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Online Appendix A

In this appendix we check the robustness of our analysis by relaxing the assumption on the

perfect observability of project returns in case the agency chooses to become informed. We

show that, as in the baseline model:

• for some parameter values contingent fees improve expected social welfare relative to

upfront fees;

• upfront fees improve expected social welfare relative to contingent fees as long as the

cost of information acquisition, c, is sufficiently small.

The Model. The agency lives for two periods, t = 1, 2.1 For concreteness, we distinguish

now between a project’s quality, qt ∈ {−1, 1}, and a project’s return, Qt. By acquiring

information in period t, the agency observes a noisy signal st ∈ {−1, 1} of the project quality

qt, such that P(st = qt|qt) = 1− ε, with ε ∈ (0, 1
2
). A project’s return is related to its quality

by Qt = qt
1−2ε

.2 As in the baseline model, the sequence {qt} is independent and identically

distributed according to P(qt = 1) = 1
2
. The baseline model therefore corresponds to ε = 0.

Applying Bayes’ rule gives

E[qt|rt = 1, ρt, êt] = Φ(ρt, êt) :=
1− (1− ρt)(1− êt)
1 + (1− ρt)(1− êt)

,

and

P(rt = 1|ρt, êt)E[qt|rt = 1, ρt, êt] = Υ(ρt, êt) :=
1

2

[
1− (1− ρt)(1− êt)

]
.

Next, given e : [0, 1]→ [0, 1], define

ρ+ :=

0 if ρ = 0

ρ
ρ+(1−ρ)e(ρ)

if ρ > 0
; ρg :=

0 if ρ = 0

ρ(1−ε)
1−ε+ε(1−ρ)(1−e(ρ))

if ρ > 0
; and

ρb :=

0 if ρ = 0

ρε
ε+(1−ε)(1−ρ)(1−e(ρ))

if ρ > 0
.

The next definition is immediately adapted from the equilibrium concept of Section 2.

1We set here β = 1 to reduce notation.
2We scale up project returns by a factor equal to 1

1−2ε to keep the expected return conditional on observing
st precisely equal to st.
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Definition 1. An equilibrium with contingent fees comprises functions et : [0, 1] → [0, 1]

specifying the probabilities et(ρt) that the strategic agency acquires information in period t

given reputation ρt, for t = 1, 2, such that each period:

(i) the choice(s) implied by et(ρt) maximize the agency’s expected intertemporal profit given

πcot = Φ(ρt, êt)1{rt=1} − c1{information acquired in period t}, (OA.1)

and

ρ2 =


ρg1 if q1 = 1 = r1;

ρ+
1 if q1 = −1 = r1;

ρb1 if q1 = −1 = −r1.

(ii) firms and investors’ beliefs satisfy êt = et(ρt).

The definition of an equilibrium with upfront fees is obtained by replacing (OA.1) with

πupt = Υ(ρt, êt)− c1{information acquired in period t}. (OA.2)

The Equilibria. We next characterize the equilibria with, respectively, contingent fees and

upfront fees. With 2 periods the strategic agency always shirks in period 2. So the focus is on

information acquisition at t = 1. Proofs of the propositions are relegated to the end of this

appendix.

Proposition OA.1. With contingent fees, in equilibrium e1(ρ1) > 0 if and only if δ > 2c and

ρ1 < ρco(δ), where ρco(δ) is defined implicitly by

δ =

(
c+

ρco
2(2− ρco)

)(
2− (1 + ε)ρco

2− (1 + 2ε(1− ε))ρco

)(
2− (2− ε)ρco

1− ρco

)
.

Moreover limc→0 e1(ρ1) < 1 for any ρ1 and δ.

Proposition OA.2. With upfront fees, in equilibrium e1(ρ1) > 0 if and only if δ > 4c and

ρ1 < ρup(δ), where ρup(δ) is defined implicitly by

δ = 4c

(
1

1− 2ε(1− ε)ρup
+

ε(1− ε)ρ2
up

(1− ρup)(1− 2ε(1− ε)ρup)

)
.
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Moreover limc→0 e1(ρ1) = 1 for any ρ1 and δ.

We illustrate the propositions in Figure OA.1. At t = 1 the strategic agency acquires

information, with some probability, for all (δ, ρ1) lying to the right of the curve ρco when fees

are contingent and to the right of the curve ρup when fees are upfront.

ρ1

δ
0 2c 4c

1

1

ρco ρup

Figure OA.1: Noisy signals of project returns

Welfare Comparison. As in equilibrium the strategic agency shirks at t = 2 irrespective

of the fee structure, comparing expected social welfare in equilibrium under different fee

structures reduces to comparing the probability that a strategic agency acquires information

at t = 1. When fees are contingent, for δ ∈ (2c, 4c) the strategic agency acquires information

at t = 1 with positive probability provided its reputation is not too high (Proposition OA.1).

By contrast, for δ ∈ (2c, 4c) the strategic agency shirks with probability 1 when fees are

upfront (Proposition OA.2). For δ ∈ (2c, 4c) and sufficiently low reputation expected social

welfare is therefore higher under contingent fees than under upfront fees. Moreover for any δ

and ρ1, limc→0 e1(ρ1) = 1 only in the case of upfront fees. Thus upfront fees increase expected

social welfare if the cost of information acquisition is sufficiently low.
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Proof of Proposition OA.1: First, note that the function Φ is continuous, weakly increas-

ing in each of its arguments, and Φ(1, ·) = Φ(·, 1) = 1. Moreover, notice that in any equilib-

rium the strategic agency must shirk at t = 2 with probability 1 giving π2 = Φ(ρ2, 0) = ρ2
2−ρ2 .

Define V (ρ) := ρ
2−ρ . At t = 1, the agency’s expected intertemporal profit from shirking and

announcing rt = 1 is equal to Φ(ρ1, ê1) + δ
2

[
V (ρg1) + V (ρb1)

]
. The intertemporal profit from

acquiring information is equal to 1
2
Φ(ρ1, ê1)− c+ δ

2

[
V (ρ+

1 ) + (1− ε)V (ρg1) + εV (ρb1)
]
.

Fix ρ1 ∈ (0, 1). An equilibrium in which e1(ρ1) = 1 exists if and only if

1

2
Φ(ρ1, 1) +

δ

2
[εV (ρ1) + (1− ε)V (ρ1)] ≤ δ

2
V (ρ1)− c.

This condition is always violated, thus in equilibrium e1(ρ1) < 1. An equilibrium in which

e1(ρ1) = 0 in turn exists if and only if

1

2
Φ(ρ1, 0) +

δ

2

[
εV

(
ρ1(1− ε)
1− ερ1

)
+ (1− ε)V

(
ρ1ε

1− (1− ε)ρ1

)]
≥ δ

2
V (1)− c.

Substituting for Φ(·) and V (·) and simplifying yields

δ ≤ δ̃(ρ1) :=

(
c+

ρ1

2(2− ρ1)

)(
2− (1 + ε)ρ1

2− (1 + 2ε(1− ε))ρ1

)(
2− (2− ε)ρ1

1− ρ1

)
.

Notice that δ̃(ρ1) is continuous and increasing in ρ1 for ρ1 ∈ (0, 1) as it is the product of 3

terms, each of which is continuous and increasing in ρ1 for ρ1 ∈ (0, 1). Hence δ < δ̃(ρ1) is

equivalent to ρ1 > ρco(δ); moreover as δ̃(0) = 2c, then e1(ρ1) > 0 only if δ > 2c. Furthermore,

an equilibrium in which e1(ρ1) ∈ (0, 1) exists if and only if

δ

2

[
V

(
ρ1

ρ1 + (1− ρ1)e(ρ1)

)
− εV

(
ρ1(1− ε)

1− ε+ ε(1− ρ1)(1− e(ρ1))

)
− (OA.3)

(1− ε)V
(

ρ1ε

ε+ (1− ε)(1− ρ1)(1− e(ρ1))

)]
= c+

1

2
Φ(ρ1, e(ρ1)).

The left-hand side of (OA.3) is strictly decreasing in e(ρ1), while the right-hand side is strictly

increasing in e(ρ1), thus there is at most one e(ρ1) that satisfies the equality. Moreover, for

e(ρ1) = 0 this equality reduces to δ = δ̃(ρ1). As the left-hand side of (OA.3) is increasing

in δ and the right-hand side does not depend on δ, then δ > δ̃(ρ1), which is equivalent to

ρ1 < ρco(δ), is necessary for an equilibrium in which e1(ρ1) ∈ (0, 1). That this condition is

also sufficient follows from standard arguments.
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Pick a pair δ and ρ1. For sufficiently small c, δ > δ̃(ρ1), thus in equilibrium e1(ρ1) satisfies

(OA.3). Note also that for c = 0 the unique e(ρ1) that satisfies (OA.3) belongs to the interval

(0, 1). As both Φ(·) and V (·) are continuous in each of their arguments, then in equilibrium

limc→0 e1(ρ1) < 1. �

Proof of Proposition OA.2: First notice that Υ is continuous, weakly increasing in each of

its arguments, and Υ(1, ·) = Υ(·, 1) = 1
2
. Moreover, note that in any equilibrium the strategic

agency must shirk at t = 2 with probability 1, giving π2 = Υ(ρ2, 0) = ρ2
2

. Define V (ρ) := ρ
2
.

At t = 1, the agency’s expected intertemporal profit from shirking and announcing rt = 1 is

equal to Υ(ρ1, ê1) + δ
2

[
V (ρg1) + V (ρb1)

]
. The intertemporal profit from acquiring information

is equal to Υ(ρ1, ê1)− c+ δ
2

[
V (ρ+

1 ) + (1− ε)V (ρg1) + εV (ρb1)
]
. Fix ρ1 ∈ (0, 1). An equilibrium

in which e1(ρ1) = 1 exists if and only if

δ

2
[εV (ρ1) + (1− ε)V (ρ1)] ≤ δ

2
V (ρ1)− c.

This condition is always violated. An equilibrium in which e1(ρ1) = 0 exists if and only if

δ

2

[
εV

(
ρ1(1− ε)
1− ερ1

)
+ (1− ε)V

(
ρ1ε

1− (1− ε)ρ1

)]
≥ δ

2
V (1)− c.

Substituting for V (·) and simplifying yields

δ ≤ δ(ρ1) := 4c

(
1

1− 2ε(1− ε)ρ1

+
ε(1− ε)ρ2

1

(1− ρ1)(1− 2ε(1− ε)ρ1)

)
.

As δ(ρ1) is continuous and increasing in ρ1, then δ < δ(ρ1) is equivalent to ρ1 > ρup(δ);

moreover, as δ(0) = 4c, then e1(ρ1) > 0 only if δ > 4c. Furthermore, an equilibrium in which

e1(ρ1) ∈ (0, 1) exists if and only if

δ

2

[
V

(
ρ1

ρ1 + (1− ρ1)e(ρ1)

)
− εV

(
ρ1(1− ε)

1− ε+ ε(1− ρ1)(1− e(ρ1))

)
− (OA.4)

(1− ε)V
(

ρ1ε

ε+ (1− ε)(1− ρ1)(1− e(ρ1))

)]
= c.

The left-hand side of (OA.4) is strictly decreasing in e(ρ1), and the right-hand side is strictly

increasing in e(ρ1), thus there is at most one e(ρ1) that satisfies the equality. Moreover, for
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e(ρ1) = 0 this equality reduces to δ = δ(ρ1). As the left-hand side is increasing in δ and

the left-hand side does not depend on δ, δ > δ(ρ1) is necessary for an equilibrium in which

e1(ρ1) ∈ (0, 1). That this condition is also sufficient follows from standard arguments.

Next, fix δ and ρ1. For sufficiently small c, δ > δ(ρ1), thus in equilibrium e1(ρ1) satisfies

(OA.4). Note also that, for c = 0, e(ρ1) = 1 satisfies (OA.4). Continuity of Φ thus ensures

that in equilibrium limc→0 e1(ρ1) = 1. �
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Online Appendix B

In this appendix we check the robustness of our analysis by allowing the agency to announce

rt = −1 whether or not in period t the agency chooses to acquire information. We show that,

as in the baseline model:

• for some parameter values contingent fees improve expected social welfare relative to

upfront fees;

• upfront fees improve expected social welfare relative to contingent fees as long as the

cost of information acquisition, c, is sufficiently small.

The Model. The agency lives for two periods, t = 1, 2.3 We let ẑt denote the beginning-of-

period-t belief that the strategic agency will announce rt = −1 in case it shirks.4 Applying

Bayes’ rule,

E[qt|rt = 1, ρt, êt, ẑt] = Φ(ρt, êt, ẑt) :=
1− (1− ρt)(1− êt)

1 + (1− ρt)(1− êt)(1− 2ẑt)
,

while

E[qt|rt = −1, ρt, êt, ẑt] =
(−1)(1− (1− ρt)(1− êt))

ρt + (1− ρt)êt + 2ẑt(1− ρt)(1− êt)
.

Note that E[qt|rt = 1, ρt, êt, ẑt] ≥ 0 ≥ E[qt|rt = −1, ρt, êt, ẑt] for all ρt, êt and ẑt. So with

contingent fees the period-t profit of the agency is

πt = Φ(ρt, êt, ẑt)1{rt=1} − c1{information acquired in period t}. (OB.1)

Applying Bayes’ rule again,

P(rt = 1|ρt, êt, ẑt)E[qt|rt = 1, ρt, êt, ẑt] = Υ(ρt, êt) :=
1

2

[
1− (1− ρt)(1− êt)

]
.

With upfront fees, the period-t profit of the agency is

πt = Υ(ρt, êt)− c1{information acquired in period t}. (OB.2)

3We set here β = 1 to reduce notation.
4As noted in the baseline model, upon acquiring information the strategic agency would report truthfully

even if it had the option to misreport. Thus we assume here, as in the baseline model, that upon acquiring
information the agency reports truthfully.

