‘sums-of-coefficients’ prior in the
equations for yt and to the ‘co-persistence’ prior. Let Σ denote the error variance in the dummy
observations sample. We assume that Σ equals the prior expectation of the error variance in the
estimation sample, i.e. Σ = E(Σ) = S, where S is a diagonal matrix described in section B.B1. Let
ΣY Y be the part of the variance matrix that corresponds to the equations for yt. Let QL and BL

denote the variance and mean of the Litterman’s prior described in section B.B1. Combining the
Litterman’s normal prior with the likelihood of the dummy observations we obtain a normal prior
for B with the variance and mean given by

Q =
(

(QL)−1 + Σ−1
Y Y ⊗X

d′Xd
)−1

,(B14)

vecB = Q
(

(QL)−1 vecBL + (Σ−1
Y Y ⊗X

d′) vecY d
)
.(B15)

Figure B1 shows that the impulse responses change modestly when we add to the prior the dummy
observation priors with weights λ4 = λ5 = 1. These are the weights used e.g. in Sims and Zha
(1998) and these weights also approximately maximize the marginal data density in our application.
Comparing Figure B1 with Figure 2 we see two main differences. One is that the responses of
output and prices to the central bank information shock become more persistent with the dummy
observation priors. Another difference is that the responses of output and prices to the monetary
policy shocks become less negative. This happens both in our sign restriction identification (panel
A) and in the standard high frequency identification (panel B). In our identification the responses of
these variables remain marginally significant, but they become basically zero in the standard high
frequency identification. Hence, under the Sims and Zha (1998) prior our sign restrictions become
also qualitatively, and not only quantitatively important.

Table B1 reports the marginal data density for several specifications of the prior. We compute
the marginal data density for a small grid of values for λ1, λ2, λ4 and λ5. We use the modified
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Figure B1. Impulse responses of the low frequency variables yt to monetary policy and central bank information

shocks, model with dummy observation priors with Sims and Zha (1998) hyperparameters. Median (line), percentiles

16-84 (darker band), percentiles 5-95 (lighter band).

A. Sign restrictions B. Standard HFI
Monetary policy CB information

(negative co-movement) (positive co-movement)

Monetary policy

(Choleski, 3m fff first)

0 10 20 30
-0.05

0
0.05

0.1
0.15

1y
 g

ov
 b

on
d

   
yi

el
d 

(%
)

0 10 20 30
-0.05

0
0.05

0.1
0.15

0 10 20 30

-2
-1
0
1

S
&

P
50

0
(1

00
 x

 lo
g)

0 10 20 30

-2
-1
0
1

0 10 20 30
-0.2
-0.1

0
0.1

R
ea

l G
D

P
(1

00
 x

 lo
g)

0 10 20 30
-0.2
-0.1

0
0.1

0 10 20 30

-0.1

0

0.1

G
D

P
 d

ef
la

to
r

(1
00

 x
 lo

g)

0 10 20 30

-0.1

0

0.1

0 10 20 30

-0.05

0

0.05

E
B

P
(%

)

0 10 20 30

-0.05

0

0.05

0 10 20 30
0

0.05

0.1

0.15

1y
 g

ov
 b

on
d

   
yi

el
d 

(%
)

0 10 20 30
-2

-1

0

S
&

P
50

0
(1

00
 x

 lo
g)

0 10 20 30

-0.1

0

0.1

R
ea

l G
D

P
(1

00
 x

 lo
g)

0 10 20 30

-0.05

0

0.05

G
D

P
 d

ef
la

to
r

(1
00

 x
 lo

g)

0 10 20 30

0
0.02
0.04
0.06

E
B

P
(%

)

months months months

harmonic mean estimator based on a chain with 100 thousand draws after discarding the first 5000,
using the observed-data likelihood.35 The marginal likelihood in our VAR is quite sensitive to λ1

and λ2, but rather insensitive to λ4 and λ5 for the values that we have tried. The first lesson
from Table B1 is that the Sims and Zha (1998) specification is the approximate local maximum.
The marginal data density goes down when we either tighten or loosen the hyperparameters. The
second lesson is that the Sims and Zha (1998) prior is considerably, though not overwhelmingly,
preferred to the baseline specification. The approximately 7 log points difference is substantial,
though not huge by the standards of the marginal data densities. All in all, we have decided to keep
the specification without the dummy observation priors as the baseline in the main text, as in this
specification the results of the standard high frequency identification (in Panel B of Figure 2) are
closer to the literature, which often uses frequentist econometrics. In this way we focus this paper
on the conceptual advantages of our sign restriction identification and not on the performance of
the standard high frequency identification in the Bayesian framework. We leave the latter topic for
future research.

