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A Model structure

The model economy is composed by the following agents: households, entrepreneurs, a financial
intermediary, a capital producer, intermediate-good producers, a final-good producer, a central
bank, a financial authority, and a government in charge of fiscal policy.

A.1 Households

Each period t, a representative household chooses consumption, ct, hours worked, `ht , and real
deposits/savings, dt, to maximize its discounted lifetime utility subject to a budget constraint. The
household thus solves:

max
ct,`ht ,dt

ET


∞∑
t=T

βt−T

[
(ct − hCt−1)υ

(
1− `ht

)1−υ
]1−σ

− 1

1− σ

 ,

subject to

ct + dt ≤ wt`
h
t +

Rt−1

1 + πt
dt−1 + divt +At −Υt for all t .

In the utility function, β is the subjective discount factor, h ∈ [0, 1] determines the degree of de-
pendence on external habits on aggregate past consumption, Ct−1, σ > 0 is the coefficient of
relative risk aversion, υ ∈ (0, 1) is the labor share parameter that ensures that labor equals 1

3
at

the non-stochastic steady state, and Et is the expectations operator conditional on the information
available at date t. In the budget constraint, the household’s uses of income in the left-hand side
are assigned to buy consumption goods and make bank deposits. The sources of income on the
right-hand-side derive from wage income, where wt is the real wage rate, from the real return on
deposits carried over from the previous period, where 1 + πt = Pt/Pt−1 is the gross inflation rate
from period t−1 to t (Pt is the price of final goods at date t) and Rt−1 is the gross nominal interest
rate paid on one-period nominal deposits, which is also the central bank’s policy instrument, and
from real profits paid by monopolistic firms (divt) plus transfers from entrepreneurs (At) net of
lump-sum transfers from government (Υt).

The first order conditions are

λt = υ (ct − hCt−1)υ−1 (1− `ht )1−υ
[
(ct − hCt−1)υ

(
1− `ht

)1−υ
]−σ

, (1)

λtwt = (1− υ) (ct − hCt−1)υ
(
1− `ht

)−υ [
(ct − hCt−1)υ

(
1− `ht

)1−υ
]−σ

, (2)

λt = βEt

{
λt+1

Rt

1 + πt+1

}
, (3)

where λt is the Lagrange multiplier of the budget constraint.
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A.2 Entrepreneurs

There is a continuum of risk-neutral entrepreneurs, indexed by e ∈ [0, 1]. Each entrepreneur
purchases the stock of capital, ke,t, at a relative price, qt, using her own net worth, ne,t, and one-
period-maturity debt, be,t. The budget constraint in real terms for these capital purchases is:

qtke,t = be,t + ne,t.

At date t + 1, entrepreneurs rent capital services to intermediate goods producers at a real rental
rate, zt+1, and sell the capital stock that remains after production to a capital producer. As in BGG,
the return gained by an individual entrepreneur is affected by an idiosyncratic shock ωe,t+1, with
E(ωe,t+1) = 1 and Var(ωe,t+1) = σ2

ω,t+1. Hence, the real returns of an individual entrepreneur e at
time t+ 1 are ωe,t+1r

k
t+1ke,t, where rkt+1 is the aggregate gross real rate of return per unit of capital,

which is given by

rkt+1 ≡
zt+1 + (1− δ)qt+1

qt
, (4)

where δ is the rate of capital depreciation.

Idiosyncratic productivity ωe,t+1 is an i.i.d. random variable across time and types, with a con-
tinuous and once-differentiable c.d.f., F (ωe,t+1), over a non-negative support. Following Chris-
tiano, Motto and Rostagno (2014), ωe,t+1 features risk shocks, which are represented by the time-
varying standard deviation σω,t+1, with a long-run average σ̄ω. An increase of σω,t+1 worsens
financial conditions because it implies that F (ωe,t+1) widens, so a larger share of entrepreneurs is
likely to default.

Entrepreneurs participate in the labor market by offering one unit of labor each period at the
real wage rate wet ,

1 and face a probability of exiting the economy given by 1− γ. This assumption
prevents entrepreneurs from accumulating enough wealth to be fully self-financed. Aggregate net
worth in period t is thus given by

nt = γvt + wet . (5)

The value of vt in the first term on the right-hand side of (5) is the aggregate equity from capital
holdings of entrepreneurs who survive at date t (defined below). Those who exit at t transfer
their wages to new entrepreneurs entering the economy, consume part of their equity, such that
cet = (1− γ)%vt for % ∈ [0, 1], while the rest, At = (1− γ) (1− %) vt , is transferred to households
as a lump-sum payment.

1This assumption is useful because, as noted by BGG, it is necessary for entrepreneurs to start off with some net
worth in order to allow them to begin operations.
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A.3 The lender and the financial contract

The financial intermediary takes deposits from households, paying on them the risk-free nominal
interest rate Rt. Deposits are used to fund loans to entrepreneurs, so in real terms dt = bt at all
times, where bt =

∫
be,tde is the aggregate amount of real debt at time t. Nominal loan contracts

are made before the entrepreneurs’ returns are realized and these returns are not observable by the
intermediary, but can be verified at a cost. Similar to BGG, the optimal credit contract is modeled
following the costly-state-verification setup of Townsend (1979). Similar to Carrillo and Poilly
(2013) and Christiano et al. (2014), we assume that debt contracts between the intermediary and
entrepreneurs are denominated in nominal terms. This assumption allows the model to feature a
Fisherian debt-deflation channel that is important for the amplification of financial frictions. For
convenience, we express the returns of entrepreneurs and the lender in real terms, though we spec-
ify in the lender’s participation constraint that the relevant opportunity cost of funds is the nominal
interest rate Rt. Finally, we add to this framework a financial subsidy on the lender’s participation
constraint that is used as the instrument of financial policy.

At time t, when the financial contract is signed, the idiosyncratic shock ωe,t+1 is unknown to
both the entrepreneur and the lender. At t + 1, if ωe,t+1 is higher than a threshold value ω̄e,t+1,

the entrepreneur repays her debt plus interests, rLe,t+1be,t, where rLt is the gross real interest rate
that they pay under repayment. In contrast, if ωe,t+1 is lower than ω̄e,t+1, the entrepreneur declares
bankruptcy and gets nothing, while the lender audits the entrepreneur, pays the monitoring cost,
and gets to keep any income generated by the entrepreneur’s investment. The monitoring cost is
a proportion µ ∈ [0, 1] of the entrepreneur’s returns, i.e. µωe,t+1r

k
t+1qtke,t. The threshold value

ω̄e,t+1 satisfies:
ω̄e,t+1r

k
t+1qtke,t = rLe,t+1be,t. (6)

The type sub-index can be dropped without loss of generality to characterize the optimal con-
tract. Here, it is also useful to define the following quantities:

Γ(ω̄) = ω̄

∫ ∞
ω̄

f(ω)dω +

∫ ω̄

0

ωf(ω)dω,

µG(ω̄) = µ

∫ ω̄

0

ωf(ω)dω,

where
∫∞
ω̄
f(ω)dω ≡ Prob(ω > ω̄) denotes the probability that ω is greater than the threshold

value, and
∫ ω̄

0
ωf(ω)dω ≡ E(ω | ω < ω̄) is the partial expectation of ω in the interval [0, ω̄].
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The return earned by one entrepreneur, denoted byRe,t, is 0 if ωt+1 ≤ ω̄t+1, and ωt+1r
k
t+1qtkt−

rLt+1bt if ωt+1 > ω̄t+1. Using equation (6), the expected returns of entrepreneurs can be written as

Re,t = Et

{∫ ∞
ω̄t+1

(ωt+1 − ω̄t+1)rkt+1qtktf(ω)dω

}
= Et

{[∫ ∞
ω̄t+1

ωt+1f(ω)dω − ω̄t+1

∫ ∞
ω̄t+1

f(ω)dω

]
rkt+1qtkt

}
= Et

{
[1− Γ(ω̄t+1)] rkt+1qtkt

}
. (7)

In turn, if ωt+1 ≤ ω̄t+1 the lender receives the gross income made by the bankrupt entrepreneur
and pays monitoring costs, so it gets (1 − µ)ωt+1r

k
t+1qtkt. If ωt+1 > ω̄t+1, the lender receives

ω̄t+1r
k
t+1qtkt irrespective of the realization of ωt+1. Without an intervention by the financial au-

thority, the expected returns of the lender, denoted byRL,t, are thus equal to:

RL,t = Et

{[
(1− µ)

∫ ω̄t+1

0

ωt+1f(ω)dω + ω̄t+1

∫ ∞
ω̄t+1

f(ω)dω

]
rkt+1qtkt

}
= Et

{[ ∫ ω̄t+1

0
ωt+1f(ω)dω + ω̄t+1

∫∞
ω̄t+1

f(ω)dω

−µ
∫ ω̄t+1

0
ωt+1f(ω)dω

]
rkt+1qtkt

}
= Et

{
[Γ(ω̄t+1)− µG(ω̄t+1)] rkt+1qtkt

}
. (8)

To introduce a role for financial policy, we assume that the financial authority announces
that for every loan given by the lender, the government provides a subsidy (a tax if negative)
of τ f,trkt+1qtkt to the financial intermediary. The subsidy (tax) is financed (rebated) as part of
the lump-sum net transfers to households. Since the entrepreneurs’ risk is idiosyncratic, and thus
can be perfectly diversified, participation by the lender requires the return on making loans to be
equal to the risk-free interest rate paid on deposits. The following participation constraint must be
satisfied for every realization of rkt+1:

(1 + τ f,t) [Γ(ω̄t+1)− µG(ω̄t+1)] rkt+1qtkt ≥ rtbt, (9)

where rt ≡ Rt
1+πt+1

is the gross ex-post real interest rate, which reflects the assumption that loans
are embedded in nominal debt contracts.

The optimal contract sets an amount of capital expenditures, qtkt, and a threshold, ω̄t+1, such
that the expected return of entrepreneurs is maximized subject to the lender’s participation con-
straint holding for each value that rkt+1 can take.2 For convenience, and following BGG, we rewrite
the problem in terms of the leverage ratio,

xt ≡
qtkt
nt

, (10)

2The contract has an equivalent representation in terms of a loan amount and an interest rate. The loan size follows
from the fact that net worth is pre-determined when the contract is signed and qtkt = bt + nt, and the interest rate is
given by condition (6).
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and an auxiliary variable,

řt ≡
rkt+1

rt
. (11)

The optimal contract solves the following problem:

max
xt,ω̄t

Et {[1− Γ(ω̄t+1)] řtxt} , subject to

(1 + τ f,t) [Γ(ω̄t+1)− µG(ω̄t+1)] řtxt ≥ xt − 1,

where we have used the fact that bt = qtkt − nt. Notice that the lender’s participation constraint
does not involve any expectation term, since it must hold for every state řt. The Lagrangian of the
optimal contract problem is

Lt = Et {[1− Γ(ω̄t+1)] řtxt}+ Λt {(1 + τ f,t) [Γ(ω̄t+1)− µG(ω̄t+1)] řtxt − xt + 1} ,

where Λ is the Lagrange multiplier. The first-order conditions are:

x : Et {[1− Γ(ω̄t+1)] řt}+ Λt {[Γ(ω̄t+1)− µG(ω̄t+1)] řt (1 + τ f,t)− 1} = 0, (12)

ω̄ : Λt [Γ′(ω̄t+1)− µG′(ω̄t+1)] řt(1 + τ f,t) = Et {Γ′(ω̄t+1)řt} , (13)

Λ : [Γ(ω̄t+1)− µG(ω̄t+1)] řtxt(1 + τ f,t) = xt − 1. (14)

Similar to BGG, the above three equations define the equilibrium in the credit market as fol-
lows:

efp ≡ Et

{
rkt+1

rt

}
=

s (xt)

1 + τ f,t
,

where s(·) ≥ 1 is a function with ∂s(·)
∂xt

> 0 for nt+1 < qtkt. This equation defines the external
finance premium and is the key feature of the accelerator mechanism: entrepreneurs with a high
self-financing ratio (or high net worth) are less likely to default, implying a lower premium on
external funds, which reduces the cost of credit. The financial subsidy modifies the standard setting
by reducing the external finance premium in equilibrium, which helps to close the financial wedge
between the returns of capital and the returns of bonds.

