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1 Model with Occupation-Specific Human Capital

In this appendix I derive optimal worker behavior when I extend the baseline model to allow workers to

accumulate occupation-specific human capital.

There are two experience levels in each occupation: workers are either experienced or inexperienced.

A worker who enters an occupation for the first time is inexperienced. As in Kambourov and Manovskii

(2009), a worker becomes experienced stochastically at rate θ. Output production increases by a known

amount u for all experienced workers.

In order to solve the worker’s occupational choice problem, as in the baseline model, I follow Whittle

(1982) and Karatzas (1984). More specifically, I compute the retirement value at which the worker is

exactly indifferent between continuing with that occupation or retiring. This retirement value serves as

an index for each occupation, which corresponds to that occupation’s Gittins index (see Gittins, 1979 and

Bergemann and Valimaki, 2008).

Gittins Index for Experienced Worker

I start by deriving the optimal behavior of an experienced worker. The solution to the transformed

problem in this case is similar to the baseline model.

The value of an experienced worker with belief p and the option of retiring and obtaining value W is

given by

rV exp (p,W ) = αGp+ αB (1− p) + u+ 1
2

(
αG − αB

σ

)2
p2 (1− p)2 V exp

pp (p,W )− δ (V exp (p,W )− J)
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where I suppress k, the occupational index in this section, to reduce notational congestion. In other words

the worker’s flow value consists of his expected output, which is now increased by the amount u since he

is experienced; the term that captures the value of learning; and a term that captures the possibility of

an exogenous move that occurs at rate δ.

The optimal stopping rule is to retire when p reaches p̃exp (W ) such that the value matching and the

smooth pasting conditions hold

V exp (p̃exp (W ) ,W ) = W (1)

V exp
p (p̃exp (W ) ,W ) = 0.

Similarly to the baseline case, the solution to the above differential equation is given by

V exp (p,W ) = αGp+ αB (1− p) + u+ δJ

r + δ
(2)

+αG − αB
r + δ

(
p̃exp (W ) + 1

2d−
1
2

)−1
p̃exp (W )

1
2 + 1

2d (1− p̃exp (W ))
1
2−

1
2d

× (p)
1
2−

1
2d (1− p)

1
2 + 1

2d ,

where

p̃exp (W ) = (d− 1) ((r + δ)W − αB − u− δJ)
(d+ 1) (αG − αB)− 2 ((r + δ)W − αB − u− δJ) , (3)

and d =
√

8(r+δ)(αG−αB
σ

)2 + 1.

The index of each occupation is the highest retirement value at which the worker is indifferent between

working at that occupation or retiring with W = W exp (p), i.e.

W exp (p) = V exp (p,W ) , (4)

where W exp (p) = max
{
W̃
}

and the set
{
W̃
}

includes all possible retirement values, W̃ , such that

W̃ = V exp
(
p, W̃

)
.

For eq. (4) to hold, from eq. (1), it must be the case that

p = p̃exp (W ) . (5)
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Substituting condition (5) into the threshold condition, equation (3), obtains

p = (d− 1) ((r + δ)W exp (p)− αB − u− δJ)
(d+ 1) (αG − αB)− 2 ((r + δ)W exp (p)− αB − u− δJ) ⇒ (6)

W exp (p) = 1
r + δ

(d+ 1) (αG − αB) p+ (2p+ d− 1) (αB + u+ δJ)
2p+ d− 1 ,

which is the Gittins index of an experienced worker with beliefs p.

Gittins Index for Inexperienced Worker

I now turn to the optimal behavior of an inexperienced worker.

In the transformed problem, the value of an inexperienced worker with the option of retiring and

obtaining value W is given by

rV in (p,W ) = αGp+ αB (1− p) (7)

+1
2

(
αG − αB

σ

)2
p2 (1− p)2 V in

pp (p,W )

−δ
(
V in (p,W )− J

)
+ θ

(
V exp (p,W )− V in (p,W )

)
,

i.e. the flow value of an inexperienced worker equals his expected output plus the term that captures

the option value of learning; at rate δ the worker moves exogenously to a new city, whereas at rate θ the

worker becomes experienced and his value becomes V exp (p,W ), derived above.

