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A Price Change Frequencies and Product Age

This appendix shows that average price change frequencies do not depend on product age in our

sample, in line with the assumed age-independent price adjustment frequency/cost in the sticky

price models. To illustrate this fact, we normalize product age of all products from zero to one

and record where over the lifetime of the product we observe prices adjustments. Performing this

operation for all products in our sample, we average the price adjustment frequencies across products

to see whether there are age-dependent patterns.

Figure 10 reports the aggregated monthly price adjustment frequencies over the (normalized)

product life for various price change measures. Each graph in the figure depicts the unconditional

mean of price changes over the whole product life (solid horizontal line), as well as the prices change

frequencies at various points in the normalized product life (averaging over ten equal-sized age bins).

Panel A in figure 10 depicts the price change frequencies for all observed price changes in our

baseline sample. Panel B uses only price changes that ONS does not flag as being due to sales. Panel

C shows price change frequencies after applying the Nakamura-Steinsson sales filter (NSB) to our

baseline sample.

Common to all panels is the fact that price change frequencies do not vary substantially over the

(normalized) product life time. Also, no clear pattern emerges of how price change frequencies move

over the (normalized) product life: while panel A shows an upward sloping pattern, panel B shows

a downward sloping pattern, and panel C shows a U-shaped pattern. In light of these observations,

it seems reasonable to assume that the price adjustment frequency/cost is independent of product

age. This said, we acknowledge that the aggregate evidence in figure 10 may mask underlying

heterogeneity which might be worth exploring further in future research.
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Figure 10: Frequency of price changes as function of normalized product age
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A. Baseline
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B. Baseline w/o sales prices
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C. Nakamura-Steinsson filter B

B Key Model Derivations

B.1 First-Order Conditions of the Household Problem

The representative household maximizes expected discounted utility in equation (2) subject to the

budget constraint (3). The first-order conditions to this maximization problem comprise

Wt

Pt
= −Ct

∂V (Lt)/∂Lt
V (Lt)

(44)

Ωt,t+1 = β

(
Ct+1

Ct

)−σ (
V (Lt+1)

V (Lt)

)1−σ

(45)

1 = Et

[
Ωt,t+1

(
1 + it
Pt+1/Pt

)]
(46)

1 = Et [Ωt,t+1(rt+1 + 1− d)] , (47)

a no-Ponzi scheme condition, the transversality condition and the household’s budget constraint.

B.2 Derivation of Firms’ Marginal Cost Expression (21)

Let

Ijzt ≡ Yjzt/(AztQjztGjzt)
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denote the units of factor inputs (K
1− 1

φ

jzt L
1
φ

jzt) required to produce Yjzt units of (quality-adjusted)

output. We now show that cost minimization yields the expression for nominal marginal costs of Ijzt

provided in equation (21). Firm j chooses the factor input mix to minimize production costs subject

to the constraint imposed by the production function (6),

min
Kjzt,Ljzt

Kjztrt + LjztWt/Pt s.t. Yjzt = AztQjztGjztK
1− 1

φ

jzt L
1
φ

jzt .

Denoting the Lagrange multiplier by λt, this cost minimization problem yields first-order conditions

0 = rt +

(
1− 1

φ

)
λtAztQjztGjzt

(
Ljzt
Kjzt

) 1
φ

0 = Wt/Pt +
1

φ
λtAztQjztGjzt

(
Ljzt
Kjzt

) 1
φ
−1

.

These conditions imply that the optimal capital labor ratio is the same for all firms j ∈ [0, 1] and all

items z = 1, . . . Zt, i.e.,
Kjzt

Ljzt
=

Wt

Ptrt
(φ− 1). (48)

Substituting the optimal factor input mix into the production function (6) and solving for the factor

inputs yields the factor demand functions

Ljzt =

(
Wt

Ptrt
(φ− 1)

) 1
φ
−1

Ijzt (49)

Kjzt =

(
Wt

Ptrt
(φ− 1)

) 1
φ

Ijzt, (50)

where Ijzt is defined in the text. Firm j demands these amounts of labor and capital, respectively,

to combine them to Yjzt units of (quality-adjusted) output. Thus, the firm’s cost function is

MCtIjzt = Wt

(
Wt

Ptrt
(φ− 1)

) 1
φ
−1

Ijzt + Ptrt

(
Wt

Ptrt
(φ− 1)

) 1
φ

Ijzt, (51)

where MCt denotes nominal marginal (or average) costs. The previous equation can be rearranged

to obtain equation (21).

B.3 Derivation of the Optimal Price Setting Equation (25)

The first order condition to the firm’s price setting problem (22) yields

0 = Et

∞∑
i=0

(αz(1− δz))i
Ωt,t+i

Pt+i
Yjzt+i

[
P ?
jzt −

θ

(1 + τ)(θ − 1)

(
MCt+i

Azt+iQzt+iQjzt+i

)]
,

where we use the short-hand notation Qjzt = QjztGjzt/Qzt. Solving this equation for P ?
jzt yields

P ?
jzt

Pt
Qjzt =

(
1

1 + τ

θ

θ − 1

)
(52)

Et
∑∞

i=0(αz(1− δz))iΩt,t+i

(
Pzt+i
Pzt

)θ−1 (
Pt+i
Pt

Yt+i
Yt

)(
MCt+i

Pt+iAzt+iQzt+i

)(
Qjzt
Qjzt+i

)
Et
∑∞

i=0(αz(1− δz))iΩt,t+i

(
Pzt+i
Pzt

)θ−1 (
Yt+i
Yt

) .
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We can express the ratio Qjzt/Qjzt+i in the previous equation as

Qjzt
Qjzt+i

=
GjztQzt+i

Gjzt+iQzt

,

because quality remains constant over the lifetime of product j, so that Qjzt = Qjzt+i. Using equation

(7) to substitute for productivity Gjzt and the fact that the idiosyncratic component εGjzt remains

constant of the product lifetime further yields

Qjzt
Qjzt+i

=
Gjzt

Gjzt+i

Qzt+i

Qzt

.

Given the evolution of Gjzt implied by equation (9), this equation can be rearranged to obtain

Qjzt
Qjzt+i

=

∏i
k=1 qzt+k∏i
k=1 gzt+k

,

which is independent of the product index j and reduces to Qjzt/Qjzt+i = 1 for i = 0. Using the

previous equation, we can express the numerator on the r.h.s. of equation (52), denoted by Nzt,

recursively as

Nzt =
MCt

PtAztQzt

+ αz(1− δz)Et

[
Ωt,t+1

(
Pzt+1

Pzt

)θ−1(
Pt+1

Pt

)(
Yt+1

Yt

)(
qzt+1

gzt+1

)
Nzt+1

]
. (53)

We can also express the denominator on the r.h.s. of equation (52), denoted by Dzt, recursively as

Dzt = 1 + αz(1− δz)Et

[
Ωt,t+1

(
Pzt+1

Pzt

)θ−1(
Yt+1

Yt

)
Dzt+1

]
, (54)

which then leads to equation (25) for the optimal price.

B.4 Item Price Level and Its Recursive Evolution Equation

We derive a recursive representation of the item price level Pzt in two steps. First, we decompose

the price level into the prices of newly entering products, the prices of existing products that are

optimally reset in period t, and all remaining prices. Second, we show that optimal reset prices

for existing products with age s ≥ 1 can be expressed as a function of the optimal prices of newly

entering products. This relationship allows us to derive the recursive price-level representation. The

derivation in the present section follows similar steps as in Adam and Weber (2019) but generalizes

it by allowing for idiosyncratic components in productivity and product quality.

From equation (15), we have

P 1−θ
zt =

∫ 1

0

P 1−θ
jzt dj,

where Pjzt = P̃jzt/Qjzt denotes the quality-adjusted price of product j in item z. We decompose

this price level into (i) all prices that are adjusted in period t, including prices for newly entering

products; (ii) the sticky prices of continuing products. The share of the latter is equal to αz(1− δz)
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and their average price is equal to the lagged item price level. Thus, applying this decomposition to

the previous equation yields

P 1−θ
zt =

∞∑
s=0

∫
J?t−s,t

(P ?
jzt)

1−θdj + αz(1− δz)(Pzt−1)1−θ, (55)

where J?t−s,t denotes the set of products with age s in period t that can adjust prices in t. The share

of products that can adjust prices in t is equal to δz + (1− δz)(1−αz), where δz is the share of newly

entering products (all with optimal prices) and (1− δz)(1− αz) is the share of continuing products

that can adjust prices. We can define the average optimal price of products newly entering in t as

P ?
z,t,t ≡

(
1

δz

∫
J?t,t

(P ?
jzt)

1−θdj

) 1
1−θ

, (56)

and the average optimal price of products that entered in t− s (for s ≥ 1) and reset prices in t as

P ?
z,t−s,t ≡

(
1

(1− αz)δz(1− δz)s

∫
J?t−s,t

(P ?
jzt)

1−θdj

) 1
1−θ

. (57)

Substituting the previous two definitions into equation (55) yields

P 1−θ
zt = δz(P

?
z,t,t)

1−θ + (1− αz)δz
∞∑
s=1

(1− δz)s(P ?
z,t−s,t)

1−θ + αz(1− δz)(Pzt−1)1−θ, (58)

where (1− αz)δz
∑∞

s=1(1− δz)s + αz(1− δz) = 1− δz is equal to the share of continuing products.

In the second step, we use the optimal price setting equation (25) to express the item price level in

the previous equation recursively. Consider the pricing equation for product j with age sjzt = s ≥ 1

and rewrite (25) by substituting Gjzt using equation (7) and substituting Qjzt using equation (11).

This yields
P ?
jzt

Pt

(
Qzt−sGjzt

Qzt

)
[εQjz,t−sε

G
jz,t−s] =

(
θ

θ − 1

1

1 + τ

)
Nzt

Dzt

, (59)

where the term in brackets captures the idiosyncratic component of the optimal price, which is

constant over the product’s lifetime. Since the previous equation refers to products with the same

age, we can use equation (9) to rewrite Gjzt and equation (12) to rewrite Qzt−s/Qzt. This yields

P ?
jzt

Pt

(∏s−1
k=0 gzt−k∏s−1
k=0 qzt−k

)
[εQjz,t−sε

G
jz,t−s] =

(
θ

θ − 1

1

1 + τ

)
Nzt

Dzt

.

Rearranging the previous equation to obtain the average of the optimal prices of products with the

same age s, as defined in equation (57), yields

P ?
z,t−s,t =

(∏s−1
k=0 gzt−k∏s−1
k=0 qzt−k

)−1(
θ

θ − 1

1

1 + τ

)
NztPt
Dzt

, (60)

where we used E[(εGjzt)
θ−1] = 1 and E[(εQjzt)

θ−1] = 1 and the fact that εGjzt and εQjzt are independent.
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Analogous steps for the case of products that newly entering in period t deliver the following

expression for the optimal average price P ?
z,t,t of these products, as defined in equation (56):

P ?
z,t,t =

(
θ

θ − 1

1

1 + τ

)
NztPt
Dzt

. (61)

Equations (60) and (61) jointly deliver

P ?
z,t−s,t = P ?

z,t,t

(∏s−1
k=0 gzt−k∏s−1
k=0 qzt−k

)−1

, (62)

for s ≥ 1. This equation shows how the optimal average price of older products is related to the

optimal average price of newly entering products. Using the previous equation to substitute for

P ?
z,t−s,t in equation (58) and rearranging the result yields

P 1−θ
zt = (P ?

z,t,t)
1−θ

αzδz + (1− αz)

δz +
∞∑
s=1

δz(1− δz)s
(∏s−1

k=0 gzt−k∏s−1
k=0 qzt−k

)θ−1


+ αz(1− δz)(Pzt−1)1−θ. (63)

Now define

(∆e
zt)

1−θ ≡ δz +
∞∑
s=1

δz(1− δz)s
(∏s−1

k=0 gzt−k∏s−1
k=0 qzt−k

)θ−1

, (64)

and substitute this definition into equation (63). This delivers the recursive representation of the

item price level:

P 1−θ
zt =

{
αzδz + (1− αz)(∆e

zt)
1−θ} (P ?

z,t,t)
1−θ + αz(1− δz)(Pzt−1)1−θ, (65)

where P ?
z,t,t is defined in equation (56). Finally, we rewrite the definition of ∆e

zt according to

(∆e
zt)

1−θ = δz + (1− δz)
(
gzt
qzt

)θ−1
δz +

∞∑
s=1

δz(1− δz)s
(∏s−1

k=0 gzt−1−k∏s−1
k=0 qzt−1−k

)θ−1


= δz + (1− δz)
(
∆e
zt−1qzt/gzt

)1−θ
, (66)

which shows that (∆e
zt)

1−θ is a stationary variable that evolves recursively. We define the item-level

(gross) inflation rate as

Πzt ≡ Pzt/Pzt−1

and the relative price p?zt as

p?zt ≡ P ?
z,t,t/Pzt. (67)

Using these definitions, we rearrange equation (65) to obtain

1 =
{
αzδz + (1− αz)(∆e

zt)
1−θ} (p?zt)

1−θ + αz(1− δz)(Πzt)
θ−1. (68)

The previous equation shows that in a balanced growth path with a constant item-level inflation Πz,

the relative price p?z is also constant.