Analytical expressions for the financial contract Christiano et al. (2014) assume that ω dis-
tributes log-normally with E (ω) = 1 and a time-varying variance Var (ω)t = σ2

ω,t.
3 This implies

that an auxiliary variable ζ = ln (ω) has a normal distribution, with mean and variance given by
µζ,t and σ2

ζ,t. The relationships between E (ω), Var (ω)t, µζ,t and σ2
ζ,t are the following:

E (ω) = exp

(
µζ,t +

σ2
ζ,t

2

)
,

Var (ω)t = E (ω)2 [exp
(
σ2
ζ,t

)
− 1
]
.

3As we did before, we are dropping the type sub-index e without loss of generality.
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Solving for µζ,t and σ2
ζ,t, we obtain

µζ,t = ln E (ω)−
σ2
ζ,t

2
= −

σ2
ζ,t

2
, given that E (ω) = 1,

σ2
ζ,t = ln

[
1 +

Var (ω)t
E (ω)2

]
= ln

(
1 + σ2

ω,t

)
≈ σ2

ω,t.

The p.d.f. of the log-normally distributed variable ω is given by

f (ω) =
1

ωσζ,t
√

2π
exp

(
−
(
lnω − µζ,t

)2

2σ2
ζ,t

)
.

while its c.d.f. is

F (ω) =

∫ ω

0

f (k) dk = ΦN

(
lnω − µζ,t

σζ,t

)
,

where ΦN(.) is the c.d.f. of a standard normal distribution.

We need an analytical expression for Γ(ω̄) = ω̄
∫∞
ω̄
f(ω)dω +

∫ ω̄
0
ωf(ω)dω. The first term is

simply given by ω̄ [1− F (ω̄)] , while the second term refers to the partial expectation E(ω | ω <

ω̄). To obtain this term, we can use the partial expectation operator for E(ω | ω ≥ ω̄), which is
given by

E(ω | ω ≥ ω̄) = exp

(
µζ,t +

σ2
ζ,t

2

)
ΦN

(
µζ,t + σ2

ζ,t − ln ω̄

σζ,t

)
,

= ΦN

− ln ω̄ +
σ2
ζ,t

2

σζ,t

 , since µζ = −
σ2
ζ,t

2
,

= ΦN

(
−

ln ω̄ + µζ,t
σζ,t

)
.

Notice that it must be the case that E(ω | ω < ω̄) + E(ω | ω ≥ ω̄) = 1, and so E(ω | ω < ω̄) =

1− ΦN

(
− ln ω̄+µζ,t

σζ,t

)
. Therefore,

Γ(ω̄) = ω̄ [1− F (ω̄)] + 1− ΦN

(
−

ln ω̄ + µζ,t
σζ,t

)
,

= ω̄

[
1− ΦN

(
lnω − µζ,t

σζ,t

)]
+ 1− ΦN

(
−

ln ω̄ + µζ,t
σζ,t

)
,

= ω̄

[
ΦN

(
−

lnω − µζ,t
σζ,t

)]
+ ΦN

(
ln ω̄ + µζ,t

σζ,t

)
,
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since for a standard normally distributed variable z we have that 1−ΦN (z̄) = ΦN (−z̄) ; the latter
states that Prob (z ≥ z̄), which is the term on the left-hand side, is equivalent to Prob (z < −z̄),
which is the term on the right-hand side. Similarly, for µG(ω̄) = µ

∫ ω̄
0
ωf(ω)dω we have that

µG(ω̄) = µ

[
1− ΦN

(
−

ln ω̄ + µζ,t
σζ,t

])
,

= µ

[
ΦN

(
ln ω̄ + µζ,t

σζ,t

)]
.

The derivatives of Γ and G with respect to ω̄ are given by:

∂Γ(ω̄)

∂ω̄
≡ Γ′(ω̄) = 1− F (ω̄) = ΦN

(
−

lnω − µζ,t
σζ,t

)
, and

∂G(ω̄)

∂ω̄
≡ G′ (ω̄) = ω̄f(ω̄).

Finally, we assume that the log of the standard deviation of ωt follows an autoregressive pro-
cess:

ln(σω,t) = (1− ρσω) ln(σ̄ω) + ρσω ln(σω,t−1) + σεεt.

Entrepreneurs’ equity Aggregate equity from capital holdings vt is defined by the realized re-
turns of entrepreneurs at time t:

vt = [1− Γ(ω̄t)] r
k
t qt−1kt−1,

= rkt qt−1kt−1 − Γ(ω̄t)r
k
t qt−1kt−1.

If we use the lender’s participation constraint, the latter becomes:

vt = rkt qt−1kt−1 −
[
µG(ω̄t)r

k
t qt−1kt−1 +

rt−1bt−1

1 + τ f,t

]
,

= rkt qt−1kt−1 [1− µG(ω̄t)]−
rt−1bt−1

1 + τ f,t
.

A.4 Capital producer

Capital producers operate in a perfectly competitive market. At the end of period t − 1, en-
trepreneurs buy the capital stock to be used in period t, i.e. kt−1, from the capital producers. Once
intermediate goods are sold and capital services paid, entrepreneurs sell back to the capital produc-
ers the remaining un-depreciated stock of capital. The representative capital producer then builds
new capital stock, kt, by combining investment goods, it, and un-depreciated capital, (1− δ) kt−1.
The capital producer’s problem is:

max
it

ET

∞∑
t=T

βt−T
λt
λT
{qt [kt − (1− δ)kt−1]− it} , subject to (15)
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kt = (1− δ) kt−1 +

[
1− Φ

(
it
it−1

)]
it, for all t.

Since households own the firms that produce capital, profits are discounted at the rate βt−T λt
λT

for t ≥ T , where λt is the Lagrange multiplier of the household’s budget constraint. The function
Φ
(

it
it−1

)
denotes adjustment costs in capital formation. We consider an investment adjustment

cost, according to which the capital producer uses a combination of old investment goods and new
investment goods to produce new capital units (see Christiano, Eichenbaum and Evans, 2005),
where Φ

(
it
it−1

)
= (η/2) (it/it−1 − 1)2 . The first-order conditions of this problem imply that at

equilibrium the relative price of capital, qt, satisfies the following condition:

it : qt =

[
φ1,t + βEt

{
λt+1qt+1

λtqt
φ2,t

}]−1

where (16)

φ1,t = 1− Φ

(
it
it−1

)
− Φ′

(
it
it−1

)
it
it−1

and φ2,t =

(
it+1

it

)2

Φ′
(
it+1

it

)

A.5 Final goods producers

Final goods, yt, are used for consumption and investment, and produced in a competitive market
by a representative producer who combines a continuum of intermediate goods indexed by j ∈
[0, 1], via the CES production function

yt =

(∫ 1

0

y
θ−1
θ

j,t dj

) θ
θ−1

, (17)

where yj,t denotes the overall demand addressed to the producer of intermediate good j and θ is
the elasticity of substitution among intermediate goods. The representative producer chooses yj,t
to maximize its profits subject to its production technology, i.e.

max
yj,t

Ptyt −
∫ 1

0

Pj,tyj,tdj, subject to (17),

where Pj,t denotes the price of the intermediate good produced by firm j and Pt is the general price
index. Profit maximization yields standard demand functions

yj,t =

(
Pj,t
Pt

)−θ
yt.

In turn, the zero-profit condition implies that the general price index is given by

Pt =

(∫ 1

0

P 1−θ
j,t dj

) 1
1−θ

. (18)
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A.6 Intermediate goods producers

Intermediate goods producers engage in monopolistic competition and produce differentiated
goods using labor and capital services, namely `j,t and kj,t−1, from the producer of good j at date
t, respectively. Total labor input in each firm, `j,t, results from combining household labor, `hj,t,
and entrepreneurial labor, `ej,t ≡ 1, with a Cobb-Douglas function `j,t = [`hj,t]

Ω[`ej,t]
1−Ω. Each

intermediate good is also produced with a Cobb-Douglas technology

yj,t = `1−α
j,t kαj,t−1. (19)

The cost function S (yj,t) associated with production of yj,t follows from a standard cost-
minimization problem:

S (yj,t) = min
`hj,t, zt

{
wt`

h
j,t + ztkj,t−1 + wet , subject to (19)

}
. (20)

The marginal cost is therefore mcj,t ≡ ∂S (·) /∂yj,t, and the labor and capital demands satisfy

wt = mcj,tΩ(1− α)
yj,t
`hj,t

, (21)

wet = mcj,t(1− Ω)(1− α)
yj,t
`ej,t

, (22)

zt = mcj,tα
yj,t
kj,t−1

. (23)

Because all intermediate producers have the same technology, it follows that mcj,t = mct.
Aggregate expressions for the input demand curves are thus the following:

`htwt = mctΩ(1− α)Y supply
t ,

wet = mct(1− Ω)(1− α)Y supply
t ,

kt−1zt = mctαY
supply
t ,

where Y supply
t ≡

∫
`1−α
j,t kαj,t−1dj, `ht ≡

∫
`hj,tdj,

∫
`ej,tdj = 1, and kt ≡

∫
kj,tdj. We discuss further

details about aggregation later in this subsection.

Price setting Intermediate goods producers face a nominal rigidity in their pricing decision in
the form of Calvo (1983)’s staggered pricing mechanism. At each date t, each producer adjusts
its price optimally with a constant probability 1 − ϑ, and with probability ϑ it can only adjust its
price following a passive indexation rule Pj,T = ιt,TPj,t, where t < T is the period of last re-
optimization and ιt,T is a price-indexing rule, defined as ιt,T = (1 + πT−1)ϑp (1 + π)1−ϑp ιt,T−1 for
T > t and ιt,t = 1. The coefficient ϑp ∈ [0, 1] measures the degree of past-inflation indexation of
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intermediate goods prices and π is the inflation rate at steady state. In order to remove the steady-
state distortion caused by intermediate-goods producers’ monopolistic power, we assume that the
government provides a subsidy τ p so that aggregate output reaches the level of the flexible-price
economy at the steady state.

Let P ?
j,t denote the nominal price optimally chosen at time t and yj,t,T denote the demand for

good j in period T ≥ t for a firm that last re-optimized its price in period t. Producer j selects
P ?
j,t to maximize the expected present discounted value of profits (again discounting using the

household’s stochastic discount factor), taking as given the demand curve for its product:

P ?
j,t = arg max

Pj,t


Et

{
∞∑
T=t

(βϑ)T−t λT
λt

[
ιt,TPj,t
PT

yj,t,T − (1− τ p)mcTyj,t,T
]}

subject to yj,t,T =
(
ιt,TPj,t
PT

)−θ
yT

 . (24)

The first order condition of this problem is:

P ?
t =

θ

θ − 1

Et

{
∞∑
T=t

(βϑ)T−t λT
λt

(1− τ p)mcT
(
ιt,T
PT

)−θ
yT

}
Et

{
∞∑
T=t

(βϑ)T−t λT
λt

(
ιt,T
PT

)1−θ
yT

} , or

p?t ≡
P ?
t

Pt
=

θ

θ − 1
(1− τ p)

F1,t

F2,t

,

where

F1,t = Et

{
∞∑
T=t

(βϑ)T−t
λT
λt
mcT

(
Pt
ιt,T
PT

)−θ
yT

}
,

F2,t = Et

{
∞∑
T=t

(βϑ)T−t
λT
λt

(
Pt
ιt,T
PT

)1−θ

yT

}
.