Substituting into (7) the expression for V exp (p,W ) using equations (2) and (3) derived above, leads

to

(r + θ + δ)V in (p,W )

= r + δ + θ

r + δ
(αG − αB) p+ r + δ + θ

r + δ
αB

+1
2

(
αG − αB

σ

)2
p2 (1− p)2 V in

pp (p,W )

+θαG − αB
r + δ

(
p̃exp (W ) + 1

2d−
1
2

)−1
p̃exp (W )

1
2 + 1

2d (1− p̃exp (W ))
1
2−

1
2d

×p
1
2−

1
2d (1− p)

1
2 + 1

2d

+r + δ + θ

r + δ
δJ + θ

r + δ
u
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or equivalently:

1
2 (r + θ + δ)

(
αG − αB

σ

)2
p2 (1− p)2 V in

pp (p,W )

= V in (p,W )

− 1
r + δ

(αG − αB) p

− θ

r + θ + δ

αG − αB
r + δ

(
p̃exp (W ) + 1

2d−
1
2

)−1
p̃exp (W )

1
2 + 1

2d (1− p̃exp (W ))
1
2−

1
2d

×p
1
2−

1
2d (1− p)

1
2 + 1

2d

−
( 1
r + δ

αB + δ

r + δ
J + 1

(r + θ + δ)
θ

r + δ
u

)
.

As before, the optimal stopping rule is to retire when p reaches p̃in (W ) such that the value matching

and the smooth pasting conditions hold:

V in
(
p̃in (W ) ,W

)
= W (8)

V in
p

(
p̃in (W ) ,W

)
= 0. (9)

The above is a second-order, non-homogeneous differential equation of the form

k3t
2 (1− t)2 ··y (t) = y (t) + k1t+ g (W ) tβ (1− t)1−β + k2, (10)

where

y (t) = V in (p,W )

k1 = − 1
r + δ

(αG − αB)

k2 = −
(
αB + δJ

r + δ
+ 1

(r + θ + δ)
θ

r + δ
u

)

k3 = 1
2

1
r + θ + δ

(
αG − αB

σ

)2

4



g (W ) =
− θ
r+θ+δ

αG−αB
r+δ

(d−1)((r+δ)W−αB−u−δJ)
(d+1)(αG−αB)−2((r+δ)W−αB−u−δJ) + 1

2d−
1
2
×

( (d− 1) ((r + δ)W − αB − u− δJ)
(d+ 1) (αG − αB)− 2 ((r + δ)W − αB − u− δJ)

) 1
2 + 1

2d

×

(
1− (d− 1) ((r + δ)W − αB − u− δJ)

(d+ 1) (αG − αB)− 2 ((r + δ)W − αB − u− δJ)

) 1
2−

1
2d

d =

√√√√√ 8 (r + δ)(
αG−αB

σ

)2 + 1

β = 1
2 −

1
2

√√√√√ 8 (r + δ)(
αG−αB

σ

)2 + 1

subject to

y (t0) = W

·
y (t0) = 0.

In order to solve the above equation, I follow Brockett (1970), Chapter 1.

In particular, let

x1 (t) = y (t)

x2 (t) = ·
y (t) .

Then I can write

·
x1 (t) = x2 (t)
·
x2 (t) = ··

y (t) = 1
k3t2 (1− t)2x1 (t) + Z (t) ,

where

Z (t) = 1
k3t2 (1− t)2

[
k1t+ g (W ) tβ (1− t)1−β + k2

]
.

Moreover let
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x (t) =
[
x1 (t) x2 (t)

]′
.

Then

·
x (t) =

 0 1
1

k3t2(1−t)2 0

x (t) +

0

1

Z (t) .

I now use the “Variation of Constants formula”. According to Brockett (1970), Chapter 1.6, if Φ (t, t0)

is the transition matrix for ·x (t) = A (t)x (t), then the unique solution of ·x (t) = A (t)x (t) + f (t);

x (t0) = x0 is given by

x (t) = Φ (t, t0)x0 +
∫ t

t0
Φ (t, τ)

0

1

Z (τ) dτ, (11)

where Φ (t, to) is the transition matrix. The transition matrix is defined as the solution Φ of the matrix

differential equation (Brockett, 1970, Chapter 1.3)

d

dt
Φ (t, to) = A (t) Φ (t, to)

Φ (t0, to) = I,

where I is the identity matrix.

For the problem at hand, I have
·
x (t) = A (t)x (t) ,

or

·
x (t) =

 0 1
1

k3t2(1−t)2 0

x (t) .

