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A Data

We use different data sources, divided in three broad categories. All data are collected at a

quarterly frequency and expressed in term of annualized percentage growth.

Inflation data:

Price growth for the US is measured by Consumer Price Inflation (CPI). Here we use the

‘Consumer Price Index for All Urban Consumers: All Items in U.S. City Average’, seasonally

adjusted measure from US Bureau of Labor Statistics, downloaded from FRED database of

the Federal Reserve Bank of St Louis (Mnemonic: CPIAUCSL) in 2016. The sample period

is 1955Q1-2015Q4. This series is publicly available.

Bibliography reference: Bureau of Labor Statistics (1955-2015)

We also measure price inflation in eight other countries: France, Germany, Italy, Spain in

the European Monetary Union and, additionally, Canada, Japan, Sweden and Switzerland.

For each country, we use the national consumer price indexes. The non-seasonally adjusted

variables have been re-downloaded from Haver Analytics in 2021 (for the purpose of this

replication files). The series are then seasonally adjusted using the X-13ARIMA-SEATS fil-

ter (http://www.seasonal.website/). The sample period for the price level is 1955Q1-2015Q4.

These data are proprietary and accessed from an account at the Deutsche Bundesbank. The

data source is the Organization for Economic Cooperation and Development (OECD) and

the mnemonic are: France (N132PC@OECDMEI), Germany (N134PC@OECDMEI), Italy

(N136PC@OECDMEI), Spain (N184PC@OECDMEI), Canada (N156PC@OECDMEI), Japan

(N158PC@OECDMEI), Sweden (N144PC@OECDMEI), Switzerland (N146PC@OECDMEI).

Bibliography references: Organization for Economic Cooperation and Development

(1955-2015a), Organization for Economic Cooperation and Development (1955-2015b), Or-

ganization for Economic Cooperation and Development (1955-2015c), Organization for Eco-

nomic Cooperation and Development (1955-2015h), Organization for Economic Cooperation

and Development (1955-2015f), Organization for Economic Cooperation and Development

(1955-2015g), Organization for Economic Cooperation and Development (1955-2015d) and

Organization for Economic Cooperation and Development (1955-2015e).

Finally we use the price of crude oil as measured by the: ‘Spot Crude Oil Price: West

Texas Intermediate’. This series was created by the Federal Reserve Bank of St. Louis

to expand the history of the monthly West Texas Intermediate oil price series in FRED
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(mnemonic: WTISPLC) which combines ‘https://fred.stlouisfed.org/series/OILPRICE’ and

‘https://fred.stlouisfed.org/series/MCOILWTICO’. The sample period is 1955Q1-2015Q4.

The series was downloaded in 2016 from the FRED database and it is publicly available.

Bibliography reference: Federal Reserve Bank of St Louis (1955-2015)

Survey-Based Expectations for the US

We measure expectations of both professional forecasters and households. We use both

short-term forecast (up to one year ahead) and long-term forecasts. Starting with pro-

fessional forecasters we use multiple measures for their short-term forecasts. As for the

inflation measures the data are assembled at quarterly frequency. We obtained CPI inflation

forecasts ranging from one-quarter ahead to four-quarter-ahead from the Survey of Profes-

sional Forecasters. The data (name: CPI Inflation Rate (CPI: CPI3-CPI6)) include the

mean forecast across individual forecasters and covers the sample 1981Q3-2015Q4. The data

are publicly available and can be obtained from the Federal Reserve Bank of Philadelphia

(https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/survey-of-professional-

forecasters). They were downloaded in 2016.

Bibliography references: Federal Reserve Bank of Philadelphia (1981-2015b), Federal

Reserve Bank of Philadelphia (1981-2015d), Federal Reserve Bank of Philadelphia (1981-

2015c) and Federal Reserve Bank of Philadelphia (1981-2015a)

Our dataset also include short-term forecasts from the Livingston Survey. It includes

three time series available at bi-annual frequency. The first two series measure the mean

six-month-ahead forecasts of CPI inflation across forecast participants (files: ’Growth of

Mean Forecast for the Levels of Survey Variables’). In the first series, covering the pe-

riod 1955Q1-2015Q4, the inflation forecast is calculated relative to a base period (variable

name: ‘G-BP-To-6M’). In the second series the inflation forecast is calculated relative to

a base forecast: the series is shorter and starts in 1992Q2 (variable name: ‘G-ZM-To-

6M’). The third series measure the median twelve-month forecast across forecasters, cal-

culated relative to a base period (variable name: ‘G-BP-To-12M’). The series is included

in the files:‘Growth of Median Forecast for the Levels of Survey Variables’ and is available

since 1955Q1. The data are publicly available and can be obtained from the Federal Re-

serve Bank of Philadelphia (https://www.philadelphiafed.org/surveys-and-data/real-time-

data-research/livingston-survey).
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Bibliography references: Federal Reserve Bank of Philadelphia (1955-2015b), Federal

Reserve Bank of Philadelphia (1992-2015) and Federal Reserve Bank of Philadelphia (1955-

2015a)

Turning to long-term forecasts, we draw from many different data sources. In detail,

from the Survey of Professional Forecasters we use the 10-Year CPI Inflation Rate (CPI10)

forecast (mean across forecasters) available at quarterly for the sample 1991Q4-2015Q4;

and the 5-Year Forward 5-Year Annual-Average CPI Inflation Rate (CPIF5) (mean across

forecasters) available at quarterly frequency for the sample 2005Q3-2015Q4.