Recursive expressions for the above relations can be stated as:4

F1,t = mctyt + βϑEt

{
λt+1

λt

(
ιt,t+1

1 + πt+1

)−θ
F1,t+1

}
,

F2,t = yt + βϑEt

{
λt+1

λt

(
ιt,t+1

1 + πt+1

)1−θ

F2,t+1

}
.

4To find the recursive expression forF1,t, notice thatF1,t+1 = Et+1

{ ∞∑
T=t+1

(βϑ)
T−t−1 λT

λt+1
mcT

(
Pt+1

ιt+1,T

PT

)−θ
yT

}
,

and since ιt,T =
∏T−t
i=1 (1 + π)

1−γp (1 + πT−i)
ϑp , and ιt+1,T =

∏T−t−1
i=1 (1 + π)

1−ϑp (1 + πT−i)
ϑp , it follows

that ιt,T = ιt+1,T (1 + π)
1−ϑp (1 + πt)

ϑp = ιt+1,T ιt,t+1. A similar reasoning applies for F2,t.
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To support the efficient (flexible price) production level at the steady state, the production
subsidy must be equal to the inverse of the price markup, so 1 − τ p = (θ − 1) /θ < 1. Despite
this adjustment, the sticky prices still create a dynamic distortion in the form of price dispersion
(see Yun, 1996). To see why, we need to equate the aggregate supply of intermediate goods,
defined as Y supply

t ≡
∫ 1

0
`1−α
j,t kαj,t−1dj, to the aggregate demand for intermediate goods, defined as

Y demand
t ≡

∫ 1

0

(
Pj,t
Pt

)−θp
ytdj.

To obtain a tractable expression for Y supply
t , notice that the ratio kj,t−1

`j,t
is the same for all in-

termediate firms. Using the input demand functions (21)-(23), we can rewrite the capital-to-labor
ratio as a function of aggregate wages and the rental rate of capital, i.e.

kj,t−1

`j,t
=

kj,t−1(
`hj,t
)Ω (

`ej,t
)1−Ω

,

=
stα

yj,t
zt[

stΩ(1− α)
yj,t
wt

]Ω [
st(1− Ω)(1− α)

yj,t
wet

]1−Ω
,

=
α

[Ω(1− α)]Ω [(1− Ω)(1− α)]1−Ω

wΩ
t (wet )

1−Ω

zt
.

Therefore, kj,t−1

`j,t
= kt−1

`t
, since it does not depend on j. We can rewrite the aggregate supply of

intermediate goods as follows:

Y supply
t =

∫ 1

0

`1−α
j,t kαj,t−1dj,

=

∫ 1

0

`j,t

(
kj,t−1

`j,t

)α
dj,

=

(
kt−1

`t

)α
`t, where `t =

∫ 1

0

`j,tdj, so

= kαt−1`
1−α
t .

In turn, the aggregate demand for intermediate goods can be stated in terms of price dispersion,
i.e.

Y demand
t =

∫ 1

0

yj,tdj,

=

∫ 1

0

(
Pj,t
Pt

)−θ
ytdj,

= yt∆t,
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where ∆t =
∫ 1

0

(
Pj,t
Pt

)−θ
dj ≥ 1 denotes the efficiency cost of price dispersion.5 Finally, the

equilibrium in the intermediate-goods market yields:

Y demand
t = Y supply

t

yt∆t = kαt−1`
1−α
t .

Recursive expressions for the general price index and price dispersion Using the optimal
prices selected by intermediate producers, the general price index can be written in a recursive
way. First, notice that a proportion 1 − ϑ of intermediate producers has a price level equal to
P ?
t , while a proportion (1 − ϑ)ϑ has a price level equal to ιt−1,tP

?
t−1, and so on. In this case, the

aggregate price level is

P 1−θ
t =

∫ 1

0

P 1−θ
j,t dj,

= (1− ϑ)P ?1−θ
t + (1− ϑ)ϑ

(
ιt−1,tP

?
t−1

)1−θ
+ (1− ϑ)ϑ2

(
ιt−2,tP

?
t−1

)1−θ
+ ...,

which can be rewritten as

P 1−θ
t = (1− ϑ)P ?1−θ

t + ϑ (ιt−1,tPt−1)1−θ .

Dividing the latter by P 1−θ
t yields:

1 = (1− ϑ) (p?t )
1−θ + ϑ

(
ιt−1,t

1 + πt

)1−θ

,

= (1− ϑ) (p?t )
1−θ + ϑ

[
(1 + πt−1)ϑp (1 + π)1−ϑp

1 + πt

]1−θ

, (25)

where π is the central bank’s inflation target.
Following similar steps, the recursive expression for price dispersion is:

∆t =

∫ 1

0

(
Pj,t
Pt

)−θ
dj,

= (1− ϑ) p?−θt + (1− ϑ)ϑ

(
ιt−1,tP

?
t−1

Pt

)−θ
+ (1− ϑ)ϑ2

(
ιt−2,tP

?
t−1

Pt

)−θ
+ ...,

= (1− ϑ) p?1−θt + ϑ

[
(1 + πt−1)ϑp (1 + π)1−ϑp

1 + πt

]−θ
∆t−1.

5Showing that ∆ is bounded below by 1 is easy using Jensen’s inequality. First, let pj =
Pj

P denote the relative price
of firm j, where we have dropped the time subindex for simplicity. Then, notice that the general price index can be
rewritten as p̄ ≡

∫ 1

0
f (pj) dj = 1, where f (pj) = (1/pj)

θ−1
. Next, consider the convex function g (u) = uθ/(θ−1),

with θ/ (θ − 1) ≥ 1 for θ ≥ 1. The convex transformation of f using g is given by h (pj) ≡ g ◦ f = (1/pj)
θ
.

Jensen’s inequality states that the convex transformation of the mean of a function is less or equal than the mean of the
transformed function, i.e. g (p̄) ≤

∫ 1

0
h (pj) dj. Since g (p̄) = 1, it follows that 1 ≤

∫ 1

0
(pj)

−θ
dj.
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A.7 Monetary and financial policies

We assume that the central bank and the financial authority follow log-linear rules to set their
instruments. These rules change for the analysis of Tinbergen’s rule, and for that of strategic
interactions. For Tinbergen’s rule (in Section 4.2 in the paper), we assume that the central bank
follows an augmented Taylor rule for the nominal interest rate in terms of inflation and the external
finance premium, and the financial authority follows a static rule for the financial subsidy:6

Rt = R×
(

1 + πt
1 + π

)aπ (Et

{
rkt+1/rt

}
rk/r

)−ǎrr
, (26)

τ f,t = τ f , (27)

where aπ > 1 is the elasticity of Rt with respect to inflation deviations, ǎrr > 0 is the elasticity of
Rt with respect to deviations in the external finance premium, R is the steady-state gross nominal
interest rate, and τ f is the steady-state level of the financial subsidy. In the monetary rule, ǎrr
enters with a negative sign because an adverse risk shock pushes up the credit spread and causes
a decline in investment, to which the monetary authority responds by lowering its policy interest
rate to offset the investment drop. In turn, the τ f in the financial rule is set to close the financial
wedge at the non-stochastic steady state (which implies that rk = r).

In the baseline regime with dual rules, used in the analysis of strategic interactions in Section
4.3 in the paper, the central bank follows a Taylor rule in terms only of inflation, and the financial
authority follows a dynamic rule in terms of the external finance premium:

Rt = R×
(

1 + πt
1 + π

)aπ
, (28)

τ f,t = τ f ×

(
Et

{
rkt+1/rt

}
rk/r

)arr

, (29)

where arr > 0 is the elasticity of τ f,t with respect to deviations in the external finance premium,
and τ f is still set to close the financial wedge at the non-stochastic steady state.

A.8 Flow conditions and resource constraint

The resource constraint is determined by the combination of all the flow conditions of the various
agents in the model (budget constraints, net worth, equity of entrepreneurs, firm dividends, etc.).
We list below these conditions.

6We abstract from a term related to the output gap because our quantitative findings show that in the model we
proposed, driven only by risk shocks, it is optimal for the monetary rule not to respond to the output gap (see Section
4.2 in the paper). Nevertheless, in Section B.4 in this Appendix, we present the results of including the output gap as
an argument in the Taylor rule.
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Government budget constraint The government’s budget constraint is:

Υt = g + τ pst

∫ 1

0

yj,tdj + τ f,t [Γ(ω̄t)− µG(ω̄t)] r
k
t qt−1kt−1. (30)

Government expenditures, g, are kept constant. The government runs a balanced budget, so
that the sum of government expenditures, plus subsidies to monopolist producers, plus financial
subsidies is paid for by levying lump-sum taxes in the amount Υt on households.

Households Aggregating across households, and assuming they use all of their revenues yields

ct + dt = wt`
h
t + rt−1dt−1 −Υt +At + divt.

An important assumption of the model is that households place their deposits with the intermediary
and nowhere else.

Entrepreneurs. Their aggregate budget constraint, net worth, and equity are given by:

nt + bt = qtkt,

nt = γvt + wet ,

vt = [1− Γ(ω̄t)] r
k
t qt−1kt−1.

Entrepreneurs’ aggregate consumption is cet = (1 − γ)%vt, while their transfers to households
are given by At = (1− γ)(1− %)vt.

The lender Households deposits fund loans to entrepreneurs, so dt = bt at all times. We assume
the lender makes no profits from its activity. The lender’s participation constraint and its balance
sheet are given by:

(1 + τ f,t) [Γ(ω̄t)− µG(ω̄t)] r
k
t qt−1kt−1 = rt−1dt−1,

dt + (1 + τ f,t) [Γ(ω̄t)− µG(ω̄t)] r
k
t qt−1kt−1 = rt−1dt−1 + bt,

The left-hand side of the balance sheet shows inflows at time t received by the lender (deposits and
realized loan returns), while the right-hand side displays outflows (principal and interest from t−1

deposits, and new loans). The latter implies again that dt = bt.

Final-good producer Its zero profit condition implies that Ptyt =
∫
Pj,tyj,tdj.
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Intermediate-goods producers Aggregate dividends are given by:

divt =

∫ [
Pj,t
Pt
yj,t − (1− τ p)mctyj,t

]
dj, or

=

∫
Pj,t
Pt
yj,tdj − (1− τ p)mct

∫
yj,tdj.

The aggregate cost function, which is linear in output, can be stated in terms of aggregate input
quantities:

mct

∫
yj,tdj = wt`

h
t + ztkt−1 + wet .

Capital producer Its zero profit condition implies that qt [kt − (1− δ)kt−1] = it.

Adding all up We start from households’ budget constraint and add entrepreneurs consumption
and use the definition for At:

ct + dt + cet = wt`
h
t + rt−1dt−1 −Υt + (1− γ)(1− %)vt + divt + (1− γ)%vt, or

ct + dt + cet = wt`
h
t + rt−1dt−1 −Υt + (1− γ)vt + divt.

Adding net worth yields:

ct + dt + cet + nt = wt`
h
t + wet + rt−1dt−1 −Υt + (1− γ)vt + γvt + divt, or

ct + dt + cet + nt = wt`
h
t + wet + rt−1dt−1 −Υt + vt + divt.

