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A. Optimal Pricing under MS

We show that the optimal per-unit price under MS is equal to v. Suppose the incumbent offers

C = {s, x, p} to K buyers with s < 1 and all K buyers accept the contract in the PCPNE of

the continuation game. We restrict to the scenario with p ≥ c, as any price below its unit cost

is allegable for predatory pricing and could be prohibited by antitrust laws. Consider two cases:

Case (1): The incumbent charges a price p ≤ v. In this case, the signed buyers will purchase

all of their demands from the incumbent when the entrant does not enter. Note that the profit

from unsigned buyers is independent of the committed price p, whereas the profit from signed

buyers depends on p. To see further the impact of price change on the incumbent’s profit, let

x∗ (s, p) = xm (s, p) = αm−1 (s) (v − c)− (1−αm (s))(v − p)−αm (s) (v − pa) and substitute into

the profit from each signed buyer, we have

ΠS(K, s, p) = s (p − c) + (1 − αK (s)) (1 − s) (p − c)− x∗ (s, p)

= (1 − αm−1 (s)) (v − c) + (1 − s) (αm (s) − αK (s)) (p − c)

Differentiating ΠS(K, s, p) with respect to p, we obtain

∂ΠS(K, s, p)

∂p
= (1 − s) (αm (s) − αK (s)) .

The above derivative is strictly positive for any s < 1 and αm > αK , thus, the profit from signed

buyers is always increasing in p, and the optimal price under MS is equal to v. If αm = αK , then

ΠS(K, s, p) = (1 − αm−1 (s)) (v − c) and the incumbent’s profit is independent of p.

Case (2): Suppose the incumbent charges a price p > v. Then each signed buyer will only

purchase s units regardless whether the entrant enters or not, as buying more units incurs more

loss to the signed buyer. When the entrant enters, each signed buyer will purchase the residual

demand of 1 − s units from the entrant at a per unit price c, and obtains a surplus v − pa.

When the entrant stays out, each signed buyer will only purchase s units from the incumbent

and obtains a (negative) surplus s (v − p). Thus, the expected surplus of a buyer who agrees to
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the incumbent’s offer when n − 1 other buyers are also agreeing to the incumbent’s offer is

UA (n) = (1− αn) s (v − p) + αn (v − pa) + x

= s (v − p) + αn (1 − s) (v − c) + x.

The expected surplus of this same buyer if it rejects the incumbent’s offer is

UR (n − 1) = αn−1 (v − c) .

Thus, the compensation that just makes this buyer indifferent between accepting or rejecting is

x̃n (s, p) = αn−1 (v − c)− s (v − p) − αn (1 − s) (v − c) .

Let x̃∗ (s, p) = x̃m (s, p) be the maximum payment. Then, the incumbent’s profit from each

signed buyer is

Π̃S(K, s, p) = s (p − c)− x̃∗ (s, p)

= s (p − c)− αm−1 (v − c) + s (v − p) + αm (1 − s) (v − c)

= (s + αm (1 − s) − αm−1) (v − c) .

It follows that the incumbent’s profit is independent of p for any p > v. Since s + αm (1 − s) −

αm−1 < 1 − αm−1, we have

Π̃S(K, s, p) < (1 − αm−1) (v − c) + (1 − s) (αm − αK) (v − c) = ΠS(K, s, v).

Therefore, charging p > v is strictly dominated by setting p = v. Q.E.D.

B. Elastic demand

Consider now that each buyer faces a downward sloping demand q(p). Let π(p) = (p − c)q(p)

denote the incumbent’s profit gross of any fixed payments, and let pm denote its argmax.

Proposition A.1 When the incumbent offers contract C = {1, x, p} to a subset of buyers and

each buyer faces a downward-sloping demand curve, it is optimal to charge p = c. Moreover, the

optimal number of signed buyers, KED, is independent of p, and is not an integer in generic.

Proof : Suppose the incumbent offers ED to K buyers. If a buyer accepts the contract, it will have

to purchase all of its demand from the incumbent at the price p, regardless whether the entrant
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enters or not. The signed buyer then gains a surplus of S(p) + x, where S(p) ≡

∫ +∞

p

q(v)dv

denotes the buyer’s surplus at price p. If, instead, this buyer rejects the offer jointly with other

K − 1 buyers, the entrant will enter for sure and it gains a surplus of S (c). Thus, all K buyers

will accept the ED contract in PCPNE if and only if the incumbent’s inducement x satisfies

x ≥ x̂∗(p) = S(c)− S(p).