48



B.5 Item-Level and Economy-Wide Aggregate Production Functions

We aggregate the model in two steps. In a first step, we aggregate firm-specific production functions

to item-level production functions. In a second step, we aggregate the item-level production functions

to a economy-wide production function.

To obtain the item-level production function, we substitute (quality-adjusted) output of product

j in item z in the production function (6) using the demand function (18). This yields

Yzt
AztQjztGjzt

(
Pjzt
Pzt

)−θ
=

(
Kjzt

Ljzt

)1− 1
φ

Ljzt .

Integrating the previous equation over all firms j ∈ [0, 1] in item z, using the definition

Lzt ≡
∫
Ljzt dj,

and equation (48), which shows that capital-to-labor ratio is identical for all products, we obtain the

item-level production function for quality-adjusted output in item z

Yzt =
AztQzt

∆zt

(
K

1− 1
φ

zt L
1
φ

zt

)
, (69)

where

Kzt ≡
∫
Kjzt dj

and where we have defined the productivity parameter 1/∆zt as

∆zt ≡
∫ 1

0

(
Qzt

QjztGjzt

)(
Pjzt
Pzt

)−θ
dj , (70)

which captures the (detrended) distribution of productivities and qualities across products in item

z. The recursive evolution equation for ∆zt is derived in appendix B.6.

To obtain the economy-wide aggregate production function, we rewrite equation (69) to obtain

Yzt
∆zt

AztQzt

=

(
Kt

Lt

)1− 1
φ

Lzt.

where we used the fact that the capital-to-labor ratio is the same across items, see equation (48).

Summing the previous equation over all items z = 1, ..Z, and using labor market clearing across

items, Lt =
∑

z Lzt, and the demand function (19) to substitute for item-level output Yzt, we obtain

Yt

Zt∑
z=1

ψzt

(
Pzt
Pt

)−1(
∆zt

AztQzt

)
= K

1− 1
φ

t L
1
φ

t .

The aggregate economy-wide production function for quality-adjusted output is thus given by

Yt =
(Γet )

1/φ

∆t

(
K

1− 1
φ

t L
1
φ

t

)
, (71)

where the aggregate economy-wide productivity parameter 1/∆t is defined according to

∆t ≡ (Γet )
1/φ

Zt∑
z=1

ψzt

(
Pzt
Pt

)−1(
∆zt

AztQzt

)
, (72)

and where Γet denotes the trend-growth factor defined in Appendix C.4 and ensures that ∆t a sta-

tionary variable.
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B.6 Derivation of the Recursive Evolution Equation for ∆zt

To derive a recursive representation for the productivity shifter ∆zt, defined in equation (70), we

decompose it in a way that resembles the decomposition of the item price level in Appendix B.4.

This yields

∆zt

P θ
zt

=
∞∑
s=0

∫
J?t−s,t

(
Qzt

QjztGjzt

)
(P ?

jzt)
−θdj +

qzt
gzt

∫
Jt

(
Qzt−1

Qjzt−1Gjzt−1

)
(Pjzt−1)−θdj, (73)

where, as before, J?t−s,t denotes the set of products with age s ≥ 0 at time t that can adjust prices

in t. Let Jt denote the set of all products that can not adjust prices in t. To derive equation (73),

we have used the fact that all products in Jt have age s ≥ 1. We have also used the fact that the

productivity component Gjzt for the products in Jt−1,t continues to evolve over time, which yields

Gjzt = Gjzt · εGjzt−1

=

(
Gjzt

Gjzt−1

)(
Gjzt−1 · εGjzt−1

)
= gztGjzt−1, (74)

where the last line follows from equations (7) and (9) for the case with s ≥ 1.

Since products in Jt are a representative subset of all products in the economy at date t− 1 and

since Jt has mass αz(1− δz), we can rewrite equation (73) by shifting equation (70) one period into

the past, which yields

∆zt

P θ
zt

=
∞∑
s=0

∫
J?t−s,t

(
Qzt

QjztGjzt

)
(P ?

jzt)
−θdj + αz(1− δz)

qzt
gzt

∆zt−1

P θ
zt−1

. (75)

We now rearrange the infinite sum in the previous equation. The steps involved in this resemble the

steps used in in the derivation of the item price level in Appendix B.4, but with slight modifications.

We first show how the integrals appearing in the infinite sum on the r.h.s. of equation (75) are

related to the average optimal price of newly entering products P ?
z,t,t. For s ≥ 1, we obtain∫

J?t−s,t

(
Qzt

QjztGjzt

)
(P ?

jzt)
−θdj =

(∏s−1
k=0 qzt−k∏s−1
k=0 gzt−k

)∫
J?t−s,t

[
Qzt−s

Qjzt−sGjzt−s

]
(P ?

jzt)
−θdj, (76)

using Qzt = (
∏s−1

k=0 qzt−k)Qzt−s and the fact that products in J?t−s,t have age greater or equal to s.

We can rearrange the r.h.s. of equation (76) further using

Gjzt =

(
s−1∏
k=0

gzt−k

)
Gjzt−s,

which follows from (74). The brackets in equation (76) contain only idiosyncratic components and

thus simplify as
Qzt−s

Qjzt−sGjzt−s
= [εQjz,t−sε

G
jz,t−s]

−1.
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Substituting the previous two equations into equation (76) and integrating the result over the prod-

ucts in J?t−s,t yields∫
J?t−s,t

(
Qzt

QjztGjzt

)
(P ?

jzt)
−θdj =

(∏s−1
k=0 gzt−k∏s−1
k=0 qzt−k

)−1 ∫
J?t−s,t

[εQjz,t−sε
G
jz,t−s]

−1(P ?
jzt)
−θdj. (77)

To link the previous equation to the average optimal price of newly entering products P ?
z,t,t, we

rearrange equation (60) to obtain

[εQjz,t−sε
G
jz,t−s]

−1(P ?
jzt)
−θ = [εQjz,t−sε

G
jz,t−s]

θ−1

(∏s−1
k=0 gzt−k∏s−1
k=0 qzt−k

)−1(
θ

θ − 1

1

1 + τ

)
NztPt
Dzt

−θ .
Integrating the previous equation over the set of products in J?t−s,t and normalizing the result yields

∫
J?t−s,t

[εQjz,t−sε
G
jz,t−s]

−1

(1− αz)δz(1− δz)s
(P ?

jzt)
−θ dj =

(∏s−1
k=0 gzt−k∏s−1
k=0 qzt−k

)−1(
θ

θ − 1

1

1 + τ

)
NztPt
Dzt

−θ ,
where we used E[(εGjzt)

θ−1] = 1 and E[(εQjzt)
θ−1] = 1 and the fact that εGjzt and εQjzt are independent.

We can now use equation (61) to substitute P ?
z,t,t into the previous equation, which yields∫

J?t−s,t

[εQjz,t−sε
G
jz,t−s]

−1

(1− αz)δz(1− δz)s
(P ?

jzt)
−θ dj =

(∏s−1
k=0 gzt−k∏s−1
k=0 qzt−k

)θ (
P ?
z,t,t

)−θ
.

Furthermore, substituting the previous equation for the r.h.s. of equation (77) yields∫
J?t−s,t

(
Qzt

QjztGjzt

)
(P ?

jzt)
−θdj = (1− αz)δz(1− δz)s

(∏s−1
k=0 gzt−k∏s−1
k=0 qzt−k

)θ−1 (
P ?
z,t,t

)−θ
,

which shows how the integral terms on the r.h.s. of equation (75) are related to the average optimal

price of newly entering products P ?
z,t,t for s ≥ 1. For the case with s = 0, analogous steps yield∫

J?t,t

[εQjztε
G
jzt]
−1(P ?

jzt)
−θ dj = δz(P

?
z,t,t)

−θ.

Using the preceding two equations to substitute for the integrals in the infinite sum on the r.h.s. of

equation (75), we obtain

∆zt

P θ
zt

= (P ?
z,t,t)

−θ

δz + (1− αz)
∞∑
s=1

δz(1− δz)s
(∏s−1

k=0 gzt−k∏s−1
k=0 qzt−k

)θ−1
+ αz(1− δz)

qzt
gzt

∆zt−1

P θ
zt−1

,

where the term in curly brackets is the same as the term in curly brackets in equation (63). Accord-

ingly, rearranging the previous equation yields the recursive representation

∆zt = (p?zt)
−θ {αzδz + (1− αz)(∆e

zt)
1−θ}+ αz(1− δz)(Πzt)

θ (gzt/qzt)
−1 ∆zt−1,

where Πzt = Pzt/Pzt−1. The stationary variable ∆e
zt evolves as described in equation (66) and p?zt is

defined in equation (67). The previous equation shows that ∆zt is constant in the balanced growth

path, because p?zt is constant in this path due to equation (68).
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C Efficient Allocation and Efficient Growth Trends

As a reference point and to better understand the distortions emerging in the decentralized economy,

this section derives the first-best allocation. This involves deriving the allocation of factor inputs

across products with different levels of product quality and productivity at the level of each expen-

diture item z, in addition to the allocation of factor inputs across items z with different average

quality and productivity. It also requires determining the optimal intertemporal paths of aggregate

variables. This appendix also derives the growth trend of variables in the efficient allocation. Using

the efficient trends we drive expressions for the efficient allocation in terms of detrended variables.

Throughout the appendix, variables carrying the superscript ’e’ denote efficient quantities.

C.1 Efficient Allocation at the Item-Level

Consider a setting where it is efficient to allocate Lezt units of labor and Ke
zt units of capital to the

production of products in item z. The optimal allocation of capital and labor across products j in

item z maximizes then (quality-adjusted) item-level output/consumption in equation (5), subject to

the production function (6) and the feasibility constraints Lezt =
∫
z
Lejzt dj and Ke

zt =
∫
z
Ke
jzt dj. This

allocation problem yields the efficient item-level output

Y e
zt =

AztQzt

∆e
zt

(Ke
zt)

1− 1
φ (Lezt)

1
φ , (78)

where the efficient productivity parameters 1/∆e
zt is defined as

1/∆e
zt ≡

(∫ 1

0

(GjztQjzt/Qzt)
θ−1 dj

) 1
θ−1

. (79)

To derive a recursive representation for 1/∆e
zt, we rearrange the previous equation to obtain

(∆e
zt)

1−θ = δz

∞∑
s=0

(1− δz)s
1

δz(1− δz)s

∫
Jt−s,t

(GjztQjzt/Qzt)
θ−1 dj, (80)

where Jt−s,t denotes the set of products with age s ≥ 0 in period t. The integrals appearing on the

r.h.s. of the infinite sum in the previous equation can bet expressed as

1

δz(1− δz)s

∫
Jt−s,t

(GjztQjzt/Qzt)
θ−1 dj =

(∏s−1
k=0 gzt−k∏s−1
k=0 qzt−k

)θ−1

,

since E[(εQjzt)
θ−1] = 1 and E[(εGjzt)

θ−1] = 1 and εQjzt and εGjzt are independent. Plugging the previous

equation into equation (80) yields equation (64) which as is shown in appendix B.4, has the recursive

representation described in equation (66).

C.2 Efficient Allocation Across Items

The optimal allocation of capital and labor between items maximizes (quality-adjusted) aggregate

output/consumption in equation (4), subject to the efficient item-level production function (78) and
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the feasibility conditions Let =
∑

z L
e
zt and Ke

t =
∑

zK
e
zt, for given levels of Let and Ke

t . Solving this

allocation problem delivers the aggregate economy-wide efficient production function

Y e
t =

(Γet )
1/φ

∆e
t

(Ke
t )

1− 1
φ (Let )

1
φ , (81)

where the efficient productivity level 1/∆e
t is defined as

1

∆e
t

≡ (Γet )
− 1
φ

(
Zt∏
z=1

ψψztzt

(
AztQzt

∆e
zt

)ψzt)
, (82)

and Γet denotes the aggregate growth rate defined in Appendix C.4 and ensures that ∆e
t a stationary

variable.

C.3 Efficient Intertemporal Allocation

The intertemporal allocation maximizes expected discounted utility of the representative household,

equation (2), subject to the intertemporal feasibility condition

Ce
t +Ke

t+1 = (1− d)Ke
t + Y e

t (83)

and the aggregate economy-wide production function (81). The first order conditions to this problem

comprise the feasibility condition (83) and

Y e
Lt = −U

e
Lt

U e
Ct

, (84)

1 = βEt

[
U e
Ct+1

U e
Ct

(
Y e
Kt+1 + 1− d

)]
, (85)

where UCt denotes the marginal utility of consumption in t, ULt the marginal disutility from labor,

Y e
Kt the marginal product of capital and Y e

Lt the marginal product of labor.

