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A Comparative Statics

In this Appendix:

1. We show that our model can be solved with increasing returns to scale in R&D technology.

2. We show that the model can deliver both substitutability and complementarity between

R&D and advertising.

3. We show which parameters drive the substitution/complementarity margin in the calibrated

model.

Figure A.1: Comparative statics for R&D intensity across n, for σ + ψ̃ > 1 (decreasing

returns), σ + ψ̃ = 1 (constant returns), and σ + ψ̃ < 1 (increasing returns).

First, we show that the result that small firms are more innovation-intensive does not hinge

on the relative degree of scalability in the returns of different types of innovation technologies. In

Figure A.1 we show three solutions of the model, using decreasing, constant, and increasing returns

to scale in external R&D, respectively. The left panel shows the marginal value from acquiring

an additional product (Υn+1 − Υn), and the right panel shows the optimal R&D intensity, as

functions of firm size. Decreasing returns lower innovation incentives for all sizes with respect

to constant returns, but make it even more profitable for small firms to invest more intensely

into R&D (i.e, the Rx/n line is steeper). Symmetrically, having increasing returns in innovation

increases optimal intensity for all n. Interestingly, so long as the degree of increasing returns is

not too strong, smaller firms may still optimally choose to invest relatively more in R&D in order

to reap the benefits of advertising spillovers, as is the case in the figure. This occurs even though

the marginal benefit from innovation is lower than in the other two cases (so that the Rx/n line

flattens but it is still decreasing).

Next, we show that the model can deliver both substitutability and complementarity between

R&D and advertising. Figure A.2 depicts, for a numerical example, the change in external R&D

across firm size for different levels of advertising efficiency as well as total incumbent R&D and
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Figure A.2: External R&D intensity in BGP (left panel), and R&D and advertising ex-
penditures in BGP, for different values of advertising efficiency, θ (right panel). All variables
are normalized by Q̄.

advertising.1 In this example, and contrary to the calibrated model, R&D and advertising are

complements: an increase in advertising efficiency is associated with larger investment in both

advertising and R&D.

Figure A.3: Change in incumbent R&D, for a small change in θ, evaluated at the calibrated
θ. The figure shows this across different parameters, with all the remaining parameters being
fixed at their calibrated values from Table 3.

To understand which parameters drive this margin in the calibrated version of the model,

in Figure A.3 we plot the change in incumbent R&D (normalized by Q̄) for a small change in

θ away from its calibrated value (a proxy for the derivative of R&D with respect to θ). We

1The parameter values used in this example are: ρ = 0.02, ψ̂ = ψ̃ = 2, σ = −0.85, λE = λI = 0.05, χ̂ = 1,
χ̃ = 5, ν = 2, β = 0.2, η = 0.9 and ζ = 0.2.
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plot this change for different values of each one of the internally calibrated parameters in some

neighborhood around their calibrated value, where we fix all the remaining parameters to their

calibrated values (from Table 3). When this derivative is negative, an increase in θ (i.e. a decrease

in the cost of advertising) leads to a decrease in R&D, so R&D and advertising are substitutes.

When the derivative is positive, R&D and advertising are complements.

The figure shows that the key parameters that control for this margin are the cost scale param-

eter in the external R&D technology (χ̃), the entry cost (ν), the advertising spillover parameter

(η), and the parameter controlling the degree of returns to scale in R&D (σ). Note, however, that

we obtain substitution for all values of the innovation step (λ), as well as the cost scale parameter

in the internal R&D technology (χ̂). Intuitively, the parameters related to the external R&D

technology are drivers of the substitution/complementarity margin because the R&D-advertising

interaction in the model operates through external innovations. In particular, we obtain that the

model delivers complementarity when external R&D is relatively cheaper (low enough values of χ̃),

and when it scales weakly with firm size (low enough values of σ). Additionally, as firm entry in

the model occurs through external R&D, we also obtain complementarity when entry is relatively

cheaper (low enough values of ν). Finally, a high enough spillover in advertising (η) also generates

complementarity, everything else equal.

B The BGP Algorithm

The following describes the steps of the BGP algorithm:

1. Guess a number Φ∗ > 0.

2. Compute Υ1 by imposing Υ2 = 2Υ1 in Equation (12) at n = 1.

(a) Compute g from (8), τ implied by (9), Γ from (11), and z from (13a).

