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A Omitted Proofs

A.1 Proof of Proposition 1

We prove that a monotone continuous equilibrium exists by considering the limit of a se-
quence of finite horizon equilibria. We show that this limit exists and that the equilibrium
objects associated with it are continuous and increasing in the government’s reputation.

Define Q (σ,π) = qPH + q (1 − π)
∑
s psh (θL|s)σ (π, s),

ω∗ (Q, s) = λh (θH|s) [θHk (Q)α − b (Q)] + (1 − λ) [h (θH|s)b (Q) − k (Q)]

ω (Q, s) = λh (θH|s) [θHk (Q)α − b (Q)] + (1 − λ) [h (θH|s)b (Q) −ψh (θL|s)b (Q) − k (Q)]

∆ω (Q, s) = ψh (θL|s)b (Q)

with k (Q) = (αθHQ)1/(1−α), b (Q) = (αθH)
1/(1−α)Qα/(1−α). Let

X = {∆W : [0, 1]→ R and ∆W (·) is increasing and continuous and ∆W (pnc) = 0}

and f : X→ Σ as f (∆W) = σ to be the smallest1 solution to the functional equation

σ (π, s) =


0 if β∆W (pnc + π∆p) > ∆ω (Q (σ,π) , s)

σ̃ : β∆W
(
pnc +

π∆p
π+(1−π)(1−σ̃)

)
= ∆ω (Q (σ,π) , s)

1 if β∆W (pc) < ∆ω (Q (σ,π) , s)

(1)

Define the operator T∆ : X→ X as

∆W ′ (π) = T∆ (∆W) (π) =W ′ (π) −W ′ (pnc)

where

W ′ (π) =
∑
s

psσ (π, s)ω∗ (Q (σ,π) , s)

+
∑
s

ps [1 − σ (π, s)]
[
ω (Q (σ,π) , s) +β∆W

(
pnc +

π∆p

π+ (1 − π) (1 − σ (π, s))

)]
.

and σ = f (∆W) . Note that if ∆W = T∆∆W then σ = f (∆W) is an equilibrium for the

1By doing so we are selecting the best equilibrium. We could alternatively look for the worst by choosing
the largest solution.
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model. In fact, if we have a fixed point then we can compute

W (pnc) =
∑
s

psσ (pnc, s)
ω∗ (Q (σ,pnc) , s)

(1 −β)

+
∑
s

ps (1 − σ (pnc, s))

[
ω (Q (σ,pnc) , s) +β∆W

(
pnc +

π∆p
pnc+(1−pnc)(1−σ(pnc,s))

)]
1 −β

and
W (π) =W (pnc) +∆W (π)

and so all equilibrium conditions are satisfied.
We first establish a preliminary result that characterizes f (∆W):

Claim. Given ∆W ∈ X, σ (π, s) = f (∆W) is decreasing in π. Moreover, if ∆WH > ∆WL

then f (∆WH) 6 f (∆WL).

Proof. Note that the smallest solution of (1) is the smallest fixed point of the following
operator: Tσ : Σ→ Σ defined as

Tσσ (π, s) =


0 if β∆W (pnc + π∆p) > ∆ω (Q (σ,π) , s)

σ̃ : β∆W
(
pnc +

π∆p
π+(1−π)(1−σ̃)

)
= ∆ω (Q (σ,π) , s)

1 if β∆W (pc) < ∆ω (Q (σ,π) , s)

where Σ = {σ : [0, 1]× S→ [0, 1]}. First we show that for any σ ∈ Σ and ∆W ∈ X,
σ ′ (π, s) = (Tσσ) (π, s) is decreasing in π. Suppose by way of contradiction that there
exists πL < πH and σ ′ (πL, s) < σ ′ (πH, s) for some s so that the bailout probability is
larger if we start from a higher prior.

Suppose first that σ ′ (πL, s) = 0 then

∆ω (Q (σ,πL) , s) 6 β [W (pnc + πL∆p) −W1 (pnc)] .

We also have

∆ω (Q (σ,πH) , s) < ∆ω (Q (σ,πL) , s)

and
β [W (pnc + πL∆p) −W (pnc)] 6 β [W (pnc + πH∆p) −W (pnc)]

where the first inequality follows from Q (σ,πH) < Q (σ,πL) and the fact that B (Q) is
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increasing, and the second inequality fromW (π) being an increasing function. Therefore,

∆ω (Q (σ,πH) , s) 6 β [W (pnc + πH∆p) −W (pnc)]

and σ ′ (πH, s) = 0, yielding a contradiction.
Next, suppose that 0 < σ ′ (πL, s) < σ ′ (πH, s) < 1. Then,

β

[
W

(
pnc +

π∆p

π+ (1 − π) (1 − σ ′ (πH, s))

)
−W (pnc)

]
= ∆ω (Q (σ,πH) , s) ,

β

[
W

(
pnc +

π∆p

π+ (1 − π) (1 − σ ′ (πL, s))

)
−W (pnc)

]
= ∆ω (Q (σ,πL) , s) .

Therefore, since ∆ω (Q (σ,πH) , s) 6 ∆ω (Q (σ,πL) , s) andW is increasing, it must be that

pnc +
πL∆p

πL + (1 − πL) (1 − σ ′ (πL, s))
> pnc +

πH∆p

πH + (1 − πH) (1 − σ ′ (πH, s))

⇐⇒
(1 − πH)

πH

(
1 − σ ′ (πH, s)

)
>

(1 − πL)

πL

(
1 − σ ′ (πL, s)

)
⇐⇒ 1 − σ ′ (πH, s) >

(1 − πL)

πL
/
(1 − πH)

πH

(
1 − σ ′ (πL, s)

)
> 1 − σ ′ (πL, s)

⇐⇒ σ ′ (πL, s) > σ ′ (πH, s)

obtaining a contradiction.
Finally, if 0 < σ ′ (πL, s) < σ ′ (πH, s) = 1 then

β [W (pc) −W (pnc)] < ∆ω (Q (σ,πH) , s) < ∆ω (Q (σ,πL) , s)

implying σ ′ (πL, s) = 1, which is also a contradiction. Thus σ ′ (π, s) = (Tσσ) (π, s) is
decreasing in π.

Next, we show that Tσ is monotone in σ. That is, if σH > σL then σ ′H > σ ′L. Suppose
by way of contradiction that for some π and s, σ ′H (π, s) < σ ′L (π, s). Then, it must be that
σ ′L (π, s) > 0 so

β∆W

(
pnc +

π∆p

π+ (1 − π)
(
1 − σ ′L (π, s)

)) > ∆ω (Q (σL,π) , s) .