Using the definitions of nt and vt leads to:

ct + dt + cet + qtkt − bt = wt`
h
t + wet + rt−1dt−1 −Υt + [1− Γ(ω̄t)] r

k
t qt−1kt−1 + divt.

Using the balance sheet of the intermediary (dt = bt), yields:

ct + cet + qtkt = wt`
h
t + wet + rt−1dt−1 −Υt + [1− Γ(ω̄t)] r

k
t qt−1kt−1 + divt,

and using the intermediary’s participation constraint, we obtain:

ct + cet + qtkt =


wt`

h
t + wet

+ (1 + τ f,t−1) [Γ(ω̄t)− µG(ω̄t)] r
k
t qt−1kt−1

−Υt + [1− Γ(ω̄t)] r
k
t qt−1kt−1 + divt

 , or

{
ct + cet +

(
qtkt − rkt qt−1kt−1

)
+µG(ω̄t)r

k
t qt−1kt−1

}
=

{
wt`

h
t + wet + divt

−Υt + τ f,t−1 [Γ(ω̄t)− µG(ω̄t)] r
k
t qt−1kt−1

}
.

Using the definition for the rate of capital returns rkt , and the zero-profit condition of the capital
producer yields:
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{
ct + cet + [qtkt − ztkt−1 − (1− δ)qtkt−1]

+µG(ω̄t)r
k
t qt−1kt−1

}
=

{
wt`

h
t + wet + divt −Υt

+τ f,t−1 [Γ(ω̄t)− µG(ω̄t)] r
k
t qt−1kt−1

}
, or

ct + cet + it + µG(ω̄t)r
k
t qt−1kt−1 =

{
wt`

h
t + wet + ztkt−1 + divt −Υt

+τ f,t−1 [Γ(ω̄t)− µG(ω̄t)] r
k
t qt−1kt−1

}
.

Using the definition of dividends, the expression for the aggregate cost function, and the zero-profit
condition of the final-good producer yields:

ct + cet + it + µG(ω̄t)r
k
t qt−1kt−1 =


wt`

h
t + wet + ztkt−1 −Υt

+
∫ Pj,t

Pt
yj,tdj − st

∫
yj,tdj + τ pst

∫
yj,tdj

+τ f,t−1 [Γ(ω̄t)− µG(ω̄t)] r
k
t qt−1kt−1

 , or

ct + cet + it + µG(ω̄t)r
k
t qt−1kt−1 = yt + τ pst

∫
yj,tdj −Υt + τ f,t−1 [Γ(ω̄t)− µG(ω̄t)] r

k
t qt−1kt−1.

And finally, adding the government budget constraint, we get the aggregate resource constraint of
the economy:{

ct + cet + it + µG(ω̄t)r
k
t qt−1kt−1

+g + τ pst
∫ 1

0
yj,tdj

}
=


yt + τ pst

∫
yj,tdj −Υt

+τ f,t−1 [Γ(ω̄t)− µG(ω̄t)] r
k
t qt−1kt−1

Υt − τ f,t−1 [Γ(ω̄t)− µG(ω̄t)] r
k
t qt−1kt−1

 , or

ct + cet + it + g + µG(ω̄t)r
k
t qt−1kt−1 = yt.

�

A.9 Setup for studying strategic interactions

To conduct the quantitative analysis of strategic interaction, we construct reaction functions that
return the payoff-maximizing choice of one authority’s policy rule elasticity for a given value of the
other authority’s rule elasticity.7 Denote the reaction function of the monetary authority a∗π(arr),
and the reaction function of the financial authority a∗rr(aπ), both defined over discrete grids of
admissible values of elasticities, such that Aπ =

{
a1
π, a

2
π, ..., a

M
π

}
and Arr =

{
a1
rr, a

2
rr, ..., a

N
rr

}
with M and N elements respectively. Hence, the strategy space is defined by the M × N pairs
of rule elasticities. Also, denote as %(arr, aπ) the vector of equilibrium allocations and prices of
the model for a given set of parameter values (e.g. the baseline calibration) and a particular pair of
policy rule elasticities (arr, aπ). The reaction functions satisfy the following definitions:

a∗π(arr) =

{
(a∗π, a

s
rr) : a∗π = arg max

aπ∈Aπ
E {LCB} , s.t. %(a∗π, arr) and arr = asrr

}
asrr∈Arr

,

a∗rr(aπ) =

{
(asπ, a

∗
rr) : a∗rr = arg max

arr∈Arr
E {LF} , s.t. %(aπ, a

∗
rr) and aπ = asπ

}
asπ∈Aπ

.

7In doing this, we are implicitly assuming commitment to the log-linear policy rules and abstract from studying
strategic interaction under discretion (see also De Paoli and Paustian, 2017; Bodenstein, Guerrieri and LaBriola, 2014).
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In these definitions, the authorities maximize the unconditional expectation of their payoff, which
corresponds to its mean in the stochastic steady state.

A Nash equilibrium of a non-cooperative game between the policy authorities is defined by
the intersection of the two reaction curves: N =

{(
aNπ , a

N
rr

)
: aNπ = a∗π(aNrr), a

N
rr = a∗rr(a

N
π )
}
.

A Cooperative equilibrium is defined by a pair of policy rule elasticities that maximize a linear
combination of LCB and LF , with a weight of ϕ on the monetary authority’s payoff, subject to
the constraints that the Cooperative equilibrium must be a Pareto improvement over the Nash
equilibrium and the arguments of the loss functions must correspond to the equilibrium allocations
and prices for the corresponding policy rule elasticities:

C(ϕ) =


(
aCπ , a

C
rr

)
∈ arg maxasπ ,as′rr ∈Aπ×Arr Lcoop = E {ϕLCB + (1− ϕ)LF}

s.t. %(asπ, a
s′
rr), E[LCB] ≥ EN [LCB], & E[LF ] ≥ EN [LF ]

 ,

where EN [LCB] and EN [LF ] are the payoffs of the central bank and the financial authority in the
Nash equilibrium. There can be more than one Cooperative equilibrium depending on the value
of ϕ (i.e. the set of Cooperative equilibria corresponds to the core of the contract curve of the
two authorities). For simplicity, we focus on two cases, the symmetric Cooperative equilibrium
(ϕ = 1/2) and one with the value of ϕ such that the Cooperative equilibrium yields the highest
level of social welfare, denoted ϕ∗. We also compute Stackelberg equilibrium solutions with either
the monetary or the financial authority as leaders. When the monetary (financial) authority is the
leader, we compute the value of aπ (arr) that maximizes LCB (LF ) along the financial (monetary)
authority’s reaction function.

B Extensions

In this section, we explore some additional exercises not included in the paper, such as common
payoffs across authorities, alternative calibrations, other macroeconomic shocks, and the imple-
mentation of other targeting objectives in the financial policy rule.

B.1 Common payoffs

In Figure 6 in the paper, we present the payoffs for social welfare and the symmetric cooperation
(panels (a) and (d), respectively); these correspond to the common payoffs cases. In Figure 1 in
this Appendix, we show the reaction curves of each of the authorities under these two scenarios.
As in the different variance payoff case, presented in the paper, the reaction functions are again
nonlinear. With welfare as common payoff the Cooperative, Nash, and two Stackelberg equilibria
coincide. There is no coordination failure and there are no gains from policy coordination. This is
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a straightforward result since the spillovers of the policy rule elasticities chosen by each authority
are relevant only through their effect on the arguments of the payoff function of the other authority.
Hence, the same result holds for any other specification of a common payoff function. What
changes, however, is that with social welfare as the payoff, the Nash and Cooperative equilibria
also match the best policy outcome that maximizes social welfare (see left-hand-side picture in
Figure 1), while with other common payoff functions the Nash and Cooperative equilibria are still
the same but do not match the best policy outcome. The latter is shown in the right-hand-side
picture in Figure 1, where the common payoff function is L̃CB = L̃F = −[Var (πt) + Var (Rt) +

Var
(
rkt /rt

)
+ Var (τ f,t)].

Figure 1: Reaction curves and equilibrium outcomes with common payoffs
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It is worth noting that the above result implies that assuming a common payoff is equivalent
to assuming cooperation in the setup we are studying. Hence, the notion that coordination failure
could be removed with the seemingly simple step of giving the two authorities the same payoff is
in fact as complex as asking them to coordinate fully.

The result that Nash and Cooperative equilibria are the same with common payoff functions
is not new in the monetary policy literature. For example, Dixit and Lambertini (2001) found in
a monetary-union model that, when all countries and the central bank have the same objective,
the ideal outcomes can be achieved in cooperative and non-cooperative games. Blake and Kir-
sanova (2011) show in a model with a monetary-fiscal interaction that the Nash equilibrium with
a common payoff coincides with the Cooperative equilibrium, because the optimality conditions
of the two problems are identical. Bodenstein et al. (2014) show a similar result in a model with
monetary-financial interactions with open-loop Nash strategies.
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B.2 Optimal weights on variance payoffs under coordination

In the strategic interaction analysis in Section 4.3 in the paper, we assumed that under co-
ordination, the payoffs of both monetary and financial authorities have an equal weight, so the
coordinated payoff was Lcoop = 1

2
(LCB + LF ). However, as shown above, a more general for-

mulation of the payoff function under coordination is a weighed sum of the payoffs of the two
authorities, Lcoop = ϕLCB + (1 − ϕ)LF , where ϕ ∈ [0, 1] is the weight assigned to the monetary
authority, which must be in the (0, 1) interval and must result in a Pareto improvement (i.e. both
the monetary and the financial authority must be as well off as in Nash equilibrium). In the exer-
cise below, we search for the value of ϕ that minimizes the distance between the welfare achieved
under the coordinated game and the welfare achieved under the scenario we labeled best policy in
the paper (in which a social planner chooses the policy-rule parameters to maximize welfare).

Formally, the optimal weight ϕ∗ solves the following problem:

ϕ∗ ∈


arg min

ϕ

[
W (a∗π, a

∗
rr)−W

(
aCπ (ϕ), aCrr(ϕ)

) ]2

s.t. %(asπ, a
s′
rr), E[LCB] ≥ EN [LCB] & E[LF ] ≥ EN [LF ]

 ,

where (a∗π, a
∗
rr) denote the first-best elasticities (i.e. those chosen by the social planner when max-

imizing welfare), and
(
aCπ , a

C
rr

)
are the elasticities needed for a cooperative payoff that minimizes

the difference with respect to the best policy payoff.

Figure 2: Reaction curves and equilibrium outcomes with the optimal weight ϕ∗
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Figure 2 presents the results for the cooperative equilibrium with the optimal weight of ϕ∗ =

0.23 obtained given the baseline calibration assumed in the paper. As intended, the equilibrium
under cooperation with the optimal ϕ∗ (blue diamond) is very close to the first-best outcome (star).
Also, the best-response schedules for the common variance payoff case change slightly with the
optimal ϕ∗ with respect to the case in which ϕ = 0.5.

B.3 Alternative calibration for nominal rigidities, financial frictions, and
profits dispersion

We now present the results of re-evaluating the quantitative implications of Tinbergen’s rule and
strategic interaction under four alternative parameterizations: (a) “stickier” prices, so ϑ = 0.85

v. the baseline value of 0.74, (b) larger monitoring costs, so µ = 0.30 v. the baseline value of
0.12, (c) riskier entrepreneurs, so σ̄ω = 0.40 v. the baseline value of 0.27, and (d) zero steady-state
financial subsidy, so τ f = 0 v. the baseline value of 0.96%. For each alternative calibration, we
re-compute the optimized policy rule elasticities that minimize welfare costs under the STR, ATR,
and DRR regimes, and solve for the cooperative and non-cooperative equilibria with the different
variance payoffs.