When all K buyers accept the incumbent’s contract, the entrant’s profit is reduced to

ΠE(K) = (N − K) δq(c). Thus, the probability of entry is reduced to G ((N − K) δq(c)). Note

that the entrant’s profit is not affected by p, because the entrant can only contest for the unsigned

buyers, and competition for the unsigned buyers drives the spot-market price down to c.

The incumbent earns π (p) from each signed buyer, but it has to offer each a payment of

x̂∗(p) = S(c)− S(p). The incumbent’s net profit from each signed buyer is thus equal to

Π̂S (K, 1, p) = π (p) − x̂∗ (p)

= π (p) + S(p)− S(c),

which is weakly negative for all p ≥ c, and equal to zero if and only if p = c.

On the other hand, the incumbent can exploit from the unsigned buyers due to the inter-

group externality that the signed buyers impose on the unsigned buyers. The incumbent charges

the monopoly price pm to each unsigned buyer when the entrant does not enter, and its expected

payoff from each unsigned buyer is given by

Π̂U (K, 1) = (1− G ((N − K) δq (c)))π (pm) .

Therefore, the incumbent’s problem in Period 1 under ED is to choose K and p ∈ [c, v] to

maximize the expected payoff

Π̂ (K, 1, p) = KΠ̂S (K, 1, p)+ (N − K) Π̂U (K, 1)

= K [π (p) + S(p)− S(c)] + (N − K) (1 − G ((N − K) δq (c)))π (pm) .

Since the incumbent’s profit from the signed buyers is maximized at p = c (which is equal to

zero) while the incumbent’s profit from the unsigned buyers is independent of p, it follows that

the incumbent’s optimal price must be p = c under ED, and the incumbent’s profit is given by

Π̂ (K, 1, c) = (N − K) (1 − G ((N − K) δq (c)))π (pm) .
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Maximizing this with respect to K, it follows that the optimal number of signed buyers, K̂ED,

is independent of p. Moreover, when we normalize demand to make q (c) = 1, we can easily

see that the solution K̂ED is exactly the same as KED was in the case of inelastic demand.40

Q.E.D.

C. Increasing N

We have shown that increasing N does not affect the incumbent’s maximized profit under

ED. This implies that if K̃ denotes the optimal number of signed buyers before the increase in

N , then K̃ + ∆N will be the optimal number of signed buyers after the increase in N , and thus

N −K̃ and the incumbent’s constrained maximized profit under ED will also be unaffected. The

intuition for this is simple. Under ED, the incumbent only earns profit from the unsigned buyers.

After K optimally adjusts to the increase in N , the number of unsigned buyers does not change,

nor is there any change in the probability of entry given that the number of uncommitted units

is also unchanged. It follows that the incumbent will not benefit (or lose) from an increase in N .

Proposition A.2 For a given δ, v − c, and distribution of entry costs, the incumbent’s profit

under ED depends only on the number of uncommitted units. Increases in N therefore have no

effect on the incumbent’s maximized profit under ED. As N increases, the incumbent simply ad-

justs the number of offers it makes in order to leave the number of uncommitted units unchanged.

Although this increases the number of signed buyers, and thus the percentage of the market that

is foreclosed to the entrant, it does not change the probability that the entrant will be deterred.

Several implications follow from Proposition A.2. First, and most importantly, Proposition

A.2 implies that the constraint that arises from K having to be an integer does not decrease in

importance as the number of buyers increases, contrary to what one might have thought. To see

this, suppose N increases from N = 4 to N = 10. If the flawed reasoning were correct (i.e., if the

foreclosure percentage were fixed at 60%), the incumbent would offer ED to exactly six buyers

and the integer constraint would no longer be binding. This is, however, clearly not optimal.

Proposition A.2 implies that the incumbent should instead optimally foreclose 8.4 units in order

to keep the number of uncommitted units at 1.6 units. The gap between the desired foreclosure

level and the obtainable foreclosure level is therefore exactly the same as before. That is, it is

equal to 0.4 units if ED is offered to K = 8 buyers, or 0.6 units if ED is offered to K = 9 buyers.

40Note that the constant term π (pm) does not affect K̂ED.
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Second, the fact that the gap between the incumbent’s desired foreclosure level and its ob-

tainable foreclosure level under ED is independent of N implies that there is just as much of a

need to fine tune the level of foreclosure after an increase in N as there was before the increase.