(b) Compute {Υn}+∞
n=2 iterating (12) forward from Υ1 and Υ0 = 0, {xn}+∞

n=1 from (13b), and

F/xe using that
∑N

n=1 µn = 1, where µn comes from (10).

3. Verify convergence of the firm size distribution. If there is no convergence by iteration k ∈ N,

go back to step 2 with the new guess for Υ1 equal to the solution of (12) at n = 1 when

Υ2 = 2Υ1 − εk, for a small εk > 0.

4. Compute Φ∗ as the solution to (5), and compare it to the initial guess. If it is too far, go

back to step 1 using this solution as the new guess.

In step 2, we compute the maximum value for Υ1 such that Υn can be weakly concave (i.e,

(Υn+1 −Υn) decreasing). In particular, we force Υn to be straight line from n = 1 to n = 2 (note
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Υ2 − Υ1 = Υ1 − Υ0). If µn does not converge, it must be because (Υn − Υn−1) has not settled

to a flat line as n has approached N , which means that the guess for Υ1 was incorrect. Then, we

iterate on new guesses for Υ1 to allow for more concavity on the Υn sequence (indeed, note that

in any iteration k ≥ 1 we always start the Υn sequence at a Υ1 such that Υ2−Υ1 < Υ1−Υ0). In

step 3, we bisect the new guess by a factor of ten on each new iteration, i.e. εk+1 = εk/10. Finally,

in step 4, we drop the old Φ∗ guess in case of no convergence, and use the resulting fixed-point as

the new guess.

C Model Extensions

C.1 Patents and Major Innovations

Besides differences in R&D intensity across size, the literature has emphasized other motives

why smaller firms might be relatively more efficient in conducting innovations. One such literature

has focused on patent behavior. Two key findings are noteworthy:

Fact 1. Entrants and smaller firms typically produce relatively more major and radical

innovations (when the quality of a patent is based on the number of external

citations that it receives).

Fact 2. These firms also tend to patent relatively more on average.2

In this section, we show that a simple extension of our baseline model with advertising can

deliver both of these additional facts even in the absence of decreasing returns to scale in R&D.

Let us assume that each innovation creates a new patent that potentially cites other patents

that exist at the time the new patent is introduced. Following Akcigit and Kerr (2018), each

innovation belongs to a technological cluster, and there exist two types of technological advances:

follow-up and major advances. A major advance in a production line creates a whole new cluster of

innovation, while a follow-up innovation belongs to the same cluster as the patent that it improves

upon. Each patent within a technological cluster is assumed to cite all the previous innovations

in the same cluster with some positive probability. Consequently, major advances in the model

do not cite any other existing patent and potentially receive citations from follow-up innovations

within the same cluster. Once a new major innovation creates a new technological cluster, the

cluster that it replaces receives no more citations. Likewise, follow-up innovations can also receive

citations from subsequent follow-up innovations in the same cluster. However, on average, major

advances receive more citations than follow-up innovations.

2Both facts have been documented by Akcigit and Kerr (2018). On Fact 1, they show that the fraction of a
firm’s patent in the top patent quality decile is decreasing with firm size. On fact 2, they show that there is a
negative correlation between firm size (measured by employment) and patent intensity (measured as the ratio of
patents to employment).
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Formally, we extend the baseline model by allowing external innovations to result in major

technological advances with some probability. Whereas internal R&D can only result in a follow-up

innovation, with step size λI > 0, external innovation can either be a follow-up within an existing

technological cluster, or be a major advance and create a new technological cluster altogether. Let

ω denote the probability with which a successful external innovation leads to a major technological

advance. In this case, the step size for quality improvement is equal to λH > λI . With the

remaining probability (1 − ω), the successful external innovation is a follow-up, which leads to a

step size λL ∈ (0, λH ]. In sum, for any product line j and a small interval ∆t > 0, intrinsic quality

is given by:

qj,t+∆t = qjt +



λHqjt w.prob. ωτt∆t+ o(∆t) [External, major advance]

λLqjt w.prob. (1− ω)τt∆t+ o(∆t) [External, follow-up]

λIqjt w.prob. zjt∆t+ o(∆t) [Internal]

0 w.prob. 1− τt∆t− zjt∆t− o(∆t) [No innovations]

Therefore, the average quality improvement from a successful external innovation is equal to

λE ≡ ωλH + (1 − ω)λL. The growth and creative destruction rates of the economy are still

given by (8) and (9), respectively. Additionally, the model now delivers Fact 1: smaller firms,

while exhibiting a higher R&D intensity because of the advertising spillover effect, also produce

relatively more major innovations.

