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Online Appendix

This appendix contains proofs of Lemmas 1 and 2, the constructive proof of Theorem 1 (equilibrium
existence), a discussion of how uniqueness can be proved in special cases, and the proofs of the
“large-N” bidder surplus results discussed in footnote 27. Throughout, ε will refer to the value
defined in Lemma 3, i.e., a value such that si ≤ sj + ε implies u2(si, sj) < c.

B.1 Proof of Lemma 1

Lemma 1 (in the text) says that any symmetric equilibrium must use a strategy which is weakly
increasing and has support {0, 1, 2, . . . ,M} for some M <∞.

Weakly Increasing

Suppose τ is a symmetric equilibrium strategy, with m ∈ supp τ(s) and m′ ∈ supp τ(s′); we’ll show
that if s < s′ but m > m′, this leads to a contradiction.

As in the text, let vτ (m; s) denote the expected payoff to bidder 1 if S1 = s, he sends message
m, and bidders 2 through N play the strategy τ . Let m denote a profile of messages sent by 1’s
opponents, and write vτ as

vτ (m; s1) =
∑
m

Pr(m) Pr(adv|m,m)V (s1,m)

where Pr(m) is the probability (given τ) that 1’s opponents send the messages m, Pr(adv|m,m) is
1’s probability of advancing to the auction if he sends message m and his opponents send message
profile m, and V (s1,m) is his expected payoff from advancing to the auction, given true type si,
in expectation over all the different type profiles that would have generated m. (What’s significant
here is that this last term V (s1,m) does not depend on m, the message sent by bidder 1: conditional
on advancing and on m, he faces the same distribution of opponent types regardless of the message
he himself sends.)

Now, suppose m > m′. There are two cases to consider: either m and m′ offer bidder 1 the
same probability of advancing, or they do not. If they do not, then we can write

vτ (m; s1)− vτ (m′; s1) =
∑
m

Pr(m)
[
Pr(adv|m,m)− Pr(adv|m′,m)

]
V (s1,m)

We consider two sub-cases: either for every m at which Pr(m) [Pr(adv|m,m)− Pr(adv|m′,m)] > 0,
there is probability 1 that at least one of the other bidders advancing has type Sj ≥ s; or at least
one of these message profiles puts positive probability on max{Sj} < s among the other bidders j
who advance.

• In the first case, the “small rents” assumption guarantees that V (s,m) < 0 for every m in the
sum, meaning vτ (m; s)−vτ (m′; s) < 0, contradicting the assumption that m is a best-response
for a bidder with type S1 = s.

• In the second case, the monotonicity assumption (Assumption 1(b)) guarantees that V (s′,m) ≥
V (s,m) for every m, with strict inequality holding for some of them, so vτ (m; s′)−vτ (m′; s′) >
vτ (m; s)−vτ (m′; s); this means that either the first expression is strictly positive or the second
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is strictly negative, contradicting either m′ being a best-response when S1 = s′ or m being a
best-response when S1 = s.

This ensures that τ must satisfy monotonicity among messages that give different probabilities
of advancing. What’s left is to rule out non-monotonicities among multiple messages giving the
same probability of advancing. That is, we need to rule out the possibility that m and m′ are
such that Pr(adv|m,m) = Pr(adv|m′,m) for every m with Pr(m) > 0, since that would allow
m ∈ supp τ(s) and m′ ∈ supp τ(s′) without contradicting monotonicity of V .

So suppose that were the case, that is, Pr(adv|m,m) = Pr(adv|m′,m) for every m with Pr(m) >
0. If bidders with types s and s′ were both playing strategies giving this probability of advancing,
then all bidders with types Si ∈ (s, s′) would also have to play messages giving this probability of
advancing with probability 1, since otherwise this would violate the type of monotonicity we showed
above. This means at least a measure s′ − s of types send messages giving this same probability
of advancing. Let m denote the lowest such message, and let m denote a message giving the same
probability of advancing but such that a positive measure of bidders play messages in {m, . . . ,m}
with positive probability. (If a positive measure of bidders only play messages giving this probability
of advancing, such a message m must exist.) It’s easy to show that m and m can’t give the same
probability of advancing, yielding a contradiction; this proves that symmetric equilibrium must be
monotonic.

Finite Support

Now that we have monotonicity, define αm as the supremum of the set of types s such that τ(s)
puts positive probability on message m or lower (or as 0 if this set is empty). This means that
αm−1 = αm if m /∈ supp τ , and if αm−1 < αm then τ has types in (αm−1, αm) sending message m
for sure.

Now, consider two messages m and m′ > m, both of which are in the support of τ , and which
have no message between them in the support of τ . For δ small enough, this means τ(αm− δ) = m
and τ(αm+δ) = m′, which requires vτ (m;αm−δ) ≥ vτ (m′;αm−δ) and vτ (m;αm+δ) ≤ vτ (m′;αm+
δ). Since vτ is a weighted sum of uk terms, which are each continuous in a bidder’s own type, they’re
continuous, and therefore vτ (m;αm) = vτ (m′;αm).

As noted before,

vτ (m′;αm)− vτ (m;αm) =
∑
m

Pr(m)
[
Pr(adv|m′,m)− Pr(adv|m,m)

]
V (αm,m)

Now, all the message profiles m that show up in the sum have at least n opponents sending message
m or higher, since if fewer than that did, then Pr(adv|m′,m) = Pr(adv|m,m) = 1. This means
that there are two types of terms in the sum:

• Profiles m that involve at least one opponent sending message m′ or higher, and therefore
have at least one opponent with type αm or higher advancing, which by the small rents
assumption have V (αm,m) < 0

• Profiles m that involve at least n opponents sending message m and none sending a higher
message, which therefore have n− 1 opponents with types in [αm−1, αm]

Since the overall sum must be equal to 0, the latter terms must be positive (since the former
are negative). This requires u2(αm, αm−1) > c; by Lemma 3, this requires αm − αm−1 > ε.
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So if m and m′ > m are both played in equilibrium, there must be an interval of types of width
at least ε who send message m. This applies to every message in the support of τ other than the
highest and 0, so the maximal number of messages in the support of τ is 2 + d1εe.

Support {0, 1, 2, . . . ,M}

First, we’ll show that if messages m and m′ are consecutive messages in the support of τ , there
can’t be any other message in between them not in the support of τ . (For this reason, no symmetric
equilibrium exists when the set of allowed messages is continuous: such an equilibrium would require
both that a finite number of messages be used and that no unused messages exist between messages
used in equilibrium, which can’t both hold.)