C.4 Efficient Item-Level and Aggregate Growth Trends

This section determined the efficient growth for the balanced growth path equilibrium in which

aggregate hours worked Let and item-level hours worked Lezt are stationary for all z. The variables

Ce
t , K

e
t and Y e

t all display the same growth trend, which we denote by Γet . Since the captial-to-labor

ratio is constant across products, it then follows the item-level capital stocks Kzt have the same

growth trend Γet for all z.

We can then derive the item-level output growth trend by rewriting equation (78) as

Y e
zt =

AztQzt

∆e
zt

(Γet )
1− 1

φ

(
Ke
zt

Γet

)1− 1
φ

(Lezt)
1
φ ,

which shows that Y e
zt grows at the same rate as AztQzt

∆e
zt

(Γet )
1− 1

φ because all other variables are stationary.

We can thus define the item-level growth trend as

Γezt ≡
AztQzt

∆e
zt

(Γet )
1− 1

φ . (86)
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To derive the aggregate growth trend Γet , we substitute equilibrium output for equilibrium consump-

tion in equation (4) and detrend all output variables in the resulting equation by their respective

growth trends, which yields

Y e
t

Γet
=

[∏Zt
z=1(Γezt)

ψzt

Γet

]
Zt∏
z=1

(
Y e
zt

Γezt

)ψzt
.

Since Y e
zt/Γ

e
zt is stationary, the the aggregate growth trend is given by

Γet ≡
Zt∏
z=1

(Γezt)
ψzt . (87)

Using definition (86) to substitute for Γezt in the previous equation and solving for Γet yields

Γet =
Zt∏
z=1

(
AztQzt

∆e
zt

)φψzt
, (88)

which determines the aggregate growth trend in terms of model primitives. Substituting the previous

equation for Γet into equation (86) shows that the item-level growth trend relative to the aggregate

growth trend is independent of the parameter φ and given by

Γezt
Γet

=

(
AztQzt

∆e
zt

)
∏Zt

z=1

(
AztQzt

∆e
zt

)ψzt . (89)

We also define the aggregate growth rate as

γet ≡ Γet/Γ
e
t−1. (90)

Using equation (88) to substitute for Γet and Γet−1 we obtain:

γe =
Z∏
z=1

(azqz)
ψzφ (91)

in the steady state. Furthermore, we define the item-level growth rate as

γezt ≡ Γezt/Γ
e
zt−1, (92)

and using equation (89), we obtain that in steady state,

γez
γe

=
azqz∏Z

z=1 (azqz)ψz
.

C.5 Efficient Production in Terms of Detrended Variables

We now express the item-level and aggregate production functions in the planned economy in terms

of detrended output and capital variables. Letting lower case letters denote stationary variables,

we can defineyet ≡ Y e
t /Γ

e
t , k

e
t ≡ Ke

t /Γ
e
t , k

e
zt ≡ Ke

zt/Γ
e
t and yezt ≡ Y e

zt/Γ
e
zt. To obtain the production
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function in item z in terms of detrended variables, we divide equation (78) by equation (86) and use

the definitions of item-level detrended variables. This yields

yezt = (kezt)
1− 1

φ (Lezt)
1
φ . (93)

To obtain the aggregate production function in terms of detrended variables, we divide equation (81)

by Γet and use the definitions of aggregate detrended variables, which yields

yet =
1

∆e
t

(ket )
1− 1

φ (Let )
1
φ . (94)

Here, 1/∆e
t is defined in equation (82), and this definition simplifies to

1

∆e
t

=
Zt∏
z=1

ψψztzt , (95)

after substituting the equation (88) for Γet into the definition.

D The Decentralized Economy and its Distortions

We now express the prices and allocations in the decentralized economy in terms of detrended vari-

ables, using the efficient growth trends derived in the previous appendix to detrend quantities. We

then relate the allocation in the decentralized economy to the first-best allocation derived in the pre-

vious section using two key distortions (or wedges), namely a mark-up distortion and a relative-price

distortion.

Appendices D.1 and D.2 start by deriving the growth trends of relative prices and express optimal

reset prices in terms of detrended variables. Appendix D.3 introduces the mark-up distortion and

uses it to rewrite various first-order conditions of households and firms. Appendix D.4 derives the

item-level and aggregate production functions for the decentralized economy and relates them to the

efficient allocation by introducing a relative-price distortion term. Appendix D.5 summarizes the

equations characterizing the decentralized economy in detrended variables.

D.1 Relative Price Trends and Relative Inflation Rates

To detrend the relative price of item z, Pzt/Pt, we multiply the demand function (19) by the (inverse

of the) relative growth factor Γezt/Γ
e
t , which yields

yzt/yt = ψztp
−1
zt , (96)

where we have defined

pzt ≡ (Pzt/Pt) (Γezt/Γ
e
t ) , (97)

which is constant in steady state. The demand function (19) also implies

Πzt

Πt

=

(
ψzt
ψzt−1

)(
γeztyzt/yzt−1

γet yt/yt−1

)−1

,

which shows that items with stronger price increases face stronger output declines, which is a result

of Cobb-Douglas aggregation across expenditure items.

55



D.2 Optimal Price in Terms of Detrended Variables

To express the optimal reset price in equation (25) in terms of detrended variables, we multiply the

equation by the relative sectoral growth trend, Γezt/Γ
e
t (see Appendix C) and divide by item price

level Pzt. This yields

P ?
jzt

Pzt

(
QjztGjzt

Qzt

)
pzt =

(
1

1 + τ

θ

θ − 1

)
Nzt

Dzt

(
Γezt
Γet

)
, (98)

where pzt is defined in equation (97). Since Dzt is stationary, see equation (54), we can define

dzt ≡ Dzt. (99)

The variable Nzt in equation (98) grows over time, but the variable

nzt ≡ Nzt

(
Γezt
Γet

)
(100)

is again stationary, as we show below. Using these definitions, we can thus write equation (98) in

terms of stationary variables according to

P ?
jzt

Pzt

(
QjztGjzt

Qzt

)
pzt =

(
1

1 + τ

θ

θ − 1

)
nzt
dzt

. (101)

It remains to prove the stationarity of nzt. Using the definition of nzt and equation (53) delivers

nzt =

(
MCt

PtAztQzt

)(
Γezt
Γet

)
+ αz(1− δz)Et

[
Ωt,t+1

(
Pzt+1

Pzt

)θ−1(
Pt+1

Pt

)(
Yt+1

Yt

)(
qzt+1

gzt+1

)(
Γezt
Γet

)(
Γezt+1

Γet+1

)−1

nzt+1

]
or equivalently

nzt =

(
MCt

PtAztQzt

)(
Γezt
Γet

)
+ αz(1− δz)Et

[
Ωt,t+1Πθ−1

zt+1Πt+1 (yt+1/yt) γ
e
t+1

(
qzt+1

gzt+1

)(
γet+1

γezt+1

)
nzt+1

]
. (102)

We can rewrite equation (86) to obtain

Γezt
Γet

= (Γet )
− 1
φ

(
AztQzt

∆e
zt

)
,

and use this equation to rearrange the term involving marginal costs in equation (102) according to(
MCt

PtAztQzt

)(
Γezt
Γet

)
=

(
MCt

PtAztQzt

)
(Γet )

− 1
φ

(
AztQzt

∆e
zt

)
=

(
MCt

Pt(Γet )
1/φ

)(
1

∆e
zt

)
.

We then define real detrended marginal costs as

mct ≡
MCt

Pt(Γet )
1/φ
, (103)
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where MCt is defined in equation (21). Substituting the previous equation into equation (102) yields

nzt =
mct
∆e
zt

+ αz(1− δz)Et
[
Ωt,t+1Πθ−1

zt+1Πt+1 (yt+1/yt) γ
e
t+1

(
qzt+1

gzt+1

)(
γet+1

γezt+1

)
nzt+1

]
,

which contains only stationary variables. From equation (54) and the definition of dzt we likewise

obtain

dzt = 1 + αz(1− δz)Et
[
Ωt,t+1Πθ−1

zt+1 (yt+1/yt) γ
e
t+1dzt+1

]
.

To obtain a detrended expression for the average optimal price of new products, we integrate

equation (101) over the set of newly entering products in t, normalize the resulting equation and use

the assumptions E[(εGjzt)
θ−1] = 1 and E[(εQjzt)

θ−1] = 1 and independence of εGjzt and εQjzt. This yields

p?ztpzt =

(
1

1 + τ

θ

θ − 1

)
nzt
dzt

, (104)

where we have also used the definition (67).

D.3 Aggregate Mark-Up Distortions

We define the average markup µzt at the item level as the relative price of item z over real marginal

costs (all in detrended terms),

µzt ≡
pzt
mct

, (105)

and the aggregate markup as

µt ≡
Zt∏
z=1

µψztzt . (106)

Substituting equation (106) for µzt into the previous equation, we obtain

µt = mc−1
t

Zt∏
z=1

pψztzt .

Expressing the aggregate price in equation (16) in terms of detrended relative prices and also using

equation (95), we obtain from the previous equation

µt =
1

mct∆e
t

. (107)

Using the definition (103) and equation (21), we obtain

mct =

(
kt
Lt

) 1
φ
(

rt
1− 1/φ

)
,

where we have also used equation (48) determining the optimal input mix. Substituting into the

previous equation the expression for the markup and rearranging yields

rt = µ−1
t

(
1− 1

φ

)
1

∆e
t

(
kt
Lt

)− 1
φ

. (108)
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Analogous steps deliver

wt = µ−1
t

(
1

φ

)
1

∆e
t

(
kt
Lt

)1− 1
φ

. (109)

The previous two equations show how the capital-to-labor ratio gets distorted by the aggregate

markup µt.

D.4 Relative Price Distortions

We define detrended variables according to yt ≡ Yt/Γ
e
t , kt ≡ Kt/Γ

e
t , kzt ≡ Kzt/Γ

e
t and yzt ≡ Yzt/Γ

e
zt.

To obtain the production function in item z in terms of detrended variables, we rewrite equation

(69) as

Yzt
Γezt

=

[
(Γet )

1− 1
φ

Γezt

AztQzt

∆zt

](
Kzt

Γet

)1− 1
φ

L
1
φ

zt.

Using the definitions for detrended variables and the definition of the item-level growth trend in

equation (86), we obtain a production function in detrended variables:

yzt =

(
∆e
zt

∆zt

)
k

1− 1
φ

zt L
1
φ

zt. (110)

In a situation in which relative prices in the decentralized economy are efficient, we have

∆zt = ∆e
zt,

such that equation (110) becomes equal to the efficient production function in the planner solution,

see equation (93). Item-level distortions arising from inefficient price dispersion can thus be captured

by the item-level distortion factor

ρzt ≡ ∆e
zt/∆zt ≤ 1 (111)

We obtain the aggregate production function in detrended variables for the decentralized economy

by dividing equation (71) by Γet and using the definitions of aggregate detrended variables:

yt =

(
∆e
t

∆t

)(
1

∆e
t

)
k

1− 1
φ

t L
1
φ

t . (112)

We can then define an aggregate distortion factor capturing inefficiencies associated with relative

price distortions across all items:

ρt ≡ ∆e
t/∆t ≤ 1. (113)

When relative prices are efficient, we have ρt = 1, so that the aggregate production function in

the decentralized economy (112) becomes equal to the aggregate production function in the planner

allocation (94).

We take the inverse of equation (72) and multiply it by ∆e
t . We simplify the resulting equation

by substituting for (Γet )
1/φ using equation (86) and using the definition of pzt in equation (97). This

yields

∆e
t

∆t

= ∆e
t

(
Zt∑
z=1

ψztp
−1
zt (∆zt/∆

e
zt)

)−1

,
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and shows that the relative price distortion at the aggregate level is a weighted sum over item-level

relative price distortions with weights equal to the item’s relative output (recall yzt/yt = ψztp
−1
zt from

equation (96)). We can rearrange the previous equation by using the definition (106) to substitute

for pzt and equation (107) to substitute for mct in this definition. This yields

(ρtµt)
−1 =

Zt∑
z=1

ψzt(µztρzt)
−1 (114)

and shows that the product of (inverse) aggregate distortion corresponds to the weighted sum of the

product of (inverse) item-level distortions.