This implies that from the benefit side of foreclosure, increases in N favor neither ED nor MS.

Third, from a policy perspective, Proposition A.2 implies that judging the relative harm from

exclusion in any given case by focusing on the percentage of the market that is foreclosed, as

courts are often inclined to do, is at best misleading. In our stylized examples, the incumbent

would ideally like to foreclose 60% of market when N = 4, leaving the entrant with only 1.6

uncommitted units, whereas, when N = 8, the incumbent would ideally like to foreclose 80%

of market (because then KED = 6.4). Although the latter percentage is significantly higher

than the former percentage, the number of uncommitted units is the same in the two cases, and

therefore it follows that the entrant will neither be better or worse off in one case or the other.

Cost savings and the dilution effect

Our finding that increases in N need not affect the number of uncommitted units under ED

also applies to MS. Under MS, the incumbent controls both K and s, and it can always adjust

them in such a way as to keep the benefit from foreclosure the same. To see this, note that if

N − K̂ŝ is the initial number of uncommitted units under MS before the increase in N , and N

increases by ∆N , then the incumbent can always choose K = K̂ +∆N and s ≡ s∗ = K̂ŝ+∆N

K̂+∆N
> ŝ

after the increase to achieve the same number of uncommitted units as before.41 Since the benefit

from foreclosure under MS, as it was under ED, depends only on the number of uncommitted

units, it follows that the benefit from foreclosure need not change under MS when N increases.

Under ED, this finding, along with showing that the incumbent cannot do better, was suffi-

cient to establish that the incumbent’s maximized profit under ED is independent of N . It is not

the end of the story under MS, however, because an increase in N impacts MS differently from

ED. In addition to the benefit from foreclosure, there is also the cost of foreclosure to consider.

Under ED, this cost is always zero. Under MS, however, this cost depends on both K and s.

Continuing with our example, where K = K̂, s = ŝ, and f is distributed such that x∗(ŝ, v) =

xΩ+1(ŝ, v), the incumbent’s cost of foreclosure under MS before the increase in N is

K̂ (x∗(ŝ, v)− s(v − c))

= K̂ (1 − ŝ) (1 − αΩ+1 (ŝ)) (v − c) . (A.1)

41Note that N + ∆N −

“

K̂ + ∆N
”

s∗ = N + ∆N −

“

K̂ŝ + ∆N
”

= N − K̂ŝ.
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After the increase in N , and after K and s adjust to keep the benefit from foreclosure the same

(i.e., K = K̂ + ∆N and s = s∗), the incumbent’s cost of foreclosure under MS is

(K̂ + ∆N ) (1 − s∗) (1 − α̂Ω+1+∆N (s∗)) (v − c) ,

where α̂n(s) ≡ G((N + ∆N − ns)δ) denotes the probability of entry when n out of N + ∆N

buyers sign the incumbent’s contract. Substituting in for s∗, and rearranging terms, yields

K̂ (1 − ŝ) (1 − α̂Ω+1+∆N (s∗)) (v − c) . (A.2)

Comparing the cost of foreclosure in (A.2) with the cost of foreclosure in (A.1), we can see

that the cost of foreclosure in (A.2) will be lower if and only if the probability of entry when the

incumbent signs up the first effective buyer is higher after the increase in N than it was before.

That is, the incumbent’s cost of foreclosure will be lower in (A.2) than in (A.1) if and only if

α̂Ω+1+∆N (s∗) > αΩ+1(ŝ). (A.3)

Fortunately, this relationship turns out to be relatively easy to establish because the same ad-

justments in K and s that keep the benefit from foreclosure the same imply that the actual

probability of entry before and after the increase in N will be the same, and thus we know that

α̂
K̂+∆N

(s∗) = α
K̂

(ŝ). (A.4)

Going from the equality in (A.4) to establishing that the inequality in (A.3) holds then follows

straightforwardly once it is recognized that after the increase in N , the difference between the

actual number of uncommitted units available to the entrant and the number of uncommitted

units that are available to the entrant after the first effective buyer is signed is greater than

the corresponding difference before the increase in N . After the increase in N , the difference is

s∗(K̂ − (Ω + 1)) units, whereas before the increase, the difference is only ŝ(K̂ − (Ω + 1)) units.

The intuition is that the incumbent must sign at least Ω + 1 buyers before the increase in N

if it is to have any effect on lowering the probability of entry, whereas after the increase in N , it

must sign this many plus an additional ∆N more buyers if it is to have any effect. Each signing

buyer’s contribution to the initial reduction in the probability of entry is thereby effectively

diluted when the number of buyers increases. We call this the dilution effect, and it implies that

signing buyers do not have to be compensated as much for their contribution toward exclusion.