8



Given functions et(·) and zt(·) from [0, 1] to [0, 1], define

ρ+
t :=

0 if ρt = 0;

ρt
ρt+(1−ρt)[et(ρt)+(1−et(ρt))(1−zt(ρt))] if ρt > 0;

and

ρ++
t :=

0 if ρt = 0;

ρt
ρt+(1−ρt)[e(ρt)+(1−e(ρt))zt(ρt)] if ρt > 0.

The next definition is immediately adapted from the equilibrium concept of Section 2.

Definition 2. An equilibrium with contingent fees comprises functions et : [0, 1]→ [0, 1] and

zt : [0, 1] → [0, 1], for t = 1, 2, specifying the probabilities et(ρt) that the strategic agency ac-

quires information and zt(ρt) of announcing rt = −1 conditional on shirking, given reputation

ρt, such that each period:

(i) the choices implied by et(ρt) and zt(ρt) maximize the agency’s expected intertemporal

profit given (OB.1) and

ρ2 =


ρ+

1 if q1 = r1 = 1;

ρ++
1 if q1 = r1 = −1;

0 if q1 = −r1.

(ii) firms and investors’ beliefs satisfy êt = et(ρt) and ẑt = zt(ρt).

The definition of an equilibrium with upfront fees is obtained replacing (OB.1) with (OB.2).

The Equilibria. We next characterize the equilibria with, respectively, contingent fees and

upfront fees. With 2 periods the strategic agency always shirks in period 2. So the focus is on

information acquisition at t = 1. Proofs of the propositions are relegated to the end of this

appendix.

Proposition OB.1. Let fees be contingent. In equilibrium e1(ρ1) < 1 for all ρ1 ∈ (0, 1).

Moreover, e1(ρ1) ∈ (0, 1) for δ > 2c−1+
√

1+12c+4c2

2
and ρ1 ∈

(
2c(2+δ)
1+2δ+δ2

, 4c−2δ
2c−1−δ

)
.
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Proposition OB.2. Let fees be upfront. In equilibrium, if δ ≤ 4c then e1(ρ1) = 0 for all

ρ1 ∈ (0, 1). If instead δ > 4c then
if ρ1 ∈ [4c

δ
, 1) then e(ρ1) = 1;

if ρ1 ∈ ( 2c
δ−2c

, 4c
δ

) then e(ρ1) ∈ (0, 1);

if ρ1 ∈ (0, 2c
δ−2c

] then e(ρ1) = 0.

We illustrate in Figure OB.1 the regions in (δ, ρ1)-space identified in the two propositions.

When fees are contingent, at t = 1 the strategic agency acquires information, with some

probability, for all (δ, ρ1) lying to the right of the solid curves. When fees are upfront, the

strategic agency acquires information, with some probability, for all (δ, ρ1) in between the

dashed lines, and acquires information with probability 1 for all (δ, ρ1) to the right of both

dashed lines.

ρ1

δ
ba0 1

1

4c−2δ
2c−1−δ

4c
δ

2c
δ−2c

2c(2+δ)
1+2δ+δ2

a = 2c−1+
√

1+12c+4c2

2 b = 4c

Figure OB.1: Deflated ratings

Welfare Comparison. Since the strategic agency shirks at t = 2 irrespective of the fee

structure, and, for the symmetrical payoffs we consider, welfare does not depend on the
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agency’s choice to inflate or deflate a rating in case it shirks, social welfare is therefore uniquely

determined by the probability that the agency acquires information at t = 1. Note that in the

parameter region defined by δ ∈ (2c−1+
√

1+12c+4c2

2
, 4c) and ρ1 ∈

(
2c(2+δ)
1+2δ+δ2

, 4c−2δ
2c−1−δ

)
the agency

shirks at t = 1 with upfront fees (Proposition OB.2) but acquires information with positive

probability with contingent fees (Proposition OB.1), thus contingent fees improve expected

social welfare. Note also that for c sufficiently close to 0 any ρ1 and δ satisfy δ > 4c and

ρ1 > 4c
δ

, hence ensuring e1(ρ1) = 1 with upfront fees (Proposition OB.2). As e1(ρ1) < 1

everywhere with contingent fees (Proposition OB.1), the previous remarks establish that, for

any ρ1 and δ, upfront fees improve expected social welfare relative to contingent fees as long

as c is sufficiently small.

Proof of Proposition OB.1: The function Φ is continuous, weakly increasing in each of its

arguments, and Φ(1, ·, ·) = Φ(·, 1, ·) = 1. Notice that in any equilibrium the strategic agency

must shirk and announce r2 = 1 at t = 2 with probability 1 giving π2 = Φ(ρ2, 0, 0) = ρ2
2−ρ2 . De-

fine V (ρ) := ρ
2−ρ . Let ρ+

1 (e, z) (respectively ρ++
1 (e, z)) denote the value of ρ+

1 (respectively ρ++
1 )

for e1(ρ1) = e and z1(ρ1) = z. At t = 1, the agency’s expected intertemporal profit from shirk-

ing and announcing rt = 1 is equal to Φ(ρ1, ê1, ẑ1) + δ
2
V (ρ+

1 (ê1, ẑ1)), the intertemporal profit

from shirking and announcing rt = −1 is equal to δ
2
V (ρ++

1 (ê1, ẑ1)), and the intertemporal profit

from acquiring information is equal to 1
2
Φ(ρ1, ê1, ẑ1) − c + δ

2

[
V (ρ+

1 (ê1, ẑ1)) + V (ρ++
1 (ê1, ẑ1))

]
.

The rest of the proof contains 3 steps. Step 1 establishes than in equilibrium e1(ρ1) < 1.

Step 2 computes the probability with which the strategic agency must announce r1 = −1 if

in equilibrium e1(ρ1) = 0. Step 3 characterizes a parameter region in which e1(ρ1) > 0.

Step 1: An equilibrium with e1(ρ1) = 1 requires

δV (ρ1)

2
− c ≥ Φ(ρ1, 1, z1)

2
, (OB.3)

for some z1. Note that, for any z1 and any ρ1: Φ(ρ1, 1, z1) = 1 > V (ρ1). Thus (OB.3) holds

only if δ−1
2
> c. This condition is violated as c > 0 > δ−1

2
. Hence in equilibrium e(ρ1) < 1.

Step 2: Define z̃(ρ1) implicitly by

Φ(ρ1, 0, z̃(ρ1)) =
δ

2

[
V (ρ++

1 (0, z̃(ρ1)))− V (ρ+
1 (0, z̃(ρ1)))

]
,
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which is equivalent to

ρ1

1 + (1− ρ1)(1− 2z̃)
=
δ

2

(
ρ1

ρ1 + 2(1− ρ1)z̃
− ρ1

1 + (1− ρ1)(1− 2z̃)

)
.

Simplifying to solve for z̃ gives z̃(ρ1) = δ(1−ρ1)−ρ1
2(1−ρ1)(δ+1)

. Note that z̃(ρ1) < 1 for all ρ1 ∈ (0, 1),

while z̃(ρ1) > 0 if and only if ρ1 <
δ

1+δ
.

Now, in equilibrium, if e1(ρ1) = 0 then Φ(ρ1, 0, z1(ρ1)) > δ
2

[
V (ρ++

1 ) − V (ρ+
1 )
]

implies

z1(ρ1) = 0 and Φ(ρ1, 0, z(ρ1)) < δ
2

[
V (ρ++

1 )− V (ρ+
1 )
]

implies z(ρ1) = 1. Thus, by construction

of z̃(ρ1), in equilibrium, e1(ρ1) = 0 implies z(ρ1) = z̃(ρ1) if ρ1 ≤ δ
1+δ

and z(ρ1) = 0 if ρ1 >
δ

1+δ
.

Step 3: Let ρco(δ) := 4c−2δ
2c−1−δ and ρco(δ) := 2c(2+δ)

1+2δ+δ2
. Note that ρco(δ) ∈ ( δ

1+δ
, 1) ⇔ ρco(δ) ∈

(0, δ
1+δ

)⇔ δ ∈ (2c−1+
√

1+12c+4c2

2
, 1).

Fix δ ∈ (2c−1+
√

1+12c+4c2

2
, 1). Consider a ρ1 ≥ δ

1+δ
. Step 2 ensures that an equilibrium with

e1(ρ1) = 0 exists if and only if: Φ(ρ1,0,0)
2

+c ≥ δV (1)
2

. This condition is equivalent to: ρ1 ≥ ρco(δ).

Now consider a ρ1 ≤ δ
1+δ

. Step 2 ensures that an equilibrium with e1(ρ1) = 0 exists if and

only if: Φ(ρ1,0,z̃(ρ1))
2

+ c ≥ δV (ρ++
1 (0,z̃(ρ1)))

2
. This condition is equivalent to: ρ1 ≤ ρco(δ). Thus, in

light of step 1, we conclude that for ρ1 ∈ (ρco(δ), ρco(δ)) in equilibrium e1(ρ1) ∈ (0, 1). �

Proof of Proposition OB.2: Note that Υ is continuous, weakly increasing in each of its

arguments, and Υ(1, ·) = Υ(·, 1) = 1
2
. Define V (ρ) := ρ

2
. At t = 1, the agency’s expected

intertemporal profit from shirking and announcing rt = 1 is equal to Υ(ρ1, ê1) + δ
2
V (ρ+

1 ), the

intertemporal profit from shirking and announcing rt = −1 is equal to Υ(ρ1, ê1) + δ
2
V (ρ++

1 ),

and the intertemporal profit from acquiring information is equal to Υ(ρ1, ê1) + δ
2

[
V (ρ+

1 ) +

V (ρ++
1 )
]
− c. Observe that in any equilibrium e1(ρ1) < 1 implies z1(ρ1) = 1

2
, since z1(ρ1) > 1

2

(resp. z1(ρ1) < 1
2
) implies ρ+

1 > ρ++
1 (resp. ρ+

1 < ρ++
1 ) and thus V (ρ++

1 ) < V (ρ+
1 ) (resp.

V (ρ+
1 ) < V (ρ++

1 )). Moreover, e1(ρ1) = 1 implies ρ+
1 = ρ++

1 = ρ1. We thus obtain ρ+
1 = ρ++

1 =

f(ρ1, e1(ρ1)) in any equilibrium, where

f(ρ1, e1(ρ1)) :=
ρ1

ρ1 + (1− ρ1)
(
e1(ρ1) + 1

2
(1− e1(ρ1))

) .
Next, an equilibrium in which e1(ρ1) = 0 exists if and only if δ

2
V (f(ρ1, 0)) ≤ c that is, if and
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only if either δ ≤ 4c, or else δ > 4c and

ρ1 ≤
2c

δ − 2c
.

Similarly, an equilibrium in which e1(ρ1) = 1 exists if and only if δ
2
V (f(ρ1, 1)) ≥ c that is,

if and only if

ρ1 ≥
4c

δ
.

Note that 4c
δ
< 1⇔ δ > 4c.

An equilibrium with e1(ρ1) ∈ (0, 1) requires δ
2
V (f(ρ1, e1(ρ1))) = c. As ∂f(·)

∂e1(ρ1)
< 0, a

(unique) equilibrium with e1(ρ1) ∈ (0, 1) exists if and only if δ > 4c and ρ1 ∈ ( 2c
δ−2c

, 4c
δ

). �

13



Online Appendix C

We show in this appendix that our main results do not depend on the assumption that the

agency obtains a fraction β of all proceeds from selling projects to investors. Specifically, we

generalize the baseline model by letting φcot (rt) satisfy

φcot (rt) =

f(E[qt|rt = 1, ρt, êt]) if rt = 1;

0 if rt = −1,

where f(·) : [0, 1]→ [0, 1] denotes a strictly increasing continuous function satisfying f(x) ≤ x

for all x ∈ [0, 1]. We assume in line with the baseline model that c < f(1)
2

. In what follows we

first state the main results, and then provide all the proofs.

Proposition OC.1. An equilibrium exists and is unique. In equilibrium, e(0) = 0; for ρ > 0

the equilibrium is characterized by cutoffs ρ and ρ, ρ ≤ ρ, such that
if ρ ∈ [ρ, 1] then e(ρ) = 0,

if ρ ∈ (ρ, ρ) then e(ρ) ∈ (0, 1),

if ρ ∈ (0, ρ] then e(ρ) = 1.

Moreover, the equilibrium fee is a non-decreasing function of the agency’s reputation.

The model with upfront fees is generalized by letting

φupt (1) = φupt (−1) = f(P(rt = 1|ρt, êt)E[qt|rt = 1, ρt, êt]).

Proposition OC.2. If δ < 2c
f( 1

2
)+c

then e(ρ) = 0 for all ρ ∈ [0, 1] is the unique equilibrium

with upfront fees. If δ > 2c
f( 1

2
)+c

the unique equilibrium is

e(ρ) =

1 if ρ > 0;

0 if ρ = 0.

Combining Propositions OC.1 and OC.2 yields the next theorem.

Theorem 1. There exists ρ̃ such that, if δ ∈ ( 2c
f(1)+c

, 2c
f( 1

2
)+c

) then, for ρ1 ∈ (0, ρ̃), contingent

fees improve expected social welfare relative to upfront fees. Moreover if 2c
f( 1

2
)+c

< 2f(1)+4c
3f(1)+2c

then
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for δ ∈ ( 2c
f( 1

2
)+c
, 2f(1)+4c

3f(1)+2c
) upfront fees improve expected social welfare relative to contingent fees.

In all other cases, expected social welfare is the same whether fees are upfront or contingent.

We prove in the rest of this appendix all of the previous results. Define Φ(·, ·) : [0, 1] ×
[0, 1]→ R by

Φ(ρ, e) :=
1− (1− ρ)(1− e)
1 + (1− ρ)(1− e)

.

Given a function e : [0, 1]→ [0, 1], define

ρ+ :=

0 if ρ = 0,

ρ
ρ+(1−ρ)e(ρ)

if ρ > 0.