Since σH > σL then Q (σH,π) > Q (σL,π) and

∆ω (Q (σH,π) , s) > ∆ω (Q (σL,π) , s) .
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Thus,

β∆W

(
pnc +

π∆p

π+ (1 − π)
(
1 − σ ′H (π, s)

)) > β∆W(
pnc +

π∆p

π+ (1 − π)
(
1 − σ ′L (π, s)

))
> ∆ω (Q (σL,π) , s)

> ∆ω (Q (σH,π) , s)

which implies that σ ′H (π, s) = 1, a contradiction. Therefore the operator Tσ is monotone
and we can find f as

f (∆W) = lim
n→∞Tnσ0 0 (π, s) = 0 ∀ (π, s)

where 0 is some initial feasible value.
Finally, we show that if ∆WH > ∆WL then f (∆WH) 6 f (∆WL). We know that

f (∆Wi) = lim
n→∞Tnσ (0;∆Wi)

so it suffices to show that for all n

σnH (π, s) = Tnσ (0;∆WH) 6 Tnσ (0;∆WL) = σ
n
H (π, s)

which is true since Tσ is monotone increasing in σ and monotone decreasing in ∆W. This
must also be true in the limit so that f (∆WH) 6 f (∆WL).

We now show that T∆∆W ∈ X. Notice that the definition of T∆ implies that T∆ (∆W) (pnc) =

0. Thus, what is left is to show that the operator T∆ maps increasing functions into in-
creasing functions.

Claim. Suppose that ∆W (π) is an increasing function. Then ∆W ′ (π) = T∆ (∆W) (π) is
also an increasing function.

Proof. Let σ = f (∆W). Consider πL < πH and define S1 = {s : σ (πL, s) = σ (πH, s) = 0},
S2 = {s : σ (πL, s) > σ (πH, s) = 0}, and S3 = {s : σ (πL, s) > σ ′ (πH, s) > 0} so that in S1

there are no bailouts under both πL and πH, in S2 there is a positive probability of bailouts
under πL but not under πH, and in S3 bailouts happen with positive probability under
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both πL and πH. Then

W ′ (πL) =
∑
s∈S1

ps [ω (Q (πL,σ) , s) +β∆W (pnc + πL∆p)]

+
∑
s∈S2

ps [ω
∗ (Q (πL,σ) , s) +β∆W (pnc)]

+
∑
s∈S3

ps [qω
∗ (Q (πL,σ) , s) +β∆W (pnc)]

and

W ′ (πH) =
∑
s∈S1

ps [ω (Q (πH,σ) , s) +β∆W (pnc + πH∆p)]

+
∑
s∈S2

ps [ω (Q (πH,σ) , s) +β∆W (pnc + πH∆p)]

+
∑
s∈S3

ps [qω
∗ (Q (πH,σ) , s) +β∆W (pnc)] .

Since Q (πH,σ) < Q (πH,σ) andω (Q, s) is decreasing in Qwe have that for all s

ω (Q (πH,σ) , s) −ω (Q (πL,σ) , s) > 0,

ω∗ (Q (πH,σ) , s) −ω∗ (Q (πL,σ) , s) > 0.

Moreover, since ∆W is increasing we have

W (pnc + πH∆p) >W (pnc + πL∆p) .

Thus, for all s ∈ S1 ∪ S3 we have that the value at πH is higher than at πL. Finally, for
s ∈ S2 we have that

ω (Q (πH,σ) , s) +β∆W (pnc + πH∆p) > ω
∗ (Q (πH,σ) , s) +β∆W (pnc)

> ω∗ (Q (πL,σ) , s) +β∆W (pnc)

and so it follows that

W ′ (πH) −W
′ (πL) > 0⇒ ∆W ′ (πH) −∆W

′ (πL) > 0.

Finally, consider the sequence {∆Wn}
∞
n=0, where ∆W0 (π) = 0 and ∆Wn+1 = T∆∆Wn

for all n > 0. We show that this sequence is monotone increasing.
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Claim. If pnc is sufficiently close to zero then ∆Wn+1 (π) > ∆Wn (π) for all π and n.

Proof. We use an induction argument to prove the result. Consider first the initial iter-
ation. Since ∆W0 (π) = 0 for all π, σ1 = f (∆W0) = 1 for all π and s 6= sH. Thus,
Q1 (π) = qPH + q (1 − π)PL and

W1 (π) =
∑
s 6=sH

psω
∗ (Q1 (π) , s) + pHω (Q1 (π) , sH)

which is strictly increasing in π. Thus, for all π > pnc

∆W1 (π) =W1 (π) −W1 (pnc) > 0 = ∆W0 (π) .

Moreover, we have that for all π > pnc:

∆W1 (pnc + π∆p) −∆W1 (pnc (1 +∆p)) > ∆W0 (pnc + π∆p) −∆W0 (pnc (1 +∆p)) .

Consider now an arbitrary interation n:

Wn+1 (π) = pH [ω (Qn+1 (π) , sH) +β∆Wn (pnc + π∆p)]

+
∑
s 6=sH

psσn+1 (π)ω
∗ (Qk+1 (π) , s)

+
∑
s 6=sH

ps (1 − σk+1 (π))

[
ω (Qk+1 (π) , s) +β∆Wk

(
pnc +

π∆p

π+ (1 − π) (1 − σk+1 (π, s))

)]
.

Assume that the sequence up to n satisfies ∆Wn > ∆Wn−1 and

∆Wn (pnc + π∆p) −∆Wn (pnc (1 +∆p))

>∆Wn−1 (pnc + π∆p) −∆Wn−1 (pnc (1 +∆p)) . (2)

For π > pnc, we have that

Wn+1 (π) −Wn (π) > pHβ [∆Wn (pnc + π∆p) −∆Wn−1 (pnc + π∆p)] (3)

becauseQn+1 6 Qn,ω andω∗ are decreasing inQ, σn+1 6 σn, and∆Wn (π) > ∆Wn−1 (π)

for all π > pnc by the induction hypothesis.
If pnc is sufficiently close to 0, then σn+1 = f (∆Wn) is such that σn+1 (pnc, s) = 1 for

all for s 6= sH and so Qn+1 (pnc) = Q̄ (pnc) = PH + (1 − π)PL and thus does not depend
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on n. Therefore, for pnc close to zero

Wn+1 (pnc) =
∑
s∈S

psω
∗ (Q̄ (pnc) , s

)
+βpH∆Wn (pnc (1 +∆p)) .

and so,

∆Wn+1 (π) −∆Wn (π) = [Wn+1 (π) −Wn (π)] − [Wn+1 (pnc) −Wn (pnc)]

> βpH [∆Wn (pnc + π∆p) −∆Wn−1 (pnc + π∆p)]

−βpH [∆Wn (pnc (1 +∆p)) −∆Wn−1 (pnc (1 +∆p))]

> 0

where the first inequality follows from (3) and pnc being close to zero, and the second
inequality follows from (2). Finally, since pnc is close to zero, ∆Wn+1 (pnc (1 +∆)) is close
to zero and so condition (2) holds for interationn+1, completing the induction argument.