Bibliography references: Federal Reserve Bank of Philadelphia (1991-2015) and Fed-

eral Reserve Bank of Philadelphia (2005-2015)

We also use one-to-ten years ahead (CPI-10Y) mean forecast from the Livingston Survey

available for the sample 1990Q2-2015Q4. These series were obtained in 2016 from the Federal

Reserve Bank of Philadelphia (see above for details) and are publicly available.

Bibliography references: Federal Reserve Bank of Philadelphia (1990-2015)

In addition we use long-term forecasts from the BlueChip Economic Indicators and

BlueChip Financial Forecasts surveys of professional forecasters. These series are propri-

etary data and were collected at the Federal Reserve Bank of New York in 2016. We mea-

sure five-to-ten year mean CPI inflation (consensus) forecasts from both surveys from the

‘five year averages’ column in the ‘Long-Range Consensus U.S. Economic Projections’ (Eco-

nomic Indicators) and ‘Long-Range Estimates’ (Financial Forecasts) sections respectively.

The data are available bi-annually. The forecasts from Economic Indicators cover the range

1984Q1-2015Q4, while the Financial Forecasts are available for the sample 1986Q1-2015Q4.

We also use the one-to-ten-year consensus forecast for CPI inflation from BlueChip Eco-

nomic Indicators that is publicly available from the Federal Reserve Bank of Philadelphia

(https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/survey-of-professional-

forecasters: ‘Additional 10-Year-Ahead Inflation Forecasts from Other Sources’; name of the

file: ‘Additional-CPIE10’). These data, downloaded in 2016, are available at bi-annual fre-

quency for the sample 1979Q4-1991Q1.

Bibliography references: Wolters Kluwer (1984-2015a), Wolters Kluwer (1986-2015)

and Wolters Kluwer (1984-2015b)
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Another publicly available source for long-run forecasts is Table 1 in Levin and Taylor

(1998) which includes five-to-ten year ahead average inflation forecast from the households

Michigan Survey of Consumers (sample 1975Q2-1977Q2); and one-to-ten years CPI inflation

forecast from portfolio managers in the Decision-Makers Poll (sample 1978Q3-1980Q4). The

data is available at irregular frequency.

Bibliography reference: Levin and Taylor (2010)

Finally, we measure five-to-ten-year ahead forecasts from the Consensus Forecasts survey

published by Consensus Economics (https://www.consensuseconomics.com/). The data is

proprietary and was collected at the Federal Reserve Bank of New York in 2016. Specifically,

we use the ‘Consensus 6-10 Year’ long term forecast (mean across forecasters) available bi-

annually for the sample 1990Q2-2015Q4.

Bibliography reference: Consensus Economics (1990-2015a)

For the US, we also use household inflation forecasts from the Michigan Survey of Con-

sumers (https://data.sca.isr.umich.edu/). This data is also proprietary and has been col-

lected at the Federal Reserve Bank of New York in 2016. The long-term forecasts (five-to-ten

years ahead) are measured by the median: ‘Expected Change in Prices During the Next 5

Years’ (found in Table 33 in the survey). The short term forecasts are measured by the me-

dian: ‘Expected Change in Prices During the Next Year’ (found in Table 32 in the survey).

The short-term forecasts are available at a quarterly frequency (with gaps at the beginning

of the sample) for the sample 1968Q3-2015Q4. Long-term forecasts have the same format

and cover the range: 1979Q1-2015Q4.

Bibliography references: University of Michigan (1968-2015) and University of Michi-

gan (1979-2015)

Survey-Based Expectations for other countries:

We use the Consensus Forecasts survey of professional forecasters. The data is propri-

etary and was accessed at the Federal Reserve Bank of New York in 2016. To measure

long-term forecasts, we use the ‘Consensus 6-10 Year’ long term CPI forecast (mean across

forecasters) available bi-annually for the countries we study. While all variables are avail-

able up to 2015Q4, the beginning of the sample varies with each country: France (1990Q2),

Germany (1990Q2), Italy (1990Q2), Spain (1995Q2), Canada (1989Q4), Japan (1990Q2),
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Sweden (1995Q2), Switzerland (1998Q4). Short-term expectations are measured by using

the consensus (mean) year-on-year CPI inflation forecast for current and following calendar

year, for each country. We use forecasts for the current year and next year (year-over-year)

taken in the middle month of each quarter. Unlike the long-term forecasts, for all countries

the data set covers the sample 1990Q2-2015Q4.