Lemma OC.1. In any equilibrium, e(0) = 0 and V (0) = 0, where V (·) denotes the equilibrium

value function. For all ρ > 0,if δ
2
V (ρ+) > 1

2
f(Φ(ρ, e(ρ))) + c then e(ρ) = 1,

if δ
2
V (ρ+) < 1

2
f(Φ(ρ, e(ρ))) + c then e(ρ) = 0.

Proof: By virtue of Bellman’s Principle of Optimality,

V (ρ) = max
{
f(Φ(ρ, e(ρ)))+δ

(1

2
V (ρ)+

1

2
V (0)

)
,

1

2
f(Φ(ρ, e(ρ)))−c+δ

(1

2
V (ρ)+

1

2
V (ρ+)

)}
,

(OC.1)

for all ρ ∈ [0, 1], and the choice implied by e(ρ) maximizes the right-hand side of the expression

above. That is:e(ρ) = 1 if 1
2
f(Φ(ρ, e(ρ)))− c+ δ

(
1
2
V (ρ) + 1

2
V (ρ+)

)
> f(Φ(ρ, e(ρ))) + δ

(
1
2
V (ρ) + 1

2
V (0)

)
,

e(ρ) = 0 if 1
2
f(Φ(ρ, e(ρ)))− c+ δ

(
1
2
V (ρ) + 1

2
V (ρ+)

)
< f(Φ(ρ, e(ρ))) + δ

(
1
2
V (ρ) + 1

2
V (0)

)
.

We are only left to show that e(0) = 0 and V (0) = 0. That e(0) = 0 follows from the

above, noting that ρ+ = 0 if ρ = 0. Substituting back into (OC.1) then yields V (0) =

f(Φ(0, 0)) + δV (0) = δV (0). Hence V (0) = 0. �
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Lemma OC.2. In any equilibrium,
if e(ρ) = 1 then V (ρ) =

1
2
f(Φ(ρ,1))−c

1−δ = max

{
1
2
f(Φ(ρ,1))−c

1−δ , f(Φ(ρ,1))

1− δ
2

}
,

if e(ρ) < 1 then V (ρ) = f(Φ(ρ,e(ρ)))

1− δ
2

.

Furthermore, V (1) = max

{
1
2
f(Φ(1,e(1)))−c

1−δ , f(Φ(1,e(1)))

1− δ
2

}
≥ V (ρ), for all ρ ∈ [0, 1].

Proof: The lemma follows from Bellman’s Principle of Optimality together with the obser-

vations that (a) e(ρ) = 1 implies ρ+ = ρ, (b) ρ = 1 implies ρ+ = 1, (c) Φ(1, e) = 1 for all

e ∈ [0, 1], and (d) Φ(·, ·) is weakly increasing in both variables. �

Proposition OC.3. If δ ≥ δ := 2f(1)+4c
3(1)+2c

then

e(ρ) =

1 if ρ > 0,

0 if ρ = 0.
(OC.2)

is an equilibrium. If δ < δ, in any equilibrium: e(ρ) < 1 for all ρ ∈ [0, 1].

Proof: By Lemma OC.1, e(0) = 0 for all δ. Next, consider ρ > 0. If in equilibrium e(ρ) = 1

then by Lemma OC.1 and the observation that ρ+ = ρ:

δ

2
V (ρ) ≥ 1

2
f(Φ(ρ, 1)) + c.

Applying Lemma OC.2 now yields

δ

2

( 1
2
f(Φ(ρ, 1))− c

1− δ

)
≥ 1

2
f(Φ(ρ, 1)) + c,

or, equivalently, δ ≥ δ once we note that Φ(ρ, 1) = 1. The condition δ ≥ δ is thus necessary

for e(ρ) = 1. Sufficiency follows from the one-shot deviation principle. �

Lemma OC.3. The following are equivalent:

δ ≥ δ (OC.3)
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1

2
f(Φ(ρ, 1)) + c ≤ δ

2

( 1
2
f(Φ(ρ, 1))− c

1− δ

)
(OC.4)

1

2
f(Φ(ρ, 1)) + c ≤ δ

2

(
f(Φ(ρ, 1))

1− δ
2

)
(OC.5)

min

{ 1
2
f(Φ(ρ, 1))− c

1− δ
,
f(Φ(ρ, 1))

1− δ
2

}
=
f(Φ(ρ, 1))

1− δ
2

(OC.6)

Moreover, the equivalence between (OC.3)-(OC.5) continues to hold with strict inequalities

instead of weak inequalities.

Proof: Equivalence is easily checked using Φ(ρ, 1) = 1. �

Proposition OC.4. If δ > δ then (OC.2) is the unique equilibrium.

Proof: By Lemma OC.1, e(0) = 0 in any equilibrium. So we are only left to show that, in

any equilibrium, e(ρ) = 1 for all ρ > 0.

Suppose that an equilibrium exists such that e(ρ̂) < 1 for some ρ̂ > 0. Applying first

Lemma OC.1 then Lemma OC.2:

1

2
f(Φ(ρ̂, e(ρ̂))) + c ≥ δ

2
V (ρ̂+) ≥ δ

2

(
f(Φ(ρ̂+, e(ρ̂+)))

1− δ
2

)
.

We thus obtain, using the equivalence between (OC.3) and (OC.5) (with strict inequalities),

the following sequence of inequalities:

δ

2

(
f(Φ(ρ̂, 1))

1− δ
2

)
>

1

2
f(Φ(ρ̂, 1)) + c ≥ 1

2
f(Φ(ρ̂, e(ρ̂))) + c ≥ δ

2

(
f(Φ(ρ̂+, e(ρ̂+)))

1− δ
2

)
,

from which we infer that e(ρ̂+) < 1. We can thus repeat the steps above with ρ̂+ instead of

ρ̂, and so on. This process determines a sequence {ρn} such that, for all n:

(i) e(ρn) < 1,

(ii) ρn+1 = ρn
ρn+(1−ρn)e(ρn)

> ρn,

(iii) 1
2
f(Φ(ρn, e(ρn))) + c ≥ δ

2

(
f(Φ(ρn+1,e(ρn+1)))

1− δ
2

)
.
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By (i)-(ii), either e(ρn) → 1 or ρn → 1. Hence, taking limits in (iii) yields (using continuity

of Φ(·, ·), continuity of f(·) and the fact that Φ(1, e) = Φ(ρ, 1) = 1 for all e and ρ in [0, 1]):

1

2
f(Φ(1, 1)) + c ≥ δ

2

(
f(Φ(1, 1))

1− δ
2

)
. (OC.7)

The equivalence between (OC.3) and (OC.5) (with strict inequalities) establishes a contradic-

tion between (OC.7) and δ > δ. �

Proposition OC.5. If δ ≤ δ := 2c
f(1)+c

then e(ρ) = 0 for all ρ ∈ [0, 1] is the unique equilibrium.

Proof: Note first that δ ≤ δ if and only if

c ≥ δ

2

(
f(Φ(1, e(1)))

1− δ
2

)
. (OC.8)

Next, the assumption f(1) > 2c > 0 implies δ < δ; combining Lemmas OC.2 and OC.3 thus

shows that, in any equilibrium,

V (1) =
f(Φ(1, e(1)))

1− δ
2

, (OC.9)

whenever δ < δ. Combining (OC.8), (OC.9) and Lemma OC.2 now yields c > δ
2
V (ρ), for all

ρ ∈ [0, 1). Hence, by Lemma OC.1, e(ρ) = 0, for all ρ ∈ [0, 1].

That e(ρ) = 0 for all ρ ∈ [0, 1] is an equilibrium is immediate from (OC.8), (OC.9), and

the one-shot deviation principle. �

Proposition OC.6. Let δ ∈ (δ, δ). There exists a unique equilibrium. In equilibrium,e(ρ) = 0 if ρ ∈ {0} ∪ [ρ̃, 1]

e(ρ) ∈ (0, ẽ] if ρ ∈ (0, ρ̃)
(OC.10)

where ρ̃ ∈ (0, 1) and ẽ ∈ (0, 1) are defined implicitly by

1

2
f(Φ(ρ̃, 0)) + c =

δ

2

(
f(Φ(1, 0))

1− δ
2

)
, (OC.11)
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and
1

2
f(Φ(0, ẽ)) + c =

δ

2

(
f(Φ(0, 1))

1− δ
2

)
, (OC.12)

respectively.

Proof: Applying Lemma OC.3,

δ < δ ⇔ 1

2
f(Φ(ρ, 1)) + c >

δ

2

(
f(Φ(ρ, 1))

1− δ
2

)
.

Moreover, by (OC.8),

δ > δ ⇔ c <
δ

2

(
f(Φ(ρ, 1))

1− δ
2

)
.

Thus ρ̃ ∈ (0, 1) and ẽ ∈ (0, 1).

We now prove the rest of the proposition. We will first proceed by induction to show

that there can exist at most one equilibrium. We will then argue that the inductive procedure

yields an equilibrium. As a preliminary step, observe that by Lemma OC.2 and the equivalence

between (OC.3) and (OC.6), an equilibrium must satisfy:

V (ρ) =
f(Φ(ρ, e(ρ)))

1− δ
2

, (OC.13)

for all ρ ∈ [0, 1].

The inductive procedure starts as follows. Combining (OC.11) and (OC.13), any equilib-

rium must be such that, for all ρ > ρ̃ :

1

2
f(Φ(ρ, 0)) + c >

δ

2
V (ρ+).

Thus, by Lemma OC.1, if an equilibrium exists it must satisfy e(ρ) = 0 for all ρ > ρ̃. A

similar argument shows that in fact the same must be true for ρ = ρ̃.

By contrast, consider ρ ∈ (0, ρ̃). The combination of (OC.11), (OC.13), and Lemma OC.1

shows that e(ρ) = 0 is impossible in equilibrium. Similarly, the combination of (OC.12),

(OC.13) and Lemma OC.1 shows that e(ρ) > ẽ is impossible in equilibrium. Thus, any

equilibrium must satisfy (OC.10). By virtue of Lemma OC.1 this in turn implies that the

indifference condition
δ

2
V (ρ+) =

1

2
f(Φ(ρ, e(ρ))) + c (OC.14)
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must hold for all ρ ∈ (0, ρ̃).

Next define ρ1 < ρ̃ such that

ρ̃ =
ρ1

ρ1 + (1− ρ1)ẽ
.

By construction of ρ1 and property (OC.10), in any equilibrium: ρ+ ≥ ρ̃ for all ρ ∈ [ρ1, ρ̃).

(OC.14), (OC.10) and (OC.13) now pin down a unique candidate equilibrium e(ρ) for each

ρ ∈ [ρ1, ρ̃) (which moreover is continuous in ρ). Repeating the step above with ρ1 instead

of ρ̃ yields ρ2 < ρ1 and a unique candidate equilibrium e(ρ) for each ρ ∈ [ρ2, ρ1), and so on.

This defines a sequence {ρn} where, for all n, ρ̃n = ρn+1

ρn+1+(1−ρn+1)ẽ
. As ẽ < 1, ρn → 0. This

inductive procedure therefore pins down a unique candidate equilibrium. That this candidate

equilibrium is in fact an equilibrium is a consequence of the one-shot deviation principle. �

Proof of Proposition OC.1: Follows from Propositions OC.3-OC.6. �

Define Υ(·, ·) : [0, 1]× [0, 1]→ R by

Υ(ρ, e) :=
1

2
(1− (1− ρ)(1− e)).

Lemma OC.4. In any equilibrium with upfront fees, e(0) = 0 and V (0) = 0, where V (·)
denotes the equilibrium value function. For all ρ > 0,if δ

2
V (ρ+) > c then e(ρ) = 1,

if δ
2
V (ρ+) < c then e(ρ) = 0.

Proof: By virtue of Bellman’s Principle of Optimality,

V (ρ) = max
{
f(Υ(ρ, e(ρ))) + δ

(1

2
V (ρ) +

1

2
V (0)

)
, f(Υ(ρ, e(ρ)))− c+ δ

(1

2
V (ρ) +

1

2
V (ρ+)

)}
,

(OC.15)

for all ρ ∈ [0, 1], and the choice implied by e(ρ) maximizes the right-hand side of (OC.15).

That is:

e(ρ) = 1 if f(Υ(ρ, e(ρ)))− c+ δ
(

1
2
V (ρ) + 1

2
V (ρ+)

)
> f(Υ(ρ, e(ρ))) + δ

(
1
2
V (ρ) + 1

2
V (0)

)
,

e(ρ) = 0 if f(Υ(ρ, e(ρ)))− c+ δ
(

1
2
V (ρ) + 1

2
V (ρ+)

)
< f(Υ(ρ, e(ρ))) + δ

(
1
2
V (ρ) + 1

2
V (0)

)
.
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We are only left to show that e(0) = 0 and V (0) = 0. That e(0) = 0 follows from the

above, noting that ρ+ = 0 if ρ = 0. Substituting back into (OC.15) then yields V (0) =

f(Φ(0, 0)) + δV (0) = δV (0). Hence V (0) = 0. �

Lemma OC.5. In any equilibrium with upfront fees,
if e(ρ) = 1 then V (ρ) = f(Υ(ρ,1))−c

1−δ = max

{
f(Υ(ρ,1))−c

1−δ , f(Υ(ρ,1))

1− δ
2

}
,

if e(ρ) < 1 then V (ρ) = f(Υ(ρ,e(ρ)))

1− δ
2

.

Furthermore, V (1) = max

{
f(Υ(1,e(1)))−c

1−δ , f(Υ(1,e(1)))

1− δ
2

}
≥ V (ρ), for all ρ ∈ [0, 1].

Proof: The lemma follows from Bellman’s Principle of Optimality together with the obser-

vations that (a) e(ρ) = 1 implies ρ+ = ρ, (b) ρ = 1 implies ρ+ = 1, (c) Υ(1, e) = 1
2

for all

e ∈ [0, 1], and (d) Υ(·, ·) is weakly increasing in both variables. �

Proposition OC.7. If δ > 2c
f( 1

2
)+c

then

e(ρ) =

1 if ρ > 0,

0 if ρ = 0.
(OC.16)

is an equilibrium with upfront fees. If δ < c
f( 1

2
)+c

, in any equilibrium with upfront fees: e(ρ) < 1

for all ρ ∈ [0, 1].