Thus, the sequence {∆Wn}
∞
n=0 ⊂ X is increasing. Moreover, it is bounded because

∆Wn 6
[
WR (0) −WR (1)

]
. Thus, the constructed sequence converges, ∆Wn → ∆W ∈ X,

and the limit is an equilibrium as ∆W = T∆W. Since ∆W ∈ X we have that ∆W is
increasing in π. Since we showed that σ = f (∆W) is decreasing in π for all ∆W ∈ X,
the equilibrium bailout probability on path, σ, is decreasing in π. Finally, σ (π, sL) >

σ (π, sM) > σ (π, sH) follows from the fact that the static costs of not bailing out are are
increasing in s. Q.E.D.

A.2 Proof of Proposition 2

We first show that under condition (21) in Assumption 1 we have σ (π, sL) = 1 for all π.
To this end, note that in any equilibrium B (π) = b (γ̄ (π)) > b (0). Moreover, note that
the dynamic gains from bailing out, W (pc) −W (pnc), are bounded by WR (0) −WR (1),
i.e.,

W (pc) −W (pnc) 6W
R (0) −WR (1) .

This is becauseWR (0) =WR >W (pc) since the value of the Markov equilibrium is lower
than the value of the Ramsey plan, and W (pnc) > WR (1) because along the equilibrium
path private agents believe that with some probability they are facing the commitment
type. Hence we have that

ψB (π) > ψb (0) > β
[
WR (0) −WR (1)

]
> β [W (pc) −W (pnc)]
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and so it is optimal to bail out with probability one if s = sL.
Next, we show that for some π it is optimal to mix in a mild crisis under assumption

(22) in the text. Since we know that σ (π, sL) = 1 for all π then

γ̄ (π) =
pL (1 − π)σ (π, sL) + pMµ (1 − π)σ (π, sM)

PL
∈
[
(1 − π)

pL
PL

, (1 − π)

]
so

B (π) ∈
[

b (1 − π) , b
(
(1 − π)

pL
PL

)]
.

First, suppose by way of contradiction that σ (π, sM) = 0 for all π. Then it must be that

0 < ψµB (π) 6 β [W (pnc + π∆p) −W (pnc)]

but as pnc → 0, for π = pnc = 0 we have

0 < ψµB (pnc) 6 β [W (pnc) −W (pnc)] = 0

which is a contradiction. Thus for π low enough we have σ (π, sM) > 0.
We now show that it is not optimal to bail out for sure in state sM. Suppose by way of

contradiction that σ (π, sM) = 1 for all π. Thus, we have that γ̄ = 1 so it must be that for
all π

ψµb (1 − π) 6 β [W (pc) −W (pnc)] .

Under the contradiction hypothesis, σ (π, si) = 1 for all π and si = sM, sL so the continua-
tion value for the optimizing type is

W (π) = (1 − 2λ) [qPHb (1 − π) − k (1 − π)] + λ [qPHk (1 − π)α − k (1 − π)]

+βPHW (pnc + π∆p) +βPLW (pnc)

which evaluated at π = pc and pnc reduces to

W (pnc) = (1 − 2λ) [qPHb (1 − pnc) − k (1 − pnc)] + λ [qPHk (1 − pnc)
α − k (1 − pnc)]

+βPHW (pnc + pnc∆p) +βPLW (pnc)

W (pc) = (1 − 2λ) [qPHb (1 − pc) − k (1 − pc)] + λ [qPHk (1 − pc)
α − k (1 − pc)]

+βPHW (pnc + pc∆p) +βPLW (pnc)
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and as pnc → 0 and pc → 1 we have

W (pnc) = (1 − 2λ) [qPHb (1) − k (1)] + λ [qPHk (1)α − k (1)]

+βPHW (pnc) +βPLW (pnc)

W (pc) = (1 − 2λ) [qPHb (0) − k (0)] + λ [qPHk (0)α − k (0)]

+βPHW (pc) +βPLW (pnc) .

Thus, using [qPHb (0) − k (0)] = 0 and subtracting the two expressions above we obtain

∆W (pc) =
(1 − 2λ)
1 −βPH

{k (1) − qPHb (1)}

+
λ

1 −βPH
{[qPHk (0)α − k (0)] − [qPHk (1)α − k (1)]} .

Since for all λ ∈ [0, 1/2] we have that (1 − 2λ) + λ = 1 − λ 6 1, condition (22) in the text
ensures that

β
k (1) − qPHb (1)

1 −βPH
> ψµb (1) ,

β
{[qPHk (0)α − k (0)] − [qPHk (1)α − k (1)]}

1 −βPH
> ψµb (1) ,

which in turn imply that
β∆W (pc) > ψµ (1)

so that it is not optimal to have σ (π, sM) = 1 because the static costs of not bailing out are
smaller than the dynamic benefits. This is a contradiction. Q.E.D.

A.3 Proof of Proposition 4

To prove that the conjectured equilibrium with σ1 = 1 exists, we need to show that (26),
(27), and (28) in the text hold at π = pc = 1 and σ1 = 1. From (25) in the text, a simple
computation gives us the transitory type’s continuation value:

U2T (θ1,π) = PH (q (PH + (1 − π)PL))
α/(1−α) θ

1/(1−α)
H αα/(1−α) (1 −α) . (4)

Recall that under the conjectured equilibrium, the transitory types do not receive a bailout
but repay in both states.Their problem in period 1 is

max
k
PHθHk

α − k/Q
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with Q = q. Thus,
k1T = (αPHθHq)

1/(1−α)

and
B1T = (αPHθH)

1/(1−α) qα/(1−α) < B1P. (5)

Using (4) and (5), conditions (26), (27), and (28) in the text can be written as (recall that
π = 1)

−(αPHθH)
1/(1−α) qα/(1−α) +βPHq

α/(1−α)θ
1/(1−α)
H αα/(1−α) (1 −α) > 0,

−(αPHθH)
1/(1−α) qα/(1−α) +βPH (qPH)

α/(1−α) θ
1/(1−α)
H αα/(1−α) (1 −α) < 0,

β [W2 (1) −W2 (0)] < ψ [µB1P + (1 − µ)B1T ] .