D.5 Summary of Equations Characterizing the Decentralized Economy

At the aggregate level, the decentralized and detrended economy is summarized by the following four

equations:

yt =

(
ρt
∆e
t

)
k

1− 1
φ

t L
1
φ

t (115)

µ−1
t

(
1

φ

)
1

∆e
t

(
kt
Lt

)1− 1
φ

= −ct
(
∂V (Lt)/∂Lt

V (Lt)

)
(116)

1 = Et

[
Ωt,t+1

{
µ−1
t+1

(
1− 1

φ

)
1

∆e
t+1

(
kt+1

Lt+1

)− 1
φ

+ 1− d
}]

(117)

γet+1kt+1 = (1− d)kt + yt − ct. (118)

Equation (115) follows from substituting the definition of the relative price distortion (113) into the

aggregate production function (112). Equation (116) follows from substituting equation (109) for

the wage into the first-order condition (44). Equation (117) follows from substituting equation (108)

for the real rate into the household’s first-order condition (47). Equations (116) and (117) show

how the markup distorts the intra- and inter-temporal optimal household choices compared to the

first-best allocation, see equations (84) and (85). Equation (118) is derived from consolidating the

budget constraints of the representative household and the government and expressing the resulting

equation in terms of detrended variables.

Equations (115)–(118) determine the variables yt, kt, Lt and ct given values for the aggregate

distortions ρt and µt, which depend on the inflation rate, aggregate growth γet , the productivity

parameter ∆e
t determined by equation (95) and given the equation for the discount factor

Ωt,t+1 = β

(
γet+1ct+1

ct

)−σ (
V (Lt+1)

V (Lt)

)1−σ

.

Furthermore, we previously determined in equation (114) and definition (106) that the aggregate

markup and relative price distortions are functions of the item-level markup and relative price dis-

tortions. These equations are repeated here, jointly with the definitions of item-level markup and
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relative price distortions (106) and (111), respectively:

(ρtµt)
−1 =

Zt∑
z=1

ψzt(µztρzt)
−1

µt =
Zt∏
z=1

µψztzt

ρzt = ∆e
zt/∆zt

µzt = pzt/mct.

Note that the distortions depend on the inflation rate.

The item-level outcomes are described by the following set of equations:

1 =
{
αzδz + (1− αz)(∆e

zt)
1−θ} (p?zt)

1−θ + αz(1− δz)(Πzt)
θ−1 (119)

p?ztpzt =

(
1

1 + τ

θ

θ − 1

)
nzt
dzt

(120)

nzt =
mct
∆e
zt

+ αz(1− δz)Et
[
Ωt,t+1Πθ−1

zt+1Πt+1 (yt+1/yt) γ
e
t+1

(
qzt+1

gzt+1

)(
γet+1

γezt+1

)
nzt+1

]
(121)

dzt = 1 + αz(1− δz)Et
[
Ωt,t+1Πθ−1

zt+1 (yt+1/yt) γ
e
t+1dzt+1

]
(122)(

γezt
γet

)
Πzt =

(
ψzt
ψzt−1

pzt
pzt−1

)
Πt (123)

∆zt = (p?zt)
−θ {αzδz + (1− αz)(∆e

zt)
1−θ}+ αz(1− δz)(Πzt)

θ (gzt/qzt)
−1 ∆zt−1 (124)

(∆e
zt)

1−θ = δz + (1− δz)
(
∆e
zt−1qzt/gzt

)1−θ
(125)

mct =

(
wt

1/φ

) 1
φ
(

rt
1− 1/φ

)1− 1
φ

(126)

rtkt = (φ− 1)wtLt (127)

γezt = (γet )
1− 1

φ
(
aztqzt∆

e
zt−1/∆

e
zt

)
, (128)

where inflation Πt is defined in equation (17) and the aggregate price level in equation (16). Fur-

thermore, the aggregate growth rate γet is defined in equation (90) and the aggregate growth trend

is determined by equation (88).

E Derivation of the Steady State Equations in Section 5

In the steady state, the one-period discount factor in equation (45) is

Ω = β(γe)−σ.

Using this, equations (115)–(118) simplify to the equations (26)–(29) in the steady state. Further-

more, in the steady state, the aggregate markup in equation (106) and the relative price distortion

in equation (114) simplify to equations (137) and (139), respectively. These aggregate distortions
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are functions of the item-level distortions, which are functions of the aggregate inflation rate. We

now derive the steady-state expressions for the item-level distortions µz in equation (138) and ρz in

equation (140).

E.1 Item-Level Relative Price Distortion

To express ρz as function of inflation, we consider the equations (119) and (124) in the steady state.

This yields

1− αz(1− δz)Πθ−1
z =

{
αzδz + (1− αz)(∆e

z)
1−θ} (p?z)

1−θ(
1− αz(1− δz)Πθ

z(gz/qz)
−1
)

∆z =
{
αzδz + (1− αz)(∆e

z)
1−θ} (p?z)

−θ . (129)

Dividing both equations by each other yields

p?z = ∆−1
z

(
1− αz(1− δz)Πθ−1

z

1− αz(1− δz)Πθ
z(gz/qz)

−1

)
. (130)

Substituting this expression for p?z into equation (129) yields(
∆z

∆e
z

)1−θ

=

(
αzδz(∆

e
z)
θ−1 + (1− αz)

1− αz(1− δz)Πθ
z(gz/qz)

−1

)(
1− αz(1− δz)Πθ−1

z

1− αz(1− δz)Πθ
z(gz/qz)

−1

)−θ
.

We substitute for ∆e
z on the r.h.s. of the previous equation using the steady-state version of equation

(125), which yields

∆z

∆e
z

=

(
1− αz(1− δz) (gz/qz)

θ−1

1− αz(1− δz)Πθ
z(gz/qz)

−1

) 1
1−θ (

1− αz(1− δz)Πθ−1
z

1− αz(1− δz)Πθ
z(gz/qz)

−1

) θ
θ−1

.

Simplifying the previous equation, using the definition (111) and substituting for Πz using equation

(123) in the steady state yields

ρz(Π)−1 =

(
1− αz(1− δz) (gz/qz)

θ−1

1− αz(1− δz)[(γe/γez)Π]θ(gz/qz)−1

)(
1− αz(1− δz)[(γe/γez)Π]θ−1

1− αz(1− δz) (gz/qz)
θ−1

) θ
θ−1

, (131)

which shows that the item-level relative price distortion can be expressed as function of Π only.

Rearranging the previous equation yields equation (140).

E.2 Item-Level Markup Distortion

To express µz as function of inflation, we consider the pricing equation (120) in the steady state and

substitute for n and d using the equations (121) and (122) in the steady state. This yields

pz
mc

=

(
1

1 + τ

θ

θ − 1

)
1

p?z∆
e
z

(
1− αz(1− δz)β(γe)1−σ[(γe/γez)Π]θ−1

1− αz(1− δz)β(γe)1−σ[(γe/γez)Π]θ(gz/qz)−1

)
, (132)
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where we have also substituted for Πz using equation (123) in the steady state. Using equation (130),

the definition (111) and equation (123) to substitute for Πz, we obtain

1

p?z∆
e
z

= ρz(Π)−1

(
1− αz(1− δz)[(γe/γez)Π]θ−1

1− αz(1− δz)[(γe/γez)Π]θ(gz/qz)−1

)−1

.

Using the previous equation to substitute for (p?z∆
e
z)
−1 on the r.h.s. in equation (132) yields

µz(Π) =

(
1

1 + τ

θ

θ − 1

)
ρz(Π)−1

(
1− αz(1− δz)[(γe/γez)Π]θ−1

1− αz(1− δz)[(γe/γez)Π]θ(gz/qz)−1

)−1

(133)

×
(

1− αz(1− δz)β(γe)1−σ[(γe/γez)Π]θ−1

1− αz(1− δz)β(γe)1−σ[(γe/γez)Π]θ(gz/qz)−1

)
.

Using equation (131) to substitute for ρz(Π)−1 and the definition (105) to substitute for pz/mc in the

previous equation yields equation (138) determining the item-level markup as function of inflation.

E.3 Steady State: Existence Conditions

We now derive the existence conditions for a steady state (or deterministic balanced growth path).

First, we need to impose

1 > (1− δz) (gz/qz)
θ−1 , (134)

for all z, so that 1/∆e
z, which measures quality-adjusted productivity in the efficient economy, see

equation (125), has a well-defined steady-state value:(
1

∆e
z

)θ−1

=
δz

1− (1− δz) (gz/qz)
θ−1

,

Given the substantial amount of product turnover (δz � 0), see panel A of Figure 5, and the

relatively low rates of relative price decline (gz/qz), see figure 3, condition (134) is likely to be

fulfilled for reasonable values for the demand elasticity parameter θ.

To insure that the item-level distortions ρz(Π) and µz(Π) in equations (140) and (138) have well-

defined steady state values, we furthermore impose

1 > αz(1− δz)[(γe/γez) Π]θ(gz/qz)
−1 (135)

1 > αz(1− δz)[(γe/γez) Π]θ−1, (136)

for all z. Since αz � 1 and δz � 0, it follows from the fact that γe/γez and gz/qz take on values fairly

close to one, that these conditions are easily fulfilled for reasonable values for the demand elasticity

parameter θ and plausible (gross) steady-state inflation rates Π.

E.4 Aggregate Mark-up and Price Distortion

Using the results from the preceding sections, we can write the aggregate mark-up distortion µ(Π)

as

µ(Π) =
Z∏
z=1

µz(Π)ψz , (137)
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where the item-level distortions are given by

µz(Π) ≡
(

1

1 + τ

θ

θ − 1

)
Mz

(
1− αz(1− δz)β(γe)1−σ[(γe/γez) Π]θ−1

1− αz(1− δz)β(γe)1−σ[(γe/γez) Π]θ(gz/qz)−1

)
, (138)

for all z = 1, . . . Z, with

Mz ≡
(

1− αz(1− δz)[(γe/γez) Π]θ−1

1− αz(1− δz)(gz/qz)θ−1

) 1
θ−1

,

and

γez ≡ (azqz)(γ
e)1− 1

φ .

Similarly, the relative price distortion ρ(Π) is given by

(ρ(Π)µ(Π))−1 =
Z∑
z=1

ψz(µz(Π)ρz(Π))−1, (139)

where for all z = 1, . . . Z the item-level relative price distortions ρz(Π) are given by

ρz(Π)−1 = M θ
z

(
1− αz(1− δz)(gz/qz)θ−1

1− αz(1− δz)[(γe/γez) Π]θ(gz/qz)−1

)
. (140)

As is easy to see, for the limiting case without price stickiness (αz → 0 for all z), we have

µ =

(
1

1 + τ

θ

θ − 1

)
ρ = 1,

independently of Π.

F Proofs

F.1 Proof of Lemma 1

For the limiting case β (γe)1−σ → 1, we have from item-level distortions in equations (138) and (140)

that

µz(Π) =

(
1

1 + τ

θ

θ − 1

)
ρz(Π)−1. (141)

Multiplying the previous equation by ρz(Π) and substituting the result into equation (139) yields

(ρ(Π)µ(Π))−1 =

(
1

1 + τ

θ

θ − 1

)−1

,

so that

µ(Π) =

(
1

1 + τ

θ

θ − 1

)
ρ(Π)−1.
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F.2 Proof of Proposition 1

The proof proceed as follows: section F.2.1 derives a convenient formulation for the steady-state

solution for general values of β (γe)1−σ < 1; section 1 considers this formulation for the limiting

case β (γe)1−σ → 1 and shows that labor is independent of the inflation rate, whereas consumption

depends on the inflation rate only via the aggregate markup distortion; section F.2.3 derives the

inflation rate that minimizes the aggregate markup distortion and thus maximizes consumption.

F.2.1 Steady State Solution

We rewrite equations (26) to (29) by expressing the variables y, c and k relative to hours worked L,

which yields

y

L
=

(
ρ(Π)

∆e

)(
k

L

)1− 1
φ

(142)

c

L
=

1

µ(Π)

1

∆e

(
1

φ

)(
k

L

)1− 1
φ
(
− V (L)

L ∂V (L)/∂L

)
(143)

k

L
=

1

µ(Π)

1

∆e

(
1− 1

φ

)(
k

L

)1− 1
φ
(

1

β(γe)−σ
− 1 + d

)−1

(144)

y

L
=
c

L
+ (γe − 1 + d)

k

L
. (145)

We now show that these four equations determine the four variables y, c, L, k, given a steady-state

inflation rate Π. For given Π, one can solve for hours worked L by substituting the equations (142)

to (144) into equation (145). This yields(
− V (L)

L ∂V (L)/∂L

)
= φµ(Π)ρ(Π)− (φ− 1)

(
γe − 1 + d
1

β(γe)−σ
− 1 + d

)
. (146)

Given Π and L, the solutions for k, c, and y can then be recursively computed from the equations

(142) to (144). These solutions are

k(Π) =

(
1

µ(Π)

1

∆e

)φ(
1− 1

φ

)φ(
1

β(γe)−σ
− 1 + d

)−φ
L (147)

c(Π) =
1

µ(Π)

1

∆e

(
1

φ

)(
k

L

)1− 1
φ
(
− V (L)

∂V (L)/∂L

)
(148)

y(Π) = c+ (γe − 1 + d)k. (149)

F.2.2 Steady-state solution for the limiting case in proposition 1:

We now consider the steady-state solution from the previous section for the limiting case β (γe)1−σ →
1. Using lemma 1 equation (146) simplifies to(

− V (L)

L ∂V (L)/∂L

)
=

(
1

1 + τ

θ

θ − 1

)
φ− (φ− 1) . (150)
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This shows that the steady state amount of labor does not dependent on Π. Next, rewrite equation

(147) as (
k(Π)

L

)1− 1
φ

=

(
1

µ(Π)

1

∆e

)φ−1(
1− 1

φ

)φ−1

(γe − 1 + d)1−φ .