We can illustrate this effect with the help of our example in which N = 4 and KED = 2.4.

Under MS, the incumbent can realize the optimal foreclosure level of 2.4 units by offering MS to
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three buyers with ŝ = 0.8. Signing the first buyer in this case reduces the number of uncommitted

units to 4 − 0.8 = 3.2 units. Suppose now that N = 7. Here, the incumbent can realize the

optimal foreclosure level of 5.4 units by offering MS to six buyers with s∗ = 0.9 (so that the

number of uncommitted units remains at 1.6). Signing the fourth buyer reduces the number of

uncommitted units to 7 − 4× 0.9 = 3.4, which is greater than it was before the increase in N .

We have just shown that while an increase in the number of buyers need not affect the

incumbent’s benefit from foreclosure, it would be expected to reduce its cost of foreclosure. It

follows that we would expect the incumbent to strictly gain from an increase in N under MS.

Proposition A.3 Because of the dilution effect, the incumbent need not compensate each signing

buyer as much for its contribution toward exclusion after an increase in N as it did before the

increase in N . The incumbent’s maximized profit under MS is thus strictly increasing in N .

Proof : We need to show that αΩ+1+∆N (s∗) > αΩ+1 (ŝ), and thus the cost of foreclosure is

decreasing when N increases. The rest of the proposition has already been shown. Note that

αΩ+1+∆N (s∗) = G ((N + ∆N − (Ω + 1 + ∆N ) s∗) δ) ,

αΩ+1 (ŝ) = G ((N − (Ω + 1) ŝ) δ) ,

then αΩ+1+∆N (s∗) > αΩ+1 (ŝ) if and only if N +∆N − (Ω + 1 + ∆N )s∗ > N − (Ω + 1) ŝ. To see

this, note that the incumbent chooses s∗ such that the optimal amount of uncommitted purchases

is exactly the same as before N increases, that is,

N + ∆N −
(

K̂ + ∆N
)

s∗ = N − K̂ŝ. (A.5)

When N increases by ∆N , the incumbent must sign up (Ω + 1 + ∆N ) s∗ units to reduce the

probability of entry effectively, and sign up further
(

K̂ − (Ω + 1)
)

s∗ units to reduce the uncom-

mitted purchases to the optimal level. Thus,

N + ∆N − (Ω + 1 + ∆N ) s∗

= N + ∆N −
(

K̂ + ∆N
)

s∗ +
(

K̂ − (Ω + 1)
)

s∗

= N − K̂ŝ +
(

K̂ − (Ω + 1)
)

s∗

> N − K̂ŝ +
(

K̂ − (Ω + 1)
)

ŝ

= N − (Ω + 1) ŝ,
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where we have used (A.5) to get the third line and the inequality comes from the fact that s∗ > ŝ.

Q.E.D.

Proposition A.3 in conjunction with our earlier finding that the incumbent’s maximized profit

under ED is independent of N , implies that an increase in N expands the number of settings in

which the incumbent will choose MS over ED. This is the exact opposite of what one might have

expected, and it implies that an increase in N benefits MS relative to ED in the sense that (i)

if initial conditions are such that MS is more profitable than ED, then MS will continue to be

more profitable when the number of buyers increases; and (ii) if initial conditions are such that

ED is more profitable than MS, then for a given increase in the number of buyers, the gap will

narrow, and it is possible that MS could even overtake ED ex-post and become more profitable.

As we have seen, one way to think about why increases in N favor MS over ED is that, for

a given benefit from foreclosure, the cost of foreclosure under ED is independent of N , whereas

the cost of foreclosure under MS is decreasing in N . However, another way to think about the

relative effects of an increase in N is to note that while an increase in N leads to a corresponding

increase in the number of signed buyers under both ED and MS, this increase does not help

the incumbent under ED because full compensation must be offered to all signed buyers and

therefore the incumbent cannot profit from them. But the increase in the number of signed

buyers does help the incumbent under MS because of the intra-group externality that signed

buyers impose on each other. In fact, one can show that this externality only gets stronger as N

increases, which is what generates the cost savings and thus allows increases in N to favor MS.

Numerical Example

We now construct an example in which ED dominates MS when there are only three buyers,

but in which MS dominates ED when the number of buyers increases to five or more.