In the sum vτ (m′;αm) − vτ (m;αm), separate the opponent message profiles m into two sets:
let M1 denote all the profiles where at least n opponents sent message m′ or higher, and M2 the
profiles where fewer than n sent message m′ or higher. Write

vτ (m′;αm)− vτ (m;αm) =
∑

m∈M1

Pr(m)
[
Pr(adv|m′,m)− Pr(adv|m,m)

]
V (αm,m)

+
∑

m∈M2

Pr(m)
[
Pr(adv|m′,m)− Pr(adv|m,m)

]
V (αm,m)

=
∑

m∈M1

Pr(m)
[
Pr(adv|m′,m)− 0

]
V (αm,m)

+
∑

m∈M2

Pr(m) [1− Pr(adv|m,m)]V (αm,m)

Now, by small rents, V (αm,m) < 0 for every m ∈ M1, so the first sum is negative; which means
since the entire expression must be zero, the second sum must be positive.

But the second sum is exactly the benefit that a bidder with type αm would get if he deviated
from message m to a message in between m and m′, since he would no longer be rationed against
other bidders sending message m, but would still not be selected when at least n others sent m′ or
higher. So for a bidder with type close to αm, and therefore close to indifferent between m and m′,
another message in between them would give a strictly higher payoff than either one; so no such
message can exist.

Next, I show that the lowest opt-in message must be used. Suppose not. Consider the lowest
type sending any opt-in message. Since any opponent he faces will have type higher than him,
small rents implies his payoff in the auction is negative whenever anyone else opts in. So if there
was an opt-in message lower than the one he’s using, he would deviate to it, since he would still
advance when everyone else opted out but would be less likely to be chosen when others opted in.

Finally, if message 1 is being used, and used by an interval of width at least ε, then there is a
positive probability that all of bidder 1’s opponents send message 1; so if bidder 1 has the lowest
type among the types who opt in, he must be getting a positive payoff from the probability all his
opponents opt out, so 0 must be in the support of τ as well. 2

B.2 Proof of Lemma 2

Lemma 2 says that if τ satisfies the conditions of Lemma 1, then the following are necessary and
sufficient for τ to be a symmetric equilibrium:
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1. vτ (m;αm) = vτ (m+ 1;αm) for m = 0, 1, . . . ,M − 1, and

2. either M = M (the support of τ includes all available messages) or vτ (M ; 1) ≥ vτ (M + 1; 1),
and τ(1) puts probability 1 on message M unless vτ (M ; 1) = vτ (M + 1; 1).

Proof of Necessity

Necessity of these conditions is easy to show.

• We noted above that vτ (m + 1; s1) − vτ (m; s1) must equal 0 at s1 = αm, since it must be
weakly negative for s1 ∈ (αm−1, αm) and weakly positive for s1 ∈ (αm, αm+1) and vτ (m+1; ·)
and vτ (m; ·) are both continuous.

• If the second condition is violated, then M > M and vτ (M + 1; 1) > vτ (M ; 1). By conti-
nuity, vτ (M + 1; si) > vτ (M ; si) for si sufficiently close to 1, contradicting the equilibrium
requirement that all bidders with types si ∈ (αM−1, 1) send message M .

• Finally, if M = M or vτ (M + 1; 1) < vτ (M ; 1), then supp τ(1) must put probability 1 on
message M , since in the first case no higher messages exist and in the second case they give
lower payoff than M .

Thus, what is left to do is to prove sufficiency – i.e., that if τ satisfies these conditions, it
constitutes a symmetric equilibrium.

Proof of Sufficiency

So now suppose τ exists satsifying these conditions; we need to show that when one’s opponents
play τ , playing τ(s1) is a best-response for a bidder with type s1.

The key thing to note is that for m′ > m, vτ (m′; s1)−vτ (m; s1) is weakly increasing in s1, since
as noted above

vτ (m′; s1)− vτ (m; s1) =
∑

m Pr(m) [Pr(adv|m′,m)− Pr(adv|m,m)]V (s1,m)

Since m′ > m, Pr(adv|m′,m) − Pr(adv|m,m) ≥ 0; and since V (s1,m) is an expected value
of uk(s1, S−i,k) over the range of opponent types who would have generated message profile m,
V (s1,m) is weakly increasing in s1.

This means, then, that vτ (m+1;αm) = vτ (m;αm) immediately implies vτ (m+1; s1) ≥ vτ (m; s1)
for every s1 > αm, and likewise vτ (m+ 1; s1) ≤ vτ (m; s1) for every s1 < αm. (In fact, both of these
can be shown to hold strictly, but that’s not important for this proof.)

Using this, then, we can show that for every bidder type s1 ∈ [0, 1), τ(s1) selects a best-response:

• Suppose that for s1 = αm, some message lower than m gave a strictly higher payoff than m
and m + 1. Let m′ be the highest message below m giving a strictly higher payoff than m;
then vτ (m′;αm) > vτ (m′ + 1;αm). Since vτ (m′;αm′) = vτ (m′ + 1;αm′) and αm > αm′ , this
violates the monotonicity of vτ (m′ + 1; s1)− vτ (m′; s1) shown above.

A similar contradiction follows if a bidder with type αm strictly preferred a messagem′ > m+1
(m′ ∈ supp τ) to m and m+ 1.

• Suppose that for some s1 ∈ (αm−1, αm), some message m′ < m gave a higher payoff than
m. By monotonicity of vτ (m; s) − vτ (m′; s), this would also have to hold for S1 = αm−1.
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If m′ = m − 1, this means vτ (m − 1;αm−1) > vτ (m;αm−1), contradicting the fact that this
same statement has to hold with equality; if m′ < m−1, this means a bidder with type αm−1
strictly prefers a message m′ < m− 1 to either m− 1 or m, which was ruled out above.

Similarly, if a higher message m′ > m gave a higher payoff than m, monotonicity of vτ (m′; s)−
vτ (m; s) would require this to also hold for s1 = αm, which similarly generates a contradiction.

• All that’s left, then, is deviations to unused messages, which Lemma 1 implies must be above
M . (Note that since no opponent is sending a message above M with positive probability,
all messages above M give the same expected payoff.) The second condition in Lemma 2
implies that such messages are either unavailable or no better than M even when S1 = 1;
monotonicity of vτ (M + 1; s)− vτ (M ; s) ensures they’re no better than M for all other types.
The final part of the second condition in Lemma 2 ensures that bidders with type S1 = 1 are
playing a best-response as well.

Thus, the conditions of Lemma 2 ensure that τ is a best-response to one’s opponents playing
τ , and therefore that “everyone plays τ” is an equilibrium. 2

B.3 Other Preliminaries for Existence Proof

Above, we somewhat informally defined the difference vτ (m+ 1; s1)− vτ (m; s1), and noted that in
equilibrium, at s1 = αm, it must be equal to zero. Here, we will calculate vτ (m+1;αm)−vτ (m;αm)
more explicitly as a function of τ , and show that it has two important features. First, given the
environment, it is a function only of {αm−1, αm, αm+1}; and second, it is strictly single-crossing in
αm−1. This means that for given values of αm and αm+1, there is a unique value of αm−1 that
is consistent with equilibrium, which will allow us to construct the equilibrium “downwards” from
the top of the type space.

