
ONLINE APPENDIX

A Results with Non-homothetic CES Framework

A.1 Non-homothetic CES Preference and Price Index

We introduce non-homotheticities using the non-separable class of CES functions in Sato

(1975), Comin, Lashkari and Mestieri (2021), Matsuyama (2019) and Redding and Wein-

stein (2020), which satisfy implicit additivity in Hanoch (1975). The non-homothetic CES

consumption index for item i, Cm
ib , is defined by the following implicit function:

∑
k∈m

(
φm
kibC

m
kib

(Cm
ib )

(ϵkib−σib)/(1−σib)

)σib−1

σib

= 1 (11)

where Cm
kib denotes total consumption of barcode k; σib is the elasticity of substitution be-

tween barcodes; ϵkib is the constant elasticity of consumption of barcode k with respect to

the consumption index (Cm
ib ) which controls the income elasticity of demand for that bar-

code. Assuming that barcodes are substitutes (σib > 1), it is required ϵkib < σib for the

consumption index to be globally monotonically increasing and quasi-concave, and therefore

to correspond to a well-defined utility function. When ϵkib = 1 for all k ∈ m, the utility

function becomes homothetic.

We solve the expenditure minimization problem for a given barcode within an item

and basic heading to obtain the following expressions for the price index (Pm
ib ) dual to the

consumption index (Ckib) and the expenditure share for a individual barcode k (smkib):

Pm
ib =

(∑
k∈m

(pmkib/φ
m
kib)

1−σib(Cm
ib )

ϵkib−1

) 1
1−σib

(12)

smkib =
(pmkib/φ

m
kib)

1−σib(Cm
ib )

ϵkib−1∑
l∈m(p

m
lib/φ

m
lib)

1−σib(Cm
lib)

ϵlib−1
=

(pmkib/φ
m
kib)

1−σib(Em
ib /P

m
ib )

ϵkib−1

(Pm
ib )

1−σib
(13)

Taking ratios of the shares of Mexico and the United States and rearranging, we obtain

the following expression for the difference in the cost of living, which holds for each common

barcode available in two countries (common):

Pm
ib

P u
ib

=
pmkib/φ

m
kib

pukib/φ
u
kib

(
Em

ib /P
m
ib

Eu
ib/P

u
ib

) ϵkib−1

1−σib

(
smkib
sukib

) 1
σib−1

, k ∈ common (14)

Summing expenditures across common barcodes, we obtain the following expression for

the aggregate share of common barcodes in total expenditure for Mexico and the United
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States (λmib and λuib):

λmib ≡
∑

k∈common p
m
kibC

m
kib∑

k∈m p
m
kibC

m
kib

and λuib ≡
∑

k∈common p
u
kibC

u
kib∑

k∈u p
u
kibC

u
kib

(15)

Using this expression, the share of an individual barcode in total expenditure (smkib) in

equation (13) can be re-written as its share of expenditure on common barcodes (sm∗
kibt) times

this aggregate share of common barcodes in total expenditure (λmib ):

smkib = λmibs
m∗
kib , k ∈ common (16)

Taking logs to equation (14) and using equation (16), we obtain the following equation:

log

(
Pm
ib

P u
ib

)1+
ϵkib−1

1−σib

= log
pmkib/φ

m
kib

pukib/φ
u
kib

+log

(
Em

ib

Eu
ib

) ϵkib−1

1−σib

+log

(
sm∗
kib

su∗kib

) 1
σib−1

+log

(
λmib
λuib

) 1
σib−1

(17)

We define the ideal log-difference weights (ωkib), the logarithmic mean of common variety

expenditure shares, as follows:

ωM
kib =

sm∗
kib − su∗kib

ln sm∗
kib − ln su∗kib∑

k∈common

sm∗
kib − su∗kib

ln sm∗
kib − ln su∗kib

(18)

where

sm∗
kib =

pmkibC
m
kib∑

k∈common p
m
kibC

m
kib

and su∗kib =
pukibC

u
kib∑

k∈common p
u
kibC

u
kib

We introduce an assumption that tastes are the same between two countries for each

common barcode (φm
kib = φu

kib for all k ∈ common).