Figure 3 shows that Tinbergen’s rule remains relevant in all four cases (equivalent to Figure 3
in the paper). The DRR regime delivers welfare gains of roughly 1% and 2% relative to the ATR
and STR regimes, respectively. Also, the STR regime is tight money and tight credit with respect
to both the ATR and DRR regimes. In turn, the ATR regime features slightly-loose money and
tight credit with respect to the best policy outcome (DRR). Overall, the results are quite similar to
Figure 3 in the main paper.

In addition, Figure 4 shows that in all cases, strategic interaction’s results echo the baseline
findings, with some variations. In panel (a) of Figure 4, the best response of the monetary rule
elasticity features larger complementarities with the financial rule elasticity. This is the case be-
cause a higher degree of nominal rigidities implies a more aggressive response of the central bank
for low values of arr, i.e. when the financial authority adopts a relatively passive rule. Thus, the
monetary authority finds optimal to increase aπ more aggressively than in the baseline as arr de-
creases. In cases (b) and (c), making financial frictions more sever by either setting µ = 0.30 or
σ̄ω = 0.40, increases the variability of the external finance premium and inflation, as Table 1 be-
low shows. The latter implies that the policy rules have to respond to potentially larger deviations
from their targets. The second row in Table 1 and panel (b) in Figure 4 show that when µ = 0.30,
efp becomes much more volatile than π, and thus we find a shift towards easier credit policy by
the financial authority in comparison to the baseline, while monetary policy increases its strategic
complementarity with financial policy. As a result, the policy regime is loose-money, loose-credit
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Figure 3: Baseline v. alternative calibrations under alternative policy regimes
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Note: Asterisks show the lowest welfare cost on each curve. The y axis denotes ce cost; the left-hand-side (right-
hand-side) plots show how ce varies as aπ (arr or ǎrr) changes while arr or ǎrr (aπ) is kept fixed. The x axis denotes
different levels of the inflation coefficient, aπ , in the left-hand-side panels and different credit spread coefficients, arr
or ǎrr, in the right-hand-side panels.
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in comparison to the baseline. In the case with σ̄ω = 0.40, the variances of efp and π increase in
a similar manner, and so we find just a slight shift in panel (c) of Figure 4 towards a regime of
tighter-money, tighter-credit with respect to the baseline, with only moderate displacements in the
reaction curves of the two policymakers.

Figure 4: Baseline v. alternative calibrations with different payoffs
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In case (d), which removes the steady-state financial subsidy, the Nash equilibrium yields a
slightly tighter financial policy rule (lower arr) and a much tighter monetary policy rule (higher
aπ) than in the baseline Nash equilibrium and in the cooperative and best-policy equilibria with
τ f = 0. The curvature of the reaction curves is similar to that in the baseline case, but the monetary
(financial) authority’s reaction curve shifts rightward (downward). The monetary authority sets aπ
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Table 1: Standard deviation of inflation and the external finance premium
under larger financial frictions

(in percentage %)

Case σπ σefp

Baseline 0.36 0.33
Larger monitoring costs 0.43 0.50
Riskier entrepreneurs 0.44 0.41

Note: For this comparison, we used the DRR regime with parameter
aπ = 1.27 and arr = 2.43, i.e. the optimum values for the baseline
case in the paper.

higher when arr = 0 than in the baseline because when both arr = 0 and τ f = 0, effectively there
is no financial policy. Since in the neighborhood of arr = 0 the two policy rule elasticities are
strategic complements, when the financial policy is completely removed the central bank cannot
benefit from the effect of the financial policy response to risk shocks on inflation, and thus it finds
optimal to choose a higher Taylor rule elasticity. The reaction curve of the financial authority shifts
because of an analogous effect.

B.4 Monetary policy rule with an output gap argument

In the main text, we assume that the monetary policy rule does not include an output gap ar-
gument. In this subsection, we provide intuition for our assumption. In particular, we show that
for the model we consider, the optimal elasticity for the output gap in the Taylor rule is equal to
zero. That is, households’ welfare is maximized in the model if the central bank does not answer
to the output gap after a risk shock. This is the case because if the central bank does adjust the
nominal interest rate to changes in the output gap after a risk shock, then the volatility of inflation
increases. However, if the objective function of the central bank differs from households’ welfare
and is equal to a loss function that puts weight on minimizing the variance of the output gap, then
the central bank would like to respond as well to output-gap fluctuations after a risk shock, which
would result in a reduction in welfare.

For this exercise, we assume that the monetary policy rule takes the form

Rt = R

(
1 + πt
1 + π

)aπ (Et

{
rkt+1/rt

}
rk/r

)−ǎrr (
ỹt
ỹ

)ay
, (31)

where ỹt is an output gap measure that can take one of two following specifications:

1. Full y, in which ỹt is equal to the economy’s resource constraint, i.e. ỹt = ct + it + cet + g +

µG (ω̄t) r
k
t qt−1kt−1, and
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2. Absortion, in which ỹt is similar to the previous case but it excludes monitoring costs,
i.e. ỹt = ct + it + cet + g.

In turn, the financial policy rule takes the same form as in the paper, so

τ f,t = τ f

(
Et

{
rkt+1/rt

}
rk/r

)arr

.

To find the welfare-maximizing elasticities, we perform a two-dimensional search over aπ and
ay for the STR regime while keeping ǎrr = arr = 0, and a three-dimensional search over aπ, ǎrr,
and ay for the ATR regime (with arr = 0), and over aπ, arr, and ay for the DRR regime (with
ǎrr = 0). The lowest welfare costs are always obtained when ay = 0. To illustrate this finding, we
compute the cemeasure and the standard deviation of output σy for different values of ay, while we
keep the rest of parameters equal to their optimal levels as shown in Table 2 below. The ce informs
us about the value of ay that minimizes welfare costs given the value of all other parameters in the
model, while σy allow us to compute the value of ay that minimizes the variance of each of the two
alternative measures of the output gap.

Table 2: Optimal parameter combinations for the policy-rule regimes

Regime aπ arr ǎrr ay

Simple Taylor rule (STR) 1.75 0 0 0
Augmented Taylor rule (ATR) 1.27 0 0.36 0
Dual rules (DRR) 1.27 2.43 0 0

The results are presented in Figures 5 to 7. Figure 5 shows that independently of the measure
of output gap considered, welfare costs are minimized when the output-gap elasticity is equal to
0. This result is in line with Schmitt-Grohé and Uribe (2007), who find that in a model with sticky
prices, optimal monetary policy features a muted response to output, and that interest rate rules with
a positive ay may lead to significant welfare losses. The reason of why this is the case is presented
in Figure 6, where we compare the impulse responses of selected variables to a risk shock under
the baseline DRR regime, where ay = 0, and an alternative DRR regime, where ay = 0.5. As
shown in the figure, although the responses of consumption and investment are less negative in the
alternative regime, the response of inflation increases substantially. Since price dispersion is an
important source of welfare costs to households, the aim of optimal monetary policy is precisely
to reduce the fluctuations of inflation. Thus, the central bank finds optimal not to answer to the
output gap in the face of risk shocks, given the structure of the model economy.
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Figure 5: Welfare costs as a function of the output-gap elasticity
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Figure 6: Impulse Response Functions to Risk Shocks for different output gap measures
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Alternatively, Figures 6 and 7 also show that if the aim of the central bank is to minimize output
volatility instead of maximizing welfare, then there a incentive to adjust the nominal interest rate
in response to changes fluctuations of the output gap. Figure 7 shows that the standard deviation of
output can be minimize if ay > 0, at least for the ATR and DRR regimes. Nonetheless, as shown
above, an ay > 0 is welfare detrimental in the of risk shocks.

Figure 7: Standard deviation of output as a function of the output-gap elasticity
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B.5 Sensitivity of welfare costs to habit formation, monitoring costs, and
nominal rigidities

In this section, we analyze the sensitivity of welfare costs to three distortions featuring in the
model: habit formation, financial frictions, and nominal rigidities. As in the paper, we measure
welfare costs with compensating variations in consumption between the deterministic and stochas-
tic steady states, i.e. ce as computed in equation (2.22) in the paper. In these exercises, we let
vary the habit parameter h in the interval [0, 0.95], the monitoring cost proportion µ in the interval
[0, 0.50], and the Calvo parameter ϑ in the interval [0, 0.90]. In each case, we change one parame-
ter at a time, while we keep the remaining parameters at the benchmark calibration (i.e. h = 0.85,
µ = 0.12, and ϑ = 0.85).

We perform the sensitivity analysis for the three regimes studied in the paper: DRR, ATR, STR.
In all of these regimes, the economy faces a risk shock of persistence ρσω = 0.97 and standard de-
viation σε = 0.1, just as in the paper.
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Figure 8: Sensitivity of welfare costs for different parameter values

0 0.2 0.4 0.6 0.8 1

h

0

2

4

6

8

10

c
e
%

Habit formation

DRR

ATR

STR

0 0.1 0.2 0.3 0.4 0.5

µ

0

2

4

6

8

10

c
e
%

Monitoring costs

0 0.2 0.4 0.6 0.8

ϑ

0

2

4

6

8

10

c
e
%

Nominal rigidities

0 0.2 0.4 0.6 0.8 1

h

0

1

2

3

4

5

σ
c
,
in

%

0 0.1 0.2 0.3 0.4 0.5

µ

0

1

2

3

4

5

σ
c
,
in

%

0 0.2 0.4 0.6 0.8

ϑ

0

1

2

3

4

5

σ
c
,
in

%

The first row of Figure 8 shows ce as a function of h, µ, and ϑ. The second row plots the stan-
dard deviation of consumption, σc, in the ergodic distribution of the stochastic steady state also as
a function of the aforementioned parameters. The vertical lines in the figure mark the baseline cal-
ibration of the parameters. The figure shows that ce is highly non linear to changes in all the three
distortions, but is more sensitive to changes in habit formation than to changes in monitoring costs
or nominal rigidities. Campbell (1999) provides a rationale of why welfare costs are so sensitive
to habit formation. Accordingly, when a shock hits the economy, agents may adjust in the short
term through changes in prices or quantities, including consumption. But the latter is costly to
households because their habits stop them from adjusting their consuming patterns quickly. As a
result, the propagation of the shock lingers for several periods. When habit formation increases, it
is even more difficult for households to adjust to shocks because consumption moves even slower.
A symptom of the latter is that consumption volatility decreases with h (see the second row of
Figure 8), but the latter relates with higher welfare costs because deviations from the long-term
equilibrium take more time to dilute.
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Figure 8 also suggests that welfare costs increase sharply when moral hazard pops up in the
economy. Indeed, when µ equals zero (i.e. when the auditing technology is costless), the welfare
costs of risk shocks are also zero, since there are no agency costs generated by moral hazard, no
external finance premium, and the allocation of resources is efficient. But as soon as the auditing
technology consumes resources, moral hazard appears and generates a positive external finance
premium and inefficient fluctuations in output and consumption. Notice, however, that inefficient
fluctuations are lower in the DRR than in the ATR and STR regimes, since both consumption
volatility and welfare costs are lower in the first regime than in the last two. In the paper, we ar-
gue that the DRR helps agents to cope better with the incomplete capital market that results from
positive agency costs. In contrast, in the ATR and STR regimes monetary policy alone struggles
to stabilize inflation and moderate the inefficiencies associated with the incomplete capital market.
Also, notice that in all three regimes welfare costs reach a plateau for different values of µ. In the
DRR, ce reach its maximum when µ = 0.05, in the ATR regime, it does when µ = 0.13, and in
the STR regime, when µ = 0.17. In turn, consumption volatility stabilizes in the DRR regime, but
it steadily grows with µ in the other two regimes.