Moreover let

x0 =
[
x10 x20

]′
x10 = y (t0)

x20 = ·
y (t0) .

I know that the solution to the homogeneous differential equation
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··
y (t) = 1

k3t2 (1− t)2 y (t) ,

is given by

y (t) = c1t
q (1− t)1−q + c2t

1−q (1− t)q ,

where q = 1
2

(
1−

√
4+k3
k3

)
and c1 and c2 are undetermined coefficients.

Given the solution to the homogeneous differential equation, I can write

Φ (t, t0)x0 =

 tq (1− t)1−q , t1−q (1− t)q

d
dt

(
tq (1− t)1−q

)
, d

dt

(
t1−q (1− t)q

)
 ·
c1

c2


or

Φ (t, t0)x0 =

 tq (1− t)1−q , t1−q (1− t)q

tq−1 (1− t)−q (q − t) , t−q (1− t)q−1 (1− q − t)

 ·
c1

c2

 , (12)

where c1 and c2 are undetermined coefficients.

I next solve for c1 and c2 as a function of x0.

At t = t0, since Φ (t0, t0) = I, I have

x10

x20

 =

 tq0 (1− t0)1−q , t1−q0 (1− t0)q

tq−1
0 (1− t0)−q (q − t0) , t−q0 (1− t0)q−1 (1− q − t0)

 ·
c1

c2

⇔
c1

c2

 = 1
1− 2q

t−q0 (1− t0)q−1 (1− q − t0) , −t1−q0 (1− t0)q

−tq−1
0 (1− t0)−q (q − t0) , tq0 (1− t0)1−q


x10

x20

 .

Therefore, substituting in for

c1

c2

, in (12) leads to

Φ (t, t0)x0 =

 tq (1− t)1−q , t1−q (1− t)q

tq−1 (1− t)−q (q − t) , t−q (1− t)q−1 (1− q − t)


1

1− 2q

t−q0 (1− t0)q−1 (1− q − t0) , −t1−q0 (1− t0)q

−tq−1
0 (1− t0)−q (q − t0) , tq0 (1− t0)1−q


x10

x20


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or

Φ (t, t0) = 1
1− 2q

 tq (1− t)1−q , t1−q (1− t)q

tq−1 (1− t)−q (q − t) , t−q (1− t)q−1 (1− q − t)

 (13)

t−q0 (1− t0)q−1 (1− q − t0) , −t1−q0 (1− t0)q

−tq−1
0 (1− t0)−q (q − t0) , tq0 (1− t0)1−q

 ,

since x0 =
[
x10 x20

]′
cancels on both sides of the equation.

In other words, the solution to the homogeneous is given by

x (t) = Φ (t, t0)x0, (14)

where Φ (t, t0) is defined in (13) above.

From the value matching and smooth pasting conditions, (8) and (9) above, I know that for t0 = p̃in+

y (t0) = W

·
y (t0) = 0.

Changing the notation we have

x0 =
[
x10 x20

]′
(15)

x10 = y (t0) = W (16)

x20 = ·
y (t0) = 0. (17)

Then the solution to the homogeneous, (14), becomes

x (t) = Φ (t, t0)

W
0

 .
Using the variation of constants formula, equation (11), I can now solve the original differential

equation, by substituting in for Φ (t, t0) and Φ (t, τ) from (13) and for x0 from (15) through (17). We
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have:

x1 (t)

x2 (t)

 = 1
1− 2q

 tq (1− t)1−q , t1−q (1− t)q

tq−1 (1− t)−q (q − t) , t−q (1− t)q−1 (1− q − t)


t−q0 (1− t0)q−1 (1− q − t0) , −t1−q0 (1− t0)q

−tq−1
0 (1− t0)−q (q − t0) , tq0 (1− t0)1−q


W

0



+
∫ t

t0

1
1− 2q

 tq (1− t)1−q , t1−q (1− t)q

tq−1 (1− t)−q (q − t) , t−q (1− t)q−1 (1− q − t)

 ·
τ−q (1− τ)q−1 (1− q − τ) , −τ1−q (1− τ)q

−τ q−1 (1− τ)−q (q − τ) , τ q (1− τ)1−q


0

1

Z (τ) dτ,

or equivalently x1 (t)

x2 (t)