Fixing an environment and a number of messages M , let A be the set of possible thresholds
α = (α0, α1, . . . , αM−1) with 0 ≤ α0 ≤ α1 ≤ . . . ≤ αM−1 ≤ 1. Define a function ∆ from A ×
{1, 2, . . . ,M − 1} to the reals as

∆(α,m) ≡ vτ (m+ 1;αm)− vτ (m;αm)

=
∑
m

Pr(m) [Pr(adv|m+ 1,m)− Pr(adv|m,m)]V (αm,m)

(Note that the analysis below will not hold for m = 0, as vτ (α0, 1) − vτ (α0, 0) takes a different
form; hence, ∆(α,m) is defined only for m ≥ 1.)

In order for Pr(adv|m + 1,m) − Pr(adv|m,m) 6= 0, it must be that Pr(adv|m,m) < 1, which
means that in every opponent message profile m which shows up in the sum, there will be at least n
opponents sending message m or higher. Similarly, Pr(adv|m+ 1,m)−Pr(adv|m,m) 6= 0 requires
Pr(adv|m+1,m) > 0, which means that at m, fewer than n opponents are sending messages above
m + 1. Thus, if we define Mq,r as the set of message profiles at which q opponents send message
m+ 1 and r send messages higher than that, we can write ∆ as

∆(α,m) =
n−1∑
r=0

N−1−r∑
q=0

 ∑
m∈Mq,r

Pr(m) [Pr(adv|m+ 1,m)− Pr(adv|m,m)]V (αm,m)


and define ∆q,r(α,m) as the inner sum, i.e., the term in large parentheses.

We will calculate ∆q,r separately for the two cases q + r < n and q + r ≥ n.
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First case: q + r < n.

If q + r < n, then fewer than n opponents are sending message m + 1 or higher. This means
that Pr(adv|m + 1,m) = 1; for a message profile m to show up in the sum, then, it must be that
p ≥ n−q−r opponents send message m, since otherwise Pr(adv|m,m) = 1 as well. If p ≥ n−q−r
opponents send message m, then Pr(adv|m,m) = n−q−r

p+1 , since counting bidder 1, there are p + 1
bidders sending message m competing for the n− q − r spots in the auction not taken by bidders
sending even higher messages. Regardless of p, if bidder 1 advances, he will face the q+r opponents
who sent message m+ 1 or higher, plus n− 1− (q + r) of the opponents who sent message m.

Putting it all together, then, for q + r < n,

∆q,r(α,m) =
∑

m∈Mq,r

Pr(m) [Pr(adv|m+ 1,m)− Pr(adv|m,m)]V (αm,m)

=

N−1−q−r∑
p=n−q−r

(
N − 1

r

)(
N − 1− r

q

)(
N − 1− r − q

p

)
wN−1−p−q−rxpyqzr

[
1− n− q − r

p+ 1

]
V q,r

where z = 1− αm+1 is the probability (under τ) that a bidder sends a message higher than m+ 1;
y = αm+1 − αm the probability a bidder sends message m + 1; x = αm − αm−1 the probability a
bidder sends message m; w = αm−1 the probability he sends a message lower than m; and V q,r the
expected payoff to a bidder with type S1 = αm from advancing to an auction against r opponents
with types above αm+1, q opponents with types in [αm, αm+1], and n − 1 − q − r opponents with
types in [αm−1, αm].

Second case: q + r ≥ n.

If q+ r ≥ n, at least n opponents are sending messages m+ 1 or higher, so Pr(adv|m,m) = 0, and
Pr(adv|m + 1,m) = n−r

q+1 , since r spots in the auction are taken by opponents sending messages
above m + 1, leaving n − r for the q + 1 bidders sending m + 1. If bidder 1 advances, he faces
the r bidders who sent messages above k + 1, plus n − 1 − r opponents who sent message m + 1.
How many of his opponents sent message m, versus lower messages, is irrelevant, since he never
advances when he sends m. So

∆q,r(α,m) =
∑

m∈Mq,r

Pr(m) [Pr(adv|m+ 1,m)− Pr(adv|m,m)]V (αm,m)

=

(
N − 1

r

)(
N − 1− r

q

)
(w + x)N−1−q−ryqzr

n− r
q + 1

V n−1−r,r

Next, we establish several key properties of our function ∆.

Lemma 5. Fixing an environment,

1. ∆(α,m) is a function only of αm−1, αm, and αm+1, so we can write it as ∆(αm−1, αm, αm+1)

2. ∆(αm−1, αm, αm+1) is continuous in each of its arguments

3. There is ε > 0 such that when αm − αm−1 ∈ (0, ε), ∆(αm−1, αm, αm+1) < 0

4. On [0, αm), ∆(αm−1, αm, αm+1) is strictly single-crossing from above in αm−1
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Together, these tell us that for given values of αm and αm+1, either ∆(0, αm, αm+1) ≤ 0 – in
which case there is no value of αm−1 > 0 that would satisfy ∆(αm−1, αm, αm+1) = 0 – or else
∆(0, αm, αm+1) > 0, in which case there is a unique value of αm−1 satisfying ∆(αm−1, αm, αm+1) =
0.

Proof of Lemma 5. Parts 1 and 2 of Lemma 5 follow directly from the expressions for ∆q,r(α,m):
for each q and r, ∆q,r(α,m) is a function only of αm−1, αm, and αm+1, and is continuous in each
of them, so ∆ inherits these properties. For part 3, note from Lemma 5 that u2(si, sj) > c
requires si > sj + ε. Then V q,r < 0 for q + r > 0, and V 0,0 < 0 whenever αm − αm−1 < ε,
and so ∆ =

∑
q,r ∆q,r < 0 if αm − αm−1 < ε. (αm − αm−1 > 0 is needed here because when

αm−1 = αm = αm+1, ∆(αm−1, αm, αm+1) = 0.) Part 4 (single-crossing) requires a lot of additional
algebra, and is done separately at the end. 2

With ∆ defined, and given Lemma 5, define α∗(αm, αm+1) as the solution to ∆(x, αm, αm+1) = 0
on [0, αm−1), or as 0 when no such solution exists, and note that since ∆ is continuous, α∗ is
continuous in both its arguments. There are two other useful facts we’ll need:

Lemma 6. For any environment and α,

1. If α1 − α0 ≥ ε and α0 ≈ 0, vτ (1;α0) < 0

2. If ∆(0, α0, α1) > 0, then vτ (1;α0) > 0

Proof of Lemma 6. To show the first part, note that if α0 ≈ 0, a bidder opting in has virtually
no chance of entering the auction alone, and if α1 − α0 ≥ ε, he has at least probability εN−1 nN of
being selected; a bidder with type α0 is assured that any opponents have types at least as high as
him, ensuring (via the small rents assumption) a strictly negative payoff from entering against any
competition, making vτ (1;α0) negative.