Finally, Figure 8 reveals that both welfare costs and consumption volatility are lower in the
DRR than in the other two regimes for any degree of nominal rigidities. Also, with the exception
of the STR regime, ce and σc achieve their maximum values when prices are less likely to adjust
(i.e. when ϑ is very high). For the STR regime, welfare costs are quite sensitive to changes in the
frequency of price adjustments, and notably ce tends to be higher when ϑ is lower. A potential
explanation for this puzzling result is that a more frequent adjustment in prices implies larger in-
flation fluctuations, which in turn brings more volatility to the monetary policy instrument, R, and
the external finance premium efp. The latter is plausible because efp ≈ rk− (R− πe), where rk is
the real return of capital, R is the monetary policy rate, and πe is expected inflation (see equation
11 in page 6 of this Appendix, which describes this relationship in gross rates). Figure 9 plots the
volatilities of inflation and the external finance premium as a function of the Calvo parameter ϑ
for each of the three regimes studied. The figure confirms that a lower ϑ increases both inflation
volatility (the plain line) and the external finance premium volatility (the dashed line) in the STR
regime. Interestingly, the ATR regime displays the central bank’s trade-off between stabilizing in-
flation and the external finance premium as a function of ϑ. And finally, in the DRR regime, where
the financial authority addresses financial stability, we observe that the volatility of the external
finance premium is completely decoupled from that of inflation.
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Figure 9: Inflation and external finance premium volatilities in the three regimes
as a function of nominal rigidities
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B.5.1 Decomposition of welfare costs into mean and standard deviation effects

Table 3 presents a decomposition of ce into a mean effect and a standard deviation effect for the
three regimes and different intervals of parameters values. It also shows the ce mean effect that
is due to the presence of agency costs, i.e. µ > 0. The table presents average values of ce for the
parameter intervals displayed in the first column. As a reminder, recall that ce solves the following
equation

Wsto =
U
(
(1− ce)cd, `hd , (1− ce)Cd

)
1− β

,

where the subindex d denotes the deterministic equilibrium of a variable, and Wsto is the ergodic
mean of welfare at the stochastic steady state. This level of welfare varies with the regime (i.e. with
the triplet (aπ, arr, ǎrr) configuration) and other parameter values. Variations in welfare are ex-
plained by changes in the ergodic mean and standard deviation of consumption and labor at the
stochastic steady state. To visualize the latter, Figure 10 compares the histograms of the ergodic
distributions of consumption at the stochastic steady state for each regime. The asterisks in the fig-
ure represent the mean of consumption in each regime (blue for the DRR, red for ATR, and black
for STR). Welfare is lower in the STR regime not only because its consumption mean is lowest,
but also because consumption is more volatile in that regime.

Given the particular utility function we assume in the paper and our calibrated inter-temporal
elasticity of substitution σ = 1, ce is computed as follows:

ce = 1− exp

{
(1− β)

Wsto −Wd

υ

}
,
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Figure 10: Histograms of the ergodic distribution of consumption at the stochastic steady state
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Note: To obtain these distributions, we solve the model up to a second-order approximation, and then we simulate
the equilibrium aggregate dynamics for 50,000 periods assuming that the only stochastic innovations are risk shocks.
Each histogram depicts a different regime configuration, corresponding to DRR, ATR, and STR. The asterisks in the
x− axis indicate the mean of each distribution, where the colors match the regime, blue for DRR, red for ATR, and
black for STR.

Table 3: Decomposition of ce into mean and SD effects

DDR ATR STR

ce
Mean SD ce

Mean SD ce
Mean SD

Total µ Total µ Total µ

Habit formation
h < 0.31 1.54 1.52 1.26 0.01 3.34 3.28 0.92 0.06 3.96 3.88 0.67 0.09
h ∈ [0.31,0.63] 1.86 1.84 1.26 0.03 3.62 3.53 0.91 0.09 4.31 4.17 0.67 0.14
h > 0.63 3.78 3.69 1.24 0.10 5.25 4.99 0.89 0.28 6.48 6.07 0.67 0.44

Monitoring costs
µ < 0.16 3.67 3.60 1.54 0.08 4.69 4.50 1.27 0.20 5.72 5.42 1.10 0.32
µ ∈ [0.16,0.32] 3.31 3.20 0.92 0.12 5.16 4.86 0.56 0.32 6.48 5.93 0.33 0.59
µ > 0.32 2.86 2.73 0.74 0.13 5.04 4.71 0.38 0.34 6.29 5.65 0.18 0.68

Nominal rigidities
ϑ < 0.29 4.08 4.01 1.18 0.07 5.31 4.92 0.74 0.41 7.95 7.41 0.52 0.58
ϑ ∈ [0.29,0.57] 4.03 3.95 1.20 0.08 5.43 5.09 0.78 0.36 7.55 7.05 0.56 0.54
ϑ > 0.57 3.92 3.82 1.24 0.10 5.32 5.04 0.89 0.30 6.74 6.30 0.67 0.47

Note: ce corresponds to the consumption equivalent welfare measure defined in equation (2.22) in the paper. A
given ce means that the corresponding regime has a welfare cost equivalent to ce percent in terms of a compensating
consumption variation that would be needed for an agent living in said regime to be as well off as under a scenario
without risk shocks. All the numbers shown in the table are averages for the intervals shown in the first column.
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where Wd = U
(
cd, `

h
d , Cd

)
/(1 − β) is welfare at the deterministic equilibrium. The mean effect

of welfare costs, cemean, is computed as:

cemean = 1− exp

{
(1− β)

Wmean −Wd

υ

}
,

where Wmean = U
(
csto, `

h
sto, Csto

)
/(1 − β), and the subindex sto denotes the ergodic mean of a

variable at the stochastic steady state. The measure cemean effectively removes the contribution of
volatility from the total welfare cost ce. To compute this contribution, that we label cesd, we solve
the following expression:

cesd = 1− exp

{
(1− β)

Wsto −Wmean

υ

}
.

The difference Wsto −Wmean measures how much welfare decreases due to the volatility of con-
sumption and labor, once we normalize by the stochastic mean of these variables. Finally, we
approximate the welfare costs caused by the presence of agency costs and monitoring activity,
cemean,µ, as follows:

cemean,µ = cemean − cemean,without µ,

where cemean,without µ is computed similar to cemean but we add to consumption the resources spent
in monitoring.

In Table 3, it can be verified that ce ≈ cemean + cesd. This table offers also the following
insights. First, most of ce is explained by the mean effect. Second, an important part of these costs
are due to monitoring activity. Third, the standard deviation effect is of the same scale of magnitude
than the costs of business cycle of Lucas (1987), i.e. these costs translate into a permanent decrease
of around 0.01% to 0.68% of deterministic consumption. And fourth, as ce rises, the contribution
of cesd increases relative to that of cemean.

B.6 Other shocks

We now analyze the plausibility of strategic interactions within the baseline model for three
different macro shocks separately: a government spending shock, a temporary productivity shock,
and a cost-push or inflation-markup shock. These shocks have been widely studied in the literature.
We argue that, conditional on our model and the shocks mentioned, there is a scope for strategic
interactions only for the cost-push shock.

To introduce these shocks, we assume first that government spending, gt, is no longer constant,
but fluctuates around a fixed long-term level g following a stochastic stationary process. Second,
we include a common productivity index in the production function of intermediate firms, so that
yj,t = exp(At)`

1−α
j,t kαj,t−1, where At is a stochastic stationary process with mean zero. Finally, for
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the cost-push or markup shock, mt, we assume that it has a zero mean and affects prices in the
intermediate sector, so that the optimal price-setting equation in that sector changes to

p?t = exp(mt)
θ

θ − 1
(1− τ p)

F1,t

F2,t

.

For simplicity, we assume that all of the shocks follow an AR(1) process, with a persistence
parameter equal to 0.8. The size of the shocks is such that it produces a 6% movement in aggregate
demand at the pick. The government-spending shock is clearly an aggregate demand shock, and it
will tend to move output and inflation in the same direction. In turn, the productivity and cost-push
shock are supply-side shocks and they will tend to move output and prices in opposite directions.
The difference between them is that after a productivity shock, output and the marginal cost of
production behave in opposite directions, while after a mark-up shock they co-move. As a conse-
quence, in the productivity shock labor does not co-move with output, while in the mark-up shock,
it does. The two characteristics have relevant implications for the credit market and explains the
need to use a dynamic financial instrument only for the cost-push shock.

B.6.1 Tinbergen rule with other shocks

Figure 11 shows the welfare costs as measured by ce under a given pair of policy elasticities
(aπ, arr) or (aπ, ǎrr) for the three aggregate shocks. The stars in the picture show the minimum
welfare costs achieve in each case. As it is shown in the figure, for the government-spending
shock and the productivity shock, maximum welfare is achieved when ǎrr = arr = 0. The latter
implies that for these shocks, it is optimal for both the central bank and the financial authority
to do not adjust their policy instruments to changes in the external finance premium. Because of
this result, for these alternative aggregate shocks the STR and ATR regimes are equivalent, and
hence we refer to them jointly as the STR/ATR regime, which characterizes by aπ = 2.3 for
government-spending shocks and 2 for TFP shocks. These two shocks do not seem to display a
scope for strategic interactions. For the mark-up shock, the single-instrument scenario under STR
and the ATR regimes are again identical, since the central bank finds optimal not to answer to the
credit spread and focus on inflation deviations. The optimal parameters in the STR/ATR regime
are aπ = 2.1 and ǎπ = 0. However, in the DRR regime, the financial authority finds optimal to
adjust its instrument to efp fluctuations, so the optimal parameters in this regime are aπ = 2.2

and arr = 2.4. The latter results in lower welfare costs to society and very active monetary and
financial policies. Therefore, for the markup shock there is scope for strategic interactions.
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Figure 11: Welfare costs as policy elasticities vary in face of different shocks
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B.6.2 Impulse response functions

The differences between markup shocks and TFP or government spending shocks on the im-
portance of financial policy follows from the way these shocks interact with the Bernanke-Gertler
financial accelerator. To study these interactions, Figures 12 to 14 display the impulse responses of
selected variables to the various shocks. The pictures highlight differences in the model’s financial
transmission under the three shocks, being this mechanism weaker for the TFP and government
spending shocks than for markup shocks. Notice that all of these shocks have a positive effect on
inflation, and a negative effect on consumption, investment, and the relative price of capital.8 In
turn, the shock to government expenditures has a positive effect on output, while the other two
have a negative effect. For financial transmission the key difference across these shocks is in the
response of intermediate goods producers and their effect on credit spreads. With shocks to gov-
ernment expenditures or TFP, intermediate goods producers increase their demand for labor and
capital, as they aim to meet the excess demand in the final good market. As a result, the rental
rate of capital increases, which increases capital returns and the entrepreneurs’ net worth, coun-
teracting the downward pressure on these variables that the fall in the price of capital exerted, and
thus weakening the effects of the financial accelerator. The efp rises around 4 basis points after the
shock to government spending and 5 basis point after the shock to TFP (16 and 20 basis points in
annual terms, respectively), while investment falls 0.5% and 0.8% in each case.9

In contrast, an increase in markups strengthens the monopolistic distortions affecting the inputs
market, causing intermediate good firms to reduce their demand for inputs, so that wages and the
rental rate of capital fall. The latter intensifies the reduction in entrepreneurs’ net worth, strength-
ening the financial accelerator. In this case, efp rises 10 basis points (40 in annual terms) under the
STR/ATR policy, and investment and output decrease 1.5% and 0.4%, respectively. In contrast, in
the DRR regime an active financial policy moderates the increase in the efp to just 2 basis points (8
in annual terms) after the shock, and investment and output fall only 0.9% and 0.3%. This regime
has a short-term cost in terms of consumption, due to the increase in lump-sum taxes that are col-
lected to finance the financial subsidy (see Section 4.2). Still, this short-term cost pays off in the
long term since consumption has a higher steady-state mean under the DRR regime than under the
STR/ATR regime (about 2.2% higher). In turn, welfare costs are 100 basis points lower in terms
of ce in the DRR regime in comparison to the STR/ATR regime, as mentioned above.