35In the applications with missing data, like ours, one can also use the complete-data likelihood based on the draws of the
missing data, but Chan and Grant (2015) argue strongly for using the observed-data likelihood.
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Table B1—Marginal data densities for alternative values of hyperparameters

λ1 λ2 λ4 λ5 ln pλ(Y )

tighter λ4, λ5 5 1 3 3 -880.1
tighter λ2 5 2 1 1 -885.9
tighter λ1 7 1 1 1 -895.0
Sims and Zha (1998) 5 1 1 1 -879.7
looser λ1 3 1 1 1 -899.4
looser λ2 5 0.5 1 1 -944.4
looser λ4, λ5 (baseline) 5 1 0 0 -887.2

Additional results for the US

C1. Relaxing the restrictions on the dynamics of mt

In this subsection we show that our results are robust to relaxing the restrictions on the dynamics
of mt in the VAR. The unrestricted VAR is

(C1)

(
mt

yt

)
=

P∑
p=1

(
Bp
MM Bp

MY
Bp
YM Bp

Y Y

)(
mt−p
yt−p

)
+

(
cM
cY

)
+

(
umt
uyt

)
.

We estimate this VAR on the sample without the missing values in mt, i.e. starting in February
1990. Furthermore, we replace the missing observation in September 2001 with zero. In this way
we can estimate a completely standard VAR. Panel A of Figure C1 reports the resulting impulse
responses. Panel B reports the impulse responses obtained with the restricted VAR given in equation
(1) on the sample starting in February 1990. We can see that the impulse responses in both panels
are extremely similar. We conclude that relaxing the zero restrictions in the VAR hardly affects
the impulse responses.

An additional lesson from Figure C1 is that starting the sample in 1990 does not change the
conclusions. We can see that the impulse responses in this figure are quite similar to the impulse
responses in Figure 2.

C2. Results on other subsamples

Figure C1 showed that the findings hardly change when we start the sample in February 1990
instead of February 1984. Figure C2 shows that the findings continue to be similar when we
estimate the VAR on a sample that starts in February 1984 but ends on December 2008, i.e. before
the interest rates hit the zero lower bound (ZLB) in January 2009 (Panel A). Furthermore, the
findings continue to be similar when we omit the high-frequency surprises before February 1994
(Panel B). The motivation to omit these surprises is that the Fed did not issue a press release about
FOMC decisions until February 1994, so the earlier surprises might be coming from a different
regime. Finally, the findings continue to be similar when we start the sample in July 1979, as in
the related work by Gertler and Karadi (2015) (Panel C).
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Figure C1. Impulse responses in the restricted and in the unrestricted VAR. Sample February 1990 to December

2016. Impulse responses to one standard deviation monetary policy and central bank information shocks. Median

(line), percentiles 16-84 (darker band), percentiles 5-95 (lighter band).

A. Unrestricted VAR given in equation (C1) B. Restricted VAR given in equation (1)
Monetary policy CB information

(negative co-movement) (positive co-movement)
Monetary policy CB information

(negative co-movement) (positive co-movement)
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C3. Results with Industrial Production and CPI

Figure C3 shows that when we replace the real GDP and GDP deflator with the industrial
production and the consumer price index (CPI), the standard high-frequency identification yields
no response of consumer prices, while these prices do respond in our identification scheme.

Figure C3. Impulse responses of the low frequency variables yt to monetary policy and central bank information

shocks, model with Industrial Production and Consumer Price Index. Median (line), percentiles 16-84 (darker

band), percentiles 5-95 (lighter band).

A. Sign restrictions B. Standard HFI
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C4. VAR with factors of high-frequency surprises

This section shows the robustness of our results to alternative measures of surprises.

Factors of high-frequency surprises. — We start by showing that the proportion and sizes of
‘wrong-signed’ responses of stock prices to monetary policy surprises remain similar when we use
alternative measures of surprises.

As an alternative measure of the interest rate surprises we compute the ‘policy indicator’ con-
structed as in Nakamura and Steinsson (2018) (who build on Gürkaynak, Sack and Swanson, 2005a).
Namely, this is the first principal component of the surprises in fed funds futures and eurodollar
futures with one year or less to expiration. Five indicators enter into it: the current-month fed funds
future, the 3-month fed funds future, and the eurodollar futures at the horizons of two, three and
four quarters. The advantage of the policy indicator is that it captures even more of the forward
guidance. The disadvantage is that it relies on the eurodollar futures which are not as liquid as the
federal funds futures.