Next, we show that the extended model can deliver the prediction that smaller firms tend

to patent relatively more on average, and that their patents are of higher quality (when quality

is measured by the number of external citation that it receives). For this, we can characterize

expected patent citations. Let us assume that the probability that the n-th follow-up innovation

cites all relevant past patents is κn, where 0 < κ < 1. This generates a decline in the relative

citation rate as a technological cluster ages. The expected number of citations received by major

as well as follow-up innovations for major technological advances is:

E[citM ] ≡ τω

τ + z
· 0︸ ︷︷ ︸

External and major
innovation

+ Λ

{
κ+ Λ

[
κ2 + Λ

(
κ3 + . . .

) ]}
︸ ︷︷ ︸

Follow-up innovations

=
∞∑
j=1

(κΛ)j (C.1)

In the first term, τω
τ+z

is the probability that a successful innovation in a given product line is

external and major, which creates a new cluster and does not add a citation within the existing

cluster. In the second term, we have defined:

Λ ≡ τ(1− ω) + z

τ + z
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as the probability of a follow-up innovation, coming either from an external or an internal

innovation. The probability that such an innovation yields a single citation is κ, and therefore the

probability of the n-th follow-up yielding a citation is (κΛ)n. The expected number of citations is

then the sum of all such probabilities. Since κΛ < 1, Equation (C.1) can be expressed as:

E[citM ] =
κΛ

1− κΛ

A similar derivation shows that the expected number of citations for the n-th follow-up inno-

vation in a given technological cluster, denoted E[citFn ], is given by:

E[citFn ] =
κn+1Λ

1− κΛ

Therefore, E[citFn ] < E[citM ] for any number of follow-ups, n ∈ N. Since in the model with

advertising smaller firms invest relatively more in external R&D, these firms also hold relatively

more patents, and these patents are of higher quality on average (as measured by the number

of external citations). In sum, our model with advertising can generate the observed negative

correlation between firm size and the fraction of top quality patents in the firm’s patent portfolio,

even when there exist non-decreasing returns to scale in the R&D technology.

C.2 Alternative Advertising Functions

The main mechanism presented in the paper relies on one key assumption: advertising acts

as a demand shifter in a way that is comparable to the effect of increased intrinsic quality from

innovation. This is a necessary (though not sufficient) condition for the substitution between R&D

and advertising that we obtain in our calibration.

The purpose of this section is to propose different alternative ways to model advertising, and

show that they also lead to advertising being a demand shifter. Thus, the results obtained in this

paper would qualitatively hold under the different alternative models presented below.

C.2.1 Goodwill Accumulation

In our baseline model, we assume that the advertising decision is static. Advertising expendi-

tures affect current demand but have no long-lasting effect on consumer demand. An alternative

way of modeling advertising and its effects on demand which is often used in the literature is to

assume that advertising expenditures accumulate over time to increase a brand equity (so-called

goodwill). Goodwill in turns acts as a demand shifter. The evolution of goodwill is:

Ġj = dj − δGj (C.2)
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where δ ∈ [0, 1] controls the rate at which goodwill depreciates. Allowing for goodwill accu-

mulation would not qualitatively change the results derived in our baseline model. This said, the

marketing literature shows that the depreciation rate is relatively high, with the effect of goodwill

on sales almost entirely vanishing after one year (see for instance Assmus et al. (1984) and Dubé

et al. (2005)). With our calibration at the yearly frequency, modeling advertising as a static de-

cision is not likely to be a major concern. In addition, the introduction of goodwill in the model

only affects the decision of firms of different ages. Since the focus of our paper is on firm behavior

across firm size, not modeling the evolution of goodwill over firm age is not a major concern for

our purposes.3

In the goodwill model, the final good is now defined as:

Yt =
1

1− β

∫ 1

0

qβj,t(1 +Gj,t)
βy1−β

j,t dj

The inverse demand function for good j is given by:

pj,t = qβj,t(1 +Gj,t)
βy−βj,t

Advertising goodwill (Gj,t) is thus a demand shifter. Intermediate good producers maximize

their profit subject to the inverse demand function and the dynamics of goodwill.