By multiplying the ideal log-difference weights (ωkib) to equation (17), under the assump-

tion that tastes are the same between two countries for each common barcode (φm
kib = φu

kib

for all k ∈ common), we can obtain the non-homothetic CES price index for item i by taking

the arithmetic mean across common barcodes (Ωit) and exponents on both sides:

Non-homothetic Price Indexib ≡
Pm
ib

P u
ib

=

( ∏
k∈common

(
pmkib
pukib

)ωkib

×
(
λmib
λuib

) 1
σib−1

) 1
1−θib

(
Em

ib

Eu
ib

) θib
θib−1

(19)
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where

θib ≡
∑

k∈common

ωkib
ϵkib − 1

σib − 1

and the ratio of λmib and λ
u
ib represents the conventional variety correction term that accounts

for different sets of goods available in two countries as in Feenstra (1994) and Broda and

Weinstein (2006, 2010).

Define IC as the set of items with common barcodes. Then, an aggregate exact price

index can be defined as:

Aggregate Non-homothetic Price Index =
∏
b

(∏
i∈IC

NHω∗
ib

ib ×
(
λmb
λub

) 1
ηb−1

)ωb

(20)

where ω∗
ib and ωb are the logarithmic mean of the expenditure shares of each item and each

basic heading, respectively. The spending shares are defined as:

λmb ≡
∑

i∈IC p
m
ibC

m
ib∑

i p
m
ibC

m
ib

and λub ≡
∑

i∈IC p
u
ibC

u
ib∑

i p
u
ibC

u
ib

A.2 Decomposition of Non-homothetic CES Price Index

The non-homothetic CES price index at the basic heading level can be written as a function

of the price index developed by the ICP. The relationship between the two indexes can be

written as:

Non-homothetic Indexb
ICPb

= Imputationb×Samplingb×Qualityb×Engel-curve Varietyb (21)

where imputation bias, sampling bias, and quality bias are the same as the homothetic case.

We define “Engel curve variety bias” to replace “variety bias” in equation 9 from homothetic

case.

Engel Curve Variety Bias: This bias measures both the cross-country differences in

availability of barcodes and the differences in real consumption across countries and is defined

as follows:

Engel Curve Variety Biasi = Variety Biasib ×
(
Em

ib /E
u
ib

EPIib

) θib
θib−1

(22)

where

Variety Biasib ≡
(
λmib
λuib

) 1
σib−1

. (23)
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We called the second term Engel curve adjustment since it captures the differences in

real consumption across the two countries and depends on the income elasticity of demand

of the common barcodes across the two countries. When not all barcodes are common across

countries, this term serves as an adjustment to the standard variety bias since the share of

common barcodes across countries naturally depends on their income differences. However,

even if all barcodes across the two countries are common, the Engel Curve adjustment

corrects the price index for the relative importance of each barcode as the relative income

of the countries change. If the elasticities of consumption of each barcode with respect to

the consumption index equal to one, we are back to the homothetic preferences case. In this

case, the Engel-curve variety bias becomes the variety bias as homothetic case.

A.3 Parameter Estimation

Taking estimates of the elasticity of substitution as given, we estimate the constant elasticity

of consumption (ϵkib) for each barcode k with respect to the consumption index (Cm
kib) as in

Comin, Lashkari and Mestieri (2021):

ln
shkibt
shKibt

− (1− σib) ln
phkibt
phKibt

= (ϵkib − 1)

(
ln

Eh
ibt

phKibt

+
1

(1− σib)
ln shKibt

)
+ ψh

t + ϵhkibt (24)

where K is the benchmark barcode, which corresponds to the largest selling barcode in

each item, and ψh
t is the set of fixed effects. We aggregate households into seven groups by

their annual household income. With the US Nielsen data, equation 24 is estimated with

quarter×Census region fixed effects. Note that because barcodes are substitutes within all

items (σib > 1), it is required ϵkib < σib for the consumption index to be globally mono-

tonically increasing and quasi-concave, and therefore to correspond to a well-defined utility

function.19

19In less than one percent of the cases, ϵkib >= σib. In these cases, we impute ϵkib = σib − 0.01.
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Table A.I: Descriptive Statistics of Estimated Parameters