Proof: By Lemma OC.4, e(0) = 0 for all δ. Next, consider ρ > 0. If in equilibrium e(ρ) = 1

then Lemma OC.4 and the observation that ρ+ = ρ yield

δ

2
V (ρ) ≥ c.

Applying Lemma OC.5 now gives

δ

2

(
f(Υ(ρ, 1))− c

1− δ

)
≥ c,
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or, equivalently, δ ≥ 2c
f( 1

2
)+c

once we note that Υ(ρ, 1) = 1
2
. The condition δ ≥ 2c

f( 1
2

)+c
is thus

necessary for e(ρ) = 1. Sufficiency follows from the one-shot deviation principle. �

Lemma OC.6. The following are equivalent:

δ ≥ 2c

f(1
2
) + c

, (OC.17)

c ≤ δ

2

(
f(Υ(ρ, 1))− c

1− δ

)
, (OC.18)

c ≤ δ

2

(
f(Υ(ρ, 1))

1− δ
2

)
, (OC.19)

min

{
f(Υ(ρ, 1))− c

1− δ
,
f(Υ(ρ, 1))

1− δ
2

}
=
f(Υ(ρ, 1))

1− δ
2

. (OC.20)

The equivalence between (OC.17)-(OC.19) continues to hold with strict inequalities instead of

weak inequalities.

Proof: Equivalence is easily checked using Υ(ρ, 1) = 1
2
. �

Proposition OC.8. If δ > 2c
f( 1

2
)+c

then (OC.16) is the unique equilibrium.

Proof: By Lemma OC.4, e(0) = 0 in any equilibrium. So we are only left to show that, in

any equilibrium, e(ρ) = 1 for all ρ > 0.

Suppose an equilibrium exists such that e(ρ̂) < 1 for some ρ̂ > 0. Applying first Lemma

OC.4 then Lemma OC.5:

c ≥ δ

2
V (ρ̂+) ≥ δ

2

(
f(Υ(ρ̂+, e(ρ̂+)))

1− δ
2

)
.

We thus obtain, using equivalence of (OC.17) and (OC.19) (with strict inequalities), the

following sequence of inequalities:

δ

2

(
f(Υ(ρ̂, 1))

1− δ
2

)
> c ≥ δ

2

(
f(Υ(ρ̂+, e(ρ̂+)))

1− δ
2

)
,
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from which we infer that e(ρ̂+) < 1. We can thus repeat the steps above with ρ̂+ instead of

ρ̂, and so on. This process determines a sequence {ρn} such that, for all n:

(i) e(ρn) < 1,

(ii) ρn+1 = ρn
ρn+(1−ρn)e(ρn)

> ρn,

(iii) c ≥ δ
2

(
f(Υ(ρn+1,e(ρn+1)))

1− δ
2

)
.

By (i)-(ii), either e(ρn) → 1 or ρn → 1. Hence, taking limits in (iii) yields (using continuity

of Υ(·, ·) and the fact that Υ(1, e) = Υ(ρ, 1) = 1
2

for all e and ρ in [0, 1]):

c ≥ δ

2

(
f(Υ(1, 1))

1− δ
2

)
. (OC.21)

The equivalence between (OC.17) and (OC.19) (with strict inequalities) establishes a contra-

diction with (OC.21). �

Proposition OC.9. If δ < 2c
f( 1

2
)+c

then e(ρ) = 0 for all ρ ∈ [0, 1] is the unique equilibrium

with upfront fees.

Proof: By Lemma OC.6, we have δ < 2c
f( 1

2
)+c

if and only if

c >
δ

2

(
f(Υ(1, e(1)))

1− δ
2

)
. (OC.22)

Next, combining Lemmas OC.5 and OC.6 yields

V (1) =
f(Υ(1, e(1)))

1− δ
2

. (OC.23)

Combining (OC.22) and (OC.23) gives c > δ
2
V (1); hence, by Lemma OC.5, c > δ

2
V (ρ) for all

ρ ∈ [0, 1]. Lemma OC.4 thus yields e(ρ) = 0, for all ρ ∈ [0, 1].

That e(ρ) = 0, for all ρ ∈ [0, 1] is an equilibrium is immediate from (OC.22), (OC.23), and

the one-shot deviation principle. �
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Proof of Proposition OC.2: Follows from Propositions OC.7-OC.9. �

Proof of Theorem 1: Proposition OC.1 characterizes the unique equilibrium with contin-

gent fees, and Proposition OC.2 characterizes the unique equilibrium with upfront fees. The

cutoff δ = 2f(1)+4c
3f(1)+2c

is taken from Proposition OC.3. The cutoff δ = 2c
f(1)+c

is taken from Propo-

sition OC.5. With upfront fees, either the strategic agency shirks irrespective of ρt or the

strategic agency acquires information with probability 1 irrespective of ρt. Hence, all that

remains to show is that the expected period-t welfare is an increasing function of the proba-

bility with which the strategic agency chooses to acquire information. The expected period-t

welfare is

P(rt = 1)E[qt|rt = 1]− c
(
ρt + (1− ρt)e(ρt)

)
=
(1

2
+

1

2
(1− ρt)(1− e(ρt))

)1− (1− ρt)(1− e(ρt))
1 + (1− ρt)(1− e(ρt))

− c
(
ρt + (1− ρt)e(ρt)

)
=
(1

2
− c
)(
ρt + (1− ρt)e(ρt)

)
;

the result follows since c < 1
2
. �
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Online Appendix D

In this appendix we generalize the model presented in Online Appendix B by letting the prior

probability γ of qt = 1 take any value in (0, 1) and show that all our main results continue

to hold. We normalize a project’s return so that either qt = 1 or qt = −γ
1−γ . Hence E[qt] = 0

irrespective of γ. The model described in Online Appendix B corresponds to the case γ = 1
2
.

The definitions from Online Appendix B all apply here as well with the functions Φ and Υ

now replaced, respectively, by

Φ†(ρt, êt, ẑt) :=
1− (1− ρt)(1− êt)

1 + 1−γ
γ

(1− ρt)(1− êt)(1− ẑt
1−γ )

and

Υ†(ρt, êt) := γ
[
1− (1− ρt)(1− êt)

]
.

The Equilibria. We next characterize the equilibria with, respectively, contingent fees and

upfront fees. With 2 periods the strategic agency always shirks in period 2. So the focus is on

information acquisition at t = 1. Proofs of the propositions are relegated to the end of this

appendix.

Proposition OD.1. Let fees be contingent. In equilibrium e1(ρ1) < 1 for all ρ1 ∈ (0, 1).

Moreover, the equilibrium is characterized by cutoffs ρ†, ρ† and δ such that, for δ > δ, e1(ρ1) ∈
(0, 1) for all ρ1 ∈

(
ρ†, ρ†

)
.

Proposition OD.2. Let fees be upfront. Let x := min{γ, 1 − γ}. In equilibrium, if δ ≤ c
γx

then e1(ρ1) = 0 for all ρ1 ∈ (0, 1). If instead δ > c
γx

then
ρ1 ∈ ( c

δγx
, 1) implies e(ρ1) = 1;

ρ1 ∈ ( c
δγ−c ,

c
δγx

) implies e(ρ1) ∈ (0, 1);

ρ1 ∈ (0, c
δγ−c) implies e(ρ1) = 0.

Welfare Comparison. As in Online Appendix B, since the strategic agency shirks at t = 2

irrespective of the fee structure, and, for the payoffs we consider, welfare does not depend on

the agency’s choice to inflate or deflate a rating in case it shirks, social welfare is uniquely

determined by the probability that the agency acquires information at t = 1. In the parameter
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region defined by δ ∈ (δ, c
γx

) and ρ1 ∈
(
ρ†, ρ†

)
the agency shirks at t = 1 with upfront fees

(Proposition OD.2) but acquires information with positive probability with contingent fees

(Proposition OD.1), thus contingent fees improve expected social welfare. Since δ < c
γx

, the

aforementioned region is non-empty (we call this observation Remark 1 and prove it below).

Note too that, for c sufficiently close to 0, any ρ1 and δ satisfy δ > c
γx

and ρ1 >
c
δγx

, hence

ensuring e1(ρ1) = 1 with upfront fees (Proposition OD.2). As e1(ρ1) < 1 everywhere with

contingent fees (Proposition OD.1), then for any ρ1 and δ upfront fees improve expected social

welfare for sufficiently small c.

Proof of Proposition OD.1: The function Φ† is continuous, weakly increasing in each of

its arguments, and Φ†(1, ·, ·) = Φ†(·, 1, ·) = 1. Notice that in any equilibrium the strate-

gic agency must shirk and announce r2 = 1 at t = 2 with probability 1 giving π2 =

Φ†(ρ2, 0, 0) = γρ2
1−(1−γ)ρ2

. Define V (ρ) := γρ
1−(1−γ)ρ

. Let ρ+
1 (e, z) (respectively ρ++

1 (e, z)) de-

note the value of ρ+
1 (respectively ρ++

1 ) for e1(ρ1) = e and z1(ρ1) = z. At t = 1, the

agency’s expected intertemporal profit from shirking and announcing rt = 1 is equal to

Φ†(ρ1, ê1, ẑ1)+δγV (ρ+
1 (ê1, ẑ1)), the intertemporal profit from shirking and announcing rt = −1

is equal to δ(1 − γ)V (ρ++
1 (ê1, ẑ1)), and the intertemporal profit from acquiring information

is equal to γΦ†(ρ1, ê1, ẑ1) − c + δ
[
γV (ρ+

1 (ê1, ẑ1)) + (1 − γ)V (ρ++
1 (ê1, ẑ1))

]
. The rest of the

proof contains 3 steps. Step 1 establishes than in equilibrium e1(ρ1) < 1. Step 2 computes

the probability with which the strategic agency must announce r1 = −1 if in equilibrium

e1(ρ1) = 0. Step 3 characterizes a parameter region in which e1(ρ1) > 0.

Step 1: An equilibrium with e1(ρ1) = 1 requires

δ(1− γ)V (ρ1)− c ≥ (1− γ)Φ†(ρ1, 1, z1), (OD.1)

for some z1. Note that, for any z1 and any ρ1: Φ(ρ1, 1, z1) = 1 > V (ρ1). Thus (OD.1) is

violated as c > 0 and δ < 1. Hence in equilibrium e(ρ1) < 1.

Step 2: Define z̃(ρ1) implicitly by

Φ†(ρ1, 0, z̃(ρ1)) = δ
[
(1− γ)V (ρ++

1 (0, z̃(ρ1)))− γV (ρ+
1 (0, z̃(ρ1)))

]
,
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which is equivalent to

ρ1γ

1− ρ1(1− γ)− (1− ρ1)z̃
= δ

(
ρ1γ(1− γ)

ρ1 + (1− ρ1)z̃ − (1− γ)ρ1

− γ2ρ1

1− ρ1(1− γ)− (1− ρ1)z̃

)
.

Simplifying to solve for z̃ gives z̃(ρ1) = δ(1−γ)
1+δ

+ ρ1γ
1−ρ1

δ(1−2γ)−1
1+δ

. Note that z̃(ρ1) < 1 if and

only if ρ1 <
1+γδ

(1+γδ)−(γ(1−δ)+2δγ2)
and this condition is satisfied for all ρ1 ∈ (0, 1); furthermore,

z̃(ρ1) > 0 if and only if ρ1 < ρ†1(δ) where ρ†1(δ) := (1−γ)δ
(1−γ)δ+(γ(1−δ)+2γ2δ)

. Note that ρ†1(δ) ∈ (0, 1).

By construction of z̃(ρ1), in equilibrium, e1(ρ1) = 0 implies z(ρ1) = z̃(ρ1) if ρ1 ≤ ρ†1(δ) and

z(ρ1) = 0 if ρ1 > ρ†1(δ).

Step 3: Define ρ†(δ) = δ(1−γ)−c
δ(1−γ)2+(γ−c)(1−γ)

, ρ†(δ) := c(1+δγ)
δ2γ2−2cδγ2+cδγ+2δγ2−2cγ+γ2+c

. Consider first

ρ1 ≥ ρ†1(δ). Step 2 ensures that an equilibrium with e1(ρ1) = 0 exists if and only if: (1 −
γ)Φ†(ρ1, 0, 0) ≥ (1 − γ)δV (1) − c. This condition is equivalent to: ρ1 ≤ ρ†(δ). We conclude

that if ρ1 ∈ [ρ†1(δ), ρ†(δ)) in equilibrium e1 ∈ (0, 1). Now consider a ρ1 ≤ ρ†1(δ). Step 2

ensures that an equilibrium with e1(ρ1) = 0 exists if and only if (1− γ)Φ†(ρ1, 0, z̃(ρ1)) + c ≥
(1 − γ)δV (ρ++

1 (0, z̃(ρ1))). This condition is equivalent to: ρ1 ≤ ρco(δ). We conclude that if

ρ1(ρco(δ), ρ†1(δ)) in equilibrium e1 ∈ (0, 1).