For the second part, note that

∆(0, α0, α1) =
∑∑
q+r<n

∆q,r(0, α0, α1) +
∑∑

r<n, q+r≥n

∆q,r(0, α0, α1)

=
∑∑
q+r<n

(
N−1−q−r∑
p=n−q−r

(
N − 1

r

)(
N − 1− r

q

)(
N − 1− r − q

p

)
wN−1−p−q−rxpyqzr

[
1− n− q − r

p+ 1

]
V q,r

)

+
∑∑

r<n, q+r≥n

((
N − 1

r

)(
N − 1− r

q

)
(w + x)N−1−q−ryqzr

n− r
q + 1

V n−1−r,r
)

where now w = 0, x = α0, y = α1−α0, and z = 1−α1. Since w = 0, all but the p = N − 1− q− r
term of the innermost sum on the first line vanish (and w + x becomes x), and so

∆(0, α0, α1) =
∑∑
q+r<n

(
P (q, r)

[
1− n− q − r

N − q − r

]
V n−1−q−r,q,r

)

+
∑∑

r<n, q+r≥n

(
P (q, r)

n− r
q + 1

V 0,n−1−r,r
)

where P (q, r) is shorthand for
(
N−1
r

)(
N−1−r

q

)
xN−1−q−ryqzr and where we now write V p,q,r as the

expected payoff in the auction given type α0 when facing p opponents with types in [0, α0], q in
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[α0, α1], and r in [α1, 1]. On the other hand, we can calculate vτ (α0, 1) as

vτ (1;α0) =
∑∑
q+r<n

P (q, r)V 0,q,r +
∑∑

r<n, q+r≥n

(
P (q, r)

n− r
q + 1

V 0,n−1−r,r
)

Note that the second double-sum in ∆(0, α0, α1) and vτ (α0, 1) are exactly the same, and the two
expressions therefore differ in just two ways: the latter replaces 1− n−q−r

N−q−r with 1, and V n−1−q−r,q,r

with V 0,q,r, in each summand in the first double-sum. Now, fewer opponents certainly leads to a
higher expected auction payoff, so this second change is an increase in value; we’ll show that when
∆(0, α0, α1) ≥ 0, the first change must be an overall increase as well.

To show this, note first that out of all the V n−1−q−r,q,r and V 0,n−1−r,r terms, the only one
that isn’t strictly negative (by the small-rents assumption) is V n−1,0,0. This means the second
double-sum is strictly negative, which means that if ∆(0, α0, α1) ≥ 0, the first sum must be strictly
positive. Rewrite the first sum as∑∑

q+r<n

(
P (q, r)

[
N − n

N − q − r

]
V n−1−q−r,q,r

)

and note that if this is strictly positive, then
∑∑

P (q, r)V n−1−q−r,q,r is strictly larger: it consists
of multiplying each term by N−q−r

N−n > 1, with the term corresponding to q = r = 0 (which is the
only positive term) therefore being multiplied by a strictly larger factor than all the other terms.

So going from ∆(0, α0, α1) to vτ (1;α0) involves two changes: the first multiplies a bunch of
terms (which collectively are positive) by factors greater than 1, with the only positive term getting
multiplied by a larger factor than the others; the second replaces a bunch of terms V n−1−q−r,q,r

with larger (less negative) V 0,q,r terms. Thus, if ∆(0, α0, α1) > 0, then vτ (1;α0) > ∆(0, α0, α1),
giving the result. 2

B.4 Proof of Theorem 1 (equilibrium construction)

Finally, we can launch into the actual construction. First, we define M∗.

1. For a given M > 0, define α(M) = (α
(M)
0 , α

(M)
1 , . . . , α

(M)
M ) as follows:

• Let α
(M)
M−1 = α

(M)
M = 1

• For m = M − 2,M − 3, . . . , 0, define αm recursively as α
(M)
m = α∗(α

(M)
m+1, α

(M)
m+2).

(If at any point αm = 0, then stop and say the construction failed.)

2. Then define the pure strategy τM by τM (s1) = 0 for s1 ≤ α0 and, for m = 1, 2, . . . ,M ,

τM (s1) = m for s1 ∈ (α
(M)
m−1, α

(M)
m ].

If α(M) are all well-defined and greater than 0 and vτM (1;α
(M)
0 ) > 0, we will say the con-

struction succeeded; if some α
(M)
m = 0 (meaning ∆(x, α

(M)
m+1, α

(M)
m+2) = 0 had no solution) or

vτM (1;α
(M)
0 ) ≤ 0, we will say the construction failed.

3. Define M∗ as the largest value of M at which the construction succeeded.

• Note that the construction must succeed at M = 1 (since at α0 = α1 = 1, vτ (1;α0) =
E(V1|S1 = 1)− c > 0 by assumption)
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• Also note that it must fail at M sufficiently large (since as noted above, vτ (m;αm) =
vτ (m+ 1;αm) requires αm−αm−1 ≥ ε, and therefore when M > 2 + 1

ε the construction
can’t succeed)

• Finally, note that it must succeed at every M ≤M∗.
For M < M∗, by construction, α

(M)
M−m = α

(M∗)
M∗−m; so α(M) is well-defined, with α

(M)
1 =

α
(M∗)
M∗−M+1 and α

(M)
0 = α

(M∗)
M∗−M .

Since the construction works at M∗, α∗(α
(M∗)
M∗−M , α

(M∗)
M∗−M+1) = α

(M∗)
M∗−M−1 > 0, and

therefore ∆(0, α
(M∗)
M∗−M , α

(M∗)
M∗−M+1) > 0, or ∆(0, α

(M)
0 , α

(M)
1 ) > 0; by part 2 of Lemma 6,

then, vτM (1;α
(M)
0 ) > 0.

Next, for a given M ≤M∗, do the following:

1. For t ∈ [0, 1], define αM (t) = 1 and αM−1(t) = 1− t.

2. For m = M − 2,M − 3, . . . , 0, define αm(t) recursively as αm(t) = α∗(αm+1(t), αm+2(t)).

3. We will let vα denote vτ for the strategy τ defined by the thresholds α in the obvious way.
Define v(t) = vα(t)(1;α0(t)).

4. Note that since α∗ is continuous, each αm(t) is continuous in t, at least until it hits 0

5. If we let t denote the value of t at which α0(t) hits 0, then all of the αm(t) are continuous on
[0, t], and therefore v(t) is continuous on [0, t] as well

6. Note that v(0) > 0.

(If M = M∗, then v(0) = vτM∗ (1;α
(M∗)
0 ) > 0 by the original construction of M∗; if M < M∗,

then in the original construction of M∗, α∗(α0(0), α1(0)) > 0, or ∆(0, α0(0), α1(0)) > 0,
implying vα(0)(1;α0(0)) > 0 by the second part of Lemma 6.)