Mean Std. Dev. 10th-Percentile Median 90th-Percentile

σib 6.56 3.13 4.33 5.55 10.53
ϵkib 1.29 1.21 0.22 1.37 2.31
θib -0.07 0.09 -0.18 -0.08 0.04

Em
ib /E

u
ib 0.81 0.69 0.23 0.65 1.60

Note: This table reports descriptive statistics for the elasticity of substitution (σib), the elasticity of con-

sumption of barcode k with respect to the consumption index (ϵkib), parameter in the non-homothetic CES

price index (θib) and nominal expenditure ratio (Em
ib /E

u
ib).

The first row of Table A.I reports descriptive statistics for σib. The average of the

elasticity of substitution we use is 6.56 with standard deviation of 3.13. The second row of

Table A.I reports the descriptive statistics for ϵkib. Our estimates for this parameter have

a mean of 1.29 and a standard deviation of 1.21. The third row of Table A.I reports the

descriptive statistics for θib. Recall that this parameter is the equally weighted average of
ϵkib−1
σib−1

across the common barcodes within an item across the two countries. Our estimates

of this parameter have a mean of -0.07 and a standard deviation of 0.09. Note that when

θib is close to zero, the expenditure ratio plays a small role in the price index. Lastly, we

report other informative moments for the quantification of the Engel-curve variety bias such

as the nominal expenditure ratio. As the last row of Table A.I shows, the ratio varies across

items. It has a median of 0.65 and a mean of 0.81 (with standard deviation of 0.69), which

indicates that the distribution is skewed to the right. Figure A.1 shows the distribution of

estimated ϵkib and θib. The mean of ϵkib is close to one. As a result, the mean of θib is around

zero.
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Figure A.1: Distribution of Estimated ϵkib and θib

ϵki θi

Note: Panel (a) and (b) show the distribution of estimated ϵkib and θib, respectively.

A.4 Decomposition Results

Equation 21 indicates that the gap between the two price indexes can be decomposed into

the imputation bias, the sampling bias, the quality bias, and the quality-variety bias. The

aggregate bias is estimated to be 0.76, which is very close to the homothetic preference

case (0.77). This is mainly because, for the common barcodes, the average elasticity of

consumption is estimated to be close to 1.

Table A.II: Decomposition Results for the Non-Homothetic CES Price Index

Aggregate Price Index Bias due to: Aggregate
Exact Pseudo-ICP Imputation Sampling Quality-Variety Bias

0.65 0.86 0.89 0.87 0.99 0.76

Notes: The table reports the aggregate non-homothetic CES price index, pseudo ICP price index, and the
gap between the exact and ICP index due to imputation, sampling, and quality-variety. Aggregate bias is
the product of the bias due to imputation, sampling, and quality-variety.
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B Logit Specification of Barcode-level Price Aggrega-

tion

In the main text, we use Cobb-Douglas aggregation as the first-order approximation of CES

aggregation (Kmenta, 1967). In this section, we show that CES aggregation can be derived

from the aggregation of the choices of individual consumers with extreme-value-distributed

idiosyncratic amenities (net of costs) from different stores.

Changing the notion of McFadden (1974) slightly, we suppose that the utility of an

individual consumer i who consumes qis units of barcode k from store s is given by:

Ui = us + ais, us ≡ ln qis (25)

where ais captures idiosyncratic amenities to visit store s that are drawn from an independent

Type-I Extreme Value distribution:

G(a) = e−e(−a/ν+κ)

(26)

where ν is the scale parameter of the extreme value distribution and κ is the Euler-Mascheroni

constant.