Bibliography references: Consensus Economics (1990-2015a) and Consensus Eco-

nomics (1990-2015b)

B Model summary

In the sequel we present the marginalized particle filter and smoother. For ease of notation

note that we use ϕt for ϕ̃t, and (εt, µt) for (ε̃t, µ̃t) in the main text. Recall the model is

summarized by the following equations

πt = (1− γ) Γπ̄t + γπt−1 + ϕt + µt

π̄t = π̄t−1 + k−1
t × ft−1

kt = I(π̄t−1)× (kt−1 + 1) + (1− I(π̄t−1))× ḡ−1

ft = (1− γ) (Γ− 1) π̄t + µt + εt

ϕt = ρϕϕt−1 + εt,

where the function I(π̄t) is described as

I (π̄) =


1, if |(1− γ) (Γ− 1) π̄| ≤ θση

0, otherwise.
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The model can then be re-written as

kt = fk(π̄t−1,kt−1)

π̄t = fπ̄(π̄t−1,kt−1) + fk(π̄t−1,kt−1)−1 × ηt−1

ηt = µt + εt

ϕt = ρϕϕt−1 + εt

πt = (1− γp) Γfπ̄(π̄t−1,kt−1) + (1− γp) Γfk(π̄t−1,kt−1)−1ηt−1

+γπt−1 + ρϕϕt−1 + εt + µt.

where

fk(π̄t−1,kt−1) = I(π̄t−1)× (kt−1 + 1) + (1− I(π̄t−1))× ḡ−1,

fπ̄(π̄t−1,kt−1) =
[
1− (1− Γ) (1− γ) fk(π̄t−1,kt−1)−1

]
π̄t−1.

We can also re-write the system in matrix notation. One way to write it is by separating

linear and nonlinear states. For the linear variables we have:

ξt = fξ (π̄t−1,kt−1) + Aξ (π̄t−1,kt−1) ξt−1 + Sξ

[
εt

µt

]
,

where

ξt =

 ηt

st

πt

 ;

fξ (π̄t−1,kt−1) =

[
02×1

(1− γ) Γfπ̄(π̄t−1,kt−1)

]
;

Aξ (π̄t−1,kt−1) =

 0 0 0

0 ρϕ 0

(1− γ) Γfk(π̄t−1,kt−1)−1 ρϕ γ

 ;
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Sξ =

 1 1

1 0

1 1

 .
For the nonlinear variables we can express

kt = fk(π̄t−1,kt−1)

and

π̄t = fπ̄(π̄t−1,kt−1) + Aπ̄ (π̄t−1,kt−1) ξt−1.

where

Aπ̄ (π̄t−1,kt−1) =

[
fk(π̄t−1,kt−1)−1

02×1

]′
.

Notice that kt does not depend on the linear state. In yet another formulation we can express

the system in more compact notation:

kt = fk(π̄t−1,kt−1)

[
π̄t

ξt

]
= f (π̄t−1,kt−1) + A (π̄t−1,kt−1) ξt−1 +

[
0

Sξ

][
εt

µt

]

where

f (π̄t−1,kt−1) =

[
fπ̄(π̄t−1,kt−1)

fξ (π̄t−1,kt−1)

]

A (π̄t−1,kt−1) =

[
Aπ̄ (π̄t−1,kt−1)

Aξ (π̄t−1,kt−1)

]

and

Σ = E

[ εt

µt

][
εt

µt

]′
is the variance covariance of the innovations.

This notation is used below when computing the smoothed states. Finally, given the
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data YT = y1...yT , the model observation equation is

yt = h0,t + hπ̄,tπ̄t +H ′tξt +R
1/2
t eot

where the vectors and matrices h0, hπ̄, H
′
t and Rt are defined to be consistent with the timing

of available data, and et denotes observation errors.

C Algorithm for the Marginalized particle filter

This follows Schön, Gustafsson, and Nordlund (2005). For details of the particle filter we

use Kitagawa (1996). We are looking for the following distributions:

p (ξt, [π̄t,kt] |Yt) = p (ξt| [π̄t,kt] , Yt)× p ([π̄t,kt] |Yt) .

The following describes the algorithm. Discussion and proofs are given below.

Algorithm:

1. Initialization. Choose π̄
(i)
1|0, k

(i)
1|0 from some distributions (drawing from normal for π̄

and k
(i)
0|0 = k̄0 (or draw from U(0, ḡ−1)), and ξ

(i)
1|0, P

(i)
1|0 = [ξ0, P1|0], where P1|0 denotes the

initial precision matrix in the linear Kalman filter.

2. For each t = 1...T , compute

Ωt = H ′tPt|t−1Ht +Rt

and its inverse. For i = 1, ..., N , evaluate the importance weights

q
(i)
t = p

(
yt|π̄(i)

t|t−1, ξ
(i)
t|t−1

)
.

In order to do this, use

p
(
yt|π̄(i)

t|t−1, ξ
(i)
t|t−1

)
= N

(
h0,t + hπ̄,tπ̄

(i)
t|t−1 +H ′tξ

(i)
t|t−1, H

′
tPt|t−1Ht +Rt

)
so that

q
(i)
t = w

(i)
t−1 × |Ωt|−1/2×

exp

{
−1

2

(
yt − h0,t − hπ̄,tπ̄(i)

t|t−1 −H
′
tξ

(i)
t|t−1

)′
× Ω−1

t ×
(
yt − h0,t − hπ̄,tπ̄(i)

t|t−1 −H
′
tξ

(i)
t|t−1

)}
.