C.2.2 Advertising in Utility

Next, we show that a slight modification of the baseline model which allows advertising to

feature directly into the consumers’ utility function delivers a very similar allocation, and identical

qualitative predictions, as the baseline model. In this extension, there is no final good sector and

the household consumes goods j ∈ [0, 1] directly. The representative household’s preferences are

now represented by:

U =

∫ +∞

0

e−ρt ln
(
Ct
)
dt

where Ct is a consumption aggregator over a mass-one continuum of quality-weighted good

quantities, indexed by j ∈ [0, 1], which takes the form:

Ct =
1

1− β

∫ 1

0

q̃βjty
1−β
jt dj

with β ∈ (0, 1). The flow budget constraint is, therefore:

3Moreover, firm age does not significantly affect advertising intensity and the relative use of R&D and advertising,
as seen in Table 1.
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Ȧt = rtAt + wt −
∫ 1

0

pjtyjtdj

where A0 ≥ 0 is given, and pjt is the price of good j. Each good variety j is produced with

technology:

yjt = Q̄tljt

where good j = 0 is the numeraire (so p0,t = 1, ∀t). The optimality condition for good j yields:

ωtpjt =
1

Ct

(
yjt
q̃jt

)−β
where ωt ≥ 0 is the Lagrange multiplier, solving − ω̇t

ωt
= rt − ρ. Recalling that q̃jt = qjt + φjt,

we have that the inverse demand function for goods from households firms is iso-elastic, with β

being the price-elasticity. Solving the incumbent firm’s problem, one can show easily that ωt = 1
Yt

,

where Yt ≡
∫ 1

0
yjtdj denotes aggregate output in the economy. Hence, the Euler equation reads

gt = rt − ρ and the demand function becomes identical to that of the baseline model. The two

models are therefore qualitatively equivalent.

C.2.3 “Wasteful” Combative Advertising

In our baseline model, advertising not only shifts demand but also has an effect on consumer

utility and welfare. Nevertheless, in Appendix C we showed that in the calibrated version of the

model advertising is welfare decreasing as the level effect (the increase in how consumers value

their consumption) is more than offset by the negative effect of advertising on growth through the

substitution between advertising and R&D at the firm level.

Next, we show that the same results can be obtained in a model in which advertising does

not increase the value of consumption in equilibrium. This can be seen as a model of combative

(or predatory) advertising in which the advertising efforts of each firm (partially) cancel out in

equilibrium. Let us define the final good technology as:

Y =
1

1− β

∫ 1

0

qβj (1 + dj − ιΦ∗)βy1−β
j dj

with ι ∈ [0, 1]. This implies that the effectiveness of advertising at the good level is a function

of the overall level of advertising expenditures in the economy (through Φ∗, i.e. the normalized

aggregate extrinsic quality in the economy). Thus, the more other firms invest in advertising, the

more one firm has to invest itself in order to obtain a given return to advertising.
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We obtain the following demand function:

yj = qj(1 + dj − ιΦ∗)p
− 1
β

j

Intermediate good firms solve their profit maximization problem subject to this demand func-

tion and taking the overall level of advertising in the economy as given. From the firm’s perspective,

advertising acts as a demand shifter in the same way as in our baseline model. Moreover, it is

easy to derive Yt in equilibrium as:

Y =

(
Q̄

w

) 1−β
β

(1− β)
1−2β
β [1 + (1− ι)Φ∗]Q̄

If ι = 1, advertising has no direct effect on consumer’s utility. It can, nevertheless, have an

effect on lifetime utility through its impact on the growth rate of the economy in a way that is

similar to our baseline model. If ι = 0, we return to our benchmark model.

C.2.4 Informative Advertising

In our baseline, model advertising is purely persuasive in the sense that it shifts demand

toward advertised goods through increased marginal utility. Alternatively, one could consider

advertising as providing relevant information about the product quality (see for instance Nelson

(1974), Butters (1977), Grossman and Shapiro (1984) or Milgrom and Roberts (1986)). In this

case, advertising could be socially optimal as it could reduce uncertainty or improve the quality

of consumer-firm match.