Using the expression forW2 (π) we have

W2 (1) −W2 (0) = 0 − (αθH)
1

1−α Q (0)
α

1−α [qPH −Q (0)]

= (αθHq)
1

1−α PL.

Moreover, since B1P > B1T , to show that (26), (27), and (28) in the text are satisfied it is
sufficient to show that

−(αPHθH)
1/(1−α) qα/(1−α) +βPHq

α/(1−α)θ
1/(1−α)
H αα/(1−α) (1 −α) > 0,

−(αPHθH)
1/(1−α) qα/(1−α) +βPH (qPH)

α/(1−α) θ
1/(1−α)
H αα/(1−α) (1 −α) < 0,

β [W (1) −W (0)] < ψ (αPHθH)
1/(1−α) qα/(1−α).

It is straightforward to verify that these three inequalities are satisfied under Assumption
2. Q.E.D.

A.4 Proof of Proposition 5

We now want to show that
−b1 +βU2 (pnc) > 0.

Note that
b1 6 b2 (0) = (αθH)

1/(1−α) qα/(1−α).

Thus it is sufficient to show that

−(αθH)
1/(1−α) qα/(1−α) +βPHq

α/(1−α)θ
1/(1−α)
H

[
αα/(1−α) −α1/(1−α)

]
> 0
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or
θ

1/(1−α)
H qα/(1−α)

{
βPH

[
αα/(1−α) −α1/(1−α)

]
−α1/(1−α)

}
> 0

or
βPH − (1 +βPH)α > 0.

But this follows directly from (29) in the text. Q.E.D.

B Extensions

B.1 Model with N borrowers

Consider an environment with N borrowers. Let B = (b1, ...,bN), K = (k1, ...,kN) and
Θ = (θ1, ..., θN). We show that asN→∞, the equilibrium outcome is the one in the main
text.

Consider first the incentives for the government in sub-period 2. If the government
bails out, its static value is

ω∗ (B, K,Θ) = max
Ti
λ

[∑
i

1
N

[max {θikαi + Ti − bi; 0}]

]
+

(1 − λ)

[∑
i

1
N
biI{θikαi +Ti−bi>0} −

∑
i

1
N
Ti

]
.

The value with no transfers is

ω (B, K,Θ) = λ

[∑
i

1
N

[max {θikαi − bi; 0}]

]
+ (1 − λ)

∑
i:θi=θH

1
N
bi −ψ

∑
i:θi=0

1
N
bi.

Notice that sinceN is finite and λ 6 1/2, the optimal transfers will satisfy T ∈ {0, T∗} since
choosing any other level only imposes costs on the government. Thus, we can summarize
the government’s decision is sub-period 2 by the bailout policy σ (π, B, K,Θ). The static
benefits of bailing out are

∆ω (B, K,Θ) = ψ
∑
i:θi=0

1
N
bi. (6)

Consider now the problem for a borrower. This problem is identical to the one in the
main text, except that now they internalize the effect of their choices on the government’s
equilibrium bailout policy σ (π, B, K,Θ). The first order condition that characterizes debt
issuance is

αθH (Qibi)
α−1 (Qi +Qbibi)− 1 = 0 (7)
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where Qi = Qi (B, K,π,σ) is the pricing schedule for borrower iwhich can be written as

Qi (B, K,π,σ) = qPH + q (1 − π)
∑
s

ps
∑
Θ

Pr (Θ|s)σ (π, B, K,Θ)

where

Pr (Θ|s) =
N∏
i=1

h (θi|s)

and
Qbi =

∂Qi
∂bi

= q (1 − π)
∑
s

ps
∑
Θ

Pr (Θ|s)
∂σ (π, B, K,Θ)

∂bi
.

This is identical to the characterization with a continuum of borrowers if Qbi = 0. We
next show this is the case in the limit as N→∞.

First note that the dynamic benefits are independent of bi and so borrowers can only
affect the bailout decision by affecting the static benefits of bailing out. Differentiating (6)
we obtain

∂

∂bi
∆ω (B, K,Θ) =


ψ
N if θi = 0

0 if θi = θH

which converges to 0 asN→∞. ThereforeQbi converges to zero and in the limit the first
order condition for the borrower is αθH (Qibi)

α−1Qi − 1 = 0 so

bi (π) = (αθH)
1

1−α Qi (π)
α

1−α , ki (π) = (αθH)
1

1−α Qi (π)
1

1−α .

Using the law of large numbers we have,

Qi (π) = qPH + q (1 − π)
∑
s

psσ (π, B, K,Θ (s))

where Θ (s) is a sequence Θ = {θn}
∞
n=1 with a share h (θL|s) of borrowers with realizations

equal to θL and a share h (θH|s) of borrowers with realizations equal to θH. The expression
above is the same as the one in Lemma 2 for the case with a continuum of borrowers. Since
the static benefits in (6) are the same as the ones in (9) in the text then the limits ofW and
σ are also equal to that in the continuum case. To see why, notice that we can just apply
the same argument as in Proposition 1.

B.2 Ramsey Problem

Here we show that if α is sufficiently high and ψ is sufficiently low, then a government
with commitment chooses not to bail out. Thus, bailouts are not optimal ex-ante but are
only optimal ex-post.

13



The objective of the government with commitment is to maximize

Wc ≡ (1 − λ) [e−K+ qPHB] + λ [qPH (θHK
α −B)] −ψPL (1 − γ̄)B (8)

where the first term is the consumption of taxpayers and lenders, the second term is the
borrowers’ consumption, and the last term is the social default cost. Note that we can
rewrite the first two terms of (8) as

(1 − λ) [e−K+ qPHB] + λ [qPH (θHK
α −B)] − λK+ λK

= (1 − λ) e+ (1 − λ) (−K+ qPHB) + λ [qPHθHK
α −K] + λ (K− qPHB)

= (1 − λ) e+ (1 − 2λ) (−K+ qPHB) + λ [qPHθHK
α −K] .

Thus, the Ramsey problem is

max
B,K,γ̄

(1 − λ) e− (1 − 2λ) (K− qPHB) + λ [qPHθHK
α −K] −ψPL (1 − γ̄)B

subject to

B = b (γ̄) = (αθH)
1/(1−α) [q (PH + PLγ̄)]

α/(1−α)

K = k (γ̄) = (αθHq (PH + PLγ̄))
1/(1−α) .

Differentiating with respect to γ̄we have:

∂Wc

∂γ̄
= k ′ (γ̄)

[
−(1 − λ) + λαqPHθHk (γ̄)α−1

]
+ b ′ (γ̄) [(1 − λ)qPH − λ−ψPL (1 − γ̄)] +ψPLb (γ̄) .