Substitute this equation and equation (150) into equation (148), this delivers

c(Π) =

(
1

µ(Π)

)φ{
L

(
1

∆e

)φ
(γe − 1 + d)1−φ

((
1

1 + τ

θ

θ − 1

)
φ− (φ− 1)

)
φ−φ (φ− 1)φ−1

}
,

where the term in parentheses depends is independent of inflation Π. We thus have

c(Π) ∝
(

1

µ(Π)

)φ
. (151)

The inflation rate that minimizes the aggregate markup distortion thus maximizes steady-state con-

sumption and thereby welfare, given that labor is fixed.

F.2.3 Minimizing The Aggregate Markup Distortion

From equation (137), minimizing the aggregate markup distortion in the steady state implies

∂µ(Π)

∂Π
=

Z∑
z=1

ψzµz(Π)ψz−1[∂µz(Π)/∂Π]

(∏
zC

µz(Π)ψz

)
= 0,

where zC to denote the set of all items except for item z. The equation holds if and only if

Z∑
z=1

ψz
∂µz(Π)/∂Π

µz(Π)
= 0. (152)

Using equation (141), the expression for ρz(π) in equation (140) and the shorthand notation α̃z =

αz(1− δz)(γe/γez)θ−1, we obtain

∂µz(Π)/∂Π

µz(Π)
=

θα̃zΠ
θ−2
(
qzγe

gzγez

)
(

1− α̃zΠθ
(
qzγe

gzγez

))
(1− α̃zΠθ−1)

[
Π− gzγ

e
z

qzγe

]
.

Plugging this expression into equation (152) and multiplying by Π2 yields

Z∑
z=1

 ψzθα̃zΠ
θ
(
qzγe

gzγez

)
(

1− α̃zΠθ
(
qzγe

gzγez

))
(1− α̃zΠθ−1)


[
Π− gzγ

e
z

qzγe

]
= 0. (153)

The expression in the parentheses is the weight ω̃z in proposition 1. We normalize the weights so

that they sums to unity over all z = 1, . . . Z. This yields normalized weights ωz = ω̃z/
∑Z

z=1 ω̃z, with∑Z
z=1 ωz = 1. Using these, we can rewrite equation (153) according to

Z∑
z=1

ωz

[
Π? − gzγ

e
z

qzγe

]
= 0, (154)

where ωz is given by the expression in the proposition and Π? denotes the optimal solution. Solving

equation (154) for Π? yields the expression for the optimal inflation target in proposition 1.
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F.3 Proof of Lemma 2

Defining mz = gzγez
qzγe

one can express equation (153) as

Z∑
z=1

ω̃z(Π,mz) [Π−mz] = 0, (155)

where ω̃z(Π,mz) = ψzθα̃zΠθ/mz

(1−α̃zΠθ/mz)(1−α̃zΠθ−1)
and α̃z = αz(1−δz)(γe/γez)θ−1. We use the implicit function

theorem to derive how the optimal inflation target varies with mz. To this end, we linearize equation

(155) at a point where Π̄ = m̄z for all z. This yields

Z∑
z=1

ω̃z(Π̄, m̄z) [Π−mz] = 0 +O(2),

where O(2) denotes a second-order residual. Solving for Π and letting again Π? denote the optimal

solution, we obtain

Π? =
Z∑
z=1

ω̃z(Π̄, m̄z)∑Z
z′=1 ω̃z′(Π̄, m̄z′)

mz +O(2), (156)

which shows that Π? is a weighted average of mz’s for all item categories z and with weights evaluated

at the expansion point and normalized to unity. The normalized weight of item z evaluated at Π̄ = m̄z

is given by

ω̃z(Π̄, m̄z)∑Z
z=1 ω̃z(Π̄, m̄z)

= ψz

[
θα̃zΠ̄

θ−1(
1− α̃zΠ̄θ−1

)2

](
Z∑
z=1

ψz

[
θα̃zΠ̄

θ−1(
1− α̃zΠ̄θ−1

)2

])−1

,

= ψz,

where the second equality follows from the fact that α̃z is constant across item categories z = 1, . . . Z

and the fact that
∑Z

z=1 ψz = 1. Equation (156) can be rearranged to obtain

Π? =
Z∑
z=1

ψzmz +O(2),

which is the equation stated in lemma 2, when using mz = gzγez
qzγe

.

F.4 Proof of Proposition 2

The proof proceeds in four steps. The first three steps derive the optimal inflation rate ignoring the

fact that resource losses associated with menu costs may depend on the inflation rate. In particular,

step 1 shows that welfare maximization is then again identical to consumption maximization and

that consumption depends only via relative price distortions on inflation. Step 2 derives an auxiliary

lemma showing how relative-price distortions depend on the price gap distribution, where the price

gap is defined as the difference between the log relative price of the firm minus the efficient log

relative price. Step 3 uses results about the price-gap distribution in the menu-cost model under
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alternative steady-state inflation rates from Alvarez et al. (2019), combines these with the results

from the previous steps, and derives the optimal inflation rate. In step 4, we show that the optimal

inflation rate thus derived either also minimizes the output losses from menu costs (condition (ii)

in assumption 1) or that the resource losses associated with menu costs generate effects that are

irrelevant for optimal inflation to first order (condition (i) in assumption 1).

Step 1: Equations (26)-(28) continue to hold in the menu cost, as they are derived for arbi-

trary price distributions. The aggregate markup distortions µ(Π) and the aggregate relative-price

distortion ρ(Π) continue to be defined by equations (139) and (137), respectively, but the item-level

mark-ups µz and item-level relative-price distortions ρz are now the ones implied by menu-cost fric-

tions. To account for the resource loss from menu costs, the resource constraint (29) needs to be

modified to include the economy-wide menu costs Fm({κz, λz}Zz=1), which depend on the adjustment

cost parameters κz and the price adjustment frequencies λz:

y = c+ (γe − 1 + d)k + Fm({κz, λz}Zz=1)

The resource cost will generally depend on the inflation rate because the price adjustment frequencies

λz depend on inflation. Steps 1-3 of the proof ignore this dependency. It will be considered in step

4 of the proof.

From the proof of proposition 1 in appendix F.2 then follows that welfare maximization is again

equivalent to consumption maximization. This is true because labor input continues to be indepen-

dent of inflation as long as the mark-up distortions are inversely proportional to the relative price

distortion. The latter is insured by the assumed output subsidies. Welfare then continues to be

captured by equation (151), reproduced here for convenience:

c(Π) ∝
(

1

µ(Π)

)φ
.

Using the definition of the aggregate markup in equation (137) and the inverse proportionality of the

distortions, we have

c(Π) ∝

(
Z∏
z=1

(ρz(Π))ψz

)φ

,

where the item-level relative price distortion is defined in equation (111). Steps 2 and 3 of the proof

below determine the inflation that maximizes

c(Π) ∝

(
Z∏
z=1

(∆e
z/∆z(Π))ψz

)φ

. (157)

Step 2 proves the following auxiliary result:

Lemma 3 We have

ln
∆zt

∆e
zt

=
1

2
θ

∫ 1

0

Xjzt(p
g
jzt)

2 dj +O(3) (158)
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where O(3) denotes a third-order approximation error, pgjzt the log relative-price gap

pgjzt ≡ pjzt − pejzt,

with pjzt ≡ ln(Pjzt/Pzt) denoting the log relative price charged by the firm and pejzt ≡ ln(P e
jzt/P

e
zt) the

efficient log relative price. The firm weights Xjzt are given by

Xjzt ≡
((

Qzt

GjztQjzt

)
1

∆e
zt

)1−θ

, (159)

and satisfy ∫ 1

0

Xjzt dj = 1.

Proof of lemma 3: Recall the definitions of ∆zt and 1/∆e
zt from equations (70) and (79),

reproduced here for convenience:

∆zt ≡
∫ 1

0

(
Qzt

QjztGjzt

)(
Pjzt
Pzt

)−θ
dj (160)

1/∆e
zt ≡

(∫ 1

0

(
QjztGjzt

Qzt

)θ−1

dj

) 1
θ−1

, (161)

The efficient relative price is given by61

P e
jzt

P e
zt

=

(
Qzt

GjztQjzt

)
1

∆e
zt

. (162)

Using the previous equation to substitute Qzt
QjztGjzt

in equation (160) delivers

∆zt

∆e
zt

=

∫ 1

0

P e
jzt

P e
zt

(
Pjzt
Pzt

)−θ
dj

=

∫ 1

0

((
Qzt

GjztQjzt

)
1

∆e
zt

)1−θ (
Pjzt/Pzt
P e
jzt/P

e
zt

)−θ
dj

=

∫ 1

0

((
Qzt

GjztQjzt

)
1

∆e
zt

)1−θ

exp
(
−θ[pjzt − pejzt]

)
dj

=

∫ 1

0

Xjzt exp
(
−θpgjzt

)
dj.

Approximating the previous equation to second order in pgjzt at the point pgjzt = 0, yields

∆zt

∆e
zt

= 1− θ
∫ 1

0

Xjzt exp
(
−θpgjzt

)
|pg=0 p

g
jzt dj +

1

2
θ2

∫ 1

0

Xjzt exp
(
−θpgjzt

)
|pg=0 (pgjzt)

2 dj +O(3).

Evaluating the derivatives of the first and second-order terms in the previous equation delivers

∆zt

∆e
zt

− 1 = −θ
∫ 1

0

Xjztp
g
jzt dj +

1

2
θ2

∫ 1

0

Xjzt(p
g
jzt)

2 dj +O(3) (163)

61This can be seen be substituting the efficient price into equation (160). We then obtain ∆zt = ∆e
zt.
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Next, we show that the first-order Taylor term in equation (163) moves only to second order. The

item price level definition (15) implies

1 =

∫ 1

0

exp((1− θ)pjzt)dj.

Using equation (162) and the definition of the relative price gap, we can express the previous equation

in terms of the relative price gap:

1 =

∫ 1

0

exp((1− θ)pgjzt)
((

Qzt

GjztQjzt

)
1

∆e
zt

)1−θ

dj.

Using definition (159), we obtain

1 =

∫ 1

0

Xjzt exp((1− θ)pgjzt) dj.

Approximating the previous equation to second order yields∫ 1

0

Xjzt p
g
jzt dj =

1

2
(θ − 1)

∫ 1

0

Xjzt(p
g
jzt)

2 dj + o(3).

Using the previous equation to replace the first-order Taylor term in equation (163) yields

∆zt

∆e
zt

− 1 =
1

2
θ

∫ 1

0

Xjzt(p
g
jzt)

2 dj +O(3). (164)

To obtain an approximation in terms ln(∆zt

∆e
zt

), we approximate ln(∆zt

∆e
zt

) at the point ∆zt

∆e
zt

= 1 to second

order, which delivers

ln

(
∆zt

∆e
zt

)
= (∆zt/∆

e
zt − 1)− 1

2
(∆zt/∆

e
zt − 1)2 +O(3),

From equation (164) follows that (∆zt/∆
e
zt − 1)2 ∼ O(4) and can thus be ignored for the purpose of

deriving a second-order approximation. Substituting equation (164) for ∆zt/∆
e
zt − 1 in the previous

equation yields

ln

(
∆zt

∆e
zt

)
=

1

2
θ

∫ 1

0

Xjzt(p
g
jzt)

2 dj +O(3),

which is equation (158) in lemma 3.

Step 3. Since firms’ menu costs are proportional to flexible price profits, the firm problem

is homogenous in firm-level technology. As a result, the price gap distribution is independent of

the firm-level (relative-productivity) weights Xjzt. Since
∫ 1

0
Xjzt dj= 1, equation (158) in lemma 3

simplifies in a menu-cost setting to

ln
∆zt

∆e
zt

=
1

2
θ

∫ 1

0

(pgjzt)
2dj +O(3).