8



Anchored Inflation Expectations

where w
(i)
t−1 denotes the particle weight from the previous period. (In the expression above

we eliminate the constant coefficient that is independent of (i) and the model parameters.)

3. Re-sampling.1 Provided the number of effective particles (effective sample size),

computed as

ESS =
1∑(
w

(j)
t

)2 ,

falls below the threshold (ESS < 0.75 ∗N) we re-sample such that

p
([
π̄

(i)
t|t ,k

(i)
t|t

]
=
[
π̄

(j)
t|t−1,k

(j)
t|t−1

])
=

q
(j)
t∑
q

(j)
t

.

Here we use systematic resampling: see Kitagawa (1996), Hol, Schön, and Gustafsson

(2006) for a discussion of resampling and different methods. The outcome of systematic

resampling is a discrete distribution with particles
{
π̄

(k)
t|t ,k

(k)
t|t

}N
k=1

and corresponding weights

wt(i) = 1/N for i = 1, ..., N . In case of not resampling the weights are wt(i) = q
(j)
t /

∑
q

(j)
t .

4. Linear measurement equation: for i = 1, ..., N , evaluate

ξ
(i)
t|t = ξ

(i)
t|t−1 +Kt

(
yt − h0,t − hπ̄,tπ̄(i)

t|t −H
′
tξ

(i)
t|t−1

)
Kt = Pt|t−1HtΩ

−1
t

Pt|t = Pt|t−1 −KtH
′
tPt|t−1

5. Particle filter prediction. For i = 1, ..., N , compute

k
(i)
t+1|t = fk(π̄

(i)
t|t ,k

(i)
t|t )

and then draw π̄
(i)
t+1|t from distribution

p
(
π̄t+1|Yt, π̄(i)

t|t ,k
(i)
t|t

)
= N

(
fπ̄(π̄

(i)
t|t ,k

(i)
t|t ) + fk(π̄

(i)
t|t ,k

(i)
t|t )
−1z

(i)
t|t , fk(π̄

(i)
t|t ,k

(i)
t|t )
−2P

[η,η]
t|t

)
1This means (roughly speaking) increasing the number of particles receiving high weight

(
q
(j)
t∑
q
(j)
t

)
and

eliminating particles with very low weight, while keeping the number of particles equal to N .
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where we use the notation: P
[x,z]
t|t = Pt|t (x, z).

6. Linear model prediction

ξ̃
(i)
t|t = ξ

(i)
t|t + K̃

(i)
t

(
π̄

(i)
t+1|t − fπ̄(π̄

(i)
t|t ,k

(i)
t|t )− fk(π̄

(i)
t|t ,k

(i)
t|t )
−1z

(i)
t|t

)
ξ

(i)
t+1|t = fξ(π̄

(i)
t|t ,k

(i)
t|t ) + Aξ(π̄

(i)
t|t ,k

(i)
t|t )ξ̃

(i)
t|t

Pt+1|t = Qξ + P̃t|t; Qξ = SξΣS
′
ξ;

where

K̃
(i)
t = Pt|tA

′
π̄

(
π̄

(i)
t|t ,k

(i)
t|t

)(
Aπ̄

(
π̄

(i)
t|t ,k

(i)
t|t

)
Pt|tA

′
π̄

(
π̄

(i)
t|t ,k

(i)
t|t

))−1

= fk(π̄
(i)
t|t ,k

(i)
t|t )

 1

P
[η,ϕ]
t|t /P

[η,η]
t|t

P
[η,π]
t|t /P

[η,η]
t|t

 ;

and

Al(π̄
(i)
t|t ,k

(i)
t|t )K̃

(i)
t = fk(π̄

(i)
t|t ,k

(i)
t|t )


0

P
[η,s]
t|t

P
[η,η]
t|t

ρϕ

P
[η,π]
t|t

P
[η,η]
t|t

γ +
P

[η,s]
t|t

P
[η,η]
t|t

ρϕ + fk(π̄
(i)
t|t ,k

(i)
t|t )
−1 (1− γ) Γ



P̃t|t =


0 0 0

0 ι1 ι2 + ι1

0 ι2 + ι1 2ι2 + ι1 +

(
P

[π,π]
t|t −

(
P

[η,π]
t|t

)2

P
[η,η]
t|t

)
γ2


where

ι1 =

P [ϕ,ϕ]
t|t −

(
P

[η,ϕ]
t|t

)2

P
[η,η]
t|t

 ρ2
ϕ;

ι2 =

(
−
P

[η,ϕ]
t|t P

[η,π]
t|t

P
[η,η]
t|t

+ P
[s,π]
t|t

)
ρϕγ.
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Notice that, importantly, Pt+1|t is independent of particles. This is key for a fast evaluation

of the likelihood.