In this section, we propose a simple model of informative advertising with differentiated prod-

ucts to illustrate how advertising can act as a demand shifter. We look at a static model in which

advertising is used to provide information about the quality of the goods. In particular, firms send

an imperfect signal about their product quality through advertising. Consumers passively receive

the information and update their prior about product quality.

Consumers maximize expected utility. The utility function is quadratic and given by:

U =

∫ 1

0

qjyj dj − α

2

∫ 1

0

q2
j y

2
j dj

Before receiving signals through advertising, consumers have a prior about the quality of each

good j. This prior is normally distributed with mean µj and variance σ2
j . Through advertising,

firms can send an imperfect public signal (sj) about their product quality, given by:

sj = q∗j + ωj

where q∗j is the actual quality of the good and ωj is a Gaussian shock with mean zero and
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variance σ2
ω. As in other models of informative advertising (e.g. Erdem et al. (2008)), we assume

that higher advertising expenditures can decrease the variance of the signal.

It is not difficult to show that the posterior distribution of product quality (after receiving the

signal) follows a normal distribution with mean and variance:

µpost =
µj/σ

2
j + sj/σ

2
ω

σ−2
j + σ−2

ω

σ2
post =

(
1

σ2
j

+
1

σ2
ω

)−1

respectively. The representative consumer maximizes expected utility after receiving advertis-

ing signals. The demand function for good j can then be written as:

yj =
µpost − pj

α
(
µ2
post + σ2

post

)
Note that:

∂µpost
∂σ2

ω

= −
(

σ2
j

σ2
j + σ2

ω

)2
sj − µj
σ2
j

and
∂σ2

post

∂σ2
ω

=

(
σ2
j

σ2
j + σ2

ω

)2

This means that, by doing advertising (which lowers σ2
ω), firms can effectively lower the pos-

terior variance of households. Furthermore, if the signal is sufficiently optimistic relative to the

household’s prior (i.e. sj > µj), increasing advertising expenditure also increases the posterior

mean. To see how this affects the final demand for the good, note:

∂yj
∂σ2

ω

= −
∂σ2

post

∂σ2
ω

 sj−µj
σ2
j

(pj + σ2
post) + (µpost − pj)

α(µ2
post + σ2

post)
2


When the signal is optimistic (sj > µj), advertising will unambiguously shift demand, as it

helps household reduce the posterior variance and upgrade the posterior mean, both of which

boost demand. When the signal is pessimistic (sj < µj), there is a trade-off: increased advertising

helps reduce the posterior variance, but it also lowers the posterior mean, so the net effect depends

on fundamentals. For example, when the prior is diffuse (σj → +∞), the posterior distribution

mean and variance satisfy µpost → sj and σ2
post → σ2

ω, respectively, and advertising expenditures

unambiguously shift demand. More generally, for the case of pessimistic signals, there always

exists a prior variance that is diffused enough for advertising to shift demand. In these cases,

advertising acts as a demand shifter as in our baseline model.
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C.2.5 Advertising and the Price-Elasticity of Demand

A strand of the advertising literature has focused on the effect of advertising on the elasticity

of demand (see, for instance, Molinari and Turino (2015) and Benhabib and Bisin (2002)). In this

section, we present a model in which advertising can change the price-elasticity of demand. We

further show that the demand shifting property of advertising is maintained so that the results

from our baseline model could be obtained in such a framework as well.

Following Molinari and Turino (2015), we write:

Y =

[∫ 1

0

q
1
ε
j (yj +D(dj))

ε−1
ε dj

] ε
ε−1

where D is a decreasing function, with D(0) ≥ 0. The inverse demand function can be written

as:

pj = (qjY )
1
ε [yj +D(dj)]

− 1
ε

Setting D′(dj) < 0 as in Molinari and Turino (2015), we obtain that advertising acts as a

positive demand shifter. Furthermore, the price-elasticity of demand is equal to:∣∣∣∣∂yj/yj∂pj/pj

∣∣∣∣ = ε

(
1 +

D(dj)

yj

)
Thus, advertising decreases the price-elasticity of demand, ceteris paribus. Intuitively, by

conducting advertising, firms alter the substitutability between goods, and make them more price-

inelastic.