Finally, straightforward algebra shows that both ρco(δ) > ρ†(δ) and ρco(δ) < ρ†(δ) are

equivalent to c < δγ(1−γ)(1+δ)
1+δγ

. This inequality is satisfied if δ ∈ (δ, 1) and violated if δ ∈ (0, δ],

where δ :=
cγ+γ2−γ+

√
c2γ2+2cγ3+γ4−6cγ2−2γ3+4cγ+γ2

2γ(1−γ)
. This concludes the proof. �

Proof of Proposition OD.2: Note that Υ† is continuous, weakly increasing in each of its

arguments, and Υ†(1, ·) = Υ†(·, 1) = γ. Define V (ρ) := γρ. Let ρ+
1 (e, z) (respectively

ρ++
1 (e, z)) denote the value of ρ+

1 (respectively ρ++
1 ) for e1(ρ1) = e and z1(ρ1) = z. At

t = 1, the agency’s expected intertemporal profit from shirking and announcing rt = 1 is

equal to Υ†(ρ1, ê1) + δγV (ρ+
1 (ê1, ẑ1)), the intertemporal profit from shirking and announcing

rt = −1 is equal to Υ†(ρ1, ê1) + δ(1 − γ)V (ρ++
1 (ê1, ẑ1)), and the intertemporal profit from

acquiring information is equal to Υ†(ρ1, ê1) + δ
[
γV (ρ+

1 (ê1, ẑ1)) + (1− γ)V (ρ++
1 (ê1, ẑ1))

]
− c.

We now consider two cases. These cases together prove the proposition.

Case 1. Let γ ∈ (0, 1
2
]. In equilibrium, if δ < c

γ2
then e1(ρ1) = 0 for all ρ1 ∈ (0, 1). If

27



instead δ > c
γ2

then 
if ρ1 ∈ ( c

δγ2
, 1) then e(ρ1) = 1,

if ρ1 ∈ ( c
δγ−c ,

c
δγ2

) then e(ρ1) ∈ (0, 1),

if ρ1 ∈ (0, c
δγ−c) then e(ρ1) = 0.

Define z̃(ρ1) implicitly as follows:

γV (ρ+
1 (0, z̃(ρ1))) = (1− γ)V (ρ++

1 (0, z̃(ρ1))), (OD.2)

Solving (OD.2) we obtain z̃(ρ1) = 1− γ + (1− 2γ) ρ1
1−ρ1 .

As γ ∈ (0, 1
2
], then z̃(ρ1) > 0 for all ρ1, while z̃(ρ1) < 1 if and only if ρ1 <

γ
1−γ , where

γ
1−γ ∈ (0, 1). By construction of z̃(ρ1), in equilibrium e1(ρ1) = 0 implies z(ρ1) = z̃(ρ1) if

ρ1 <
γ

1−γ , and z(ρ1) = 1 if ρ1 ≥ γ
1−γ .

Fix first ρ1 ≥ γ
1−γ . An equilibrium with e1(ρ1) = 0 exists if and only if δγV (ρ+

1 (0, 1)) ≤ c,

which is equivalent to δ ≤ c
γ2

. Fix δ < c
γ2

. As V (ρ+
1 (0, 1)) = V (1) ≥ V (ρ2) for all ρ2 ∈ [0, 1],

then for and any e1 and z1: δγV (ρ+
1 (e1, z1)) < c. Hence in any equilibrium e1(ρ1) = 0 (and

z1(ρ1) = 1).

Fix now ρ1 <
γ

1−γ . An equilibrium with e1(ρ1) = 0 exists if and only if δγV (ρ+
1 (0, z̃(ρ1))) ≤

c, which is equivalent to ρ1 ≤ c
δγ−c . Fix ρ1 < c

δγ−c . Clearly in this region if in equi-

librium with z1(ρ1) = z̃(ρ1) then e1(ρ1) = 0. Suppose an equilibrium exists in which

z1(ρ1) > z̃(ρ1); note that for any ê1: δ(1−γ)V (ρ++
1 (ê1, z1(ρ1))) ≤ δ(1−γ)V (ρ++

1 (0, z1(ρ1))) <

δ(1− γ)V (ρ++
1 (0, z̃1(ρ1))) = δγV (ρ+

1 (0, z̃1(ρ1))) < c, hence in such an equilibrium e1(ρ1) = 0.

Suppose now that an equilibrium exists in which z1(ρ1) < z̃(ρ1); note that for any ê1:

δγV (ρ+
1 (ê1, z1(ρ1))) ≤ δγV (ρ+

1 (0, z1(ρ1))) < δγV (ρ+
1 (0, z̃1(ρ1))) < c, hence in such an equilib-

rium e1(ρ1) = 0. Hence in any equilibrium e1(ρ1) = 0 (and z1(ρ1) = z̃(ρ1)).

Note that, for δ < c
γ2

, c
δγ−c > 1 ≥ ρ1 for all ρ1. Hence if either δ < c

γ2
or δ > c

γ2
and

ρ1 <
c

δγ−c then in equilibrium e1(ρ1) = 0.

Consider now an equilibrium in which e1(ρ1) = 1. In such equilibrium ρ++
1 = ρ+

1 = ρ1. As

γ ≤ 1
2
, in such equilibrium γV (ρ+

1 ) < (1− γ)V (ρ++
1 ), hence z1(ρ1) = 1. Thus an equilibrium

with e1(ρ1) = 1 exists if and only if δγV (ρ1) ≥ c that is, if and only if ρ1 ≥ c
δγ2

. Let

ρ1 >
c
δγ2

. Note that for any e1 and z1, ρ+
1 (e1, z1) ≥ ρ1, hence δγV (ρ+

1 ) > c, i.e. there is no

equilibrium in which the agency shirks and deflates with positive probability. Moreover, as

γ ≤ 1
2
: δ(1 − γ)V (ρ+

1 ) ≥ δ(1 − γ)V (ρ1) ≥ δγV (ρ1) > c, i.e. there is no equilibrium in which
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the agency shirks and inflates with positive probability. Thus for ρ1 > c
δγ2

in equilibrium

e1(ρ) = 1. Noting that an equilibrium exists for all parameter values concludes the proof of

case 1.

Case 2. Let γ ∈ (1
2
, 1). In equilibrium, if δ < c

γ(1−γ)
then e1(ρ1) = 0 for all ρ1 ∈ (0, 1). If

instead δ > c
γ(1−γ)

then
if ρ1 ∈ ( c

δγ(1−γ)
, 1) then e(ρ1) = 1,

if ρ1 ∈ ( c
δγ−c ,

c
δγ(1−γ)

) then e(ρ1) ∈ (0, 1),

if ρ1 ∈ (0, c
δγ−c) then e(ρ1) = 0.

Consider z̃(ρ1), as defined by (OD.2). As γ ∈ (1
2
, 1), then z̃(ρ1) < 1 for all ρ1, while

z̃(ρ1) > 0 if and only if ρ1 <
1−γ
γ

, where 1−γ
γ
∈ (0, 1). By construction of z̃(ρ1), in equilibrium

e1(ρ1) = 0 implies z(ρ1) = z̃(ρ1) if ρ1 <
1−γ
γ

, and z(ρ1) = 0 if ρ1 ≥ 1−γ
γ

.

So for ρ1 ≥ 1−γ
γ

an equilibrium with e1(ρ1) = 0 exists if and only if δ(1−γ)V (ρ++
1 (0, 0)) ≤ c,

which is equivalent to δ ≤ c
γ(1−γ)

. Consider δ < c
γ(1−γ)

. As V (ρ++
1 (0, 0)) = V (1) ≥ V (ρ2) for

all ρ2, then for any e1 and z1: δ(1− γ)V (ρ++
1 (e1, z1)) < c. Thus in this region, in equilibrium,

e1(ρ1) = 0.

For ρ1 <
1−γ
γ

instead, an equilibrium with e1(ρ1) = 0 exists if and only if δγV (ρ+
1 (0, z̃(ρ1))) ≤

c, which is equivalent to ρ1 ≤ c
δγ−c . The proof that in equilibrium e1(ρ1) = 0 for ρ1 <

c
δγ−c

follows the same steps as the proof that e1(ρ1) = 0 for γ ∈ (0, 1
2
] and ρ1 <

c
δγ−c discussed

above.

Consider now an equilibrium in which e1(ρ1) = 1. As γ > 1
2
, in such equilibrium z1(ρ1) = 0.

Thus an equilibrium with e1(ρ1) = 1 exists if and only if δ(1 − γ)V (ρ1) ≥ c that is, if and

only if ρ1 ≥ c
δγ(1−γ)

. Let ρ1 >
c

δγ(1−γ)
. Note that for any e1 and z1, ρ++

1 (e1, z1) ≥ ρ1, hence

δ(1 − γ)V (ρ++
1 ) > c. Moreover, as γ > 1

2
: δγV (ρ+

1 ) ≥ δγV (ρ1) > δ(1 − γ)V (ρ1) > c. Thus

for ρ1 >
c

δγ(1−γ)
in equilibrium e1(ρ) = 1. Noting that an equilibrium exists for all parameter

values concludes the proof of case 2. �

Proof of Remark 1: As shown in the Proof of Proposition OD.1, δ > δ implies

c <
δγ(1− γ)(1 + δ)

1 + δγ
. (OD.3)
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We prove the remark by showing that for δ = c
γx

condition (OD.3) holds. We consider the

cases γ ≤ 1
2

and γ > 1
2

separately.

Let γ ≤ 1
2
, hence x = γ. For δ = c

γ2
, (OD.3) reduces to:

c <

c
γ
(1− γ)(1 + c

γ2
)

1 + c
γ

⇔ (2γ − 1)γ2 < (1− γ − γ2)c.

This last inequality holds as (2γ − 1)γ2 < 0 < (1− γ − γ2)c.

Let now γ > 1
2
, hence x = 1− γ. For δ = c

γ(1−γ)
, (OD.3) reduces to:

c <

c
γ(1−γ)

γ(1− γ)(1 + c
γ(1−γ)

)

1 + c
γ(1−γ)

γ

This condition is equivalent to γ < 1, which clearly holds. �
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Online Appendix E

In this appendix we check the robustness of our analysis by assuming that investors and firms

never observe q. We show that, as in the baseline model:

• for some parameter values contingent fees improve expected social welfare relative to

upfront fees;

• upfront fees improve expected social welfare relative to contingent fees as long as the

cost of information acquisition, c, is sufficiently small.

The Model. The agency lives for two periods. The model differs from the one discussed in

Section III only in that investors and firms never observe qt (and we set β = 1).

Given e : [0, 1]→ [0, 1], define

ρ+ :=

0 if ρ = 0

ρ
ρ+(1−ρ)e(ρ)

if ρ > 0
; ρ− :=

0 if ρ = 0

ρ
1+(1−ρ)(1−e) if ρ > 0

The next definition is immediately adapted from the equilibrium concept of Section 2.

Definition 3. An equilibrium with contingent fees comprises functions et : [0, 1] → [0, 1]

specifying the probabilities et(ρt) that the strategic agency acquires information in period t

given reputation ρt, for t = 1, 2, such that each period:

(i) the choice(s) implied by et(ρt) maximize the agency’s expected intertemporal profit given

by (OA.1), and

ρ2 =

ρ+
1 if r1 = −1;

ρ−1 if r1 = 1;

(ii) firms and investors’ beliefs satisfy êt = et(ρt).

The definition of an equilibrium with upfront fees is obtained by replacing (OA.1) with

(OA.2).

The Equilibria. We next characterize the equilibria with, respectively, contingent fees and

upfront fees. Proofs of the propositions are relegated to the end of this appendix.
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Proposition OE.1. With contingent fees, in equilibrium e1(ρ1) > 0 if and only if δ > 2c and

ρ1 < ρco(δ), where ρco(δ) is defined implicitly by

δ =

(
4− 3ρco

2(1− ρco)

)(
ρco

2− ρco
+ c

)
.

Moreover limc→0 e1(ρ1) < 1 for any ρ1 and δ.

Proposition OE.2. With upfront fees, in equilibrium e1(ρ1) > 0 if and only if δ > 4c and

ρ1 < ρup(δ) := 4c−δ
2−δ . Moreover limc→0 e1(ρ1) = 1 for any ρ1 and δ.

Welfare Comparison. When fees are contingent, for δ ∈ (2c, 4c) the strategic agency

acquires information at t = 1 with positive probability provided its reputation is not too high

(Proposition OE.1). By contrast, for δ ∈ (2c, 4c) the strategic agency shirks with probability

1 when fees are upfront (Proposition OE.2). For δ ∈ (2c, 4c) and sufficiently low reputation

expected social welfare is therefore higher under contingent fees than under upfront fees.

Moreover for any δ and ρ1, limc→0 e1(ρ1) = 1 only in the case of upfront fees. Thus upfront

fees increase expected social welfare if the cost of information acquisition is sufficiently low.

Proof of Proposition OE.1: Define V (ρ) := ρ
2−ρ . At t = 1, the agency’s expected in-

tertemporal profit from shirking and announcing rt = 1 is equal to Φ(ρ1, ê1) + δV (ρ−1 ). The

intertemporal profit from acquiring information is equal to 1
2
Φ(ρ1, ê1)− c+ δ

2

[
V (ρ+

1 )+V (ρ−1 )
]
.

Fix ρ1 ∈ (0, 1). An equilibrium in which e1(ρ1) = 1 exists if and only if

Φ(ρ1, 1) + δV (ρ1) ≤ 1

2
Φ(ρ1, 1)− c+ δV (ρ1). (OE.1)

This condition is always violated, thus in equilibrium e1(ρ1) < 1. An equilibrium in which

e1(ρ1) = 0 in turn exists if and only if

Φ(ρ1, 0) + δV

(
ρ1

2− ρ1

)
≥ 1

2
Φ(ρ1, 0) +

δ

2

(
V (1) + V

(
ρ1

2− ρ1

))
− c.

Substituting for Φ(·) and V (·) and simplifying yields

δ ≤ δ̃(ρ1) :=

(
4− 3ρ1

2(1− ρ1)

)(
ρ1

2− ρ1

+ c

)
.
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Notice that δ̃(ρ1) is continuous and increasing in ρ1 for ρ1 ∈ (0, 1) as it is the product of

2 terms, each of which is continuous and increasing in ρ1 for ρ1 ∈ (0, 1). Hence δ < δ̃(ρ1)

is equivalent to ρ1 > ρco(δ); moreover as δ̃(0) = 2c, then e1(ρ1) > 0 only if δ > 2c. The

proof that δ > δ̃(ρ1) is necessary and sufficient for an equilibrium in which e1 ∈ (0, 1) follows

standard arguments.