Note that

∂Wc

∂γ̄
6 λ

[
αqPHθHk (γ̄)α−1 − 1

]
k ′ (γ̄) − b ′ (γ̄)ψPL (1 − γ̄) +ψPLb (γ̄)

6 −ψPL
[
b ′ (γ̄) (1 − γ̄) − b (γ̄)

]
where the first inequality follows from the fact that the term (1 − 2λ) (K− qPHB) is in-
creasing in γ̄, the second from the fact that αqPHθHk (γ̄)α−1 − 1 < 0 and k ′ (γ̄) > 0. Thus,
it suffices to show that [b ′ (γ̄) (1 − γ̄) − b (γ̄)] > 0 or

αqPL
(1 −α)

(αθH)
1/(1−α) [q (PH + PLγ̄)]

α/(1−α)−1 (1 − γ̄)−(αθH)
1/(1−α) [q (PH + PLγ̄)]

α/(1−α) > 0
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or
αqPL
(1 −α)

(1 − γ̄)

[q (PH + PLγ̄)]
− 1 > 0

which is true if α is sufficiently close to 1 and γ̄ < 1. For γ̄ close to one, we have that

lim
γ̄→1

∂Wc

∂γ̄
= k ′ (1)

[
−(1 − λ) + λαqPHθHk (1)α−1

]
+ b ′ (1) [(1 − λ)qPH − λ] +ψPLb (1)

which is negative if ψ is small enough. Therefore if α is sufficiently close to one and ψ is
sufficiently small then the Ramsey problem has γ̄ = 0.

B.3 A Consumption Smoothing Model

In this section we describe a model in which the desire to borrow arises from consumption
smoothing motives. All of our results go through in this economy.

All borrowers are one-period lived and symmetric ex-ante. In sub-period 1, borrower
i has income Yi1 = Y1 and can borrow bi from risk neutral lenders to finance consumption
ci1. In sub-period 2, the aggregate state s is realized according to a distribution P. As in
our baseline model, assume that the state can take three values: s ∈ {sL, sM, sH} with
probabilities pL, pM, and pH respectively. Each borrower receives stochastic income θ
drawn from a distributionH (·|s) . We assume that θ can take on two values: θH and θL. In
state sH, all the borrowers receive the high endowment so h (θH|sH) = 1 and h (θL|sH) = 0.
In state sM instead, h (θH|sM) = 1−µ and h (θL|sM) = µ . Finally, in state sL all borrowers
receive the low endowment, h (θL|sL) = 1 and h (θH|sL) = 0. After the realization of θ,
each borrower can default on its debt. The rest of the model is unchanged.

Let ci2 (s, θ) denote the consumption of borrower i in sub-period 2 given (s, θ). The
preferences of borrower i are given by

u (ci1) + δ
∑
s

ps
∑
θ

h (θ | s)u (ci2 (s, θ)) (9)

where u (·) is increasing, concave, and differentiable, and δ is the borrower’s discount
factor across sub-periods. The budget constraint of the borrower in sub-period 1 is

ci1 = Y1 +Qbi

where bi is the debt issued by the borrower and Q is the price of the debt. In sub-period
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2, if the borrower does not default, its budget constraint is

ci2 (s, θ) = θ− bi + Ti

where Ti are transfers from the government. We assume that the private cost of default to
the borrower, u (s, θ) is given by

u (s, θ) =

u (0) if θ = θH

u (θL) if θ = θL

which implies that these costs exhibit a high degree of convexity. Thus, it is always opti-
mal for borrowers to repay debt if θ = θH while if θ = θL there is repayment only if debt
issued is zero or there is a transfer equal to at least b. Therefore, the fraction of borrowers
defaulting is given by ∆ =

∑
θ h (θ | s) I{u(θ−b+T(B,s)(b,θ))<u(s,θ)} and the optimal transfer is

T ∈ {0, T∗} where
T∗ (B, s) (b, θL) = b.

Given this setup, it is easy to see that all the results in the baseline model apply here as
well.

B.4 Payoff Types

Here we show that the equilibrium outcome in the main text is also the equilibrium out-
come of a policy game with payoff types if the cost of default for the low cost type is
sufficiently small.

Suppose there are two types of governments: low and high cost types which are in-
dexed by subscripts L and H respectively. In particular, the social default cost for the high
cost type is ψH = ψ as in the baseline model (i.e. the one in the main text) and the default
cost for the low cost type is ψL. Here, π is the probability that the government is the low
default cost type L. Let σi (π, s) for i = L,H be the probability of a bailout given prior π in
state s and σ (π, s) denote the equilibrium strategy for the optimizing type in the baseline
model.

Proposition. Under the assumptions in Proposition 1 and 2, there exists ψ̄L > 0 such that for
all ψL 6 ψ̄L

σH (π, s) = σ (π, s) and σL (π, s) = 0, ∀π, s

is an equilibrium.

Proof. Given the conjectured bailout strategies, the levels of debt and capital B (π) and
K (π) are the same as in the case with the commitment type considered in the text. Given
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B (π), K (π), and σL (π, s) = 0, the problem of the high cost type is identical to the problem
of the optimizing type in the baseline model and thus σH (π, s) = σ (π, s) is optimal. We
are left to check that never bailing out is optimal for the low default cost type. To this end,
define the value for the low cost government type of following the conjectured strategy,
WL (π;ψL), as the unique solution to the following functional equation:

WL (π;ψL) = w (π) +β
∑
s

psWL

(
pnc +

π (pc − pnc)

π+ (1 − π) (1 − σ (π, s))
;ψL

)

where the static value given by

w (π;ψL) = (1 − λ) e+(1 − 2λ) [qPHB (π) −K (π)]+λ [qPHθHK (π)α −K (π)]−ψLqPLB (π) .

It is easy to see that since w (π;ψL) is strictly increasing in reputation π, this property
is inherited by WL (π;ψL). For σL (π, s) = 0 to be an equilibrium, it must be that for all
π ∈ [pnc,pc] and s ∈ {sM, sL}

β

[
WL

(
pnc +

π (pc − pnc)

π+ (1 − π) (1 − σ (π, s))
;ψL

)
−WL (pnc;ψL)

]
> ψLh (θL|s)B (π) . (10)

We now show that the posterior after no bailout, pnc +
π(pc−pnc)

π+(1−π)(1−σ(π,s)) , is bounded away
from pnc. Note that for π close to pnc, we know from the proof of Proposition 2 that
σ (π, s) > 0. Let 0 < σ (s) = minπ∈[pnc,pnc+ε] σ (π, s) for some ε > 0. Thus, we have

pnc +
π (pc − pnc)

π+ (1 − π) (1 − σ (π, s))
>

pnc +
pnc(pc−pnc)

pnc+(1−pnc)(1−σ(s))
> pnc for π ∈ [pnc,pnc + ε]

pnc + ε (pc − pnc) > pnc for π > pnc + ε

so we can define

η ≡ min
s∈{sM,sL}

min
π∈[pnc,pc]

{
pnc +

π (pc − pnc)

π+ (1 − π) (1 − σ (π, s))

}
> pnc.