Letting fz(p
g) denote the steady-state price-gap distribution of the menu-cost model, one can rewrite

the previous equation in steady state as:

ln
∆z

∆e
z

=
1

2
θ

∫
(pg)2fz(p

g)dj +O(3). (165)
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We now define ζz as the rate at which an individual firm’s relative-price gap is drifting in steady

state, in the absence of idiosyncratic shocks hitting the firm and in the absence of price adjustments.

This rate is given by

ζz ≡ ln Πz − ln(gz/qz)

= ln(Πγe/γez)− ln(gz/qz)

= ln Π− ln

(
gzγ

e
z

qzγe

)
,

where the second equality uses the steady-state relationship between item-level and aggregate infla-

tion obtained from the product demand function (19).

Proposition 1 in Alvarez et al. (2019) shows that the steady-state density of price gaps in the

menu-cost model for quadratic profit functions takes the form fz(p
g) = f(pg|ζz, σ2

z , κz). We can thus

express equation (165) as

ln
∆z

∆e
z

=
1

2
θ

∫
(pg)2f(pg|ζz, σ2

z , κz)dp
g +O(3)

Taking the log of equation (157) and using the previous expression to substitute ln(∆e
z/∆z(Π)) and

taking the first-order condition with respect to the optimal inflation rate ln Π delivers∑
z

ψz
∂ ln(∆e

z/∆z))

∂ζz

∂ζz
∂ ln Π︸ ︷︷ ︸
≡1

= 0

∑
z

ψz
∂ ln(∆e

z/∆z))

∂ζz︸ ︷︷ ︸
≡ Fz(ln Π, ln

(
gzγez
qzγe

)
)

= 0. (166)

We have Fz(ln(gzγ
e
z/(qzγ

e)), ln(gzγ
e
z/(qzγ

e))) = 0 in the menu cost model, due to the symmetry of

f(pg|ζz, σ2
z , κz) in the sense that f(pg|ζz, σ2

z , κz) = f(−pg| − ζz, σ2
z , κz), the symmetry of (pg)2 around

zero, the assumed differentiability of f(pg|ζz, σ2
z , κz) at the point of approximation (ζz = 0), and the

assumption that we can work with a quadratic profit function, see proposition 1 in in Alvarez et al.

(2019). This implies that equation (166) holds at the point ln Π = ln
(
gzγez
qzγe

)
= m̄ , i.e., at the point

of approximation in proposition 2. We can thus use the implicit function theorem to approximate

the optimal solution of (166) to first order around the point ln Π = ln
(
gzγez
qzγe

)
= m̄. This delivers

ln Π = m̄−
∑
z

ψz
∂Fz(ln Π, ln

(
gzγez
qzγe

)
)/∂ ln

(
gzγez
qzγe

)
∑

z̃ ψz̃∂Fz̃(ln Π, ln
(
gz̃γ

e
z̃

qz̃γe

)
)/∂ ln Π

∣∣∣∣∣∣
ln Π=ln

(
gzγ

e
z

qzγe

)
=m̄︸ ︷︷ ︸

≡ F̃z

(ln

(
gzγ

e
z

qzγe

)
− m̄) +O(2),
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which exploits the fact that ∂Fz(ln Π, ln
(
gzγez
qzγe

)
)/∂x = 0 for x = {κz, σ2

z , δz}, as ∂ ln(∆e
z/∆z))/∂ζz = 0

holds independently of the considered values for (κz, σ
2
z , δz). For this reason, we do not get first-order

contributions from heterogeneity in (κz, σ
2
z , δz).

From the definition of Fz(ln Π, ln (gzγ
e
z/(qzγ

e))) follows that F̃z = −1 at the point of approxima-

tion, because the derivatives
∂Fz(ln Π, ln(gzγ

e
z/qzγ

e))

∂ ln(gzγez/qzγ
e)

are identical for all z at the point of approximation and

∂Fz(ln Π, ln

(
gzγ

e
z

qzγe

)
)/∂ ln Π = −∂Fz(ln Π, ln

(
gzγ

e
z

qzγe

)
)/∂ ln

(
gzγ

e
z

qzγe

)
.

We thus obtain

ln Π =
∑
z

ψz ln

(
gzγ

e
z

qzγe

)
+O(2).

The previous equation is to first order equal to

Π =
∑
z

ψz

(
gzγ

e
z

qzγe

)
+O(2), (167)

which is the result stated in the proposition. It now remains to show that it continuos to hold once

we also take into account the resource effects from menu costs.

Step 4: We now consider the additional effects arising from the dependency of the resource loss

associated with menu costs on the inflation rate. When condition (i) in assumption 1 holds, then

menu costs vary only to third order with inflation. This is so because menu costs themselves are of

first order, but the adjustment frequency λz moves only to second order with inflation. This is so

because ∂λz/∂ ln Π = 0 at the point of approximation, see proposition 1 in Alvarez et al. (2019).

Menu cost then do not matter for optimal inflation to first order, as only effects that move allocations

to second or lower order are relevant. Result (167) thus continues to apply.

When condition (ii) in assumption 1 holds, then menu costs move allocations to second order.

To see this, write the adjustment frequency as λz(ζz) where ζz = ln Π− ln gz
qz

γez
γz

.62 The second-order

approximation of menu costs with respect to inflation around the point of approximation is given by

Fm({κz, λz}Zz=1) = Fm +
1

2

∑
z

∂Fm({κz, λz}Zz=1)

∂λz

∂2λz

(∂ ln Π)2 (ln Π−m)2

+
1

2

∑
z

∂Fm({κz, λz}Zz=1)

∂λz

∂2λz

(∂ ln Π)2 (ln
gz
qz

γez
γz
−m)2

−
∑
z

∂Fm({κz, λz}Zz=1)

∂λz

∂2λz

(∂ ln Π)2 (ln Π−m)(ln
gz
qz

γez
γz
−m)

+O(3),

62The adjustment frequency also depends on other parameters, i.e.,
(
κz, σ

2
z , δz

)
. We capture depencency on these

parameters in nonlinear form through the subscript z in λz.
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where we used once more ∂λz/∂ ln Π = 0, which causes all first-order terms and some second-order

terms to disappear, and the fact that ∂λz/∂ ln Π ≡ − ∂λz/∂ ln(gz
qz

γez
γz

). Using
∂Fm({κz ,λz}Zz=1)

∂λz
∂2λz

(∂ ln Π)2
∝

ψz and the fact that
∑

z ψz = 1, the first-order condition of the previous equation with respect to

ln Π shows that adjustment costs are minimized for

ln Π =
∑
z

ψz

(
ln
gz
qz

γez
γz

)
+O(2),

which is to first order equal to (167). The optimal inflation rate (167) thus not only maximizes con-

sumption for a given amount of labor input, as shown in steps 1-3 of the proof, but also minimizes

the resource loss from price adjustments and thus total hours worked for a given amount of con-

sumption. Under condition (ii) in assumption 1, the inflation rate (167) thus maximizes steady-state

utility with respect to consumption and labor.

F.5 Proof of Proposition 3

Taking the natural logarithm of the equation (101), which describes the optimal reset price, yields

ln
P ?
jzt

Pzt
= ln

(
1

1 + τ

θ

θ − 1

)
− ln

(
QjztGjzt

Qzt

)
+ ln

(
nzt
pztdzt

)
. (168)

We rearrange the term ln(QjztGjzt/Qzt) in the previous equation for sjzt ≥ 1 as

ln

(
QjztGjzt

Qzt

)
= ln(εGjztε

Q
jzt) + ln

(
Qzt−sGjzt

Qzt

)
= ln(εGjztε

Q
jzt) + ln

(∏sjzt−1
k=0 gzt−k∏sjzt−1
k=0 qzt−k

)

= ln(εGjztε
Q
jzt) + ln

(
gz
qz

)
· sjzt +

t∑
i=t−sjzt+1

(ln εgzi − ln εqzi) . (169)

where the first equality follows from using equations (7) and (11), the second equality follows from

using equations (9) and (12), the third equality follows from using equations (10) and (13), and

and where ln(εGjztε
Q
jzt) denotes the product-fixed effect. For the case with sjzt = 0, we obtain

ln(QjztGjzt/Qzt) = ln(εGjztε
Q
jzt). Substituting the equation (169) into equation (168) yields equation

(36) in the proposition, where we have defined

f ?jz ≡ ln

(
1

1 + τ

θ

θ − 1

nz
pzdz

)
− ln(εGjztε

Q
jzt) (170)

u?jzt ≡ ln

(
nzt
pztdzt

pzdz
nz

)
−

t∑
i=t−sjzt+1

(ln εgzi − ln εqzi) , (171)

and E[u?jzt] = 0 holds because by assumption E ln εgzt = 0 and E ln εqzt = 0 and ln
(

nzt
pztdzt

pzdz
nz

)
denotes

the percentage deviation of stationary variables from their steady state values.
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F.6 Relative Price Regression Using all Prices (Equation 38)

As proven below, the intercepts and residuals of regression (38) satisfy the following properties:

Proposition 5 The evolution of the relative product price in all periods, including adjustment peri-

ods, is described by equation (38), where

fjz = f ?jz + ūz,

with f ?jz being defined in equation (170) and

ūz = − αz
1− αz

[E ln Πzt − ln(gz/qz)]. (172)

For products with age sjzt > 0, we have

ujzt =

{
u?jzt − ūz in price adjustment periods,

ujz,t−1 + ln(gz/qz)− ln Πzt otherwise,
(173)

where u?jzt is defined in equation (171). For new products with sjzt = 0, we have

ujzt = u?jzt − ūz,

where

u?jzt ≡ ln

(
nzt
pztdzt

pzdz
nz

)
.

Given the results in the previous proposition, we can compute the unconditional mean of ujzt.

Rewrite equation (173) as

ujzt = ξjzt[ujz,t−1 + ln(gz/qz)− ln Πzt] + (1− ξjzt)(u?jzt − ūz),

where the product-specific, idiosyncratic, and independent Poisson process ξjzt captures the price

adjustment process: ξjzt is equal to zero with probability 1− αz and equal to one otherwise. Given

the independence of ξjzt from ujz,t−1, Πzt and u?jzt, we obtain

E[ujzt] = E[ξjzt]E[ujz,t−1 + ln(gz/qz)− ln Πzt] + E[u?jzt − ūz]− E[ξjzt]E[u?jzt − ūz]

= αz (E[ujz,t−1] + ln(gz/qz)− E[ln Πzt]) + (1− αz)E[u?jzt − ūz].

Since ujzt is a stationary process, we have E[ujzt] = E[ujz,t−1]. Since E[u?jzt] = 0, see proposition 3,

we obtain from the previous equation and equation (172) that

E[ujzt] = − αz
1− αz

[E ln Πzt − ln(gz/qz)]− ūz = 0,

as claimed in the text.

Proof. We start by deriving the evolution of the modified residual ujzt. Let the sticky price in t

be equal to the optimal price set k ≥ 0 periods ago, Pjzt = P ?
jz,t−k, where k ≤ sjzt. Then, we can

rewrite equation (38) as

ln
P ?
jz,t−k

Pz,t−k
+ ln

Pz,t−k
Pzt

= fjz − ln

(
gz
qz

)
· (k + sjz,t−k) + ujzt,
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or equivalently

ln
P ?
jz,t−k

Pz,t−k
+ ln

Pz,t−k
Pzt

= fjz − ūz − ln

(
gz
qz

)
· (k + sjz,t−k) + ujzt + ūz.

Defining fjz − ūz = f ?jz, the previous equation is equal to the reset price equation (36) shifted k

periods into the past, i.e.,

ln
P ?
jz,t−k

Pz,t−k
= f ?jz − ln

(
gz
qz

)
· sjz,t−k + u?jz,t−k,

where ujzt is given by

ujzt = u?jz,t−k − ūz + ln

(
gz
qz

)
· k − ln

Pzt
Pz,t−k

. (174)

For k = 0, we have ujzt = u?jzt − ūz. For k ≥ 1, we can derive a recursive representation. Equation

(174) then also holds in period t− 1, where the age of the price is k − 1, so that

ujz,t−1 = u?jz,t−k − ūz + ln

(
gz
qz

)
· (k − 1)− ln

Pz,t−1

Pz,t−k

= ujzt − ln

(
gz
qz

)
− ln

Pz,t−1

Pzt
.

The last line follows from equation (174). Rewriting the previous equation yields the postulated

recursive law of motion of the residual ujzt for non-adjustment periods:

ujzt = ujz,t−1 + ln(gz/qz)− ln Πzt.