Finally, the log-Likelihood is approximated by

L (·) =
T∑
t=1

log p (yt|Yt−1)

where

p (yt|Yt−1) = p (yt|ξt, [π̄t,kt]) p (ξt, [π̄t,kt] |Yt−1)

= p (yt|ξt, [π̄t,kt]) p (ξt| [π̄t,kt] , Yt−1) p ([π̄t,kt] |Yt−1) ,

→

L (·) '
T∑
t=1

log

(
N∑
i=1

q
(i)
t

)
.

Algorithm ends.

In the estimation performed in this paper we set the number of particles N = 2500; To

avoid injecting randomness in the calculation of the likelihood, the “chatter” of changing

random numbers, we keep the simulated (standardized) innovations constant as we evaluate

different parameters—see the discussion in Fernandez-Villaverde and Rubio-Ramirez (2007).

In detail, we fix the following innovations: random initial conditions for the nonlinear state

variables; random draws to compute shocks in the nonlinear prediction step; and random

draws in the resampling step.

D Marginalized Smoother

We follow Lindsten and Schön (2013) using the ‘joint backward simulation’ Rao-Blackwellised

particle smoother. See also Godsill, Doucet, and West (2004). We compute a smoothed path

for the states, conditional on a parameter draw, for the sample t = 1...T . The algorithm, in

conjunction with the forward filter above, allows producing the full distribution of state and

parameters using Carter and Khon (1994).

The objective is to draw j = 1...M trajectories of the model variables
{

˜̄π
(j)
t|T , k̃

(j)
t|T , ξ̃

(j)
t|T

}T
t=1

.

The forward filter allows drawing ˜̄π
(j)
T |T k̃

(j)
T |T from the empirical distribution of

{
π̄

(k)
t|t ,k

(k)
t|t

}N
k=1

where each particle has weight w
(k)
t . Moreover, conditional on the draw ˜̄π

(j)
t|T , k̃

(j)
T |T , it allows

drawing the linear state ξ̃
(j)
T |T from the normal distribution N

(
ξ

(j)
T |T , PT |T

)
. Given this we
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compute M paths as follows.

Algorithm:

For t = T − 1 : −1 : 1

For each j = 1...M

For each i = 1...N , compute

wjt|t+1(i) =
wt(i)p

(
˜̄π

(j)
t+1|t+1, k̃

(j)
t+1|t+1, ξ̃

(j)
t+1|t+1|π̄

(i)
t|t ,k

(i)
t|t , Yt

)
N∑
k

wt(k)p
(

˜̄π
(j)
t+1|t+1, k̃

(j)
t+1|t+1, ξ̃

(j)
t+1|t+1|π̄

(k)
t|t ,k

(k)
t|t , Yt

)
where the last line makes use of the fact that wt(i) = 1/N because of resampling in the

forward filter. The probability distribution above can be expressed as

p
(
π̄t+1|T ,kt+1|T , ξt+1|T |π̄(i)

t|t ,k
(i)
t|t , Yt

)
=

p
(
π̄t+1|T , ξt+1|T |π̄(i)

t|t ,k
(i)
t|t , Yt

)
× p

(
kt+1|T |π̄(i)

t|t ,k
(i)
t|t , Yt

)
,

which uses kt+1|t = fk(π̄t,kt). We can then evaluate

p
(

˜̄π
(j)
t+1|T , ξ̃

(j)
t+1|T |π̄

(i)
t|t ,k

(i)
t|t , Yt

)
× 1

k̃
(j)
t+1=fk

(
π̄
(i)
t|t ,k

(i)
t|t

) =


pj,it|t+1, if k̃

(j)
t+1|T = fk

(
π̄

(i)
t|t ,k

(i)
t|t

)
0, otherwise

where

pj,it|t+1 = ∝ exp

{
−1

2
ln
(∣∣∣Ω̃(i)

t

∣∣∣)− 1

2

(
ηj,it+1

)′ × (Ω̃
(i)
t

)−1 (
ηj,it+1

)}

ηj,it+1 =

[
˜̄π

(j)
t+1|t+1

ξ̃
(j)
t+1|t+1

]
−
[
f
(
π̄

(i)
t|t ,k

(i)
t|t

)
+ A

(
π̄

(i)
t|t ,k

(i)
t|t

)
ξ

(i)
t|t

]
.

Ω̃
(i)
t = Q+ A

(
π̄

(i)
t|t ,k

(i)
t|t

)
Pt|tA

(
π̄

(i)
t|t ,k

(i)
t|t

)′

Q =

[
0 0

0 SξΣS
′
ξ

]
.

12
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and where we can use

1
k̃
(j)
t+1=fk

(
π̄
(i)
t|t ,k

(i)
t|t

) =

1
k̃
(j)
t+1=ḡ

× 1∣∣∣(1−γ)(Γ−1)π̄
(i)
t|t

∣∣∣>θση +

+
(

1− 1
k̃
(j)
t+1=ḡ

)
×
(

1∣∣∣(1−γ)(Γ−1)π̄
(i)
t|t

∣∣∣≤θση
)
× 1

k
(i)
t|t=k

(j)
t+1|t−1

.