Then the dynamic benefits of not bailing out are at least

β [WL (η;ψL) −WL (pnc;ψL)] > 0

where the strict inequality follows from WL (π;ψL) being strictly increasing in π and η >
pnc. In particular, for ψL = 0 we have that

β [WL (η; 0) −WL (pnc; 0)] > 0
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so condition (10) holds for ψL = 0. Thus, by continuity, there exists ψ̄L > 0 such that for
all ψL 6 ψ̄L condition (10) holds and so it is optimal for the low default cost government
to follow a strategy of never bailing out. Q.E.D.

The proposition implies that any equilibrium outcome in the model with a behavioral
commitment type is an equilibrium outcome in this model with payoff types.

B.5 Arbitrary Distributions and Recovery Rates

We now argue that Proposition 1 hold in more general environments with more general
distributions and recovery rates. We allow both s, θ to be drawn from continuous distri-
butions P (s) and H (θ | s) respectively. We generalize the social cost function to allow for
any increasing function C (·). Finally, in the event of default, we assume that lenders and
borrowers can renegotiate the contract so that borrowers make a partial repayment to the
lenders and avoid the default cost. Let

∆ (B,K, s) =
ˆ

I{B>θKα}dH (θ|s) ,

∆̃ (B,K, s) =
ˆ
θKαI{B>θKα}dH (θ|s)

where ∆̃ (B, s) denotes the maximal transfer that can be extracted from the borrower such
that it is indifferent between defaulting and not.

The static value of bailing out is

ωbailout (B,K, s) = λ
ˆ

max {θKα −B, 0}dH (θ|s) + (1 − λ)
[
(1 −∆ (B,K, s))B+ ∆̃ (B, s)

]
and the static value of not bailing out (and allowing default) is

ωno-bailout (B,K, s) = λ
ˆ

max {θKα −B, 0}dH (θ|s) + (1 − λ)
[
(1 −∆ (B,K, s))B+ ∆̃ (B,K, s)

]
−C (∆ (B,K, s)B) .

Note that even absent a bailout, since private agents can re-negotiate contracts, lenders
will extract ∆̃ (B,K, s) from borrowers who default. Given this the pricing schedule for
debt is

Q (b,k|π,B,K) = q
{ˆ

(1 −∆ (b,k, s))dP (s) +
ˆ
∆̃ (b,k, s)dP (s)

}
(11)

+ q

{
(1 − π)

ˆ
σ (π,B,K, s)

[
∆ (B,K, s)B− ∆̃ (B,K, s)

]
dP (s)

}
.
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Given that private contracts can be renegotiated, lenders receive at least ∆̃ (B,K, s) in the
event of default. The expression on the second line denotes the additional transfer re-
ceived in the event of a bailout. From Lemma 1, the problem for the borrower in period 1
is

max
b,k

ˆ ˆ
max {θkα − b, 0}dH (θ|s)dP (s) (12)

subject to
K 6 Q (b,k|π,B,K)b.

Define Θs+ (B,K) ≡ {θ : θKα −B > 0}. The following Lemma characterizes the private
outcome in the stage game given the bailout policy σ if the distribution for θ is continuous:

Lemma 1. Given π and a bailout policy σ, (B,K,Q) is a symmetric equilibrium outcome if

K = (QB)α ,

ˆ
s

ˆ
θ∈Θs+(B,K)

αθ (QB)α−1 (Q+Q ′B
)
dH (θ | s)dP (s) − 1 = 0,

and Q = Q (B,K|π,B,K) where

Q ′ =
dQ (b,k|π,B,K)

db

∣∣∣∣
(b,k)=(B,K)

.

We show that both the existence and characterization results hold in this environment
if the private equilibrium of the stage game satisfies the following condition:

Assumption 1. For any bailout policy σ (π,B,K, s) which decreasing in π for all (B,K, s), the
private equilibrium outcome is such that B (π) is a decreasing function.

The assumption requires the debt issued to be decreasing in π which implies that the
equilibrium default probabilities in each state s, to be decreasing in π. In general, as π
decreases there are two effects on the equilibrium price of debt Q. First, since the prob-
ability of a bail out is higher, Q increases. However, the resulting increase in borrowing
increases the probability of default which might lower Q. The assumption requires the
first force to dominate so that in equilibrium the price of issuing debt decreases and thus
the debt issued increases. It is easy to see that the example described in the previous
section satisfies this assumption. Under this Assumption, the steps in Proposition 1 go
through unchanged.

19



B.6 Persistent Shocks: Contagion and Shock Sensitivity

In the model with iid shocks, there is no heterogeneity among borrowers at the beginning
of any period. As a result the model cannot generate the contagion effects described in
the introduction. By the contagion effect, we mean the increase in the price of debt for a
country not directly affected by an adverse fundamental shock. Moreover, since the price
of debt depends only on π and not the state, it is not possible to generate the differential
effect of reputation on the sensitivity of prices to fundamentals unless we introduce multi-
ple types of borrowers. To show that our framework can generate such features we extend
the baseline model to allow for persistent of aggregate and idiosyncratic states. As a re-
sult, the distribution functions of idiosyncratic and aggregate shocks are now h (θ ′|s ′, s, θ)
and P (s ′|s).

Let’s consider our simple example. To simplify the algebra we assume that the gov-
ernment cares only about the borrowers (λ = 0). The aggregate state s follows a Markov
chain

P
(
s ′|s
)
=

 pHH pHM pHL

pMH pMM pML

pLH pLM pLL

 .

As before, in state sH, all borrowers draw θH and in state sL all borrowers draw θL, i.e.
h (θH|sH, θ) = 1 and h (θL|sL, θ) = 1 for all θ. We assume that in the medium state, a
fraction µ of borrowers have the low output θL and

h (θL|s = sM, s− = sM, θ− = θL) = ρL

h (θL|s = sM, s− = sM, θ− = θH) = ρH

with ρLµ+ ρH (1 − µ) = µ. Thus, the productivity shock is persistent in the medium state.
Let z− = (s−, θ−), z = (s, θ) and ν (z−) denote the fraction of type z−. Next, let PH (z−)

and PL (z−) be probabilities of a high and low idiosyncratic endowment respectively, con-
ditional on history z−. Therefore,

PH (z−) = ps−H + ps−M
[
Is−=sM

(
1 − ρθ−

)
+
(
1 − Is−=sM

)
(1 − µ)

]
,

PL (z−) = ps−L + ps−M
[
Is−=sMρθ− +

(
1 − Is−=sM

)
µ
]

.