8Shocks to government expenditures have opposing effects on inflation. On the one hand, higher government
expenditures increase aggregate demand and hence push for higher inflation. On the other hand, since agents in the
model are Ricardian, government expenditures crowd out private expenditures, weakening aggregate demand. Inflation
still rises with government expenditures, but by less than a one-to-one effect.

9These numbers are consistent with the findings in the literature showing that the financial accelerator accounts for
a small share of business cycles in standard BGG models with shocks to TFP or government expenditures.
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Figure 12: IRFs to a government spending shock

0 20

0

0.2

0.4

0.6

0.8

Aggregate demand: y

0 20
0

0.1

0.2

Inflation: π

0 20

-0.2

-0.1

0
Households’ consumption: c

0 20
0

0.5

1

1.5

Labor: ℓh

0 20
-0.8

-0.6

-0.4

-0.2

0
Arg. of u(·) : (c− hc)υ(1− ℓh)1−υ

0 20

-0.4

-0.2

0

Investment: i

0 20

-0.1

-0.05

0
Capital stock: k

0 20
-4

-2

0

Net worth: nw

0 20

0

0.05

0.1

External finance prem.: řr
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Figure 13: IRFs to a productivity shock
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Figure 14: IRFs to a cost push shock
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B.6.3 Strategic Interaction: Markup shocks

The following exercises correspond to the strategic interaction set-up of the paper but for the
mark-up shock. We first evaluate the reaction function of each policy maker when welfare is the
common payoff, then when each authority has a different variance payoff, and finally when they
have a common variance payoff. Figure 15 shows that four different payoff functions we consider
in this section.

Welfare as a common payoff Panel (a) in Figure 16 shows the reaction curves and the Nash,
Stackelberg, and Cooperative equilibria when both policy authorities have welfare as a common
payoff. The blue line is the reaction function of the financial authority and the red line is the re-
action function of the monetary authority. As in the case of the risk shock, the reaction curves are
non-linear. In particular, the best elasticity response of the financial authority shifts from strategic
complement to strategic substitute as the aπ increases. Similarly, the central bank’s best elasticity
response changes from strategic complement to strategic substitute as arr increases, although the
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variation is rather moderate. As argued in the paper, when there is a common payoff, the Cooper-
ative, Stackelberg, and Nash equilibria coincide, so there is no coordination failure and there are
no gains from policy coordination. However, when social welfare is the common payoff, the Nash
and Cooperative equilibria also match the best policy outcome.

Figure 15: Payoffs for the cost-push shock
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Different payoff functions As in the paper, we consider strategic interaction when the monetary
and financial authorities have different payoff functions, given the different objective functions
defined earlier. For the cooperative case, we use the optimal weight ϕ∗, which in this case equals
0.30, so LC = ϕ∗LCB + (1− ϕ∗)LF .

Panels (b) and (c) in Figure 15 show surface plots of the individual payoff functions of the
monetary and financial authorities as functions of the two policy rule elasticities, and panel (d)
shows the payoff function under cooperation with the optimal weight ϕ∗. As in the case of the risk
shock shown in the paper, these plots are single peaked and the elasticity pairs that maximize each
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payoff unconditionally (i.e. the bliss points) differ for the monetary and financial authorities, and
both also differ from the best policy pair of elasticities. These differences reflect the conflict of
objectives between the two authorities and their incentives for engaging in strategic behavior.

Figure 16: Reaction curves, cooperative, and Nash equilibria for the cost-push shock
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Panel (b) in Figure 16 displays the reaction functions of the central bank and the financial au-
thority when their payoff functions are given by variances payoffs defined earlier. Qualitatively,
the plot is consistent with standard results when coordination failure is present, in terms of the rel-
ative location of the Nash and Cooperative equilibria and the bliss points. The reaction functions
are non-linear, but now the financial authority’s reaction curve only changes slightly, while that of
the monetary authority implies that the central bank’s best elasticity response is always a strategic
complement of arr.
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The Nash equilibrium features a higher inflation elasticity than the best policy outcome (2.65

v. 2.20), while the efp elasticity is lower than in the best policy outcome (1.45 v. 2.45). Hence, rel-
ative to the best policy pair of elasticities, the Nash equilibrium produces a tight money-tight credit
regime. In turn, the Cooperative equilibrium features a slightly lower inflation elasticity than the
best policy outcome (2.15 v. 2.20), and a higher efp elasticity than the best policy outcome (3.70

v. 2.45), thus featuring a slightly easy money-easy credit regime.

Since the Nash equilibrium is farthest away from the the best policy outcome, coordination
failure implies welfare losses that could be moderated with policy coordination. In terms of welfare
costs relative to the deterministic (and Pareto efficient) steady state, the Nash equilibrium has a 1.23

percent higher cost than the best policy, while the cost of the Cooperative equilibrium is only 0.11

percent higher than in the best policy. Hence, the cost of the coordination failure is about 1 percent
in terms of a compensating consumption variation.

Common implementable payoff Finally, we consider an alternative scenario in which we use a
common payoff function but formulated in terms of a loss function instead of social welfare. As
in the paper, we assume that the common payoff is the optimally weighted sum of the variances of
all policy instruments and targets. The bottom-left panel of Figure 16 displays the outcome of this
alternative scenario. Notice that in this case there are three Nash equilibria, two of them closer to
the origin, so that (aN,1π , aN,1rr ) = (1.10, 0) and (aN,2π , aN,2rr ) = (1.36, 0.38), and a third one equal
to the Cooperative equilibria, so (aN,3π , aN,3rr ) = (aCπ , a

C
rr) = (2.15, 3.70). A way to discriminate

between the three Nash equilibria is to change the rules of the game from a one-shot setting to a
leader-follower setting. The latter would provide us with a set of Stackelberg equilibria which may
vary depending on the specific role taken by each policymaker.

Assume the central banks is the leader. As such, the central bank computes its potential payoffs
along the best-response schedule of the financial authority (the solid-blue line in the bottom-left
panel of Figure 16). Given the financial authority’s best response to any possible value of aπ in the
feasible set, the central bank chooses aCπ , since the couple (aCπ , a

C
rr) is the one that maximizes its

payoff function L̃CB. In the same vein, assume that the financial authority takes the leading role.
As such, this policymaker computes its potential payoffs along the best-response schedule of the
central bank (the dashed-red line in the bottom-left panel of Figure 16). Similar to the previous
case, the couple that maximizes the financial authority’s payoff L̃F is (aCπ , a

C
rr). Therefore, the

Nash equilibria 1 and 2 are not robust to a change in the moving order of the game, while there is
a unique Stackelberg equilibrium regardless of who is taking the leading role. Finally, notice that
the Cooperative and the robust Nash equilibria feature a slightly easy money-easy credit regime
relative to the best policy outcome.
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Figure 17: Welfare Costs under Alternative Policy Regimes with Multiple Shocks

Note: ce is the welfare cost for each pair of elasticities shown in the plots, computed as averages over the ergodic
distribution of the welfare measure defined in eq. (2.19). Asterisks denote the minimum of ce (i.e. the best outcome in
terms of welfare), which defines the optimized elasticities for the ATR and DRR cases.

B.7 Including all the shocks

We now perform the same exercise as the main text but including the four shocks that we analyze
at the same time (risk, temporary productivity, mark-up, and government expenditure shocks).
The specifications of the shocks correspond to the ones presented in Section B.6, however, the
parameters that we use for the autoregression process and the standard deviations correspond to
the ones estimated by Christiano et al. (2014). In particular, ρA = 0.81, ρg = 0.94, ρmkp = 0.91,
and σA = 0.0046, σg = 0.023, and σmkp = 0.011. In their estimation, these four shocks explain
around 90% of output fluctuations, with risk shocks being the dominant ones explaining 66% of
output fluctuations. The messages are the same as in the main text: Tinbergen’s rule is quantitative
relevant and there is scope for strategic interaction when all the shocks are included at the same
time.

Tinbergen rule Figure 17 shows surface plots of welfare costs for a set of elasticity pairs under
the ATR (labeled “1 instrument” in the left plot) and the DRR (labeled “2 instruments” in the right
plot). The results for the STR regime are also included. They correspond to the cases with ǎrr = 0

in the ATR case or with arr = 0 in the DRR case.

These surface plots show two key results that are also reflected in the case of only having risk
shocks. First, welfare costs are large in all three policy regimes and for all the elasticity pairs con-
sidered, with ce ranging from about 4 to 17 percent. This is due to long-run effects of changes in
efp and monitoring costs. Second, the curvature of the surface plots is indicative of the relevance
of Tinbergen’s rule and strategic interaction. In particular, at low levels of aπ, welfare costs in the
ATR show a marked U shape as ǎrr varies, whereas in the DRR regime they first fall sharply as arr
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rises from 0 but then change only slightly. For arbitrarily chosen elasticities either regime can be
the most desirable. Welfare costs are slightly higher with the DRR than with the ATR for arr and
ǎrr near 0 for all values of aπ, but lower if those efp elasticities are sufficiently high. Moreover, for
arr ≥ 1.2, welfare costs for aπ = 1 are nearly unchanged as arr rises in the DRR, whereas under
the ATR they are sharply increasing in ǎrr when aπ is low but moderately decreasing in ǎrr when
aπ is high.

These differences in the curvature of the two surface plots indicate that Tinbergen’s rule is
relevant because they show that the DRR can avoid sharply increasing welfare costs as arr rises
for a given aπ, which is possible because it has separate instruments to tackle price and financial
stability. The curvature also indicates that there are significant policy spillovers, which provide the
incentives for strategic interaction.

The differences in the welfare costs across policy regimes are illustrated further in Figure 18.
This Figure provides plots that show how ce varies as one of the elasticities changes, keeping the
other fixed at its optimized value. The plot on the left is for aπ and the one on the right is for ǎrr
and arr. The dashed-red curves are for the ATR and the solid-blue curves are for the DRR, and in
the left plot the dotted-black line is for the STR. In each curve, asterisks identify the value of the
elasticity in the horizontal axis that yields the lowest welfare cost.

The left panel shows that, for all values of aπ considered, ce is uniformly lower under the DRR
than under the ATR, and much lower than under the STR. The right panel shows that for spread
elasticities below 0.3 ce does not differ much between the DRR and ATR, but for higher spread
elasticities ce is much lower under the DRR. Welfare costs under the ATR rise much faster with
the spread elasticity, producing a markedly U-shaped curve, while under the DRR welfare costs
are nearly unchanged as the spread elasticity rises. This is again evidence of Tinbergen’s rule
relevance: arr in the DRR can increase with much less adverse welfare consequences than ǎrr in
the ATR because the separate financial rule of the DRR targets efp with its own instrument, and
hence without affecting the instrument of monetary policy. Notice also that in all the curves in
the two plots, there is always an internal solution for the value of the policy rule elasticity with
the smallest welfare cost. These findings are important because they show that the different policy
regimes, by having different effects on the mechanisms that drive the financial accelerator and the
nominal rigidities, produce significant differences in equilibrium allocations and welfare as policy
rule elasticities vary, and that as a result there is a non-trivial interaction between monetary and
financial policies that yields well-defined optimized rule elasticities.
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Figure 18: Welfare Costs as Policy Elasticities Vary: All Shocks Considered
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Strategic Interaction Figure 19 displays the reaction functions of the central bank (red-dashed
curve) and the financial authority (blue-solid curve) and the equilibria of the various games: Co-
operative with ϕ = 0.5 (blue rhombus), Nash (pink dot), and Stackelberg with CB (F) as leader
(green and transparent squares, respectively). The plots also identify the locations of each author-
ity’s bliss point (black asterisks) and of the Best Policy elasticity pair (blue star).