Each consumer has the same expenditure on barcode k, Ek, and chooses their preferred

store given the observed realization for idiosyncratic amenities. Therefore, the consumer’s

budget constraint implies:

qis =
Ek

ps
(27)

The probability that individual i choose store s is:

xikt = Prob[uis + cis > uil + cil, ∀l ̸= s]

= Prob[cil < cis + uis − uil,∀l ̸= s] (28)

Using the distribution of idiosyncratic amenities in equation 26, we have:

xis|ais =
∏
l ̸=k

e−e−(ais+uis−uil)/ν+κ

(29)

Once we integrate it across the probability density function for ais and use the change

of variable technique as in Anderson, De Palma and Thisse (1992), the probability that
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individual i chooses store s becomes:

sis = ss =
p
−1/ν
s∑

l∈Ψ p
−1/ν
l

(30)

The expected utility of consumer i is:

E[Ui] = E[max{ui1 + ai1+, ..., uiN + aiN}] = ν ln

[∑
l∈Ψ

exp
(uil
ν

)]
(31)

Using the definition of uis in equation 25 and the budget constraint in equation 27, expected

utility can be written as:

E[Ui] = Ek/P (32)

where P is the unit expenditure function:

P =

[∑
s∈Ψ

p−1/ν
s

]−ν

(33)

Therefore, theoretically consistent aggregation of prices of a specific barcode across stores

is the CES aggregation.
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C Parameter Estimation

In order to obtain the elasticity of substitution, σib, for each item, we rely on the method

developed by Feenstra (1994) and extended by Broda and Weinstein (2006) and Broda and

Weinstein (2010). The procedure consists of estimating a demand and supply equation for

each barcode by using only the information on prices and quantities. For this estimation,

we face the standard endogeneity problem for a given barcode. Although we cannot identify

supply and demand, the data do provide information about the joint distribution of supply

and demand parameters.

We first model the supply and demand conditions for each barcode within an item.

Specifically, we estimate the demand elasticities by using the following system of differenced

demand and supply equations as in Broda and Weinstein (2006):

∆k,tlnSkibt = (1− σib)∆
k,tlnPkibt + ιkibt (34)

∆k,tlnPkibt =
δib

1 + δib
∆k,tlnSkibt + κkibt (35)

Note that when the inverse supply elasticity is zero (i.e. δib=0), the supply curve is

horizontal and there is no simultaneity bias in σg. Equations 34 and 35 are the demand and

supply equations of barcode k in an item i differenced with respect to a benchmark barcode

in the same item. The kth good corresponds to the largest selling barcode in each item. The

k-differencing removes any item level shocks from the data.

The identification strategy relies on two important assumptions. First, we assume that

ιkibt and κkibt, the double-differenced demand and supply shocks, are uncorrelated (i.e.,

Et(ιkibtκkibt) = 0). This expectation defines a rectangular hyperbola in (δib, σib) space for

each barcode within an item, which places bounds on the demand and supply elasticities.

Because we already removed any item level shocks, we are left with within item variation

that is likely to render independence of the barcode-level demand and supply shocks within

an item. Second, we assume that σib and ωib are restricted to be the same over time and for

all barcodes in a given item.

To take advantage of these assumptions, we define a set of moment conditions for each

item i in a basic heading b as below:

G(βib) = ET [νkibt(βib)] = 0 (36)

where βib = [σib, δib]
′ and νkibt = ιkibtκkibt.

For each item i, all the moment conditions that enter the GMM objective function can
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be combined to obtain Hansen (1982)’s estimator:

β̂ib = arg min
βib∈B

G∗(βib)
′WG∗(βib) ∀ i ∈ ωb (37)

where G∗(βib) is the sample analog of G(βib),W is a positive definite weighting matrix, and B

is the set of economically feasible βib (i.e., σib > 0). Our estimation procedure follows Redding

and Weinstein (2020) using he Nielsen Homescan data from 2004-2019. The elasticities are

estimated using data at the quarterly frequency. Households are aggregated using sampling

weights to make the sample representative of each country’s population. We weight the

data for each barcode by the number of raw buyers to ensure that our objective function is

more sensitive to barcodes purchased by larger numbers of consumers. We consider barcodes

with more 10 or more observations during the estimation. If the procedure renders imaginary

estimates or estimates of the wrong sign, we use a grid search to evaluate the GMM objective

function above. The average of the elasticity of substitution we obtain is 6.56 with standard

deviation of 3.13.20 Figure C.1 shows the distribution of elasticities sorted by their magnitude

and the 95% confidence interval of the point estimates.