Pick a pair δ and ρ1. For sufficiently small c, δ > 2c, thus in equilibrium e1(ρ1) ∈ (0, 1).

Note also that for c = 0 and e(ρ1) = 1 (OE.1) is violated. Thus, by continuity of V and Φ in

equilibrium limc→0 e1(ρ1) < 1. �

Proof of Proposition OE.2: Define V (ρ) := ρ
2
. At t = 1, the agency’s expected intertem-

poral profit from shirking and announcing rt = 1 is equal to Υ(ρ1, ê1) + δV (ρ−1 ). The in-

tertemporal profit from acquiring information is equal to Υ(ρ1, ê1) − c + δ
2

[
V (ρ+

1 ) + V (ρ−1 )
]
.

Fix ρ1 ∈ (0, 1). An equilibrium in which e1(ρ1) = 1 exists if and only if

δV (ρ1) ≤ δV (ρ1)− c. (OE.2)

This condition is always violated for c > 0. An equilibrium in which e1(ρ1) = 0 exists if and

only if
δ

2
V

(
ρ1

2− ρ1

)
≥ δ

2
V (1)− c.

Substituting for V (·) and simplifying yields

δ ≤ δ(ρ1) :=
2c(2− ρ1)

1− ρ1

.

As δ(ρ1) is continuous and increasing in ρ1, then δ < δ(ρ1) is equivalent to ρ1 > ρup(δ);

moreover, as δ(0) = 4c, then e1(ρ1) > 0 only if δ > 4c. The proof that δ > δ(ρ1) is necessary

and sufficient for an equilibrium in which e1 ∈ (0, 1) follows standard arguments.

Next, fix δ and ρ1. Note also that, for c = 0, e(ρ1) = 1 satisfies (OE.2). Continuity of Υ

and V thus ensure that in equilibrium limc→0 e1(ρ1) = 1. �
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Online Appendix F

In this appendix we present and analyze the model with observable information acquisition.

The model and the main result of this appendix (Proposition OF.1) are presented in Subsection

F.1. The analysis of an auxiliary game needed in the proof of Proposition OF.1 is carried out

in Subsection F.2. Subsection F.3 contains the proof of Proposition OF.1.

F.1 The model

Fees. Each period, firms and investors form beliefs regarding the probability that the strate-

gic agency will truthfully report what it observes. Let ât denote the beginning-of-period-t belief

that, conditional on acquiring information and observing qt = −1, the strategic agency truth-

fully assigns the rating rt = −1. We maintain the notation êt for the beginning-of-period-t

belief that the strategic agency will acquire information in period t, and set β = 1 to reduce

notation. So the contingent fee is

φt(rt) =

E[qt|rt = 1, ρt, êt, ât] if rt = 1;

0 if rt = −1.
(OF.1)

while the upfront fee is φt(1) = φt(−1) = P(rt = 1|ρt, êt, ât)E[qt|rt = 1, ρt, êt, ât].

Timing. The timing within period t is as follows. The agency first decides whether or not

to acquire information. In case the agency shirks the game moves on to the next period. This

captures the idea that a regulatory authority prevents the agency from rating firm t in case

the agency is caught shirking. In case it chose to acquire information and observed qt = 1

the agency publicly announces the rating rt = 1. If it observed qt = −1 the agency chooses

whether to truthfully assign rt = −1, or inflate the rating and assign rt = 1. The agency then

receives φt(rt), all players observe qt and the game moves on to the next period.

Strategies and Payoffs. A stationary strategy for the agency now comprises a pair
(
e(·), a(·)),

where e : [0, 1]→ [0, 1] and a : [0, 1]→ [0, 1], specifying respectively the probability of acquir-

ing information and the probability of truthfully assigning the rating rt = −1 conditional on

observing qt = −1, both expressed as a function of the agency’s reputation ρt. The payoffs

are as in Section ??. The next definition adapts the equilibrium concept of that section.
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Definition 4. An equilibrium with observable information acquisition comprises a pair
(
e(·), a(·)

)
such that:

(i) in period t, the strategic agency acquires information with probability e(ρt) and, con-

ditional on observing qt = −1, truthfully assigns the rating rt = −1 with probability

a(ρt);

(ii) the strategy
(
e(·), a(·)

)
maximizes the agency’s expected intertemporal profit given ρt+1 =

Ψ(ρt, rt, qt), where5

Ψ(ρt, rt, qt) :=


ρt

ρt+(1−ρt)êt if qt = 1 = rt and ρt > 0;

ρt
ρt+(1−ρt)êtât if qt = −1 = rt and ρt > 0;

0 if rt = ∅, or qt = −1 = −rt, or ρt = 0;

(iii) firms and investors’ beliefs satisfy êt = e(ρt) and ât = a(ρt).

In equilibrium investors correctly infer the probabilities with which the strategic agency

chooses to acquire information and to truthfully assign rt = −1 when observing qt = −1,

and these choices are optimal for the agency. Firms and investors’ beliefs are updated using

Bayes’ rule whenever possible. The agency loses its reputation whenever it is caught shirking.

If it acquires information and qt = 1 then reputation is updated based on the belief êt = e(ρt)

alone, that is, reputation jumps up to

ρ+
t :=

ρt
ρt + (1− ρt)e(ρt)

.

By contrast, two cases arise if the agency acquires information and qt = −1: rt = 1 reveals

that the agency inflated the rating (and thus, that the agency is strategic), and rt = −1 that

the agency truthfully reported what it observed. In the latter case reputation is updated

based both on the belief êt = e(ρt) and on the belief ât = a(ρt), that is, reputation jumps up

to6

ρ++
t :=

ρt
ρt + (1− ρt)e(ρt)a(ρt)

.

We proceed to characterize the equilibrium behavior of the strategic agency. If the agency

shirks, the agency is revealed to be strategic and the game moves on to the next period. So in

5We let rt = ∅ denote the case in which the agency shirks in period t.
6As usual zero-probability events are dealt with by assuring that ρt = 0 is an absorbing state of the Markov

process, and by ascribing any misreporting to the strategic agency.
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order to obtain a positive payoff the agency is now forced to acquire information. Conditional

on acquiring information, the agency can inflate the rating in case qt = −1 or truthfully

report what it observes. Inflating the rating guarantees the fee φt(1). The downside is that

the agency could lose its reputation: either qt = 1 in which case ρt+1 = ρ+
t , or qt = −1 in

which case ρt+1 = 0. By contrast, truthfully reporting what the agency observes lowers the

probability of receiving φt(1) to just 1
2
, but could induce a reputation boost: either qt = 1 in

which case ρt+1 = ρ+
t , or qt = −1 in which case ρt+1 = ρ++

t . By virtue of Bellman’s Principle

of Optimality an equilibrium with value function V (·) therefore satisfies the Bellman equation

V (ρ) = max
{
φ(ρ)− c+ δ

(1

2
V (ρ+) +

1

2
V (0)

)
,
φ(ρ)

2
− c+ δ

(1

2
V (ρ+) +

1

2
V (ρ++)

)}
.

We show later that V (0) = 0. Hence, the strategic agency is either indifferent between

inflating the rating and truthful reporting, or φ(ρ)
2

> δ
2
V (ρ++) in which case inflating the

rating is uniquely optimal, or, lastly, φ(ρ)
2

< δ
2
V (ρ++) in which case truthful reporting is

uniquely optimal.

The following proposition is the main result of this appendix.

Proposition OF.1. With observable information acquisition:

1. if δ < 2
3−2c

then upfront fees improve expected social welfare relative to contingent fees;

2. if δ > 2
3−2c

then expected social welfare is the same whether fees are upfront or contingent.

F.2 An Auxiliary Game

We analyze in this subsection the auxiliary game in which, by assumption, the strategic agency

(i) shirks if ρt = 0, and (ii) acquires information if ρt > 0. Hence, e(0) = 0 and e(ρ) = 1

for all ρ > 0, and in this setting a stationary strategy for the agency is simply a mapping

a : (0, 1] → [0, 1] specifying the probability of truthfully assigning the rating rt = −1 when

observing qt = −1, as a function of the agency’s reputation in period t. Our objective is to

prove the following result:

Proposition OF.2. Let δ < 2
3−2c

. There exists a unique equilibrium of the auxiliary game.

Its value function, Ṽ (·), is strictly increasing and continuous over (0, 1], and Ṽ (1) > 0.

We start with two simple lemmas. Define, Ξ(·, ·) : (0, 1]× [0, 1]× [0, 1]→ R such that

Ξ(ρ, e, a) :=
ρ+ (1− ρ)ea

ρ+ (1− ρ)e(2− a)
.
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Note that E[qt|rt = 1, ρt, êt, ât] = Ξ(ρt, êt, ât) for all ρt > 0, and that Ξ(·, ·, ·) is continuous,

weakly increasing in ρ and in a, weakly decreasing in e, Ξ(ρ, e, a) > 0, and Ξ(1, e, a) =

Ξ(ρ, e, 1) = Ξ(ρ, 0, a) = 1.

Given a function a : [0, 1]→ [0, 1], define

ρ† :=

0 if ρ = 0,

ρ
ρ+(1−ρ)a(ρ)

if ρ > 0.

Lemma OF.1. In any equilibrium of the auxiliary game with value function Ṽ (·), for all

ρ > 0, if δṼ (ρ†) > Ξ(ρ, 1, a(ρ)) then a(ρ) = 1,

if δṼ (ρ†) < Ξ(ρ, 1, a(ρ)) then a(ρ) = 0.

Proof: By virtue of Bellman’s Principle of Optimality,

Ṽ (ρ) = max
{

Ξ(ρ, 1, a(ρ))− c+
δ

2
Ṽ (ρ) ,

1

2
Ξ(ρ, 1, a(ρ))− c+ δ

(1

2
Ṽ (ρ) +

1

2
Ṽ (ρ†)

)}
(OF.2)

for all ρ > 0, and the choice implied by a(ρ) maximizes the right-hand side of (OF.2). �

Lemma OF.2. In any equilibrium of the auxiliary game,
if a(ρ) = 1 then Ṽ (ρ) =

1
2

Ξ(ρ,1,1)−c
1−δ = max

{
1
2

Ξ(ρ,1,1)−c
1−δ , Ξ(ρ,1,1)−c

1− δ
2

}
,

if a(ρ) < 1 then Ṽ (ρ) = Ξ(ρ,1,a(ρ))−c
1− δ

2

.

Furthermore, Ṽ (1) = max

{
1
2

Ξ(1,1,1)−c
1−δ , Ξ(1,1,1)−c

1− δ
2

}
≥ Ṽ (ρ), for all ρ ∈ [0, 1].

Proof: The lemma follows from Bellman’s Principle of Optimality together with the obser-

vations that (a) a(ρ) = 1 implies ρ† = ρ, (b) ρ = 1 implies ρ† = 1, (c) Ξ(1, 1, a) = 1 for all

a ∈ [0, 1], and (d) Ξ(·, 1, ·) is weakly increasing in both variables. �
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Proof of Proposition OF.2: Define ρ and a implicitly by

Ξ(ρ, 1, 0) = δ
(Ξ(1, 1, 1)− c

1− δ
2

)
, (OF.3)

and

Ξ(0, 1, a) = δ
(Ξ(1, 1, 1)− c

1− δ
2

)
, (OF.4)

respectively. As δ < 2
3−2c

⇔ Ξ(1, 1, 1) > δ
(

Ξ(1,1,1)−c
1− δ

2

)
, we have ρ < 1 and a < 1. Noting

that (since c < β
2

= 1
2
) the right-hand side in (OF.3) and (OF.4) is strictly positive whereas

Ξ(0, 1, 0) = 0 yields ρ > 0 and a > 0. Thus ρ ∈ (0, 1) and a ∈ (0, 1).

We now show that there is a unique equilibrium of the auxiliary game, and that the

equilibrium satisfies a(ρ) = 0 if ρ ≥ ρ

a(ρ) ∈ (0, a] if ρ ∈ (0, ρ).
(OF.5)

We will first proceed by induction to show that there can exist at most one equilibrium. We

will then argue that the inductive procedure yields an equilibrium.

As a preliminary step observe that, as δ < 2
3−2c

, then max

{
1
2

Ξ(1,1,1)−c
1−δ , Ξ(1,1,1)−c

1− δ
2

}
=

Ξ(1,1,1)−c
1− δ

2

. Hence, by Lemma OF.2,

Ṽ (ρ) =
Ξ(ρ, 1, a(ρ))− c

1− δ
2

, (OF.6)

for all ρ > 0.

The inductive procedure starts as follows. Combining (OF.3) and (OF.6) any equilibrium

must be such that, for all ρ > ρ :

Ξ(ρ, 1, 0) > δṼ (ρ†).

Thus, by Lemma OF.1, if an equilibrium exists it must satisfy a(ρ) = 0 for all ρ > ρ. A

similar argument shows that in fact the same must be true for ρ = ρ.

By contrast, consider ρ ∈ (0, ρ). The combination of (OF.3), (OF.6), and Lemma OF.1

shows that a(ρ) = 0 is impossible in equilibrium. Similarly, the combination of (OF.4), (OF.6)
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and Lemma OF.1 shows that a(ρ) > a is impossible in equilibrium. Thus, any equilibrium

must satisfy (OF.5). By Lemma OF.1 this in turn implies that the indifference condition

δṼ (ρ†) = Ξ(ρ, 1, a(ρ)) (OF.7)

must hold for all ρ ∈ (0, ρ).

Next define ρ1 such that

ρ =
ρ1

ρ1 + (1− ρ1)a
.

Thus ρ1 < ρ. By construction of ρ1 and property (OF.5), in any equilibrium: ρ† ≥ ρ for all

ρ ∈ [ρ1, ρ). (OF.7), (OF.5) and (OF.6) now pin down a unique candidate equilibrium a(ρ)

for each ρ ∈ [ρ1, ρ) (which moreover is continuous in ρ). Repeating the step above with ρ1

instead of ρ yields ρ2 < ρ1 and a unique candidate equilibrium a(ρ) for each ρ ∈ [ρ2, ρ1), and

so on. This defines a sequence {ρn} where, for all n, ρn = ρn+1

ρn+1+(1−ρn+1)a
. As a < 1, ρn → 0.