The two reaction curves are convex and change slope, indicating the relevance of the incentives
for strategic interaction. The financial authority’s reaction curve has a more pronounced curvature
than the one for the monetary authority. In the financial authority’s reaction curve, for aπ < 1.5,
a∗rr(aπ) falls slightly as aπ rises, while the opposite happens for aπ ≥ 1.5, similarly to only hav-
ing risk shocks. Hence, the financial authority shifts from treating the two elasticities as strategic
complements to treating them as strategic substitutes. The monetary authority’s reaction curve has
analogous features but with weaker curvature, and much weaker than only having risk shocks.

Table 4 compares the outcome of Nash and Cooperative equilibria (symmetric and with the
welfare-maximizing value of ϕ, which is ϕ∗ = 0.27) against the Best Policy DRR. The Nash equi-
librium features a higher aπ than both the two Cooperative equilibria and the DRR outcome (2.91

v. 2.05, 1.55 and 1.55, respectively). Similarly, arr in the Nash equilibrium is lower than in the
Cooperative and DRR equilibria (1.79 v. 2.56, 1.97 and 2.05, respectively). Hence, relative to the
DRR and the Cooperative equilibria, the Nash equilibrium is a tight money-tight credit regime: The
interest rate rises too much when inflation is above target, and the financial subsidy does not rise
enough when the spread is above target. Comparing Cooperative equilibria v. the DRR, the former
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Figure 19: Reaction Curves and Equilibrium Outcomes: All Shocks Considered
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are still tight-money regimes, but the symmetric Cooperative equilibrium is a loose-credit regime
(the financial subsidy rises too much when the spread is above target). The welfare-maximizing
Cooperative equilibrium, however, is a tight money-tight credit regime compared with the DRR.

In terms of welfare, the Nash equilibrium is a “third-best” outcome, in the sense that it is
inferior to both the Best Policy regime and the Cooperative outcomes. The gains from policy co-
ordination are sizable: Relative to the DRR, the Nash equilibrium implies a reduction in social
welfare equivalent to a decline of 37 basis points in the ce measure of welfare. In contrast, the
Cooperative equilibrium with ϕ∗ = 0.27 implies a welfare loss of only 1 basis point. Hence, the
welfare cost of coordination failure is roughly 36 basis points (or 26 if we compare v. the symmet-
ric Cooperative equilibrium). It is worth noting that the welfare-maximizing Cooperative outcome
increases the weigh of the financial authority from 50 to 73 percent, which reflects how a social
planner would aim to compensate for the large costs of risk shocks due to the increased efficiency
losses and monitoring costs as efp rises. Note also that the decomposition of welfare costs con-
tinues to show large total welfare costs with the bulk coming from differences in averages in the
stochastic steady state v. the deterministic steady state.
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Table 4: Strategic Interaction Results: All Shocks Considered

Regime x v. regime y
Param. values of x ce v. Decomp. of ce into mean and SD eff.
aπ arr DRR Full ce Mean eff. SD eff.

Nash 2.91 1.79 37bp. 6.05% 5.55% 0.50%
Cooperative (ϕ = 0.5) 2.05 2.56 11bp. 5.79% 5.32% 0.48%
Cooperative (ϕ∗ = 0.27) 1.55 1.97 1bp. 5.68% 5.20% 0.48%

DRR (Best Policy) 1.55 2.05 5.68% 5.20% 0.48%

Note: ce corresponds to the consumption equivalent welfare measure defined in equation (2.19).

B.8 Other financial variables in the policy rule

In the final section, we argue that the baseline financial policy rule studied in the paper is ob-
servationally equivalent, up to a first order approximation, to rules that react to different financial
variables, such as leverage or debt. We show these equivalences using a linearization of the finan-
cial contract equations (12)-(14), which read (we have dropped the expectation operator for the
ease of exposition):

Λ̂t = ̂̌rt + x̂t + f0ω̂t+1 + g0σ̂ω,t, (32)

Λ̂t + τ̂ f,t = f1ω̂t+1 + g1σ̂ω,t, (33)
1

x− 1
x̂t = ̂̌rt + τ̂ f,t + f2ω̂t+1 + g2σ̂ω,t, (34)

where ât represents the percent deviation of variable a from its non-stochastic steady-state level,
and fi and gi are reduced-form parameters that equal:

f0 = −ω Γω
1−Γ

, g0 = −σω Γσ
1−Γ

,

f1 = ω
(

Γωω
Γω
− Γωω−µGωω

Γω−µGω

)
, g1 = σω

(
Γωσ
Γω
− Γωσ−µGωσ

Γω−µGω

)
,

f2 = ω Γω−µGω
Γ−µG , g2 = σω

Γσ−µGσ
Γ−µG .

The derivations are in Section B.8.3. Rearranging the optimal contract first-order conditions, we
get: ̂̌rt + τ̂ f,t = χxx̂t + χσσ̂ω,t, (35)

where χx ≡ f−f2x
(x−1)f

, χσ ≡
f2(g1−g0)−(f1−f0)g2

f
, and f ≡ f2 + f1 − f0. In the STR and ATR regimes,

the reduced-form parameters χx and χσ denote the elasticity of the external finance premium to
leverage and the risk shock, respectively. In the baseline calibration, they equal 0.055 and 0.040.
In the DRR regime, financial policy reacts to changes in the external finance premium according
to a rule that up to the first-order is

τ̂ f,t = arr̂̌rt.
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The DRR regime moderates variations in the external finance premium due to variations in
leverage and the risk shock by reducing the aforementioned elasticities, since arr > 0 and equation
(35) simplifies to ̂̌rt =

χx
1 + arr

x̂t +
χσ

1 + arr
σ̂ω,t.

B.8.1 Leverage in the financial policy rule

Assume instead that the financial policy rule reacts to changes in leverage and entrepreneurs’ risk
rather than changes in the external finance premium. Up to the first-order, the alternative financial
rule is

τ̂ f,t = axx̂t + aσσ̂ω,t.

As such, the equilibrium condition for the external finance premium changes to

̂̌rt = (χx − ax) x̂t + (χσ − aσ) σ̂ω,t.

It follows that the leverage rule and the baseline rule would be observationally equivalent, up to a
first-order approximation, if

ax = χx
arr

1 + arr
and aσ = χσ

arr
1 + arr

.

Figure 20 shows that the impulse responses obtained with the baseline DRR regime rule and
with the leverage/dispersion rule are exactly the same up to a first-order approximation. In the
figure, we calibrate the model as in the DRR regime (so arr = 2.43).

B.8.2 Credit in the financial policy rule

Similar to the previous case, one can find a first-order observationally equivalent financial
rule where the instrument τ f,t reacts to credit. First, notice that the aggregate budget constraint of
entrepreneurs implies that total credit is related to leverage as follows bt+nt = qtkt, or bt/nt+1 =

xt. A log-linear approximation of this identity yields

x̂t =
x− 1

x

(
b̂t − n̂t

)
.

It follows that a financial rule with credit is observationally equivalent to the baseline rule if the
former also reacts to entrepreneurs’ net worth, and to the risk shock, i.e.10

τ̂ f,t = ab

(
b̂t − n̂t

)
+ aσσ̂ω,t.

10The rule states that the financial instrument increases whenever credit increases faster than the net worth. This
result might seem counterintuitive from a macroprudential perspective, since it promotes credit when it increases!
However, it must be taken into account that this rule increases welfare when the economy faces a risk shock, i.e. a
situation in which the lender tightens credit more of what it is efficient due to financial frictions, so capital does not
grow as fast as in the efficient equilibrium.
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Figure 20: IRFs to a risk shocks with first-order observationally equivalent rules
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To ensure the first-order equivalence, it must be the case that

ab = χx
x− 1

x

arr
1 + arr

, and aσ = χσ
arr

1 + arr
.

Figure 20 again shows that the impulse responses obtained with the credit/dispersion rule are
the same to the responses obtained with the baseline rule.

B.8.3 A first-order approximation to the financial contract conditions

We rewrite below the first order conditions of the optimal financial contract (where we have
dropped the expectation operator for the ease of exposition). Notice that in the first equation, we
have made use of the lender’s participation constraint so that 1−[Γ(ω̄t+1)− µG(ω̄t+1)] řt (1 + τ f,t) =
1
xt
.

[1− Γ(ω̄t+1)] řt = Λt
1

xt
, (36)

Λt [Γω(ω̄t+1)− µGω(ω̄t+1)] řt(1 + τ f,t) = Γω(ω̄t+1)řt, (37)

[Γ(ω̄t+1)− µG(ω̄t+1)] řtxt(1 + τ f,t) = xt − 1. (38)

The above equations imply that at the steady state, the following relationships hold:

Λ =
(1− Γ) ř

1− (Γ− µG) ř (1 + τ f )
= (1− Γ) řx =

Γω
(Γω − µGω) (1 + τ f )

,

and
1

x
= 1− (Γ− µG) ř (1 + τ f ) ,

where Γω and Gω represent the first derivatives of Γ and G with respect to ω̄t+1, respectively.

A first-order approximation to equation (36) is:

ΛΛ̂t = (1− Γ) řx (r̂t + x̂t)− ωřxΓωω̂t+1 − σωřxΓσσ̂ω,t, or

Λ̂t = ̂̌rt + x̂t − ω
Γω

1− Γ
ω̂t+1 − σω

Γσ
1− Γ

σ̂ω,t,

where Γσ and Gσ represent the first derivatives of Γ and G with respect to σω,t, respectively. In
turn, the first-order approximation to equation (37) is:

Λ (Γω − µGω) (1 + τ f )
(

Λ̂t + τ̂ f,t

)
=


ωΓωωω̂t+1 + σωΓσωσ̂ω,t

−ωΛ (Γωω − µGωω) (1 + τ f )ω̂t+1

−σωΛ (Γσω − µGσω) (1 + τ f )σ̂ω,t

 , or

Λ̂t + τ̂ f,t = ω

(
Γωω
Γω
− Γωω − µGωω

Γω − µGω

)
ω̂t+1 + σω

(
Γωσ
Γω
− Γωσ − µGωσ

Γω − µGω

)
σ̂ω,t,
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where Γωω and Gωω represent the second derivatives of Γ and G with respect to ω̄t+1, and Γωσ

and Gωσ represent the derivatives of Γω and Gω with respect to σω,t+1, respectively. Finally, the
first-order approximation to equation (38) is:

xx̂t =


(Γ− µG) řx (1 + τ f ) (r̂t + τ̂ f,t + x̂t)

+ω (Γω − µGω) řx (1 + τ f ) ω̂t+1

+σω (Γσ − µGσ) řx (1 + τ f ) σ̂ω,t

 , or

xx̂t =


(x− 1) (r̂t + τ̂ f,t + x̂t)

+ω (Γω − µGω) řx (1 + τ f ) ω̂t+1

+σω (Γσ − µGσ) řx (1 + τ f ) σ̂ω,t

 , or

x

x− 1
x̂t = r̂t + τ̂ f,t + x̂t + ω

Γω − µGω

Γ− µG
ω̂t+1 + σω

Γσ − µGσ

Γ− µG
σ̂ω,t.
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