7. Note that v(t) < 0.

This is because α0(t) = 0, and since ∆(α0(t), α1(t), α2(t)) = 0, α1(t)− α0(t) ≥ ε for every t.
So the first part of Lemma 6 holds at t, meaning vα(t)(1;α0(t)) < 0.

8. Since v(t) is continuous on [0, t], positive at 0, and negative at t, it crosses 0; let t∗ be the
lowest value at which v(t) = 0, and define τ based on the thresholds α(t∗).

9. The recursive definition of αm(t) ensures that ∆(αm−1(t
∗), αm(t∗), αm+1(t

∗)) = 0 for m =
1, 2, . . . ,M−1, or that at τ defined by α(t∗), vτ (m;αm(t∗)) = vτ (m+1;αm(t∗)); the definition
of t∗ ensures vτ (1;α0(t

∗)) = 0; so the indifference conditions all hold.

10. If M = M , the second sufficient condition in Lemma 2 holds vacuously; so for M ≤ M∗, we
have constructed an equilibrium when M = M .

11. If M > M∗, we need to show that at M = M∗, vτ (M + 1; 1) ≤ vτ (M ; 1). We do this below,
completing the proof that we’ve found an equilibrium either way.

All that’s left is to show that at M = M∗ and τ defined by the thresholds α(t∗), vτ (M + 1; 1) ≤
vτ (M ; 1). Consider a bidder with type Si = 1 who considers sending an unused message above M
instead of M . If we calculate vτ (M + 1; 1)− vτ (M ; 1), it’s the same expression for the difference as
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before, but with αm = αm+1 = 1, and therefore y = z = 0; as a result, ∆q,r = 0 for q + r > 0, and
therefore

vτ (M + 1; 1)− vτ (M ; 1) =
N−1∑
p=n

(
N − 1

p

)
wN−1−pxp

[
1− n

p+ 1

]
V 0,0

Thus, vτ (M + 1; 1)− vτ (M ; 1) has the same sign as

V 0,0 = E
{
un(1, S−i,n) | S−i,n ∈ [αM−1, 1]n−1

}
− c = V (1, n− 1, [αM−1, 1])

the payoff to a bidder with type 1 facing n−1 opponents with types in [αM−1, 1]. (In words: unless
at least n of my opponents sent message M , I would have advanced for sure anyway by sending
message M ; so the only time message M + 1 gives me a different outcome from message M , it’s
when I’ll face an auction full of opponents who sent message M , and therefore have types above
αM−1.)

Now, if V (1, n − 1, [0, 1]) ≤ 0, then by monotonicity, V (1, n − 1, [αM−1, 1]) ≤ 0, and therefore
vτ (M + 1; 1) ≤ vτ (M ; 1) and we’re done. So suppose V (1, n − 1, [0, 1]) > 0, and define Ŝ as the
solution to

V (1, n− 1, [Ŝ, 1]) = 0

(Continuity, monotonicity, and small rents ensure that there’s a unique solution, strictly less than 1.)
Again by monotonicity, vτ (M+1; 1) ≤ vτ (M ; 1) if and only if αM−1 ≥ Ŝ. Also, since ∆(Ŝ, 1, 1) = 0
by definition, Ŝ = α∗(1, 1).

Now, recall that we defined our thresholds based on αM (t) = 1, αM−1(t) = 1− t, and αm(t) =
α∗(αm+1(t), αm+2(t)), and defined t∗ as the lowest value of t at which vτ (1;α0(t)) = 0; so for t < t∗,
vτ (1;α0(t)) > 0. Define t̂ as 1− Ŝ, so that Ŝ = 1− t̂ = αM−1(t̂). Noting that αM−1(t̂) = α∗(1, 1) =
αM−2(0), it’s easy to show inductively that αm(t̂) = αm−1(0).

We’ll show that t∗ ≤ t̂, which ensures that αM−1 ≥ Ŝ, which in turn ensures that V 0,0 =
V (1, n − 1, [αM−1, 1]) ≤ 0, and therefore that vτ (M + 1; 1) ≤ vτ (M ; 1). Suppose (toward contra-
diction) that t∗ > t̂. Since α0(t) is continuous at least until t∗, this means that α0(t̂) exists, and
that vτ (1;α0(t̂)) > 0. But α0(t̂) = α∗(α1(t̂), α2(t̂)) = α∗(α0(0), α1(0)); if vτ (1;α0(t̂)) > 0, then
vτ (1;α∗(α0(0), α1(0))) > 0, contradicting the definition of M∗ as the largest M for which this is
possible.

Thus, when M = M∗, t∗ ≤ t̂, which means that αM−1 ≥ Ŝ, and therefore that vτ (M + 1; 1) ≤
vτ (M ; 1), completing the proof. 2

B.5 Proof ∆(·, αm, αm+1) is Strictly Single Crossing

Earlier, we deferred the proof of Lemma 5 part 4, i.e., that ∆(αm−1, αm, αm+1) is strictly single-
crossing from above in αm−1 on [0, αm). We prove that now. We will do this by showing that
∆(αm−1, αm, αm+1) = 0 implies ∂

∂αm−1
∆(αm−1, αm, αm+1) < 0.

We begin by writing

∆(αm−1, αm, αm+1) =
∑∑
q+r<n

Cq,rV q,r +
∑∑

r<n,q+r≥n
Dq,rV n−1−r,r

10



where

Cq,r =

N−1−q−r∑
p=n−q−r

(
N − 1

r

)(
N − 1− r

q

)(
N − 1− q − r

p

)
wN−1−p−q−rxpyqzr

[
1− n− q − r

p+ 1

]

Dq,r =

(
N − 1

r

)(
N − 1− r

q

)
(w + x)N−1−q−ryqzr

[
n− r
q + 1

]
and w = αm−1, x = αm − αm−1, y = αm+1 − αm, z = 1 − αm+1, and V q,r denotes the expected
payoff in an auction given type αm and r opponents with types above αm+1, q opponents with
types in [αm, αm+1], and n− 1− q − r opponents with types in [αm−1, αm].