Moving to the linear variables ξt, for each j = 1...M , draw the nonlinear variables

˜̄π
(j)
t|T , k̃

(j)
t|T , from

{
π̄

(k)
t|t ,k

(k)
t|t

}N
k=1

using the new set of weights
{
wjt|t+1(k)

}N
k=1

. Conditional

on the draw, sample from

p
(
ξt|π̄j1:t,k

j
1:t, ξt+1, π̄t+1, Yt

)
.

In particular we draw ξ̃
(j)
t|T from the distribution

N

(
ξ

(j)
t|t + ∆

(j)
t

([
˜
π̄

(j)

t+1|T , ξ̃
(j)′

t+1|T

]′
− f

(
˜
π̄

(j)

t|T , ξ̃
(j)
t|T

)
− A

(
˜
π̄

(j)

t|T , ξ̃
(j)
t|T

)
ξ

(j)
t|t

)
,Λ

(j)
t|t

)

where ξ
(j)
t|t is the element in

{
π̄

(k)
t|t ,k

(k)
t|t

}N
k=1

that corresponds to the same draw j from which

the particles ˜̄π
(j)
t|T , k̃

(j)
t|T are obtained, and where

∆
(j)
t = Pt|tA

(
˜̄π

(j)
t|T , k̃

(j)
t|T

)′(
Q+ A

(
˜
π̄

(j)

t|T , k̃
(j)
t|T

)
Pt|tA

(
˜
π̄

(j)

t|T , k̃
(j)
t|T

)′)−1

Λ
(j)
t|t = Pt|t −∆

(j)
t A

(
˜
π̄

(j)

t|T , k̃
(j)
t|T

)
Pt|t.

Algorithm ends.

E Estimation in other countries

Observation equation. The Consensus forecasts can be expressed as

ECons
t πY 1,Q2 =

4∑
j=1

w (j) πt−j + Êt

2∑
i=0

w (5 + i) πt+i

ECons
t πY 1,Q1 =

3∑
j=1

w (j) πt−j + Êt

3∑
i=0

w (4 + i) πt+i

13
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where the vector

w =

(
1

16

2

16

3

16

4

16

3

16

2

16

1

16

)
defines the appropriate weights, and the notation πi,j denotes the inflation forecast of year

i inflation, taken in the current year in quarter j. The remaining four forecasts concern

expectations for inflation in the next calendar year, taken in each quarter of the current

year. Similarly they can be expressed as

ECons
t πY 2,Q4 =

2∑
j=1

w (j) πt−j + Êt

4∑
i=0

w (3 + i) πt+i

ECons
t πY 2,Q3 =

1∑
j=1

w (j) πt−j + Êt

5∑
i=0

w (2 + i) πt+i

ECons
t πY 2,Q2 = Êt

6∑
i=0

w (1 + j) πt+i

ECons
t πY 2,Q1 = Êt

7∑
i=1

w (j) πt+i

where the last two forecasts are purely forward looking. The observation equation can then

be written 

πt

Êt
∑2

i=1 w (5 + i) πt+i

Êt
∑3

i=1 w (4 + i) πt+i

Êt
∑4

i=1 w (3 + i) πt+i

Êt
∑5

i=1 w (2 + i) πt+i

Êt
∑6

i=1 w (1 + i) πt+i

Êt
∑7

i=1w (i) πt+i


= π∗,F +H ′tξt +Rto

Cons
t ,

where π∗,F denotes the country-specific sample mean of inflation.

As discussed in the main text, the aim is to evaluate model predictions under the posterior

distribution obtained with US data on inflation and forecasts by professional forecasters.

However, there are few parameters that we choose to estimate independently. In particular,

we estimate the inflation mean and the standard deviation of measurement error on survey-

forecasts. These parameters are necessarily country-specific and can impact significantly the

model’s predictions.

For the US, the Metropolis-Hasting algorithm is used to simulate the posterior distribu-

14
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tion

P
(
ΘUS|Y US

t

)
= L(Y US

t |ΘUS)P (ΘUS)

where L(Y US
t |ΘUS) the model likelihood. For the other countries we use the US poste-

rior distribution as prior for the common parameters. We can then simulate the posterior

distribution

P F
(
ΘF |Y F

t , Y
US
t ,ΘUS

)
= L̃(Y F

t |ΘUS,ΘF )λ
F

L(Y US
t |ΘUS)p(ΘUS)p(ΘF )

where the parameter λF is the weight that is given to the likelihood of the model for other

countries Notice that the case of λF = 0 corresponds to evaluating the parameters that are

common to the US, ΘUS, at the posterior distribution for the US. The remaining parameters,

ΘF , are instead evaluated at their prior. In our estimation we set λF = 0.05 implying a very

low weight on the foreign model likelihood, L̃(Y F
t |ΘUS,ΘF ). As a result, the posterior

distribution of the common parameters with the US is essentially the same as for the US,

while the likelihood informs about the country-specific parameters. Tables in the additional

technical appendix give the parameter estimates for all other countries. They are obtained

using 200000 draws from the simulated posterior distribution.