20Unlike Redding and Weinstein (2020), Broda and Weinstein (2010) and Hottman, Redding and Wein-
stein (2016) include an additional brand/firm-level layer within a product category. In order to check the
robustness of our estimates, we estimate elasticity of substitution within an item-firm level and compare
it to our elasticity of substitution within an item level. We use the GS1 data to identify a firm for every
barcode. The estimated elasticities of substitution within an item-firm have slightly higher mean (6.91), but
both are highly correlated. Correlation is 0.65 and statistically significant at the 1 percent level. Therefore,
using elasticity of substitution within an item-firm does not quantitatively affect our results.
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Figure C.1: Elasticity of Substitution (σib)

Note: The figure reports the estimated elasticity of substitution for each item, sorted by its magnitude. The
gray lines indicate the 95% confidence intervals.
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D Decomposition Results with Common Elasticity of

Substitution

In this section, we report decomposition results with common elasticity of substitution across

items, σib = 6, which is chosen from a mean of σib (6.56). Table D.I reports decomposition

results for the exact price index. The aggregate bias (0.75) is estimated to be slightly lower

than the item-specific elasticity of substitution case (0.77).

Table D.I: Decomposition Results for the Exact Price Index under σib = 6

Aggregate Price Index Bias due to: Aggregate
Exact Pseudo-ICP Imputation Sampling Quality-Variety Bias

0.64 0.86 0.89 0.87 0.99 0.75

Notes: The table reports the aggregate exact price index, pseudo ICP price index, and the gap between the
exact and ICP index due to imputation, sampling, and quality-variety under σib = 6. Aggregate bias is the
product of the bias due to imputation, sampling, and quality-variety.
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E Sampling Bias

E.1 Proofs of Propositions

Proposition 1. If the number of basic headings Nb → ∞, the second term of the sampling

bias is larger than 1 if cov(ωb, ln (p̄
c
b)) > cov(ωb, ln (p̄

u
b)).

Proof. The bias on the second term for country c is:

∏
i

(p̄cib)
ωib

(p̄cib)
1
Nb

This ratio is greater than one if and only if:

∑
i

(
ωib −

1

Nb

)
ln (p̄cib) > 0 (38)

We want to show that this term is equivalent to cov(ωb, ln (p̄
c
b)) where ωb is a vector of

weights in basic heading b and ln (p̄c
b) is the vector of log prices. By definition:

cov(ωb, ln (p̄
c
b)) = lim

Nb→∞

1

Nb − 1

∑
i

(
ωib −

1

Nb

)(
ln (p̄cib)−

1

Nb − 1

∑
i

ln (p̄cib)

)

Using that

lim
Nb→∞

1

Nb − 1

∑
i

(
ωib −

1

Nb

)(
1

Nb − 1

∑
i

ln (p̄cib)

)
= 0

Then cov(ωb, ln (p̄
c
b)) is equivalent to

1
Nb−1

∑
i

(
ωib − 1

Nb

)
ln (p̄cib).

Proposition 2. If the number of stores S → ∞, the third term of the sampling bias is

larger than 1 if cov(ϕm
ib, ln (p̄

m
ib))− cov(ϕu

ib, ln (p̄
u
ib)) > cov(ϕu, ln (p̄u

ib))− cov(ϕm, ln (p̄m
ib))

Proof. Before aggregating across items, the third term of the sample bias for a country c

is:
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p̂cib
p̄cib

=

∏
s∈Ψc

(p̄csib)
ϕc
sib

∏
s∈Ψc

(p̄csib)
ϕc
s

where ϕc
s are total sales weights at the store level and ϕc

sib are total sales weights at the

item-store level. This ratio is larger than 1 for country c if

∑
s∈Ψc

ϕc
sib ln (p̄

c
sib) >

∑
s∈Ψc

ϕc
s ln (p̄

c
sib) (39)

Let ϕc
ib be the vector of expenditure weights that vary by item and basic heading, (i.e.