 = 1
1− 2q · (18)

 tq (1− t)1−q t−q0 (1− t0)q−1 (1− q − t0)W − t1−q (1− t)q tq−1
0 (1− t0)−q (q − t0)W

tq−1 (1− t)−q (q − t) t−q0 (1− t0)q−1 (1− q − t0)W − t−q (1− t)q−1 (1− q − t) tq−1
0 (1− t0)−q (q − t0)W



+ 1
1− 2q

 tq (1− t)1−q , t1−q (1− t)q

tq−1 (1− t)−q (q − t) , t−q (1− t)q−1 (1− q − t)

 ·
∫ tt0 1

k3

[
k1τ + g (W ) τβ (1− τ)1−β + k2

] (
−τ−1−q (1− τ)q−2

)
dτ∫ t

t0
1
k3

[
k1τ + g (W ) τβ (1− τ)1−β + k2

] (
τ q−2 (1− τ)−1−q

)
dτ

 .
In other words, (18) implies that the solution, x1 (t) = y (t), to the differential equation (10), is of the

following form (with no undermined coefficients)

y (t) = 1
1− 2q

[
tq (1− t)1−q t−q0 (1− t0)q−1 (1− q − t0)W − t1−q (1− t)q tq−1

0 (1− t0)−q (q − t0)W
]

+ 1
k3 (1− 2q) t

q (1− t)1−q
[∫ t

t0
k1τ + g (W ) τβ (1− τ)1−β + k2

] (
−τ−1−q (1− τ)q−2

)
dτ

+ 1
k3 (1− 2q) t

1−q (1− t)q
∫ t

t0

[
k1τ + g (W ) τβ (1− τ)1−β + k2

] (
τ q−2 (1− τ)−1−q

)
dτ,

or equivalently

9



y (t) = 1
1− 2q t

q (1− t)1−q [t−q0 (1− t0)q−1 (1− q − t0)W (19)

+ 1
k3

(−k1

∫ t

t0
τ−q (1− τ)q−2 dτ

−g (W )
∫ t

t0
τβ−1−q (1− τ)−β+q−1 dτ − k2

∫ t

t0
τ−1−q (1− τ)q−2 dτ)]

+ 1
1− 2q t

1−q (1− t)q [tq−1
0 (1− t0)−q (t0 − q)W

+ 1
k3

(k1

∫ t

t0
τ q−1 (1− τ)−1−q dτ

+g (W )
∫ t

t0
τ q+β−2 (1− τ)−β−q dτ + k2

∫ t

t0
τ q−2 (1− τ)−1−q dτ)],

where t0 ≡ p̃in and q = 1
2

(
1−

√
4+k3
k3

)
.

But using integration by substitution (changing the variable in each of the integrals to 1
τ ), the six

integrals above are equal to

∫ t

t0
τ−q (1− τ)q−2 dτ = 1

q − 1

(( 1
t0
− 1

)q−1
−
(1
t
− 1

)q−1
)

∫ t

t0
τβ−1−q (1− τ)−β+q−1 dτ = 1

q − β

(( 1
t0
− 1

)q−β
−
(1
t
− 1

)q−β)
∫ t

t0
τ−1−q (1− τ)q−2 dτ = 1

q (q − 1)

(( 1
t0
− 1

)q−1 (
q

1
t0
− 1
t0

+ 1
)
−
(1
t
− 1

)q−1 (
q

1
t
− 1
t

+ 1
))

∫ t

t0
τ q−1 (1− τ)−1−q dτ = 1

q

((1
t
− 1

)−q
−
( 1
t0
− 1

)−q)
∫ t

t0
τ q+β−2 (1− τ)−β−q dτ = 1

β + q − 1

((1
t
− 1

)1−q−β
−
( 1
t0
− 1

)1−q−β
)

∫ t

t0
τ q−2 (1− τ)−1−q dτ = 1

q (q − 1)

((1
t
− 1

)−q (
q

1
t
− 1

)
−
( 1
t0
− 1

)−q (
q

1
t0
− 1

))
.
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So the solution (19) above becomes

y (t) = 1
1− 2q t

q (1− t)1−q t−q0 (1− t0)q−1 (1− q − t0)W

+ 1
1− 2q

1
k3
tq (1− t)1−q [−k1

1
q − 1

(( 1
t0
− 1

)q−1
−
(1
t
− 1

)q−1
)

−g (W ) 1
q − β

(( 1
t0
− 1

)q−β
−
(1
t
− 1

)q−β)