Now, differentiate with respect to αm−1, which we will indicate with subscript-αm−1:

∆αm−1(αm−1, αm, αm+1) =
∑∑
q+r<n

Cq,rαm−1
V q,r +

∑∑
q+r<n

Cq,rV q,r
αm−1

+
∑∑

r<n,q+r≥n
Dq,r
αm−1

V n−1−r,r +
∑∑

r<n,q+r≥n
Dq,rV n−1−r,r

αm−1

First, note that Dq,r does not depend on αm−1 at all, because its only dependence on either w or
x is through w + x = 1 − αm. Second, note that V n−1−r,r does not depend on αm−1 either, since
it’s the payoff in an auction where all the opponents have types in either [αm, αm+1] or [αm+1, 1],
which doesn’t depend on αm−1 at all. Third, note that for q + r < n, V q,r is weakly decreasing
in αm−1, since it is the payoff in an auction where n − 1 − q − r opponents have types randomly
drawn from [αm−1, αm], and stronger opponents mean lower payoffs. This means that

∆αm−1(αm−1, αm, αm+1) ≤
∑∑
q+r<n

Cq,rαm−1
V q,r

where Cq,r depends on αm−1 through both w (positively) and x (negatively).
Since our interest is in signing this when ∆ = 0, we calculate

∆αm−1 −
C0,0
αm−1

C0,0
∆ ≤

∑∑
q+r<n

Cq,rαm−1
V q,r −

C0,0
αm−1

C0,0

∑∑
q+r<n

Cq,rV q,r −
C0,0
αm−1

C0,0

∑∑
r<n, q+r≥n

Dq,rV q,r

=
∑∑
0<q+r<n

[
Cq,rαm−1

Cq,r
−
C0,0
αm−1

C0,0

]
Cq,rV q,r −

C0,0
αm−1

C0,0

∑∑
r<n, q+r≥n

Dq,rV q,r

By small rents, V q,r < 0 for q + r > 0. Also note that Cq,r and Dq,r are all weakly positive, since
they’re basically sums of probabilities. We’ll show that C0,0

αm−1 ≤ 0, establishing that

∆αm−1 −
C0,0
αm−1

C0,0
∆ ≤

∑∑
0<q+r<n

[
Cq,rαm−1

Cq,r
−
C0,0
αm−1

C0,0

]
Cq,rV q,r

and then we’ll show that the difference in square brackets is positive, ensuring the right-hand side
is negative; thus guaranteeing that when ∆ = 0, ∆αm−1 < 0.
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Define Z(q, r) =
(
N−1
r

)(
N−1−r

q

)
yqzr, and write Cq,r as

Cq,r = Z(q, r)

N−1−q−r∑
p=n−q−r

(
N − 1− q − r

p

)
wN−1−p−q−rxp

[
1− n− q − r

p+ 1

]
Note that Z(q, r) does not depend on αm−1, and Cq,r depends on q and r only through q+r; letting
e ≡ q + r, then,

Cq,r = Z(q, r)
N−1−e∑
p=n−e

(
N − 1− e

p

)
wN−1−e−pxp

[
1− n− e

p+ 1

]
Now, αm−1 effects Cq,r through both w and x: specifically, since w = αm−1 and x = αm − αm−1,
dw = dαm−1 and dx = −dαm−1, so

Cq,rαm−1 = Z(q, r)
N−2−e∑
p=n−e

(N − 1− e)!
(N − 1− e− p)!p!

(N − 1− e− p)wN−2−e−pxp
[
1− n− e

p+ 1

]

−Z(q, r)

N−1−e∑
p=n−e

(N − 1− e)!
(N − 1− e− p)!p!

wN−1−e−ppxp−1
[
1− n− e

p+ 1

]
(Note that the first sum only goes up to N − 2− e, because the p = N − 1− e term had no w and
therefore vanishes when we differentiate; on the other hand, since e = q + r < n, every term had a
positive x power, so the entire sum survives in the second row.) Next, cancelling N −1−e−p from
the numerator and denominator in the first row, cancelling p from the numerator and denominator
in the second row, and reindexing the sum by p′ = p− 1,

Cq,rαm−1 = Z(q, r)

N−2−e∑
p=n−e

(N − 1− e)!
(N − 2− e− p)!p!

wN−2−e−pxp
[
1− n− e

p+ 1

]

−Z(q, r)

N−2−e∑
p′=n−e−1

(N − 1− e)!
(N − 2− e− p′)!p′!

wN−2−e−p
′
xp
′
[
1− n− e

p′ + 2

]
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If we separate the n−e−1 term from the second sum, and combine corresponding terms otherwise,

Cq,rαm−1 = Z(q, r)
N−2−e∑
p=n−e

(N − 1− e)!
(N − 2− e− p)!p!

wN−2−e−pxp
[
n− e
p+ 2

− n− e
p+ 1

]

−Z(q, r)
n−e−1∑
p=n−e−1

(N − 1− e)!
(N − 2− e− p)!p!

wN−2−e−pxp
[
1− n− e

p+ 2

]

= Z(q, r)
N−2−e∑
p=n−e−1

(N − 1− e)!
(N − 2− e− p)!p!

wN−2−e−pxp
[
n− e
p+ 2

− n− e
p+ 1

]

= Z(q, r)
N−2−e∑
p=n−e−1

(N − 1− e)!
(N − 2− e− p)!p!

wN−2−e−pxp
[
− n− e

(p+ 1)(p+ 2)

]

= −Z(q, r)
n− e
N − e

N−2−e∑
p=n−e−1

(N − e)!
(N − 2− e− p)!(p+ 2)!

wN−2−e−pxp

= −Z(q, r)
n− e
N − e

1

x2

N−2−e∑
p=n−e−1

(N − e)!
(N − 2− e− p)!(p+ 2)!

wN−2−e−pxp+2

= −Z(q, r)
n− e
N − e

1

x2

N−2−e∑
p=n−e−1

(
N − e
p+ 2

)
wN−2−e−pxp+2

= −Z(q, r)
n− e
N − e

1

x2

N−e∑
p=n−e+1

(
N − e
p

)
wN−e−pxp

Note that this is negative for any e < n, including e = q + r = 0, so C0,0
αm−1 < 0, as noted above.
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What’s left to show is that

[
Cq,rαm−1

Cq,r −
C0,0
αm−1

C0,0

]
is positive. Before we do that, rewrite

Cq,r = Z(q, r)
N−1−e∑
p=n−e

(
N − 1− e

p

)
wN−1−e−pxp

[
1− n− e

p+ 1

]

= Z(q, r)

[
N−1−e∑
p=n−e

(
N − 1− e

p

)
wN−1−e−pxp − n− e

N − e

N−1−e∑
p=n−e

(
N − e
p+ 1

)
wN−1−e−pxp

]

= Z(q, r)

N−1−e∑
p=n−e

(
N − 1− e

p

)
wN−1−e−pxp − n− e

N − e
1

x

N−e∑
p′=n−e+1

(
N − e
p′

)
wN−e−p

′
xp
′



= Z(q, r)

N−1−e∑
p=n−e

(
N − 1− e

p

)
wN−1−e−pxp + xCq,rαm−1

Then, calculate

C0,0Cq,rαm−1 − Cq,rC
0,0
αm−1

=

(
Z(0, 0)

N−1∑
p=n

(
N − 1

p

)
wN−1−pxp

)−Z(q, r)
n− e
N − e

1

x2

N−e∑
p=n−e+1

(
N − e
p

)
wN−e−pxp


−xC0,0

αm−1
Cq,rαm−1

−

(
Z(q, r)