Next, define

γ̄ (z−) ≡
ps−L (1 − π)σ (π, s−, sL) + ps−Mps−M

[
Is−=sMρθ− +

(
1 − Is−=sM

)
µ
]
(1 − π)σ (π, s−, sM)

PL (z−)

to be the probability that an individual borrower with history z− will be bailed out con-
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ditional on drawing θL. As in the i.i.d case this serves as a useful sufficient statistic to
characterize private decisions. The price of debt in this environment is

Q (z−, γ̄) = qPH (z−) + qPL (z−) γ̄ (z−)

and the optimal debt level B (z−, γ̄) is given by

B (z−, γ̄) = (αθH)
1

1−α Q (z−, γ̄)
α

1−α . (13)

Define the B̄ (s−, γ̄) to be aggregate level of debt where

B̄ (sL, γ̄) ≡ B ((sL, θH) , γ̄) = B ((sL, θL) , γ̄) ,

B̄ (sM, γ̄) ≡ µB ((sM, θL) , γ̄) + (1 − µ)B ((sM, θH) , γ̄) ,

B̄ (sH, γ̄) ≡ B ((sH, θH) , γ̄) = B ((sH, θL) , γ̄) .

Next, we characterize a set of continuous monotone equilibria for the economy for an
arbitrary transition matrix P and provide sufficient conditions so that the characterization
results for the iid case extend to this more general environment. Assumption 2 is the
analog for Assumption 1 in the text for the case with persistent endowments.

Assumption 2. Let C (x) = ψx. DefineWR (s, γ̄) as be the solution to

WR (s−, γ̄) = e−
∑
θ

ν (s−, θ) [γ̄ (s−, θ) +ψ (1 − γ̄ (s−, θ))]qPL (s−, θ)B ((s−, θ) , γ̄ (s−, θ))

+β
∑
s

ps−sW
R (s, γ̄)

Assume that
ψB̄ (s−, 0) > β

[
WR (s, 0) −WR (s, 1)

]
for all s (14)

and
A−1 · x > G (15)

where

A =

 1 − pLL pLM pLH

pML 1 − pMM pMH

pHL pHM 1 − pHH

 ,

x =

 q (pLMµ+ pLL) B̄ (sL, 1)
qµ (pMMρL + pML)B ((sM, θL) , 1) + qµ (pMMρH + pML)B ((sM, θH) , 1)

q (pHMµ+ pHL) B̄ (sH, 1)


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and

G =

 ψµB̄ (sL, 0)
ψ [µρLB ((sM, θL) , 1) + (1 − µ) ρHB ((sM, θH) , 1)]

ψµB̄ (sH, 0)

 .

Proposition 1. For an arbitrary transition matrix P, if pnc is sufficiently small, there exists
a continuous monotone equilibrium in which B (s−,π) : S × [0, 1] → R is decreasing in π,
σ (s−,π, s) : S× [0, 1]× S → [0, 1] is decreasing in π, W (s−,π) : S× [0, 1] → R is increasing
in π, Q (s−,π) : S× [0, 1]→ R is decreasing in π for all s−, and

W (sL,π) < W (sM,π) < W (sH,π) .

Furthermore, under Assumption 2, if pc → 1 and pnc → 0 then it must be that:

• It is optimal to bailout with probability one in a severe recession, σ (s−,π, sL) = 1 for all π
and s−.

• It is optimal to mix in a mild recession for some values of π for all s−.

Proof. The proof of the first part is identical to the i.i.d case. To see the second, we
first show that under condition (14) in Assumption 2 we have σ (π, s−, sL) = 1 for all
(π, s−). To this end, note that in any equilibrium B (z−, γ̄) > B (z−, 0). Moreover, note
that the dynamic gains from bailing out,W (s,pc)−W (s,pnc), are bounded byWR (s, 0)−
WR (s, 1) in that

W (s,pc) −W (s,pnc) 6WR (s, 0) −WR (s, 1)

becauseWR (s, 0) >W (s,pc), andW (s,pnc) >WR (s, 1). Hence we have that

ψB (s−,π) > ψB̄ (s−, 0) > β
[
WR (s, 0) −WR (s, 1)

]
> β [W (s,pc) −W (s,pnc)]

and so it is optimal to bail out with probability one if s = sL.
Next we show that it is optimal to mix in a mild recession under assumption (15).

Suppose by way of contradiction that σ (π, s−, sM) = 1 for all π. Under the assumption
that the government type is absorbing, the value for the optimizing type in state s for
π = 1 is

W (s, 1) = qpsH [0 +βW (sH, 1)] + qpsM [0 +βW (sM, 0)] + qpL [0 +βW (sL, 0)] .

For π = 0, since γ̄ (0) = 1 we have for s = {sH, sL}

W (s, 0) = −q (psMµ+ psL) B̄ (s, 1) + qpsHβW (sH, 0)

+ qpsMβW (sM, 0) + qpsLβW (sL, 0)
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and for s = sM

W (sM, 0) = −qµ (pMMρL + pML)B ((sM, θL) , 1) − q (1 − µ) (pMMρH + pML)B ((sM, θH) , 1)

+ qpMHβW (sH, 0) + qpMMβW (sM, 0) + qpMLβW (sL, 0)

and soW (pc) −W (pnc) =W (1) −W (0) equals

W (s, 1) −W (s, 0) = xs + qβ
∑
s ′

pss ′
[
W
(
s ′, 1

)
−W

(
s ′, 0

)]
for some constant xs. Hence we can write

A ·W = x

where

A =

 1 − pLL pLM pLH

pML 1 − pMM pMH

pHL pHM 1 − pHH



W =

 W (sL, 1) −W (sL, 0)
W (sM, 1) −W (sM, 0)
W (sH, 1) −W (sH, 0)


and

x =

 q (pLMµ+ pLL) B̄ (sL, 1)
qµ (pMMρL + pML)B ((sM, θL) , 1) + qµ (pMMρH + pML)B ((sM, θH) , 1)

q (pHMµ+ pHL) B̄ (sH, 1)


and so

W = A−1 · x.

The static gains of bailing out in a mild recession if π = 1 is given by

G =

 ψµB̄ (sL, 0)
ψ [µρLB ((sM, θL) , 1) + (1 − µ) ρHB ((sM, θH) , 1)]

ψµB̄ (sH, 0)

 .