This inductive procedure therefore pins down a unique candidate equilibrium, whose value

function is continuous over (0, 1] (see (OF.6)). That this candidate equilibrium is in fact an

equilibrium is a consequence of the one-shot deviation principle.

It remains only to show that the value function Ṽ of the unique equilibrium is strictly

increasing over the interval (0, 1]. We proceed by induction. Ṽ is trivially increasing over

[ρ, 1]. Next, suppose that we can find ρa and ρb with ρ > ρb > ρa ≥ ρ1 and Ξ(ρa, 1, a(ρa)) ≥
Ξ(ρb, 1, a(ρb)). Then we must also have a(ρa) > a(ρb), which in turn implies ρ†b > ρ†a ≥ ρ

and Ṽ (ρ†b) > Ṽ (ρ†a). The latter inequality contradicts Lemma OF.1. Hence, Ξ(ρa, 1, a(ρa)) <

Ξ(ρb, 1, a(ρb)). (OF.6) thus yields Ṽ (ρa) < Ṽ (ρb) and establishes that Ṽ is increasing over

[ρ1, 1]. Repeating the step above with ρ1 instead of ρ, and so on, establishes that Ṽ is increasing

over (0, 1]. �

F.3 Proof of Proposition OF.1

Define Ξ(·, ·, ·) : (0, 1]× [0, 1]× [0, 1]× → R such that

Ξ(ρ, e, a) :=
ρ+ (1− ρ)ea

ρ+ (1− ρ)e(2− a)
.

Note that E[qt|rt = 1, ρt, êt, ât] = Ξ(ρt, êt, ât) for all ρt > 0, and that Ξ(·, ·, ·) is continuous,

weakly increasing in ρ and in a, weakly decreasing in e, Ξ(ρ, e, a) > 0, and Ξ(1, e, a) =

Ξ(ρ, e, 1) = Ξ(ρ, 0, a) = 1.
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Given two functions e : [0, 1]→ [0, 1] and a : [0, 1]→ [0, 1], define

ρ+ :=

0 if ρ = 0,

ρ
ρ+(1−ρ)e(ρ)

if ρ > 0,

and

ρ++ :=

0 if ρ = 0,

ρ
ρ+(1−ρ)e(ρ)a(ρ)

if ρ > 0.

Lemma OF.3. In any equilibrium, with V (·) denoting the value function of the equilibrium:

1. e(0) = a(0) = V (0) = 0,

2. e(ρ) > 0 for all ρ > 0,

3. for all ρ > 0:

V (ρ) = (OF.8)

max
{

Ξ(ρ, e(ρ), a(ρ))− c+
δ

2
V (ρ+) ,

1

2
Ξ(ρ, e(ρ), a(ρ))− c+ δ

(1

2
V (ρ+) +

1

2
V (ρ++)

)}
.

Proof: Consider an arbitrary equilibrium; by virtue of Bellman’s Principle of Optimality,

since ρ = 0 is an absorbing state, a(0) > 0 implies 0 ≥ 1
2
E[qt|rt = 1, 0, e(0), a(0)]. However,

if a(0) > 0 then E[qt|rt = 1, 0, e(0), a(0)] = a(0)
2−a(0)

> 0. Thus, by contradiction, a(0) = 0 and

the fee of the agency with reputation ρt = 0 is 0. As c > 0, for ρt = 0 the agency’s expected

intertemporal profit from acquiring information in period t is strictly negative. This implies

e(0) = 0 and V (0) = 0.

Next observe that, whichever e and a,

V (1) ≥
1
2
Ξ(1, e, a)− c

1− δ
=

1
2
− c

1− δ
> 0. (OF.9)

Thus e(1) = 1, since each period the agency’s payoff from shirking is 0. Suppose now that

e(ρ̂) = 0 for some ρ̂ > 0, and ρt = ρ̂. Then by acquiring information in period t the agency

would (i) command in period t the fee Ξ(ρ̂, 0, a(ρ̂)) = 1 and (ii) guarantee itself ρt+1 = 1. In
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other words, the agency’s expected intertemporal profit from acquiring information in period

t equals V (1). But then acquiring information strictly dominates shirking, contradicting

the initial assumption that e(ρ̂) = 0. This shows that e(ρ) > 0 for all ρ > 0. We can

thus compute the value function of the equilibrium by conditioning on the strategic agency

acquiring information, yielding the Bellman equation (OF.8). The first expression on the

right-hand side is the expected intertemporal profit conditional on acquiring information and

lying about qt in case qt = −1. The second expression on the right-hand side is the expected

intertemporal profit conditional on acquiring information and truthfully assigning rt = −1 in

case qt = −1. �

Proposition OF.3. Let δ > 2
3−2c

. There exists a unique equilibrium. In equilibrium:

1. e(0) = a(0) = 0,

2. e(ρ) = a(ρ) = 1, for all ρ > 0.

Proof: Let V̂ denote the value function corresponding to the strategy described in the state-

ment of the proposition. Thus V̂ (0) = 0 and V̂ (ρ) =
1
2
−c

1−δ > 0 for all, ρ > 0. By virtue of the

one-shot deviation principle if no single deviation is profitable then the strategy considered

is an equilibrium. It is easy to see that there is no profitable deviation if ρt = 0. It is also

clear that if ρt > 0 then shirking is not a profitable deviation. So we only have to check that

if ρt > 0 then lying about qt when qt = −1 is not profitable either. That is, we have to check

that Ξ(ρ, 1, 1) ≤ δ
(

1
2
−c

1−δ

)
, which is equivalent to δ ≥ 2

3−2c
.

We proceed to show that the strategy described in the statement of the proposition is the

unique equilibrium. If a(ρ) = 1 for all ρ > 0 then V (ρ) ≥
1
2
−c

1−δ > 0 for all ρ > 0. Therefore

a(ρ) = 1 for all ρ > 0 implies e(ρ) = 1 for all ρ > 0. Next, suppose that an equilibrium exists

such that a(ρ̂) < 1 for some ρ̂ ∈ (0, 1). By virtue of (OF.8),

Ξ(ρ̂, e(ρ̂), a(ρ̂)) ≥ δV (ρ̂++).

If a(ρ̂++) were equal to 1 we would then have (recall, from Lemma OF.3, e(ρ̂) > 0),

1 > Ξ(ρ̂, e(ρ̂), a(ρ̂)) ≥ δ

( 1
2
Ξ(ρ̂++, e(ρ̂++), 1)− c

1− δ

)
,
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that is, δ < 2
3−2c

. Hence by contradiction a(ρ̂++) < 1. We can thus repeat the steps above

with ρ̂++ instead of ρ̂, and so on. This process determines a sequence {ρn} such that, for all

n:

(i) a(ρn) < 1,

(ii) ρn+1 = ρn
ρn+(1−ρn)e(ρn)a(ρn)

> ρn,

(iii) Ξ(ρn, e(ρn), a(ρn)) ≥ δV (ρn+1) ≥ δ
(

Ξ(ρn+1,e(ρn+1),a(ρn+1))−c
1− δ

2

)
.

By (i)-(ii), either a(ρn) → 1 or ρn → 1. Hence, taking limits in (iii) yields (using continuity

of Ξ(·, ·, ·) and the fact that Ξ(1, e, a) = Φ(ρ, e, 1) = 1 for all ρ, e and a):

Ξ(1, 1, 1) ≥ δ

(
Ξ(1, 1, 1)− c

1− δ
2

)
. (OF.10)

This simplifies to δ ≤ 2
3−2c

. �

Lemma OF.4. Let δ < 2
3−2c

. There exists ρ ∈ (0, 1) and a ∈ (0, 1) such that, in any

equilibrium:

1. e(ρ) = 1 for all ρ ≥ ρ,

2. a(ρ) ≤ a for all ρ ∈ [0, 1].

Proof: Since Ξ(1, e, a) = 1 for all e and a and Ξ(·, ·, ·) is continuous, (OF.8) yields V (ρ) > 0

for all ρ sufficiently close to 1. But V (ρ) > 0 implies e(ρ) = 1.

Next, define a implicitly by

Ξ(0, 1, a) = δ
(Ξ(1, 1, 1)− c

1− δ
2

)
. (OF.11)

Observe that a < 1 since δ < 2
3−2c

, and a > 0 since the right-hand side of (OF.11) is strictly

positive.

Suppose that we can find an equilibrium with a(ρ̂) > a for ρ̂ > 0. Then, by (OF.8) and

Bellman’s Principle of Optimality, δV (ρ̂++) ≥ Ξ(ρ̂, e(ρ̂), a(ρ̂)). Combined with (OF.11), this
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yields V (ρ̂++) > Ξ(1,1,1)−c
1− δ

2

. Yet, given δ < 2
3−2c

, we have

V (1) = max
{Ξ(1, 1, 1)− c

1− δ
2

,
1
2
Ξ(1, 1, 1)− c

1− δ

}
=

Ξ(1, 1, 1)− c
1− δ

2

,

yielding V (ρ̂++) > V (1), which cannot be. �

In what follows let ã(·) denote the unique equilibrium of the auxiliary game analyzed in

Subsection F.2, Ṽ (·) the corresponding value function, and for δ < 2
3−2c

define ρ̃ implicitly byρ̃ = 0 if Ṽ (ρ) > 0 for all ρ > 0,

Ṽ (ρ̃) = 0 otherwise.

By virtue of Proposition OF.2, ρ̃ is well defined. Finally, given ρ > 0, let

ρ† :=
ρ

ρ+ (1− ρ)ã(ρ)
.

We will now show that there can be at most one equilibrium for δ < 2
3−2c

. The proof is

somewhat complicated. To help the reader get the gist of the argument, we defer the main

result and start with a slightly weaker version of the result, by focusing on the class of equilibria

with a non-decreasing value function.

Lemma OF.5. Let δ < 2
3−2c

. In any equilibrium whose value function is non-decreasing:

1. if ρ̃ = 0: e(ρ) = 1 for all ρ > 0,

2. if ρ̃ > 0: e(ρ) = 1 for all ρ ≥ ρ̃ and e(ρ) ∈ (0, 1) for all ρ ∈ (0, ρ̃).

Proof: We first show the proof of the lemma for the case in which ρ̃ = 0. The case ρ̃ > 0 is

considered at the end.

Define ρ1 implicitly by

ρ =
ρ1

ρ1 + (1− ρ1)a
,

with ρ and a satisfying the conditions stated in Lemma OF.4. Thus ρ1 < ρ (since a < 1), and

in any equilibrium ρ++ ≥ ρ for all ρ ≥ ρ1.

The proof is by induction: we have e(ρ) = 1 for all ρ ≥ ρ and we proceed to show that

e(ρ) = 1 for all ρ ≥ ρ1.
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Step 1: for all ρ ≥ ρ1, Ξ(ρ, e(ρ), a(ρ)) ≥ Ξ(ρ, 1, ã(ρ)). If e(ρ) = 1 then a(ρ) = ã(ρ) and so

the result is trivial. Suppose now that e(ρ) < 1, and Ξ(ρ, e(ρ), a(ρ)) < Ξ(ρ, 1, ã(ρ)). Then

a(ρ) < ã(ρ), which in turn implies

Ξ(ρ, e(ρ), a(ρ)) ≥ δV (ρ++) = δṼ (ρ++) > δṼ (ρ†) ≥ Ξ(ρ, 1, ã(ρ)).

The first inequality follows from (OF.8) and a(ρ) < 1. The subsequent equality follows from

noting that ρ++ ≥ ρ while V (ρ) = Ṽ (ρ) for all ρ ≥ ρ. The second inequality is due to the fact

that since a(ρ) < ã(ρ), ρ++ > ρ†, while Ṽ is strictly increasing (Proposition OF.2). The last

inequality follows from (OF.2) and ã(ρ) > 0.

Step 2: for all ρ ≥ ρ1, Ṽ (ρ++) ≥ Ṽ (ρ†). First, suppose a(ρ) = 0. Then ρ++ = 1 and, since

Ṽ (·) is increasing on (0, 1] (Proposition OF.2), Ṽ (ρ++) ≥ Ṽ (ρ†).

Next, suppose ã(ρ) = 0. Then ρ† = 1 and Ξ(ρ, 1, ã(ρ)) ≥ δṼ (ρ†) = δṼ (1). Therefore,

if we had Ṽ (ρ++) < Ṽ (ρ†) we would have (by Step 1) Ξ(ρ, e(ρ), a(ρ)) > δṼ (ρ++), and since

V (ρ) = Ṽ (ρ) for all ρ ≥ ρ, Ξ(ρ, e(ρ), a(ρ)) > δV (ρ++). Given (OF.8), this would imply

a(ρ) = 0, and ρ++ = 1. But then Ṽ (ρ++) = Ṽ (ρ†).

Finally, suppose a(ρ) > 0 and ã(ρ) > 0. We then obtain, in view of (OF.2), (OF.8), Step

1 and V (ρ) = Ṽ (ρ) for all ρ ≥ ρ,

δṼ (ρ++) = δV (ρ++) = Ξ(ρ, e(ρ), a(ρ)) ≥ Ξ(ρ, 1, ã(ρ)) = δṼ (ρ†).

Step 3: for all ρ ≥ ρ1, V (ρ) ≥ Ṽ (ρ). Using V (ρ) = Ṽ (ρ) for all ρ ≥ ρ, if V (·) is non-decreasing

then (OF.8), Step 1 and Step 2 yield

V (ρ) ≥ max
{

Ξ(ρ, 1, ã(ρ))− c+
δ

2
V (ρ) ,

1

2
Ξ(ρ, 1, ã(ρ))− c+ δ

(1

2
V (ρ) +

1

2
Ṽ (ρ†)

)}
,

(OF.12)

for all ρ ≥ ρ1. Comparing (OF.12) with (OF.2) gives V (ρ) ≥ Ṽ (ρ), for all ρ ≥ ρ1.