{ϕc
sib}s∈Ψc), ϕc be the vector of weights that only vary at the store level (i.e. {ϕc

s}s∈Ψc), and

(p̄c
ib) be the vector of log prices (i.e. {ln (p̄csib)}s∈Ψc). Then equation 39 can be written as:

lim
S→∞

1

S − 1

∑
s∈Ψc

ϕc
sib ln (p̄

c
sib) > lim

S→∞

1

S − 1

∑
s∈Ψc

ϕc
s ln (p̄

c
sib)

Using the definition of covariance on both sides

lim
S→∞

1

S − 1

∑
s∈Ψc

ϕc
sib ×

1

S − 1

∑
s∈Ψc

ln (p̄csib) +
1

S − 1

∑
s∈Ψc

(
ϕc
sib − ϕ̄c

ib

) (
ln (p̄csib)− ln (p̄csib)

)
>

lim
S→∞

1

S − 1

∑
s∈Ψc

ϕc
s ×

1

S − 1

∑
s∈Ψc

ln (p̄csib) +
1

S − 1

∑
s∈Ψc

(
ϕc
s − ϕ̄c

) (
ln (p̄csib)− ln (p̄csib)

)
Taking the limit as limS→∞ on both sides, we find that cov(ϕc

ib, p̄
c
ib) > cov(ϕc, p̄c

ib).

E.2 Empirical Tests

To quantify the importance of the second term of the sampling bias, we rely on Proposition

1 and test whether cov(ωb, ln (p̄
m
b )) > cov(ωb, ln (p̄

u
b)). To do so we rely on the following

specification:

ωib = α + β ln(p̄cib)× 1 {c = Mexico}+ λc + θb + ϵcib
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where the dependent variable is the Sato-Vartia weight for each item. The coefficient of

interest is β which indicates whether there is a difference between the covariance between

the weights and the prices of items across the two countries; Table E.I shows that we do not

find a significant difference indicating that the second term of the sampling bias is close to

1.

Table E.I: Sampling Bias Second Term: Expenditure Weights and Prices

(1) (2) (3) (4)

ln(p̄) -0.026 0.000 -0.026 -0.007
(0.018) (0.019) (0.018) (0.019)

ln(p̄)× Mexico 0.032 -0.019 0.032 0.023
(0.032) (0.012) (0.032) (0.029)

Observations 165 165 165 165
R-squared 0.040 0.328 0.040 0.339
Basic Heading N Y N Y
Country N N Y Y

Note: The table shows the relationship between the expenditure weights at the item level and the prices

of items within a basic heading. Column (2) includes basic heading effects, Column (3) includes country

effects, and Column (4) both.

To quantify the size of the third term of the sampling bias, we rely on Proposition 2. In

order to compare the magnitude of cov(ϕm
ib, ln (p̄

m
ib)) relative to cov(ϕu

ib, ln (p̄
u
ib)) we estimate

the following specification:

ϕc
sib = α + β ln(p̄csib)× 1 {c = Mexico}+ θc + λi + ϵcsib

where the dependent variable are the country-specific expenditure weights at the store-

item level and the independent variable are the log prices at the same level. We include

country and item effects in the specification. Table E.II presents the results. It shows

that the covariance of expenditure weights and prices is strongly negative for items and

stores in Mexico. The results are robust after controlling for store, item, and country effects

simultaneously.
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Table E.II: Sampling Bias Third Term: Expenditure Weights and Prices at the
Store × Item Level

(1) (2) (3)

ln(p̄) -0.0057 -0.0055 0.0002
(0.002) (0.001) (0.005)

ln(p̄)× Mexico -0.0842 -0.0770 -0.0801
(0.000) (0.006) (0.007)

Observations 419,979 419,979 416,763
R-squared 0.021 0.031 0.117
Store N N Y
Item N Y Y
Country N Y Y

Note: The table shows the results of estimating the relationship between the country-specific expenditure

weights at the store-item level and the log prices at the same level. The dependent variable is multiplied

times 104. Column (2) includes item and country effects, Column (3) includes the same controls in addition

to store effects. The standard errors are clustered at the country level.
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