F Marginal Likelihood

To compute the marginal likelihood for the US baseline model we use the Geweke harmonic

mean estimator. For each draw Θi we compute

p(y) =

{
1

D

D∑
i=1

f (Θi)

p (y|Θi) p (Θi)

}−1

where the function f (.) is the density of a Normal distribution with mean and variance corre-

sponding to the mean and variance of the posterior draws sample. Moreover the distribution

is truncated so that

f (Θi) = τ−1 (2π)−d/2 |VΘ| exp
[
−0.5

(
Θi − Θ̄

)′
V −1

Θ

(
Θi − Θ̄

)]
×
{

Θi :
(
Θi − Θ̄

)′
V −1

Θ

(
Θi − Θ̄

)
< χ2

τ,d

}

15
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where χ2
τ,d is the (1− τ) quantile of the χ2

d distribution and d is the dimension of the pa-

rameters’ vector. In order to compute the marginal likelihood we set τ = 0.5.

G Additional Material

G.1 Derivation of Γ.

Substituting for the marginal cost into the aggregate supply equation gives

πt − γπt−1 = µt + ξpst + Et

∞∑
T=t

(αβ)T−t [αβξpsT+1 + (1− α) β (πT+1 − γπT )]

= µ̃t + κ̃ϕt + Et

∞∑
T=t

(αβ)T−t [αβκ̃ [ϕT+1 − (πT+1 − π̄t) + γ (πT − π̄t)]]

+Et

∞∑
T=t

(αβ)T−t
[
(1− α) β̃ (πT+1 − γπT )

]
where

κ̃ =

(
1 +

ξp
λxφ

)−1
ξp
λxφ

=
ξp

ξp + λxφ
and β̃ =

βλxφ

ξp + λxφ
=

β

1 + λ−1
x φ−1

.

Rearranging gives(
1 + (1− α) β̃ − αβκ̃

)
πt − γπt−1 = µ̃t + κ̃ϕt +

+Et

∞∑
T=t

(αβ)T−t
[
αβκ̃ϕT+1 − (1− αβγ)

(
αβκ̃− (1− α) β̃

)
πT+1

]

+Et

∞∑
T=t

(αβ)T−t [αβκ̃ (1− γ) π̄t]

The rational expectations equilibrium is computed from

πt − γπt−1 = µ̃t + κ̃Et

∞∑
T=t

β̃T−tϕT

giving

πt − γπt−1 = µ̃t + ωϕϕt

16
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where

ωϕ =
κ̃

1− β̃ρ
.

It can be further simplified as

ωϕ =

ξp
ξp+λxφ

1− βλxφ
ξp+λxφ

ρ

=
1

1 + (1− βρ)λxξ−1
p φ

Substituting the discounted forecast for inflation

Et

∞∑
T=t

(αβ)T−t πT+1 =

(
1

1− αβ
− γ

1− αβγ

)
π̄t +

γ

1− αβγ
πt +

ωϕρ

(1− αβρ) (1− αβγ)
ϕt.

into the aggregate supply curve gives

πt − γπt−1 = µ̃t +

κ̃+
αβκ̃ρ

1− αβρ
−

(1− αβγ)
(
αβκ̃− (1− α) β̃

)
(1− αβγ) (1− αβρ)

ωϕρ

ϕt +

+

[
αβκ̃

1− γ
1− αβ

+
(

(1− α) β̃ − αβκ̃
)(1− αβγ

1− αβ
− (1− αβγ) γ

1− αβγ

)]
π̄t.

Using rational expectations about transitional dynamics and the fact that

κ̃+
αβκ̃ρ

1− αβρ
−

(1− αβγ)
(
αβκ̃− (1− α) β̃

)
(1− αβγ) (1− αβρ)

ωϕρ = ωϕ

permits

πt − γπt−1 = µ̃t + ωϕϕt +

+

[
αβκ̃

1− γ
1− αβ

+
(

(1− α) β̃ − αβκ̃
)(1− αβγ

1− αβ
− (1− αβγ) γ

1− αβγ

)]
π̄t

17
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Simplifying then provides

πt − γπt−1 = µ̃t + ωϕϕt +

+
1

ξp + λxφ

[
αβξp

1− γ
1− αβ

+ ((1− α) βλxφ− αβξp)
(

1− αβγ
1− αβ

− (1− αβγ) γ

1− αβγ

)]
π̄t

or

πt − γπt−1 = µ̃t + ωϕϕt +

+
1

ξp + λxφ

[
αβξp

(
1− γ

1− αβ
− 1− αβγ

1− αβ

)]
π̄t

+
1

ξp + λxφ

[
(1− α) βλxφ

(
1− αβγ
1− αβ

− (1− αβγ) γ

1− αβγ

)
+ αβξpγ

]
π̄t

or

πt − γπt−1 = µ̃t + ωϕϕt−1 + (1− γ) Γπ̄t + ωϕεt

where

Γ =
1

1 + λ−1
x φ−1ξp

(1− α) β

1− αβ
.

Using φ = 1 we have

Γ =
1

1 + ξpλ−1
x

(1− α) β

1− αβ

as in the main text.