For the contradiction hypothesis to be valid, it must then be that even for π = 1 the
government prefers not to incur the default costs, or

G > A−1 · x
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which contradicts in Assumption 2. Hence it must be that σ (π, s−, sM) = 1 < 1 for some
π.

We are now left to show that we cannot have that σ (π, s−, sM) = 0 for all π. Suppose by
way of contradiction this is indeed the case. In particular, we have that σ (0, s−, sM) = 0.
Hence, it must be that

γ̄ (z−) =
pL (1 − π)σ (π, sL) + pMµ (1 − π)σ (π, sM)

PL (z−)
=
ps−L (1 − π)

PL (z−)
.

The posterior after no-bailout (if π = 0), is

π ′ = pnc + π (pc − pnc) = pnc

since a no-bailout is expected under the contradiction hypothesis, and for s− ∈ {sH, sL}

µB̄ (s−, γ̄) 6 β [W (s,pnc) −W (s,pnc)] .

This is a contradiction since

0 < µB̄ (s−, γ̄) 6 β [W (s,pnc) −W (s,pnc)] = 0.

Hence, we cannot have that σ (π, s−, sM) = 0 for all π. Therefore, there is mixing for some
interval of π. A similar argument holds for s− = sM. Q.E.D.

Thus, a continuous monotone equilibrium exists when shocks are persistent and the
economy displays similar dynamics to the i.i.d case. We now show that the introduction
of persistence can generate the contagion effects described previously. In the i.i.d case,
there is only a single type of borrower in each period. However, with persistent shocks,
if s− = sM, then in the following period there are two types of borrowers: (sM, θL) and
(sM, θH). If there is no bail out and a subsequent rise in reputation, the interest rates
faced by both types rise due to the presence of a common government. This provides an
explanation as to why the CDS spreads for Italy rose after the perceived recovery rates for
Greek bonds declined. The announcement that private creditors were expected to receive
haircuts on Greek bonds signaled that EU countries were less likely to receive the benefit
of a full bail out in case of default in the future. As a result, the cost of borrowing for other
countries that might have been considered at risk of default rose as well.

Proposition 2. (Contagion) If the reputation of the government increases after observing no bail
out in state sM, then the price of debt for types (sM, θH) decreases.

The proofs follows from the observation that the pricing function Q depends posi-
tively on π.
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We next show that this model is capable of generating higher sensitivity to fundamentals
when reputation is high.

Proposition 3. (Sensitivity) For any s−, the difference in the price of debt for a θ− = θH bor-
rower and a θ− = θL borrower is increasing in the reputation of the government. That is,
Q ((s−, θH−) ,π) −Q ((s−, θL−) ,π) is increasing in π. Similarly, for any θ−, the differences
Q ((sH, θ−) ,π) −Q ((sM, θ−) ,π) andQ ((sM, θ−) ,π) −Q ((sL, θ−) ,π) are increasing in π for
π large enough.

Debt prices (and debt issuances) are less responsive to the state s− when the prior is
low. That is, if the probability of facing the optimizing type is low then lenders are less
worried about the state of the world since they expect to get bailed out with high proba-
bility and therefore, debt prices are not sensitive to the state. These effects are illustrated
in Figure 1. As the fourth plot illustrates, the difference between the price of debt across
the different states is increasing in π. At π = 0, the prices are identical and equal to the
risk-free rate since lenders expect to be bailed out with probability one. At π = 1, prices
are driven exclusively by the probability of default and since the states are persistent, the
difference in prices is large.

B.7 Learning Model

We can simplify the analysis by noting that since σ2 = 1, the price in the secondary market
simplifies to

q2 = Q2 (π,B, s, ε|σ) =

(1 − µ) + µ (1 − π)σ1 (π,B,q2) + ε s = sH

(1 − π) [(1 − µ) + µσ1 (π,B,q2)] + ε s = sL
.

It follows that if Q2 (π, sH, εH) = Q2 (π, sL, εL) then

εL = εH + (1 − µ)π.

If we assume that supp (g) = (−∞,+∞) we can then make a change of variable and
express all the equilibrium objects as a function of the realization of ε in state sH. Define

F (π) ≡
ˆ
σ1 (π, ε) [p (sH)g (ε) + p (sL)g (ε+ (1 − µ)π)]dε (16)

to be ex-ante probability of a bailout in the first stage of the sub-period two given prior π.
Then, the price of issuing debt in the first sub-period is

Q (π) = q [p (sH) (1 − µ) + p (sL) (1 − µ) (1 − π) + µ (1 − π) F (π)] (17)
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Figure 1: Equilibrium objects for computed discrete example with persistent shocks

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

s
-
 = s

H

s
-
 = s

M

s
-
 = s

L

0 0.2 0.4 0.6 0.8 1

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

s
-
 = s

H

s
-
 = s

M

s
-
 = s

L

0 0.2 0.4 0.6 0.8 1

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

s
-
 = s

H

s
-
 = s

M

s
-
 = s

L

0 0.2 0.4 0.6 0.8 1

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

s
-
 = s

H

s
-
 = s

M

s
-
 = s

L

26



and so the optimal choice of debt satisfies

B (π) = (αθH)
1

1−α Q (π)
α

1−α . (18)

The value for the government, assuming λ = 0, is given by

W (π) = −Q (π)B (π)+ (19)

+ qp (sH) {(1 − µ)B (π)

+

ˆ
σ1 (π, ε)βW (pnc)g (ε)dε

+

ˆ
[1 − σ1 (π, ε)]

[
−cµB (π) +βW

(
pnc +

π

π+ (1 − π) (1 − σ1 (π, ε))
∆p

)]
g (ε)dε

}
+ qp (sL)

{ˆ
[1 − σ1 (π, ε+ (1 − µ)π)] [−cµB (π)]g (ε+ (1 − µ)π)dε+βW (pnc)

}
.

Finally, the probability of a bailout in the first stage σ1 (π, ε) is given by

σ1 (π, ε) =


0, if cµB (π) 6 βp̂H (π, ε) [W (pnc + π∆p) −W (pnc)]

σ̃, if cµB (π) = βp̂H (π, ε)
[
W
(
pnc +

π∆p
π+(1−π)(1−σ̃)

)
−W (pnc)

]
1, if cµB (π) > βp̂H (π, ε) [W (pnc +∆p) −W (pnc)]

(20)

where
p̂H (π, ε) =

p (sH)

p (sH)g (ε) + p (sL)g (ε+ (1 − µ)π)
.

Thus, (16)–(20) define a set of functional equations that can be solved for the equilibrium
objects F (π), Q (π), B (π),W (π), and σ1 (π, ε).
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