F.7 Derivation of Equation (40)

The not-quality adjusted price level of item z, defined in equation (39), can be decomposed as follows:

P̃ 1−θ
zt = δz(P̃

?
z,t,t)

1−θ + (1− αz)δz
∞∑
s=1

(1− δz)s(P̃ ?
z,t−s,t)

1−θ + αz(1− δz)(P̃zt−1)1−θ, (175)

where the average optimal (not-quality adjusted) price of new products entering in t is given by

P̃ ?
z,t,t ≡

(
1

δz

∫
J?t,t

(P̃ ?
jzt)

1−θdj

) 1
1−θ

, (176)

and the average optimal (not-quality adjusted) price of continuing products with age s ≥ 1 is given

by

P̃ ?
z,t−s,t ≡

(
1

(1− αz)δz(1− δz)s

∫
J?t−s,t

(P̃ ?
jzt)

1−θdj

) 1
1−θ

. (177)

To obtain a recursive representation of equation (175), we derive the equation corresponding to

equation (60) for the case without quality adjustment. This yields

P̃ ?
z,t−s,t =

(
s−1∏
k=0

gzt−k

)−1(
θ

θ − 1

1

1 + τ

)
NztPt
Dzt

Qzt. (178)
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For the special case s = 0, we have

P̃ ?
z,t,t =

(
θ

θ − 1

1

1 + τ

)
NztPt
Dzt

Qzt. (179)

Dividing equation (178) by equation (179) yields

P̃ ?
z,t−s,t = P̃ ?

z,t,t

(
s−1∏
k=0

gzt−k

)−1

. (180)

Using the previous equation to substitute for P ?
z,t−s,t in equation (175) yields

P̃ 1−θ
zt = (P̃ ?

z,t,t)
1−θ

δz + (1− αz)
∞∑
s=1

δz(1− δz)s
(
s−1∏
k=0

gzt−k

)θ−1
+ αz(1− δz)(P̃zt−1)1−θ,

which can be rearranged to obtain

P̃ 1−θ
zt =

{
αzδz + (1− αz)(∆̃e

zt)
1−θ
}

(P̃ ?
z,t,t)

1−θ + αz(1− δz)(P̃zt−1)1−θ, (181)

where the stationary variable ∆̃e
zt is given by

(∆̃e
zt)

1−θ = δz + (1− δz)(∆̃e
zt−1/gzt)

1−θ. (182)

In order to relate Pzt in equation (65) to P̃zt in equation (181), we derive the mapping between P ?
z,t,t

and P̃ ?
z,t,t. In particular, dividing equation (179) by equation (61) and taking growth rates yields

P̃ ?
z,t,t

P̃ ?
z,t−1,t−1

=
Qzt

Qz,t−1

P ?
z,t,t

P ?
z,t−1,t−1

, (183)

which shows that in item z, the growth rates of the average optimal price of newly entering products

with and without quality adjustment are related via quality growth.

The steady-state version of equation (181) can be rearranged to obtain

(Π̃zP̃z,t−1)1−θ =
{
αzδz + (1− αz)(∆̃e

z)
1−θ
}( P̃ ?

z,t,t

P̃ ?
z,t−1,t−1

P̃ ?
z,t−1,t−1

)1−θ

+ αz(1− δz)(Π̃zP̃z,t−2)1−θ,

For equation (184) to be consistent with equation (181), it must hold that

Π̃z = P̃ ?
z,t,t/P̃

?
z,t−1,t−1. (184)

Similar reasoning for the item price level with quality adjustment yields

Πz = P ?
z,t,t/P

?
z,t−1,t−1. (185)

Using equations (184) and (185) to rewrite equation (183) in the steady state yields equation (40) in

the main text.
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F.8 Proof of Proposition 4

Consider a steady state and use equation (14) to replace in equation (101) the quality-adjusted reset

price P ?
jzt by P̃ ?

jzt/Qjzt. This yields

P̃ ?
jzt

P̃zt

P̃zt
Pzt

1

Qjzt

(
QjztGjzt

Qzt

)
=

(
1

1 + τ

θ

θ − 1

)
nz
pzdz

.

Taking the natural logarithm of the previous equation and using equation (169) to substitute for

ln(QjztGjzt/Qzt) in the steady state yields

ln
P̃ ?
jzt

P̃zt
= ln

(
1

1 + τ

θ

θ − 1

nz
pzdz

)
+ ln

(
Qjzt

εGjztε
Q
jzt

)
− ln

(
gz
qz

)
· sjzt + ln

(
Pzt

P̃zt

)
. (186)

Steady-state relative item price levels evolve as

ln(Pzt/P̃zt) = (t+ 1) · ln(Πz/Π̃z) + ln(Pz,−1/P̃z,−1)

= −(t+ 1) · ln(qz) + ln(Pz,−1/P̃z,−1)

= − ln(qz) · sjzt − (t− sjzt + 1) · ln(qz),

where the second equality follows from equation (40) and the third equality uses the initial condition

Pz,−1/P̃z,−1 = 1, without loss of generality. Using the previous equation to substitute for the ratio of

item price levels in equation (186) yields

ln
P̃ ?
jzt

P̃zt
= ln

(
1

1 + τ

θ

θ − 1

nz
pzdz

)
+ln

(
Qjzt

εGjztε
Q
jzt

)
−(t−sjzt+1)·ln(qz)−ln

(
gz
qz

)
·sjzt−ln(qz)·sjzt. (187)

Defining the product-fixed effect as63

f̃ ?jz ≡ ln

(
1

1 + τ

θ

θ − 1

nz
pzdz

)
+ ln

(
Qjzt

εGjztε
Q
jzt

)
− (t− sjzt + 1) · ln(qz)

shows that equation (187) is equivalent to equation (42) in the proposition.

F.9 Imperfect Quality Adjustment: Deriving Equations (41) and (43)

To derive equation (41), we define the price level for the case without quality adjustment as

P̃t =
Zt∏
z=1

(
P̃zt/ψzt

)ψzt
,

analogously to equation (16). Taking growth rates of the previous equation and using equation (40)

to substitute for Π̃z in the steady state yields

Π̃ =
∏Z

z=1
(qzΠz)

ψz .

63Recall that t− sjzt is constant over the product lifetime.
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Taking the natural logarithm of the previous equation and using ln Π =
∑Z

z=1 ψz ln Πz, which follows

from equation (16), yields equation (41).

To derive equation (43), we rewrite the equation in Lemma 2, which holds to first order at the

approximation point (Π̄, m̄z), with Π̄ = m̄z and mz = gzγez
qzγe

, using

Π? = Π̄ + Π̄(ln Π? − ln Π̄) +O(2)

mz = m̄z + m̄z(lnmz − ln m̄z) +O(2),

to substitute for Π? and mz, respectively. This yields

ln Π? − ln Π̄ =
Z∑
z=1

ψz (lnmz − ln m̄z) +O(2),

which after simplifying is equivalent to equation (43).

G Data Appendix

G.1 ONS Methodology for Constructing Quality-Adjusted Item-Level Price Indices

ONS constructs quality-adjusted item price indices using a three step approach that we describe

below. Quality adjustment is thereby implemented via adjustment of the so-called base price of the

product. The base prices are part of our data set. In the absence of quality adjustment, the base

price is simply the price at which the product sells in the base price period, i.e., in January of each

year. Product price increases (within any year) are then computed with respect to the previous

January price.

If ONS adjusts prices for quality, then the base price differs from the January price. In particular,

the base price is then higher (lower) when the quality of the product is judged higher (lower). Such

quality changes typically only happen at times of product substitution. When ONS can place a

value on the quality difference between the previous product and the replacement product, it uses

the so-called direct quality adjustment method to adjust the base price in proportion to the quality

change. For example, when the package size of a product changes permanently, ONS price collectors

find in each outlet the nearest equivalent new size of the product priced in this outlet and adjust

the base price proportionally to reflect the changed product quantity. In other cases, base prices are

compute via imputation methods or hedonistic regressions. Whatever is the actual method used to

arrive at base prices, we can implement the same quality-adjustment as ONS because the base prices

are part of our data set.

We now briefly describe each of the three steps of index construction. We refer to Office for Na-

tional Statistics (2014) for a more detailed description.

In the first step, ONS uses internal plausibility and cross-checking procedures to flag price quotes

it considers invalid and then removes these quotes from the data set before computing price indices.

ONS removes, for example, price quotes which belong to a non-comparable substitution in the month
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in which the substitution occurs and in the subsequent month. Similarly, ONS removes price quotes

with an invalid base price. We restrict our sample to validated price quotes (see table 1).64

In the second step, ONS computes one or more stratum indices in each item category. To this

end, ONS stratifies valid price quotes into stratum cells according to the type of shop (shops with ten

or more outlets versus shops with less than ten outlets) and/or the region from which price quotes

were sampled (ONS considers thirteen regions). In a given month, a stratum index comprises all

valid price quotes in the stratum cell. The stratum index Ĩkzt for stratum cell k in month t of item

z is given by65

Ĩkzt = exp

[
1∑

j∈Jkz wjkzt

(∑
j∈Jkz

wjkzt ln

(
Pjkzt
Pjkzb

))]
, (188)

where Jkz denotes the set of products belonging to stratum cell k in item z and wjkzt the weight of

product j in stratum cell k at date t. This weight is a so-called ‘replication factor’ that represents

the relative number of times that a price relative Pjkzt/Pjkzb is meant to appear in the stratum index.

Here, Pjkzb denotes the base price, i.e., the price of the product in the base month (January), unless

ONS applies a quality adjustment, as discussed above.

In the third step, ONS computes the price index for the item category. In a given month of a

year, the item index is equal to the weighted sum of stratum indices available in this month in this

category. Specifically, the item-level price index Ĩzt of item z in month t is given by

Ĩzt =
K∑
k=1

(
wkzt∑
k′ wk′zt

)
Ĩkzt, (189)

where K denotes the number of stratum cells66 and wkzt the expenditure weight attached to stratum

cell k in month t. ONS updates the expenditure weights annually.

Since Ĩzt represents the index increase between January (the base month) and month t of the same

year, the within year item indices Ĩzt need to be chained together to obtain a consistent multi-year

index series Izt.

64In addition, we erase 201 validated price quotes for which the base price is exactly equal to 0.0004 GBP. This

base price is clearly implausible on a priori grounds. Furthermore and contrary to previous studies focusing on the

price change distribution, we also keep the validated price quotes that contain the VAT changes in December 2008,

January 2010 and January 2011. Dropping all price quotes in a January would make it infeasible to construct chained

item price indices. We also keep validated price quotes in May 2005 in our baseline sample even though May 2005 is a

month in which unusually many nominal price quotes are equal to their value in January 2005. Our results are robust

to excluding price quotes in May 2005 from the analysis. Finally, we also keep the validated price quotes in January

1999 in our baseline sample, even though unusually large replication errors arise in this month for some of the item

indices that we recompute.
65The stratum index is also multiplied by 100, which we abstract from here.
66The number of stratum cells K varies over time and items. The reason for the time variation is that stratification

varies over time. For instance, products in item z may not be stratified initially but at some point in time may be

stratified.
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G.2 Item Indices Without Duplicate Price Quotes

As described in section 3, our analysis requires us to track individual products and their relative price

trajectories over the product life. Some of the product identifiers we construct contain duplicate price

quotes for the same month because ONS does not disclose all location information of a price quote.67

For our analysis, we discard all price quotes belonging to the product identifiers with duplicate price

quotes.

When then recompute item indices using official ONS methodology (see appendix G.1), discarding

products with duplicate price quotes, and compare the recomputed item indices with the official ONS

item indices.

We consider a recomputed item index as sufficiently accurate, whenever the root mean squared

error (RMSE) of the log difference between the recomputed and the official index is below 2%,

RMSEz =

√
1

Tz

∑
Tz

[ln
(
ĨOzt

)
− ln

(
Ĩzt

)
]2 < 0.02,

where ĨOzt denotes the official ONS index of item category z in month t, Ĩzt the recomputed item

index and Tz the sample period for which both indices display non-missing values. We also require

that recomputed item indices do not display temporarily missing values. We find that 1093 of the

1233 item categories fulfill these requirements.68 These 1093 item categories constitute our baseline

sample.

Panel A in figure 11 depicts the distribution of RMSEs for all 1233 item categories. RMSEs are

generally low: the median (mean) error is equal to 0.006 (0.0079). Pairwise correlations between

recomputed and official ONS item indices in Panel B typically exceed 0.95 and the median (mean)

correlation is equal to 0.984 (0.972).69 Panel C in figure 11 depicts the RMSE (the upward-sloping

line) and the correlations for all items with an RMSE<0.02. It shows that for the vast majority of

items that satisfy RMSE<0.02, we have a high correlation (above 0.9). Only few items display a

somewhat lower correlation.

Figure 12 further illustrates the properties of the 1093 recomputed item indices in our baseline

sample. Panel A shows that the numbers of recomputed and ONS item indices evolve in parallel and

67We construct the ONS product identifier as the tuple consisting of item ID, region, shop code, shop type, and

stratum type. The ”item ID” is a six digit reference number which can be used to allocate each price quote in a

particular item category to its constituent COICOP classification. The ”region” is equal to one of thirteen region

classifications. The ”shop code” denotes the outlet code from which the individual price quote was obtained. The

”shop type” discriminates shops with ten or more outlets versus shops with less than ten outlets. The ”stratum type”

is equal to ”not stratified”, ”stratified by region”, ”stratified by region and shop type” or ”stratified by shope type”.