Consider the same set-up as in Example 2, but suppose now that N = 5. In this case, the

incumbent earns its maximized expected profit of 900 under ED by increasing the number of

signed buyers from two to four. Under MS, the incumbent can achieve its desired foreclosure

level of 3.5 units by offering s∗ = .875 to four buyers. This reduces the actual probability of

entry to α̂4 (s∗) = .35, but increases the probability of entry when the Ω + 1’st buyer signs to42

α̂3 (s∗) = G ((5− 3 × .875)100) = G (237.5) = 0.9.

42In contrast, when N = 3, this probability was α1(.75) = .8. It is easy to check that x3 (s∗) > x4 (s∗).
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The cost of foreclosure when N increases to N = 5 is thus reduced from 100 when N = 3 to

4 (1 − s∗) (1 − α̂3 (s∗)) (v − c) = 500 × 0.1 = 50.

Thus, the profit under MS is now equal to 975− 50 = 925, which is higher than that under ED.

D. Mixed ED with MS

The following example shows that offering ED to the first KED buyers and MS only to the last

buyer can be worse than offering MS to all K
ED

buyers. The example has the same set-up as in

Example 1 in the main appendix, except that there are five buyers instead of three buyers.

Assume that v − c = 1000, δ = 100, and N = 5. As in Example 1, suppose that f can take

on one of five values, with the listed probabilities:

f : 50, 100, 150, 225, 275

g : 0.1, 0.1, 0.6, 0.1, 0.1.

In the absence of ED and MS, the entrant can earn a flow profit of 500 if it enters. Since this

exceeds the maximum value of f , we would expect the entrant to enter with probability one in

the absence of any exclusionary contracts. On the other hand, if, for instance, the incumbent can

foreclose 3.5 units, then only 1.5 units will be available to the entrant, in which case the entrant’s

profit will be reduced to 150 and the probability of entry will be reduced to Pr{f < 150} = 0.2.

If the incumbent offers ED only, it will be optimal give it to four buyers, in which case the

incumbent can reduce the probability of entry to α4 (1) = G (100) = 0.1, and the incumbent

earns an expected profit of (5 − 4)(1− 0.1)1000 = 900.

Notice that the incumbent could have done even better if it could have signed up 3.5 buyers

because then the probability of entry would have been reduced 0.2, and its expected profit would

have been (5−3.5)(1−0.2)1000 = 1200. This maximum benefit from foreclosure can be achieved

with MS, by offering s = 0.875 to four buyers. In order to induce all four buyers to accept MS

with s = 0.875, however, the incumbent will have to give each buyer an inducement (here Ω = 2)

of x∗ (s) = xΩ+1 (s) = (α2 − α3 (s) (1 − s)) (v − c). The total cost of foreclosure is then given by

C = 4 [x∗ (s) − s (v − c)] = 4 [(α2 − α3 (s) (1 − s)) (v − c) − s (v − c)] .

Note that signing up only two buyers does not reduce the probability of entry, that is, α2 = 1.

On the other hand, signing up three buyers reduces the probability of entry effectively, with
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α3 (s) = G ((5 − 3 × .875) δ) = G (237.5) = 0.9. Thus, the cost of foreclosure is given by

C = 4 [1 − 0.9 (1 − 0.875)− 0.875] (v − c) = 0.05 (v − c) = 50,

and the resulting profit is equal to 1200− 50 = 1150.

Suppose now the incumbent offers ED to three buyers and MS to the fourth buyer, with

s = 0.5. The incumbent fully compensates the first three buyer with inducement x∗ (1) = v − c,

and the cost of foreclosure from these three buyers is zero. On the other hand, to sign up the

fourth buyer, the incumbent will have to offer

x = x4 (s) = (α3 − α4 (1 − s)) (v − c) .

Note that signing up the first three buyers with ED reduces the probability of entry to α3 =

G (200) = 0.8, while signing up the fourth buyer further reduces the probability of entry to

α4 = G ((5 − 3.5) δ) = G (150) = 0.2. Thus, the cost of signing up the fourth buyer is equal to

C = x4 (s) − s (v − c) = (α3 − α4 (1 − s) − s) (v − c)

= (0.8 − 0.2× 0.5− 0.5) (v − c) = 0.2 (v − c) = 200,

which is much higher than the cost of signing up four buyers with the uniform MS contract. As

a result, the incumbent’s profit, which is equal to 1200− 200 = 1000, is much lower. Q.E.D.
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