As an alternative measure of the stock price surprises we take the first principal component of
the surprises in the S&P500, Nasdaq Composite and Wilshire 5000. Nasdaq Composite is based
on about 4000 stocks skewed towards the technology sector, and Wilshire 5000 is based on 7000
stocks of essentially all publicly listed companies headquartered in the US. All three indices are
market capitalization-weighted. Our dataset has many missing values for Nasdaq and Wilshire,
so we use the alternating least squares (ALS) algorithm that simultaneously estimates the missing
values while computing principal components.

Table C1 reports the correlations between the 3-month fed funds futures surprises, S&P500 sur-
prises and the two alternative measures of surprises just discussed. The correlation between the
surprises in the 3-month fed funds futures and the policy index is 0.89. The correlation between
S&P500 and the first principal component of the three stock indices is higher, 0.96. The correlations
between interest surprises and stock price surprises are between -0.4 and -0.5.

Table C1—Correlations between surprises

3-m fff SP500 Policy indicator 1st p.c. of stocks

3-m fff 1.00
SP500 -0.46 1.00
Policy indicator 0.89 -0.53 1.00
1st p.c. of stocks -0.40 0.96 -0.47 1.00

Figure C4 shows that when we use the alternative measures of surprises, the lessons on the ‘wrong-
signed’ responses of stock prices to interest rates hold. Still, in 33% of the cases the co-movement
between interest rates and stock price surprises is positive. This confirms the lessons from Figure
1.

Impulse responses. — Now we use the factors extracted from multiple interest rate and stock
market surprises as mt in the VAR. Figure C5 shows that using factors changes very little in the
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Figure C4. Scatter plot of interest rate and stock price surprises. The policy indicator and the 1st principal

component of stock indices.
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impulse responses. The main difference is that the monthly S&P500 index now responds positively
to the central bank information shock.

C5. Robust error bands of Giacomini and Kitagawa (2015)

This section shows that the impulse responses to the two shocks we identify continue to be very
different from each other irrespective of the prior on the rotation matrices Q. We make this point
using the ‘multiple priors’ approach of Giacomini and Kitagawa (2015).

The prior on Q might be important, because the sign restrictions in Table 1 provide only a set
identification, not a sharp identification. That is, for every nonsingular variance matrix Σ there is
a continuum of rotation matrices Q that are consistent with the sign restrictions. Since the sample
carries no information about Q, the weights on different values of Q are determined by the prior.
As most of the literature, we use the uniform prior on the space of rotation matrices, conditionally
on satisfying the sign restrictions (Rubio-Ramirez, Waggoner and Zha, 2010). How much could the
impulse responses change if we used some other, non-uniform prior on Q?

To answer this question we compute the ‘robust’ uncertainty bounds following Giacomini and
Kitagawa (2015). In this approach, the posterior mean bounds delineate the range of the posterior
means of the impulse responses across all possible priors on Q that satisfy the sign restrictions. The
X% robustified region is a range of values of the impulse responses that has the posterior probability
of at least X% under every possible prior on Q that satisfies the sign restrictions.

Figure C6 reports the robust bounds for the impulse responses of all variables yt at all horizons.
The bounds are wider and include zero more often than the bounds in Figure 2, but the different
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Figure C6. Impulse responses of the low frequency variables yt to one standard deviation shocks, baseline VAR,

with ‘robust’ error bands of Giacomini and Kitagawa (2015). Posterior mean bounds (line), 68% robustified region

(darker band), 90% robustified region (lighter band).

Monetary policy CB information
(negative co-movement) (positive co-movement)

0 10 20 30
-0.1

0

0.1

1y
 g

ov
 b

on
d

   
yi

el
d 

(%
)

0 10 20 30
-0.1

0

0.1

0 10 20 30
-2
-1
0
1

S
&

P
50

0
(1

00
 x

 lo
g)

0 10 20 30
-2
-1
0
1

0 10 20 30

-0.2
-0.1

0
0.1

R
ea

l G
D

P
(1

00
 x

 lo
g)

0 10 20 30

-0.2
-0.1

0
0.1

0 10 20 30

-0.1
-0.05

0
0.05

G
D

P
 d

ef
la

to
r

(1
00

 x
 lo

g)

0 10 20 30

-0.1
-0.05

0
0.05

0 10 20 30

-0.05

0

0.05

E
B

P
(%

)