These variables are contained in the ONS meta data.
68In particular, 68 of the recomputed indices do not fulfill the RMSE criterion. Another 72 of the recomputed item

indices fulfill the RMSE criterion but display temporarily missing values. We exclude these indices, which often refer

to seasonal products for which prices are missing in certain months in each year, to avoid complications when chaining

item indices with missing values in the month of January.
69Correlations are meaningful statistics because at this stage of the analysis, the base period of item indices corre-

sponds to the month of January in the current year.
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Figure 11: Recomputed and Official ONS Item Indices
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tend to both increase over the sample period. For the item categories in our baseline sample, the

implied annual entry and exit rates are equal to 6.02% and 5.37%, respectively, which indicates fairly

modest turnover at the item category level.70 Furthermore, only about half of the 1093 recomputed

item indices are present in the average year (503 out of 1093). The same pattern is present when

considering all ONS item indices for which micro price data is available (675 out of 1233). Panel B

reports the relative number and the expenditure share of items in our baseline sample relative to the

full ONS sample. It shows that the baseline sample covers around 75% of the available items and

94% of the expenditure share.

G.3 Further Evidence on the Tails of the Relative Price Trends Distribution

Table 6 presents information on the tails of the relative price trend distribution from figure 3. It

lists the 15 items with the most positive and most negative relative price trends that have at least

an expenditure weight of 0.15%. The table shows that the largest rates of price declines are recorded

for products that display a certain news value, i.e., fashion and entertainment products, as well as

consumer electronics, see also Ueda et al. (2019) for an in-depth discussion of this issue. For most

70The entry rate is the share of item categories newly introduced in the current year, relative to all item categories

present in this year. The exit rate is the share of item categories present in the previous year but no longer present

in this year. Item turnover primarily reflects decisions taken at ONS, which are often determined by methodological

changes or data production requirements such as keeping the number of items in the basket roughly steady over time.
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Figure 12: Number, Share and Spell Duration of Analyzed Items
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of the items displaying positive relative price trends, the relative price increase remains well below

1% per year. The most positive relative price trend is observed for a luxury product.

G.4 The Quality-Adjusted Item Price Level

This appendix describes how we compute the quality-adjusted item price levels Pzt used in regression

(1) from the micro price data.

Since we cannot use all price observations underlying the official item-price index (due to problems

with duplicates and other issues discussed in section 3.1), we compute item price levels using only

the micro price observations that we actually use in the regressions. We show how this price level

can be computed such that it is both consistent with the theory and consistent with the way ONS

computes the price level (to a first-order approximation).

Using the theory equations (14), (18) and (20), we can write the item price level in equation (15)

as

Pzt =

∫ 1

0

Yjzt
Yzt

Pjzt dj .

Dividing the previous equation by Pzb, which is the item price level in the base period b, and

augmenting the integrand, we obtain

Pzt
Pzb

=

∫ 1

0

wjzb
YjztYzb
YztYjzb

Pjzt
Pjzb

dj, (190)

where Pjzb denotes the price of product j in base period b, which also reflects quality adjustments

made by ONS (see Appendix G.1), and wjzb ≡ PjzbYjzb
PzbYzb

denotes the expenditure weight of product j

in the base period, with weights satisfying
∫
wjzb dj = 1. The product demand function in equation

(18) implies

YjztYzb
YztYjzb

=

(
PjztPzb
PztPjzb

)−θ
.

Substituting the previous equation into (190) yields

Pzt
Pzb

=

(∫ 1

0

wjzb

(
Pjzt
Pjzb

)1−θ

dj

) 1
1−θ

. (191)
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Table 6: Top and Bottom Rates of Relative Price Change

Item Description Relative Price Change Exp. Weight

(in % per year) (in %)

Relative Price Increase

HIFI - 2007 3.28 0.15

WIDESCREEN TV - 2005 2.55 0.31

CAMCORDER-8MM OR VHS-C 2.34 0.16

WASHING MACHINE - 2008 1.82 0.16

WASHING MACH NO DRYER MAX 1800 1.48 0.17

LEISURE CENTRE ANNUAL MSHIP 1.34 0.16

COOKED HAM PREPACKED/SLICED 0.84 0.17

PRIV RENTD UNFURNISHD PROPERTY 0.41 1.02

AUTOMATIC WASHING MACHINE 2009 0.35 0.16

MILK SEMI-PER 2 PINTS/1.136 L 0.34 0.26

CIGARETTES 5 0.33 0.25

VEGETARIAN MAIN COURSE 0.24 0.17

DOMESTIC CLEANER HOURLY RATE 0.22 0.23

HOME REMOVAL- 1 VAN 0.17 0.18

STAFF RESTAURANT SANDWICH 0.17 0.20

Relative Price Decline

NEWSPAPER AD NON TRADE 20 WORD -3.66 0.19

COFFEE TABLE -2 -3.68 0.16

FLAT PANEL TV 33” + -3.84 0.16

KITCHEN WALL UNIT SELF ASSMBLY -3.94 0.16

FLAT PANEL TV 26” - 42” -4.26 0.29

WIDESCREEN TV (24-32 INCH) -4.50 0.19

AUTOMATIC WASHING MACHINE -4.76 0.18

WOMENS TROUSERS-FORMAL -7.12 0.17

MENS SHOES TRAINERS -7.84 0.18

PRE-RECORDED DVD TOP 20 -8.14 0.23

WOMENS SUIT -8.95 0.17

LADYS SCARF -20.19 0.17

COMPUTER GAME TOP 20 CHART -21.69 0.31

WOMENS DRESS-CASUAL 1 -25.55 0.17

PRE-RECORDED DVD (FILM) -35.03 0.16

Notes: The table reports the fifteen top and bottom rates of relative price change for items with expenditure weight

greater than 0.15%. Weights are average expenditure weights for the full sample period.
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Linearizing the previous equation around Pjzt/Pjzb = 1 delivers

Pzt
Pzb

=

∫ 1

0

wjzb
Pjzt
Pjzb

dj +O(2). (192)

The advantage of the linearized model-consistent equation (192) is that it does not depend on the

demand elasticity θ showing up in the non-linear expression (191).

Linearizing the ONS stratum price index in equation (188) around Pjkzt/Pjkzb = 1 delivers

Ĩkzt =
∑
j∈Jkz

w̃jkzt
Pjkzt
Pjkzb

+O(2),

where w̃jkzt ≡ wjkzt/
(∑

j′∈Jkz wj′kzt

)
. Using the ONS approach to aggretate stratum indices to item

indices, see equation (189), we obtain from the previous equation

Ĩzt =
K∑
k=1

((
wkzt∑
k wkzt

) ∑
j∈Jkz

w̃jkzt
Pjkzt
Pjkzb

)
+O(2). (193)

This shows that the ONS approach (193) and the theory-consistent approach (192) deliver to first

order the same price index, provided we set the product weight in equation (192) equal to

wjzb =

(
wkzt∑
k′ wk′zt

)
w̃jkzt,

where k denotes the stratum to which product j belongs. Using the previous weights we compute

the quality-adjusted item price level. Following ONS, we then chain the index growth rates across

years to get the multi-year series for the price index at the item level.

G.5 Measurement of Relative Growth Weights, Price Change Frequencies and Prod-

uct Turnover Rates

We measure relative growth weights using the model-implied relationship γez/γ
e = Π/Πz. Based on

this relationship, we estimate Πz as the sample mean of item-level price indices. Specifically, we

set Πz equal to the average month-to-month change of price indices for item z using the same price

indices that we also use to compute relative product prices in regression equation (38). We trim Πz

estimates larger than 20% per year in absolute value, which is the case for less than 1% of the items

we consider. Furthermore, we compute implied aggregate inflation Π according to

Π =
∏Z

z=1
Πψz
z ,

which follows from taking growth rates of equation (16) and considering a steady state. In the

previous equation, ψz denotes the expenditure share of item z and Z denotes the relevant set of

expenditure items. With these estimates of Πz and Π, we compute monthly relative growth weights

according to γez/γ
e = Π/Πz.
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We measure the frequency of nominal price changes and the rates of product turnover at the

item level from the sample of micro prices that excludes all price observations which ONS flags as

sale. This sample corresponds to the one labeled ”baseline w/o sales prices” in figure 13. In fact, a

series of papers argues that monetary non-neutrality depends mostly on the frequency of changes in

regular prices, e.g., Midrigan (2011), Eichenbaum et al. (2011), Guimaraes and Sheedy (2011), and

Kehoe and Midrigan (2015).

For this sample, the item-level frequency of price changes αz is equal to the ratio of the number

of nonzero price changes in item z over the number of all price changes in this item. The item-

level product turnover rate is equal to the unweighted average of item-level product entry rate and

item-level product exit rate. The product entry rate for item z is equal to the average per-period

entry rate, i.e., the number of products with age zero in month t over the number of all products

in the same month. We exclude the first month of each item, in which the entry rate is 100% by

construction. The product exit rate for item z is computed correspondingly.

H Alternative Treatment of Sales Prices

An important feature of micro price data is that it features many short-lived price changes that

are subsequently reversed. These typically take the form of temporary price reductions (sales),

but also occasionally the form of temporary price increases. The sticky price model outlined in

the previous sections does not allow for such temporary price changes. We show below that the

model can be augmented, following the lines of Kehoe and Midrigan (2015), and that doing so leaves

our empirical estimation approach unchanged. We furthermore explore the quantitative effects of

alternative treatments of sales prices for our results.

Consider for a moment the following augmented sticky-price setup featuring also temporary prices.

Firms choose a regular list price PL
jzt, which is subject to the same price adjustment frictions as the

prices in the pure Calvo model presented before. After learning about the adjustment opportunity

for the list price, a share αTz ∈ [0, 1) of producers gets to choose freely a temporary price P T
jzt at which

they can sell the product in the current period. The temporary price is valid for one period only and

does not affect the list price. Furthermore, absent further temporary price adjustment opportunities

in the next period, prices revert to the list price in the next period. With this setup, the optimal

temporary price P T?
jzt is equal to the static optimal price in the period, i.e., equal to the flexible price

P f
jzt. It follows from equation (37) that the relative price trend of temporary (or flexible) prices is no

different from that of all prices, so that the inclusion of temporary prices in the relative price trend

regressions should make no difference for our results.

Nevertheless, sales prices can make a difference for the estimated relative price trends due to a

number of reasons. Sales prices might, for instance, not be evenly distributed over the product life

cycle, unlike assumed in the augmented theoretical setup sketched in the previous paragraph. Sales

may happen, for instance, predominantly at the beginning (or at the end) of the product lifetime. If

this were the case, then our baseline regressions would probably underestimate (overestimate) relative
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price declines and thereby underestimate (overestimate) the optimal inflation target. In light of this,

it appears of interest to investigate the robustness of our baseline results towards using alternative

approaches for treating sales prices in the data.

Figure 13: Optimal inflation target for alternative treatments of sales prices
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Figure 13 displays the baseline estimate of the optimal inflation target together with various

alternative estimates for the optimal inflation target. A first approach (baseline w/o sales prices)

uses the ONS sales flag to exclude all sales prices from regression (38).71 The figure shows that

the optimal inflation target increases by around 0.3% per year as a result. A quantitatively similar

result is obtained, if only the so-called ”regular prices” are used in the regression (Kehoe-Midrigan,

regular prices only), where regular prices are defined according to the regular price filter of Kehoe

and Midrigan (2015).

Instead of simply excluding sales prices from the regression, one can adjust sales prices based

on various adjustment techniques and continue using them in the estimation. Figure 13 reports the

outcome when making adjustments using the sales filters A and B from Nakamura and Steinsson

(2008) and the regular price filter of Kehoe-Midrigan (2015) (Kehoe-Midrigan, filtered prices). The

outcomes across these filtering approaches vary quite substantially. While the Nakamura-Steinsson

filter B leads to only small adjustments relative to the baseline estimation, filter A leads to adjust-

ments of the same order of magnitude as when dropping sales prices from the regression. The largest

upward revision of the inflation target is observed for the regular price filter of Kehoe and Midrigan:

the inflation target is then on average about 0.5% higher than the baseline estimate.

71A sales flag is an indicator variable that the price collector records, whenever she/he finds the product to be on

sale. In this and subsequent robustness checks, we always recompute the item price levels after excluding or adjusting

sales prices.
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Overall, we can conclude that a different treatment of sales prices can lead to considerably higher

optimal inflation targets than the ones obtained via our baseline approach.
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