N−1−e∑
p=n−e

(
N − 1− e

p

)
wN−1−e−pxp

)−Z(0, 0)
n

N

1

x2

N∑
p=n+1

(
N

p

)
wN−pxp


+xCq,rαm−1

C0,0
αm−1

=
−Z(0, 0)Z(q, r)

x2

(N−1∑
i=n

(
N − 1

i

)
wN−1−ixi

) n− e
N − e

N−e∑
j=n−e+1

(
N − e
j

)
wN−e−jxj



−

N−1−e∑
j=n−e

(
N − 1− e

j

)
wN−1−e−jxj

( n

N

N∑
i=n+1

(
N

i

)
wN−ixi

)
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Reindexing the last three sums,

C0,0Cq,rαm−1 − Cq,rC
0,0
αm−1

=
−Z(0, 0)Z(q, r)

x2

(N−1∑
i=n

(
N − 1

i

)
wN−1−ixi

) n− e
N − e

N−1∑
j′=n

(
N − e

j′ + 1− e

)
wN−1−j

′
xj
′+1−e



−

N−1∑
j′=n

(
N − 1− e
j′ − e

)
wN−1−j

′
xj
′−e

( n

N

N−1∑
i′=n

(
N

i′ + 1

)
wN−1−i

′
xi
′+1

)

=
−Z(0, 0)Z(q, r)

x2

 1

xe−1
n− e
N − e

N−1∑
i=n

N−1∑
j=n

(
N − 1

i

)(
N − e
j + 1− e

)
wN−1−ixiwN−1−jxj

− 1

xe−1
n

N

N−1∑
i=n

N−1∑
j=n

(
N

i+ 1

)(
N − 1− e
j − e

)
wN−1−ixiwN−1−jxj



=
−Z(0, 0)Z(q, r)

xe+1

N−1∑
i=n

N−1∑
j=n

[
n− e
N − e

(
N − 1

i

)(
N − e
j + 1− e

)
− n

N

(
N

i+ 1

)(
N − 1− e
j − e

)]
w2N−2−i−jxi+j

Next, we rewrite the double-sum, pairing the (i, j) term with the (j, i) term and separating the
“diagonal” (i = j) terms:

C0,0Cq,rαm−1 − Cq,rC
0,0
αm−1

=
−Z(0, 0)Z(q, r)

xe+1

(
N−1∑
i=n

[
n−e
N−e

(
N−1
i

)(
N−e
i+1−e

)
− n

N

(
N
i+1

)(
N−1−e
i−e

)]
w2N−2−2ix2i

+
∑∑
i<j

[
n−e
N−e

(
N−1
i

)(
N−e
j+1−e

)
+ n−e

N−e
(
N−1
j

)(
N−e
i+1−e

)
− n

N

(
N
i+1

)(
N−1−e
j−e

)
− n

N

(
N
j+1

)(
N−1−e
i−e

)]
w2N−2−i−jxi+j


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Next, we show the summand in the first sum is negative:

n− e
N − e

(
N − 1

i

)(
N − e
i+ 1− e

)
− n

N

(
N

i+ 1

)(
N − 1− e
i− e

)

=
n− e
N − e

(N − 1)!

(N − 1− i)!i!
(N − e)!

(N − i− 1)!(i+ 1− e)!
− n

N

N !

(N − i− 1)!(i+ 1)!

(N − 1− e)!
(N − 1− i)!(i− e)!

=
(N − 1)!

(N − 1− i)!i!
(N − e− 1)!

(N − i− 1)!(i− e)!

[
(n− e) 1

i+ 1− e
− n 1

i+ 1

]
∝ (n− e)(i+ 1)− n(i+ 1− e)

= ni− ei+ n− e− ni− n+ ne

= −ei− e+ ne

which is negative since i ≥ n (the sum runs from i = n to i = N − 1).
Next, we show the summand in the second sum is negative, which takes a bit more work:

n−e
N−e

(
N−1
i

)(
N−e
j+1−e

)
+ n−e

N−e
(
N−1
j

)(
N−e
i+1−e

)
− n

N

(
N
i+1

)(
N−1−e
j−e

)
− n

N

(
N
j+1

)(
N−1−e
i−e

)
=

n− e
N − e

(N − 1)!

(N − 1− i)!i!
(N − e)!

(N − 1− j)!(j + 1− e)!
+
n− e
N − e

(N − 1)!

(N − 1− j)!j!
(N − e)!

(N − 1− i)!(i+ 1− e)!

− n
N

N !

(N − i− 1)!(i+ 1)!

(N − 1− e)!
(N − 1− j)!(j − e)!

− n

N

N !

(N − j − 1)!(j + 1)!

(N − 1− e)!
(N − 1− i)!(i− e)!

=
(N − 1)!

(N − 1− i)!
(N − 1− e)!
(N − 1− j)!

[
(n− e) 1

i!

1

(j + 1− e)!
+ (n− e) 1

j!

1

(i+ 1− e)!

−n 1

(i+ 1)!

1

(j − e)!
− n 1

(j + 1)!

1

(i− e)!

]
Dividing by (N−1)!

(N−1−i)!
(N−1−e)!
(N−1−j)! and multiplying by (i+ 1)!(j + 1)!,
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n−e
N−e

(
N−1
i

)(
N−e
j+1−e

)
+ n−e

N−e
(
N−1
j

)(
N−e
i+1−e

)
− n

N

(
N
i+1

)(
N−1−e
j−e

)
− n

N

(
N
j+1

)(
N−1−e
i−e

)
∝ (n− e)(i+ 1)!

i!

(j + 1)!

(j + 1− e)!
+ (n− e)(j + 1)!

j!

(i+ 1)!

(i+ 1− e)!
− n(j + 1)!

(j − e)!
− n(i+ 1)!

(i− e)!

= (n− e)(i+ 1)
(j + 1)!

(j + 1− e)!
− n(j + 1)!

(j − e)!
+ (n− e)(j + 1)

(i+ 1)!

(i+ 1− e)!
− n(i+ 1)!

(i− e)!

=
(j + 1)!

(j − e+ 1)!
[(n− e)(i+ 1)− n(j − e+ 1)] +

(i+ 1)!

(i+ 1− e)!
[(n− e)(j + 1)− n(i− e+ 1)]

=
(j + 1)!

(j − e+ 1)!
[ni− ei+ n− e− nj + ne− n] +

(i+ 1)!

(i+ 1− e)!
[nj − ej + n− e− ni+ ne− n]

=
(j + 1)!

(j − e+ 1)!
[n(i− j)− e(i+ 1− n)] +

(i+ 1)!

(i+ 1− e)!
[n(j − i)− e(j + 1− n)]

= n(i− j)
(

(j + 1)!

(j − e+ 1)!
− (i+ 1)!

(i+ 1− e)!

)
− (j + 1)!

(j − e+ 1)!
e(i+ 1− n)− (i+ 1)!