We conclude from Step 3 that V (ρ) > 0 for all ρ ≥ ρ1, which in turn implies that e(ρ) = 1

for all ρ ≥ ρ1. We can thus repeat Steps 1-3 with ρ1 instead of ρ, and so on. This process
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defines a sequence {ρn} such that, for all n, e(ρ) = 1 for all ρ ≥ ρn, and ρn = ρn+1

ρn+1+(1−ρn+1)a
.

As a < 1, ρn → 0. Thus e(ρ) = 1 for all ρ > 0.

We now show the proof of the lemma for the case in which ρ̃ > 0. Reasoning as in the

previous case shows that V (ρ) > 0 for all ρ > ρ̃, and therefore that e(ρ) = 1 and V (ρ) = Ṽ (ρ)

for all ρ > ρ̃. Furthermore V (1) ≥
1
2

Ξ(1,1,1)−c
1−δ > 0, from which follows that e(ρ) > 0 for

all ρ > 0; if this were not the case, acquiring information would yield the strategic agency

V (1) > 0. Hence, we are only left to show that e(ρ̃) = 1. Suppose that e(ρ̃) < 1. Then

ρ̃+ > ρ̃, and so Ṽ (ρ̃+) > 0. Hence, we obtain

V (ρ̃) ≥ 1

2
Ξ(ρ̃, e(ρ̃), a(ρ̃))− c+ δ

(1

2
V (ρ̃+) +

1

2
V (ρ̃++)

)
=

1

2
Ξ(ρ̃+, 1, a(ρ̃))− c+ δ

(1

2
V (ρ̃+) +

1

2
V (ρ̃++)

)
=

1

2
Ξ(ρ̃+, 1, ã(ρ̃+))− c+ δ

(1

2
Ṽ (ρ̃+) +

1

2
Ṽ (ρ̃++)

)
= Ṽ (ρ̃+) > 0.

The first line follows from (OF.8), and the second from noting that Ξ(ρ̃, e(ρ̃), a(ρ̃)) = Ξ(ρ̃+, 1, ã(ρ̃)).

The third line is obtained by noting that, since e(ρ̃+) = 1 = e(ρ̃++), the trade off between

lying and telling the truth faced by the strategic agency with reputation ρ̃ is the same as the

trade off faced by the strategic agency with reputation ρ̃+ in the auxiliary game. Therefore,

a(ρ̃) = ã(ρ̃+). The sequence above yields V (ρ̃) > 0, and so e(ρ̃) = 1. �

Lemma OF.6. Let δ < 2
3−2c

. In any equilibrium:

1. if ρ̃ = 0: e(ρ) = 1 for all ρ > 0,

2. if ρ̃ > 0: e(ρ) = 1 for all ρ ≥ ρ̃ and e(ρ) ∈ (0, 1) for all ρ ∈ (0, ρ̃).

Proof: We will show the proof of the lemma for the case in which ρ̃ = 0. We omit the proof

of the case ρ̃ > 0, which is very similar to the case we consider.

First, notice that V (1) ≥
1
2
−c

1−δ > 0. It ensues that e(ρ) > 0 for all ρ > 0; if this were not

the case, acquiring information would yield the strategic agency V (1) > 0. Since a(ρ) < 1 for

all ρ > 0 (Lemma OF.4) Bellman’s Principle of Optimality yields

V (ρ) = Ξ(ρ, e(ρ), a(ρ))− c+
δ

2
V (ρ+). (OF.13)
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Define ρ1 implicitly by

ρ =
ρ1

ρ1 + (1− ρ1)a
,

with ρ and a satisfying the conditions stated in Lemma OF.4. Thus ρ1 < ρ (since a < 1), and

in any equilibrium ρ++ ≥ ρ for all ρ ≥ ρ1.

The proof is by induction: we have e(ρ) = 1 for all ρ ≥ ρ and we proceed to show that

e(ρ) = 1 for all ρ ≥ ρ1.

Suppose that we can find ρ ≥ ρ1 such that e(ρ) < 1. We claim that e(ρ) < 1 implies

e(ρ+) < 1. To see this, observe that if e(ρ+) = 1 then

V (ρ) ≥ 1

2
Ξ(ρ, e(ρ), a(ρ))− c+ δ

(1

2
V (ρ+) +

1

2
V (ρ++)

)
=

1

2
Ξ(ρ+, 1, a(ρ))− c+ δ

(1

2
V (ρ+) +

1

2
V (ρ++)

)
=

1

2
Ξ(ρ+, 1, ã(ρ+))− c+ δ

(1

2
Ṽ (ρ+) +

1

2
Ṽ (ρ++)

)
(OF.14)

= Ṽ (ρ+).

The first line follows from (OF.8), and the second from noting that Ξ(ρ, e(ρ), a(ρ)) = Ξ(ρ+, 1, a(ρ)).

The third line is obtained by noting that, since e(ρ+) = 1 = e(ρ++), the trade-off between

lying and telling the truth faced by the strategic agency with reputation ρ is the same as the

trade-off faced by the strategic agency with reputation ρ+ in the auxiliary game. Therefore,

a(ρ) = ã(ρ+). The sequence (OF.14) yields V (ρ) ≥ Ṽ (ρ+) > 0, and so e(ρ) = 1, contradicting

our initial assumption.

Since we showed that e(ρ) < 1 implies e(ρ+) < 1, if we can find ρ ≥ ρ1 such that e(ρ) < 1

then there exists a strictly increasing sequence {ρn} with e(ρn) < 1 for all n, and ρn+1 = ρ+
n .

Let ρ̂ = limn→∞ ρn; by Lemma OF.4, ρ̂ < ρ+ z for all z > 0, as otherwise for n large enough

we would get e(ρn) = 1. As ρ < 1 this is turn implies that limn→∞ e(ρn) = 1.

We next claim that for all ε > 0 there exists N such that, for all n > N :

| Ξ(ρn, e(ρn), a(ρn))− Ξ(ρ̂, 1, ã(ρ̂)) |< ε. (OF.15)

To see this, suppose that ã(ρ̂) > 0 (the case ã(ρ̂) = 0 can be dealt with in a similar way).

Hence,

δṼ (ρ̂†) = Ξ(ρ̂, 1, ã(ρ̂)). (OF.16)
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We therefore have

lim
n→∞

Ξ(ρn, e(ρn), 0) = Ξ(ρ̂, 1, 0) < Ξ(ρ̂, 1, ã(ρ̂)) = δṼ (ρ̂†) ≤ δṼ (1),

from which follows that, for n large enough, a(ρ) > 0. Hence δV (ρ++
n ) = Ξ(ρn, e(ρn), a(ρn))

for all n large enough. Since, ρ++
n ≥ ρ for all n, we obtain

δṼ (ρ++
n ) = Ξ(ρn, e(ρn), a(ρn)), (OF.17)

for all n large enough. That (OF.15) holds for sufficiently large n now follows from (OF.16),

(OF.17) and continuity of Ṽ (·) (see Proposition OF.2).

Now, by construction of {ρn}, (OF.13) yields

V (ρn) =
∞∑
k=0

(δ
2

)k(
Ξ(ρn+k, e(ρn+k), a(ρn+k))− c

)
for all n. Moreover, we showed above that for all ε > 0 there exists N such that, for all n > N ,

(OF.15) holds. Thus, for all η > 0, choosing ε sufficiently small and n sufficiently large gives

∣∣∣V (ρn)−
∞∑
k=0

(δ
2

)k(
Ξ(ρ̂, 1, ã(ρ̂))− c

)∣∣∣ < η,

i.e., noting that
∑∞

k=0

(
δ
2

)k(
Ξ(ρ̂, 1, ã(ρ̂))− c

)
= Ξ(ρ̂,1,ã(ρ̂))−c

1− δ
2

= Ṽ (ρ̂),

∣∣V (ρn)− Ṽ (ρ̂)
∣∣ < η.

As Ṽ (ρ̂) > 0, we conclude that V (ρn) > 0, implying e(ρn) = 1. This contradicts the construc-

tion of the sequence {ρn}. Thus e(ρ) = 1 for all ρ ≥ ρ1.

We can now repeat the steps above with ρ1 instead of ρ, and so on. This process defines a

sequence { ˆ̂ρn} such that, for all n, e(ρ) = 1 for all ρ ≥ ˆ̂ρn, and ˆ̂ρn =
ˆ̂ρn+1

ˆ̂ρn+1+(1− ˆ̂ρn+1)a
. As a < 1,

ˆ̂ρn → 0. Thus e(ρ) = 1 for all ρ > 0. �

Proposition OF.4. Let δ < 2
3−2c

. There exists a unique equilibrium. This equilibrium is

such that, for some cutoff ρc:
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1. e(0) = a(0) = 0;

2. e(ρ) = 1 for all ρ ∈ (ρ̃, 1], and e(ρ) ∈ (0, 1) for all ρ ∈ (0, ρ̃);

3. a(ρ) = 0 for all ρ ∈ [ρc, 1], and a(ρ) > 0 for all ρ ∈ (0, ρc).

Proof: We take up the case in which ρ̃ > 0. The case in which ρ̃ = 0 is similar and simpler,

we therefore omit the proof.

By virtue of the one-shot deviation principle, the following strategy is an equilibrium:

e(0) = a(0) = 0;

e(ρ) = 1 for all ρ ≥ ρ̃;

ρ̃ = ρ
ρ+(1−ρ)e(ρ)

for all ρ < ρ̃;

a(ρ) = ã(ρ) for all ρ ≥ ρ̃;

a(ρ) = ã(ρ̃) for all ρ ∈ (0, ρ̃).

Uniqueness follows from Lemma OF.6. The existence of the cutoff ρco is a consequence of

Proposition OF.2. �

Proposition OF.5. Let δ 6= 2
3−2c

. There is a unique equilibrium with observable information

acquisition and contingent fees. In this equilibrium, if δ > 2
3−2c

, then e(ρ) = a(ρ) = 1 for all

ρ > 0. If instead δ < 2
3−2c

then the equilibrium is characterized by cutoffs ρc1 < 1 and ρc2 < 1

such that:

1. e(ρ) = 1 if ρ > ρc1 and e(ρ) ∈ (0, 1) if ρ ∈ (0, ρc1);

2. a(ρ) = 0 if ρ > ρc2 and a(ρ) > 0 if ρ ∈ (0, ρc2).

Furthermore, e(0) = a(0) = 0 for all δ.

Proof: Follows from Propositions OF.3 and OF.4. �

Proposition OF.6. There is a unique equilibrium with observable information acquisition

and upfront fees. In this equilibrium, e(ρ) = a(ρ) = 1 for all ρ > 0.
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Proof: Consider an equilibrium of the game with observable information acquisition and fees

received upfront by the agency such that e(0) = a(0) = 0. Let V denote the value function.

Thus V (0) = 0, while V (1) ≥
1
2

Ξ(1,1,1)−c
1−δ > 0. Hence e(1) = 1. It immediately follows that

e(ρ) > 0 for all ρ > 0; if this were not the case, acquiring information would yield the strategic

agency V (1) > 0. This gives

V (ρ) =

max
{
P(rt = 1|ρ, e(ρ), a(ρ))Ξ(ρ, e(ρ), a(ρ))− c+

δ

2
V (ρ+) , (OF.18)

P(rt = 1|ρ, e(ρ), a(ρ))Ξ(ρ, e(ρ), a(ρ))− c+ δ
(1

2
V (ρ+) +

1

2
V (ρ++)

)}
,

for all ρ > 0. Moreover, no matter e(ρ), we have P(rt = 1|ρ, e(ρ), 1)Ξ(ρ, e(ρ), 1) = 1. This

implies that we can find a < 1 such that, either (i) V (ρ) > 0 or (ii) a(ρ) < a and V (ρ++) = 0.

Case (ii) is however impossible as it implies the existence of a sequence {ρn} tending to 1 as

n → ∞ and such that V (ρn) = 0 for all n. Therefore, V (ρ) > 0 for all ρ > 0. It ensues that

e(ρ) = a(ρ) = 1 for all ρ > 0. �

Proof of Proposition OF.1: Follows from Propositions OF.5 and OF.6. �
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Online Appendix G

In this appendix we characterize the set of socially optimal fee structures. Consider a fee

structure such that: if ρt = ρ1 then φt(1) = a and φt(−1) = b while if ρt = 0 then φt(1) = y

and φt(−1) = z. The fee structure is socially optimal if: firms prefer to get a rating as long

as ρt = ρ1 and their beliefs satisfy êt = 1 (call this condition 1) and there exist an equilibrium

of the game with such a fee structure in which e(ρ1) = 1 (call this condition 2). Condition 1

boils down to:

a

2
+
b

2
≤ (

1

2
· 1 +

1

2
· 0),

where the left-hand side is the firm’s expected payment to the agency and the right-hand side

is the firm’s expected revenue from investors if firm t decides to obtain a rating for ρt = ρ1

and êt = 1. Condition 1 is equivalent to:

a+ b ≤ 1.

Condition 2 boils down to:

a− b
2

+ c ≤ δ

2

(
1

1− δ

(
a+ b

2
− c
)
−max

{
y

1− δ
,
y + 2

2(1− δ)
− c
})

.

where the left-hand side the CRA’s short-run incentive to shirk and the right-hand side is the

CRA’s long-run incentive to acquire information for ρt = ρ1 and êt = 1. Rearranging terms,

this condition can be written as:

b− a
2

+
aδ

2− δ
≥ c+ max

{
y

1− δ
,
y + 2

2(1− δ)
− c
}

2(1− δ)
2− δ

.

The largest set of a and b for which this condition holds is obtained for y = z = 0, in which

case the condition reduces to:

b− a
2

+
aδ

2− δ
≥ c.
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