0 10 20 30

-0.05

0

0.05

months months

nature of the monetary policy and central bank information shocks remains clear. Furthermore, let
us make two comments related to the width of the bounds. First, the robust bounds are conservative
because they account for the ‘worst-case’ prior on Q for each variable, shock and horizon separately.
Any single prior on Q will produce narrower bands. Second, there are many ways to refine the sign
restriction identification by postulating further reasonable restrictions on the impulse responses.
Our point in this paper is that the simple sign restriction we propose is enough to separate two
shocks of very different nature.
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Additional results for the Euro area

Figure D1. Impulse responses of the low frequency variables yt to one standard deviation shocks. Median (line),

percentiles 16-84 (darker band), percentiles 5-95 (lighter band). VAR with central bank information about supply.
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Surprises and proxies for Fed’s private information

In this section we study the relation between a popular proxy for the private information available
to the FOMC members and the central bank information shocks we identify. We find mixed results.

Empirical proxies for the FOMC private information used in the literature are based on the dif-
ferences between the Fed staff forecasts and private forecasts. For every scheduled FOMC meeting,
the Fed staff prepares nowcasts and forecasts of the price level and economic activity. These fore-
casts do not directly influence private forecasts, because they are made public only with a 5 year
delay. However, they are made available to the FOMC members, who can take them into account
when setting the course of policy and formulating official communication. The staff forecasts have
been shown to have superior forecasting ability relative to private forecasts (Romer and Romer,
2000). The difference between the staff forecasts and forecasts of private forecasters, therefore, is a
popular proxy for the private information of the FOMC. Controlling for private information using
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these proxies has been shown to influence predictions about the effects of monetary policy shocks
(Gertler and Karadi, 2015; Campbell et al., 2016).

It is far from clear, however, how much of the FOMC private information is actually revealed
through a policy change and the accompanying communication. FOMC decision makers might not
share the views of the staff about the economy, and even if they do their communication might not be
detailed enough to explain all the assumptions behind their choices. Therefore, instead of using such
proxies, we use market-price reactions to the announcements to learn about the information content
of the FOMC statements in our baseline regressions. Changes in asset prices provide more first-hand
signal about the extent of new information in the statement as assessed by market participants (and
not just by economic forecasters), who can be expected to have key influence on market prices that
drive economic fundamentals. Still, it is worthwhile to assess how well our measures line up with
private information proxies.

Table E1—Surprises and proxies for Fed private information

(1) (2) (3)

Variables
Surprise in

3m fff
Monetary

policy shock
CB information

shock

πt 0.00203 0.00209 0.000288
(0.330) (0.383) (0.0660)

πt+1 0.00623 0.00163 0.00497
(0.474) (0.201) (0.776)

πt+2 -0.00799 -0.00514 -0.00363
(-0.835) (-0.849) (-0.717)

dyt 0.0181*** 0.0183*** -0.00141
(2.893) (3.119) (-0.388)

dyt+1 0.0140 0.000733 0.0143***
(1.379) (0.0886) (3.078)

dyt+2 -0.00758 -0.00220 -0.00671
(-0.891) (-0.341) (-1.643)

ut -0.0279 -0.0256 -0.00629
(-0.630) (-0.796) (-0.296)

Observations 180 180 180
R-squared 0.117 0.116 0.070

Robust t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1

To this end, we regress the surprises in the 3-month fed funds futures and our two identified
shocks on proxies for the FOMC private information. The variables are at the monthly frequency.
As measures of the two shocks we take the posterior medians of the respective shocks’ contributions
to the surprises in the 3-month fed funds futures. The proxy for the FOMC private information is
standard in the literature. In particular, we link the staff forecasts on scheduled FOMC meetings
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with the last preceding forecasts surveyed by the Blue Chip Economic Indicators. We use the
current, and the one- and two-quarters ahead GDP deflator (πt, πt+1, πt+2) and real GDP growth
(dyt, dyt+1, dyt+2) forecasts and the current month unemployment forecasts (ut). We take a simple
difference between the staff and private forecasts for each variable. The regression results are shown
in Table E1.

The results are mixed. We find that private information about the one-quarter-ahead real GDP
growth influences the central bank information shocks significantly. At the same time, we do not find
that private information about prices or the unemployment rate would influence the same shock;
and we also find that private information about the current-quarter real GDP growth influences our
monetary policy shock.

High-frequency euro area data

We use high-frequency data on euro area asset prices to build a dataset of high-frequency asset
price responses to the ECB policy announcements, analogous to the Gürkaynak, Sack and Swanson
(2005a) dataset for the US. We take the high-frequency asset price data from the Thomson Reuters
Tick History database. Our dataset has two kinds of assets: interest rate swaps and stock prices.