(i+ 1− e)!
e(j + 1− n)

This, it turns out, is the sum of three negative terms. If i > j, then (j+1)!
(j−e+1)! <

(i+1)!
(i+1−e)! , and

if i < j, then (j+1)!
(j−e+1)! >

(i+1)!
(i+1−e)! ; either way, the first term is negative. And since both sums run

from i, j = n upwards, the last two terms are both negative as well.
So all the summands in both sums are negative, so the big double sum is negative; so C0,0Cq,rαm−1−

Cq,rC0,0
αm−1 , which is −Z(0,0)Z(q,r)

xe+1 times that big double sum, is positive. That means
Cq,rαm−1

Cq,r −
C0,0
αm−1

C0,0

is positive, which was all that was left in proving ∆αm−1 < 0 when ∆ = 0. Thus, ∆ is strictly
single-crossing from above in its first term, as claimed. 2

B.6 Essential Uniqueness of Symmetric Equilibrium

We note in the text two special cases in which symmetric equilibrium is essentially unique:

1. Vi = u(Si), with u increasing and weakly convex, and

2. n = 2 and Vi = βSi + Ti, with {Ti} independent of {Si}

(The former is isomorphic to a model where Vi = Si but {Si} are drawn independently from a
general distribution F rather than the uniform distribution, which is how the model was presented
in earlier versions of this paper. The restriction here that u is convex corresponds to the restriction
there that the distribution F has a decreasing density function.)

Uniqueness in these two cases was proved in earlier versions of this paper. The key step of the
proof is to apply a change of variables to

∆(αm−1, αm, αm+1) = vτ (m+ 1;αm)− vτ (m;αm)

and write it as a function of x = αm−αm−1, y = αm+1−αm, and z = 1−αm+1. In the two special
cases, we can show that written in this way, ∆ is not only strictly single-crossing from below in
x, but also strictly single-crossing from above in both y and z. This in turn implies that when
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we define α∗(αm, αm+1) as the unique value of αm−1 satisfying vτ (m + 1;αm) = vτ (m;αm), that
αm−α∗ increases monotonically as αm+1−αm and 1−αm+1 increase. In turn, this implies that as
t increases in the construction of equilibrium thresholds, each threshold αm(t) monotonically falls,
and each interval αm+1(t)− αm(t) monotonically gets wider. A similar single-crossing property of
vτ (1;α0), written as a function of α1 − α0 and 1 − α1, then ensures that the value of t satisfying
v(t) = 0 in the equilibrium construction is unique – or that given M , the thresholds satisfying the
M indifference conditions are unique.

The same single-crossing properties can also be used to show that the “no-incentive-to-separate”
condition vτ (M + 1; 1) ≤ vτ (M ; 1) cannot hold when M < M∗, and therefore that no symmetric
equilibrium can exist when M < min{M∗,M}. Finally, the same conditions can be used to show
that no series of thresholds α can satisfy the M indifference conditions when M > M∗. Thus, in
the two special cases, the number of messages in the support of τ and the equilibrium partition
are uniquely determined; since these determine equilibrium strategies up to the messages sent by
threshold types, symmetric equilibrium is essentially unique.

B.7 Proof of Bidder Surplus Results

Finally, in the text, we mentioned (footnote 27) that when Vi = u(Si)+Ti with u differentiable and
N is sufficiently large, bidder surplus is higher with indicative bidding than without, decreasing in
n, and decreases when a reserve price is used.

To show this, first recall that as in the earlier calculation of bidder surplus, when M = 1 and
N gets large, we can write vτ (1; si) as

vτ (1; si) ≈
n−1∑
k=0

λke−λ

k!
(V (si, k, [α0, 1])− V (α0, k, [α0, 1]))

+
∞∑
k=n

λke−λ

k!

n

k + 1
(V (si, n− 1, [α0, 1])− V (α0, n− 1, [α0, 1]))

=
n−1∑
k=0

λke−λ

k!

∫ si

α0

V ′(s, k, [α0, 1])ds+
∞∑
k=n

λke−λ

k!

n

k + 1

∫ si

α0

V ′(s, n− 1, [α0, 1])ds

where V (si, k, [α0, 1]) is the expected payoff to a bidder with type si in an auction with k opponents
with types uniformly distributed on [α0, 1].

Next, we calculate the derivative of V (si, k, [α0, 1]) with respect to si. Now,

V (si, k, [α0, 1]) = ETi,{Tj},{Sj}|{Sj}∈[α0,1] max{0, u(si) + Ti −max{u(Sj) + Tj}} − c

For given realizations of {Sj}, Ti, and {Tj}, this maximum has derivative u′(si) if u(si) + Ti ≥
maxj 6=i{u(Sj)+Tj}, and derivative 0 if not; so taking the expectation over {Sj} and all the T , V ′ is
exactly u′(si) times the probability, given si, that bidder i wins the auction. If the joint distribution
of all the T is nondegenerate (in the sense of having continuous, bounded density) then as α0 → 1,
the variation in {T} will swamp differences among {S}, and by symmetry, this probability will
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simply be 1
k+1 . We can therefore further simplify

vτ (1; si) ≈
n−1∑
k=0

λke−λ

k!

∫ si

α0

u′(s)

k + 1
ds+

∞∑
k=n

λke−λ

k!

n

k + 1

∫ si

α0

u′(s)

n
ds

=
n−1∑
k=0

λke−λ

(k + 1)!
(u(si)− u(α0)) +

∞∑
k=n

λke−λ

(k + 1)!
(u(si)− u(α0))

=
1

λ

∞∑
k=0

λk+1e−λ

(k + 1)!
(u(si)− u(α0))

=
1

λ
(1− e−λ)(u(si)− u(α0))

Combined ex ante surplus of all the bidders, then, is

N · ESi max{0, vτ (1;Si)} = N

∫ 1

α0

1

λ
(1− e−λ)(u(si)− u(α0))dsi

As α0 → 1, u(si)− u(α0) ≈ (si − α0)u
′(si) ≈ (si − α0)u

′(1), so

N · ESi max{0, vτ (1;Si)} ≈ N

∫ 1

α0

1

λ
(1− e−λ)(si − α0)u

′(1)dsi

=
N

λ
(1− e−λ)

1

2
(1− α0)

2u′(1)

≈ N

λ
(1− e−λ)

1

2

(
λ

N

)2

u′(1)

=
λ

2N
(1− e−λ)u′(1)

We already knew this was 0 in the limit; but for finite but large N (such that the approximation
is valid but the term is not yet 0), this is strictly increasing in λ, and independent of n other than
through λ. Since λ decreases with n, this means that bidder surplus is strictly decreasing in n, and
higher with indicative bidding than without, for large finite N ; similarly, λ decreases with a reserve
price, and increases with a bidder subsidy, and therefore bidder surplus does as well.

(The proof is different when Vi = u(Si) or {Ti} are perfectly correlated, since without a nonde-
generate distribution of {Ti}, V ′(·, k, ·) is u′(si) when si ≥ max{Sj} and 0 otherwise, rather than

being approximately u′(si)
k+1 either way. The proof for that case was in a previous version of this

paper, the result is the same.)
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