−k2
1

q (q − 1)

(( 1
t0
− 1

)q−1 (
q

1
t0
− 1
t0

+ 1
)
−
(1
t
− 1

)q−1 (
q

1
t
− 1
t

+ 1
))

]

+ 1
1− 2q t

1−q (1− t)q tq−1
0 (1− t0)−q (t0 − q)W

+ 1
1− 2q

1
k3
t1−q (1− t)q [k1

1
q

((1
t
− 1

)−q
−
( 1
t0
− 1

)−q)

+g (W ) 1
β + q − 1

((1
t
− 1

)1−q−β
−
( 1
t0
− 1

)1−q−β
)

+k2
1

q (q − 1)

((1
t
− 1

)−q (
q

1
t
− 1

)
−
( 1
t0
− 1

)−q (
q

1
t0
− 1

))
].

Finally I still need to pin down the value of t0. I consider the case where p→ 1.

For an experienced worker I know from equation (2) that

V exp (1,W ) = αG + u+ δJ

r + δ
. (20)

Similarly for an inexperienced worker, from equation (7) I have

(r + δ + θ)V in (1,W ) = αG + δJ + θV exp (1,W ) . (21)

Substituting in for the value of an experienced worker from (20), equation (21) becomes

V in (1,W ) = αG + δJ

r + δ + θ
+ θ

r + δ + θ

αG + u+ δJ

r + δ
.

Put differently, using the notation above, I have

lim
t→1

y (t) = αG + δJ

r + δ + θ
+ θ

r + δ + θ

αG + u+ δJ

r + δ
. (22)

The above equation pins down t0 (i.e. p̃in) for a a given W .
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As before the Gittins index of an occupation is the highest retirement value at which the worker is

indifferent between working at that occupation or retiring with W = W in (p), i.e.

W in (p) = V in (p,W ) , (23)

where W in (p) = max
{
W̃
}
and the set

{
W̃
}
includes all possible retirement values, W̃ , such that W̃ =

V in
(
p, W̃

)
.

For eq. (23) to hold, it must be the case that

p = p̃in (W ) . (24)

In practice, for a given value of beliefs, p, and a given value of moving, J , I use equation (22) to solve

out for the associated Gittins index of the inexperienced worker, W in (p). In particular, substitute p for

t0 and solve (22) for W , while letting t got to 1.

Gittins Index for Moving

I also allow workers the option of moving to another city, which provides known value to the worker, J .

As in the model of the main text, J is the retirement value associated with the option of moving and

therefore corresponds to its Gittins index. A worker therefore moves, if and only if the retirement value

(Gittins index) of all other arms is lower than J . In practice, the value of moving, J , can be computed

numerically by simulating the worker’s problem many times and computing the mean present discounted

value of a worker who has just moved.
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2 Additional Results on City Size and Number of Occupations

Figure 1: Number of Occupations vs. Log County Population - JobCentrePlus Vacancy Data, UK, June through
September 2012

Figure 2: Number of Occupations vs. Log MSA Population - 2000 Census Data (5%)
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Figure 3: Number of Occupations vs. Log MSA Population - 2000 Occupational Employment Statistics

Figure 4: Number of Occupations vs. Log City Population - Brazilian RAIS data. Males with a College Degree
in the State of São Paulo, 1995-2005

3 Full Set of Controls of Mincer Regression

In Table 1, I present the full set of the Mincerian controls for the wage premium regression. Their signs

and magnitudes are consistent with the prior literature.

14



Full Sample
ln(wage)

ln(current city pop) 0.041
(0.001)

Age -0.033
(0.008)

Age2 0.002
(0.0003)

Age3 -0.00004
(0.0000054)

Age4 0.000000218
(0.0000000316)

Female dummy -0.15
(0.005)

High School dummy 0.132
(0.005)

College dummy 0.248
(0.01)

Married dummy 0.073
(0.005)

Non-White dummy -0.058
(0.005)

Firm>100 employees 0.131
(0.005)

Firm 25 - 99 employees 0.03
(0.006)

constant 1.916
(0.127)

1-Digit Industry & Occup fixed effects Yes
Number of Obs 169536

Table 1: Wage Premium. Source: 1996 Panel of Survey of Income and Program Participation. Population
data from 2000 Census. Controls include 11 industry dummies and 13 occupation dummies. Standard errors in
parentheses are clustered by individual.
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