G.1.1 Proof In Appendix C, the crucial step is the derivation of the prediction for the

linear state (step 6). To dervied this, notice first that given the link between π̄t and the

linear state we can use [
ξt|Yt,π̄(i)

t|t ,k
(i)
t|t

π̄t+1|t − fπ̄(π̄
(i)
t|t ,k

(i)
t|t )|Yt,π̄

(i)
t|t ,k

(i)
t|t

]
∼

N

([
ξ

(i)
t|t

A
(i)
π̄,tξ

(i)
t|t

]
,

[
P

(i)
t|t A

(i)
π̄,tP

(i)
t|t

P
(i)
t|t A

(i)′
π̄ A

(i)
π̄,tP

(i)
t|t A

(i)′
π̄

])
.
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Using properties of the normal distribution, we can now get the conditional distribution

ξ
∗(i)
t|t = ξ

(i)
t|t + P

(i)
t|t A

(i)′
π̄,t

(
A

(i)
π̄,tP

(i)
t|t A

(i)′
π̄,t

)−1 (
π̄

(i)
t+1|t − fπ̄(π̄

(i)
t|t ,k

(i)
t|t )− f

(i)−1
k,t z

(i)
t|t

)
P
∗(i)
t|t = P

(i)
t|t − P

(i)
t|t A

(i)′
π̄,t

(
A

(i)
π̄,tP

(i)
t|t A

(i)′
π̄,t

)−1

A
(i)
π̄,tP

(i)
t|t

where

A
(i)
π̄,t = Aπ̄

(
π̄

(i)
t|t ,k

(i)
t|t

)
;

f
(i)−1
k,t = fk(π̄

(i)
t|t ,k

(i)
t|t )
−1.

The predictions for the linear state are then

ξ
(i)
t+1|t = f

(i)
ξ,t + A

(i)
ξ,tξ
∗(i)
t|t

where

f
(i)
ξ,t = fξ(π̄

(i)
t|t ,k

(i)
t|t );

A
(i)
ξ,t = Aξ(π̄

(i)
t|t ,k

(i)
t|t ),

and

P
(i)
t+1|t = A

(i)
ξ,tPt|tA

(i)′
ξ,t +

−A(i)
ξ,t

[
Pt|tA

(i)′
π̄,t

(
A

(i)
π̄,tPt|tA

(i)′
π̄,t

)−1

A
(i)
π̄,tPt|t

]
A

(i)′
ξ,t +Qξ.

Here we show that P
(i)
t+1|t = Pt+1|t for every (i). For given initial Pt|t, it is straightforward

to show that (
A

(i)
π̄,tPt|tA

(i)′
π̄,t

)−1

=
1

f
(i)−2
k,t P

[η,η]
t|t

.

19



Anchored Inflation Expectations

Then a little algebra leads to the following:

P̄
(i)
t|t = Pt|tA

(i)′
π̄,t

(
1

f
(i)−2
k,t P

[η,η]
t|t

)
A

(i)
π̄,tPt|t

=


P

[η,η]
t|t P

[η,ϕ]
t|t P

[η,π]
t|t

P
[η,ϕ]
t|t

(
P

[η,ϕ]
t|t

)2

P
[η,η]
t|t

P
[η,ϕ]
t|t

P
[η,π]
t|t

P
[η,η]
t|t

P
[η,π]
t|t P

[η,ϕ]
t|t

P
[η,π]
t|t

P
[η,η]
t|t

(
P

[η,π]
t|t

)2

P
[η,η]
t|t


= P̄t|t.

Next, evaluate

P̃t|t = A
(i)
ξ,tPt|tA

(i)′
ξ,t − A

(i)
ξ,tP̄t|tA

(i)′
ξ,t = A

(i)
ξ,t

(
Pt|t − P̄t|t

)
A

(i)′
ξ,t

where

(
Pt|t − P̄t|t

)
=


0 0 0

0 P
[ϕ,ϕ]
t|t −

(
P

[η,ϕ]
t|t

)2

P
[η,η]
t|t

P
[ϕ,π]
t|t −

(
P

[η,ϕ]
t|t

)2
P

[η,π]
t|t

P
[η,η]
t|t

0 P
[η,π]
t|t −

(
P

[η,ϕ]
t|t

)2
P

[η,π]
t|t

P
[η,η]
t|t

P
[π,π]
t|t −

(
P

[η,π]
t|t

)2

P
[η,η]
t|t

 .
Finally,

P̃t|t = A
(i)
ξ,t

(
Pt|t − P̄t|t

)
A

(i)′
ξ,t =

0 0 0

0 ι1 ι2 + ι1

0 ι2 + ι1 2ι2 + ι1 +

(
P

[π,π]
t|t −

(
P

[η,π]
t|t

)2

P
[η,η]
t|t

)
γ2


where

ι1 = ρ2
ϕ

P [ϕ,ϕ]
t|t −

(
P

[η,ϕ]
t|t

)2

P
[η,η]
t|t


ι2 =

(
−
P

[η,ϕ]
t|t P

[η,π]
t|t

P
[η,η]
t|t

+ P
[ϕ,π]
t|t

)
ρϕγ.
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So we can express

P
(i)
t+1|t = Pt+1|t = Qξ + P̃t|t.
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