Stock prices. For the stock prices it is straightforward to obtain high-frequency data, since
stocks are traded in centralized markets. The stock index we use is Euro Stoxx 50. The Thomson
Reuters includes its price multiple times a second.

Interest rate swaps. In the euro area we use the interest rate swaps instead of the futures,
as the swap market is more liquid and has a longer history. We use the Overnight Indexed Swaps
(OIS) based on the Eonia rate. In this swap contract the parties exchange the variable, overnight
Eonia rate for the fixed swap rate. We focus on the 3-month swap.

Measuring the Eonia OIS rate is more difficult than measuring stock prices, because these swaps
are traded in over-the-counter markets. We do not observe the prices. Thomson Reuters only
provides the quotes posted by individual traders. The quotes consist of a bid rate and an ask rate,
and the trades are concluded over the phone. The database includes bid and ask quotes with time
stamps (at the millisecond level) and with the identity of the posting institution. Some quotes are
outliers that cannot reasonably reflect actual trades (e.g. they differ from the other quotes at that
time by orders of magnitude). To clean the data from the outliers, for each day, we exclude the
lowest and highest 1 percents of bid and ask quotes. In some instances, we eliminate further outliers
if they are very far from the outstanding quotes (sometimes 5-6 standard deviations away) making
it unreasonable to assume that any trade was conducted at the quoted price.

We measure the market price as the average of the highest bid and lowest ask prices out of the
most recent five quotes made by distinct institutions. Furthermore, we disregard quotes posted
more than 15 minutes ago, even if this reduces the number of available quotes below 5. In the
instances when the highest bid price is higher than the lowest ask price we go for the second-highest
and second-lowest or third-highest and third-lowest if necessary. Our choices are informed by our
aim to obtain an accurate and timely proxy for market valuation. Choosing the five latest quotes
balances timeliness with accuracy: if after a market news 5 institutions modified their quotes, we
would like our measure to reflect the change, even if some still outstanding quotes (possibly posted
before the news) suggest different valuations. We disregard quotes older than 15 minutes altogether,
because quotes can not be directly traded on. They are indicative of the valuation of the posting
institution only when they were made, and can lose their actuality over time. The 15 minutes limit
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guarantees that our baseline surprise measure, which reads the asset price 20 minutes after the
monetary policy news, does not include quotes made before the news.

Figure F1. Construction of high-frequency surprises for the 3-month Eonia swap rate.
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Figure F1 shows two examples illustrating how we process the data on quotes. Each quote is
represented by a pair of dots: a blue dot, showing the bid rate, and a red dot, showing the ask rate.
The outliers are already removed, as they would distort the scale of the picture. The black line
shows the midquote, which is our measure of the market rate. The first panel presents the market
for the 3-month Eonia OIS (EUREON3M) on May 10th, 2001. On that day the ECB announced
a 25 basis point cut in its policy rates. The press release was issued at 13:45. We can see that
around 13:45 the quotes drop by about 20 basis points. The midquote we compute drops with
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the quotes. The second panel shows the data for March 3rd, 2011. The activity in the market
is higher in 2011 than in 2001, as witnessed by a much larger number of quotes posted. On this
particular day the ECB Governing Council decided to keep the policy rates unchanged. This was
anticipated, so the press release at 13:45 did not contain any surprises. However, during the press
conference that started at 14:30 and lasted about an hour, the ECB President Jean-Claude Trichet
delivered a hawkish message. He highlighted the upwards risks to inflation coming from an increase
in commodity prices, and concerns about second-round effects (i.e. the price increases fuelling wage
increases). By the end of the press conference the 3-month Eonia OIS was about 10 basis points
higher, reflecting expectations of future interest rate increases.
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Calibrated model parameters

Table G1—Calibrated model parameters

Households
β 0.990 Discount rate
h 0.815 Habit parameter
χ 3.411 Relative utility weight of labor
ϕ 0.276 Inverse Frisch elasticity of labor supply

S̄h/S 0.500 Relative steady state direct HH holding of debt
%k,x 0.974 Rate of geometric decline of a corporate bond with duration x

Financial Intermediaries
θ 0.343 Fraction of capital that can be diverted
ω 0.0019 Start-up fund for the entering bankers
σ 0.972 Survival rate of the bankers

Intermediate good firms
α 0.330 Capital share
δ 0.025 Depreciation rate

Capital Producing Firms
ηi 1.728 Inverse elasticity of net investment to the price of capital

Retail Firms
ε 4.167 Elasticity of substitution

Government
G
Y 0.200 Steady state proportion of government expenditures
κπ 1.500 Inflation coefficient in the Taylor rule
κx -0.125 Markup coefficient in the Taylor rule
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