D Description of R&D Tax Credit Measures

This section describes the measures of R&D tax credits which are used in our empirical inves-

tigation of the substitution between R&D and advertising in Section III.C. Besides the statutory

credit rate, we use the following measures:

• First, the tax-adjusted credit rate takes into account the fact that the tax credit is itself

subject to corporate taxation in some states. We compute the tax-adjusted credit rate for

state s at time t as:

Tax-adjusted Ratest = Statutory Credit Ratest × (1− σst × Tax Ratest)

where σst is the share of the R&D credit which is subject to corporate taxation. When the

credit is taxed, the credit rate is now not only influenced by differences in the statutory
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credit rate over time and across states, but also by changes in corporate taxes.

• Second, we use an alternative measure of the marginal effective R&D tax credit, proposed

by Wilson (2009). This measure is available only until 2006. It acknowledges the different

definitions of the R&D expenditures which are eligible for tax credit as well as the horizon

over which the tax credit is calculated. In some states, all R&D expenditures can lead to a

tax credit, while some other states offer a credit only to R&D expenditures above a certain

base level. This threshold, in turn, may be a moving average of past R&D expenditures.

For such states, the moving-average base is usually computed as the product of firm sales

and the R&D-to-sales ratio over the n previous periods. For a firm with R&D expenditures

above the base level, the marginal effective tax credit rate (mst) is computed as:

mst = Statutory Credit Ratest × (1− σst × τ est)×

(
1− 1

n

n∑
k=1

(1 + rt+k)
−k

)

where r is the real interest rate, n is the number of periods over which the moving-average

base is calculated, and τ est is the effective marginal tax rate which takes into account the fact

that, in some states, taxes paid to the state can be deducted from federal taxable income,

and vice versa. The rate also takes into account the fact that R&D tax credit are subject to

corporate taxation in some states.

For states with base definition based on the moving-average of past R&D activity, every

dollar spent on R&D today decreases the amount of R&D that qualifies for a tax credit in

the future and hence reduces the effective marginal tax credit rate. In some states such as

New York and Connecticut, all R&D expenditure qualifies for a tax credit (i.e., there is no

moving-average definition of the base level). In these cases, the marginal effective credit rate

is equal to the (tax-adjusted) statutory credit rate.

• Finally, we use one additional state-level measure of the cost of R&D: the R&D user cost.

This measure was extended from Hall and Jorgenson (1967) to R&D investment by Bloom

et al. (2002), and computed at the U.S. state and federal levels by Wilson (2009). In

particular, the user cost of R&D in state j is given by:

R&D User Costst =
1− v (mst +mft)− z

(
τ est + τ eft

)
1−

(
τ est + τ eft

) (
rt + δ

)
where the f subscript stands for federal, v is the share of R&D expenditures that qualifies for

preferential tax treatment, z is the present discounted value of tax depreciation allowances,

and δ is the depreciation rate of R&D capital. Following Wilson (2009), we set v = 0.5,

z = 0.525 and δ = 0.15.
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Dubé, J.-P., Hitsch, G. J. and Manchanda, P. (2005). An empirical model of advertising

dynamics. Quantitative Marketing and Economics, 3 (2), 107 – 144.

Erdem, T., Keane, M. and Sun, B. (2008). A dynamic model of brand choice when price and

advertising signal product quality. Marketing Science, 27 (6), 949 – 1136.

Grossman, G. M. and Shapiro, C. (1984). Informative advertising with differentiated products.

The Review of Economic Studies, 51 (1), 63 – 81.

Hall, R. E. and Jorgenson, D. W. (1967). Tax policy and investment behavior. The American

Economic Review, 57 (3), 391 – 414.

Milgrom, P. and Roberts, J. (1986). Price and advertising signals of product quality. Journal

of Political Economy, 94 (4), 796 – 821.

Molinari, B. and Turino, F. (2015). Advertising and business cycle fluctuations. Working

Paper, Universitat Pompeu Fabra.

Nelson, P. (1974). Advertising as information. Journal of Political Economy, 82 (4), 729 – 754.

Wilson, D. J. (2009). Beggar thy neighbor? The in-state, out-of-state, and aggregate effects of

R&D tax credits. The Review of Economics and Statistics, 91 (2), 431 – 436.

14


	Comparative Statics
	The BGP Algorithm
	Model Extensions
	Patents and Major Innovations
	Alternative Advertising Functions
	Goodwill Accumulation
	Advertising in Utility
	``Wasteful'' Combative Advertising
	Informative Advertising
	Advertising and the Price-Elasticity of Demand


	Description of R&D Tax Credit Measures 

